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Abstract

Regarding the effects of UV-B radiation on aquatic ecosystems, recent scientific and public interest has focused on marine primary producers
and on the aquatic web, which has resulted in a multitude of studies indicating mostly detrimental effects of UV-B radiation on aquatic
organisms. The interest has expanded to include ecologically significant groups and major biomass producers using mesocosm studies,
emphasizing species interactions. This paper assesses the effects of UV-B radiation on dissolved organic matter, decomposers, primary and
secondary producers, and briefly summarizes recent studies in freshwater and marine systems.

Dissolved organic carbon (DOC) and particulate organic carbon (POC) are degradation products of living organisms. These substances
are of importance in the cycling of carbon in aquatic ecosystems. UV-B radiation has been found to break down high-molecular-weight
substances and make them available to bacterial degradation. In addition, DOC is responsible for short-wavelength absorption in the water
column. Especially in coastal areas and freshwater ecosystems, penetration of solar radiation is limited by high concentrations of dissolved
and particulate matter. On the other hand, climate warming and acidification result in faster degradation of these substances and thus enhance
the penetration of UV radiation into the water column.

Several research groups have investigated light penetration into the water column. Past studies on UV penetration into the water column
were based on temporally and spatially scattered measurements. The process of spectral attenuation of radiant energy in natural waters is well
understood and straightforward to model. Less known is the spatial and temporal variability of in-water optical properties influencing UV
attenuation and there are few long-term observations. In Europe, this deficiency of measurements is being corrected by a project involving
the development of a monitoring system (ELDONET) for solar radiation using three-channel dosimeters (UV-A, UV-B, PAR) that are being
installed from Abisko (North Sweden, 688N, 198E) to Tenerife (Canary Islands, 278N, 178W). Some of the instruments have been installed
in the water column (North Sea, Baltic Sea, Kattegat, East and Western Mediterranean, North Atlantic), establishing the first network of
underwater dosimeters for continuous monitoring.

Bacteria play a vital role in mineralization of organic matter and provide a trophic link to higher organisms. New techniques havesubstantially
changed our perception of the role of bacteria in aquatic ecosystems over the recent past and bacterioplankton productivity is far greater than
previously thought, having high division and turnover rates. It has been shown that bacterioplankton play a central role in the carbon flux in
aquatic ecosystems by taking up DOC and remineralizing the carbon. Bacterioplankton are more prone to UV-B stress than larger eukaryotic
organisms and, based on one study, produce about double the amount of cyclobutane dimers. Recently, the mechanism of nitrogen fixation
by cyanobacteria has been shown to be affected by UV-B stress. Wetlands constitute important ecosystems both in the tropics and at temperate
latitudes. In these areas, cyanobacteria form major constituents in microbial mats. The organisms optimize their position in the community
by vertical migration in the mat, which is controlled by both visible and UV-B radiation. Cyanobacteria are also important in tropical and
sub-tropical rice paddy fields, where they contribute significantly to the availability of nitrogen. Solar UV radiation affects growth,development
and several physiological responses of these organisms.

On a global basis, phytoplankton are the most important biomass producers in aquatic ecosystems. The organisms populate the top layers
of the oceans and freshwater habitats where they receive sufficient solar radiation for photosynthetic processes. New research strengthens
previous evidence that solar UV affects growth and reproduction, photosynthetic energy-harvesting enzymes and other cellular proteins, as
well as photosynthetic pigment contents. The uptake of ammonium and nitrate is affected by solar radiation in phytoplankton, as well as in
macroalgae. Damage to phytoplankton at the molecular, cellular, population and community levels has been demonstrated. In contrast, at the
ecosystem level there are few convincing data with respect to the effects of ozone-related UV-B increases and considerable uncertainty
remains. Following UV-B irradiation, shifts in phytoplankton community structure have been demonstrated, which may have consequences
for the food web.
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Macroalgae and seagrasses are important biomass producers in aquatic ecosystems (but considerably smaller than phytoplankton). In
contrast to phytoplankton, most of these organisms are sessile and can thus not avoid exposure to solar radiation at their growth site. Recent
investigations showed a pronounced sensitivity to solar UV-B radiation, and effects have been found throughout the top 10–15 m of the water
column. Photoinhibition can be quantified by oxygen exchange or by PAM (pulse amplitude modulated) fluorescence. Surface-adapted
macroalgae, such as several brown and green algae, show a maximum of oxygen production at or close to the surface; whereas algae adapted
to lower irradiances usually thrive best when exposed deeper in the water column. Mechanisms of protection and repair are being investigated.

UV effects on aquatic animals are of increased interest. Evidence for UV effects has been demonstrated in zooplankton activity. Other UV-
B-sensitive aquatic organisms include sea urchins, corals and amphibians. Solar UV radiation has been known to affect corals directly. In
addition, photosynthesis in their symbiotic algae is impaired, resulting in reduced organic carbon supply. Amphibian populations are in serious
decline in many areas of the world, and scientists are seeking explanations for this phenomenon. Most amphibian population declines are
probably due to habitat destruction or habitat alteration. Some declines are probably the result of natural population fluctuations. Other
explanations for the population declines and reductions in range include disease, pollution, atmospheric changes and introduced competitors
and predators. UV-B radiation is one agent that may act in conjunction with other stresses to affect amphibian populations adversely.

The succession of algal communities is controlled by a complex array of external conditions, stress factors and interspecies influences.
Freshwater ecosystems have a high turnover and the success of an individual species is difficult to predict, but the development of general
patterns of community structure follows defined routes. There is a strong predictive relationship between DOC concentration and the depth
to which UV radiation penetrates in lakes. Since DOC varies widely, freshwater systems display a wide range of sensitivity to UV penetration.
In these systems, increased solar UV-B radiation is an additional stress factor that may change species composition and biomass productivity.

The Arctic aquatic ecosystem is one of the most productive ecosystems on earth and is a source of fish and crustaceans for human
consumption. Both endemic and migratory species breed and reproduce in this ocean in spring and early summer, at a time when recorded
increases in UV-B radiation are maximal. Productivity in the Arctic ocean has been reported to be higher and more heterogeneous than in the
Antarctic ocean. In the Bering Sea, the sea-edge communities contribute about 40–50% of the total productivity. Because of the shallow water
and the prominent stratification of the water layer, the phytoplankton are more exposed and affected by solar UV-B radiation. In addition,
many economically important fish (e.g., herring, pollock, cod and salmon) spawn in shallow waters where they are exposed to increased
solar UV-B radiation. Many of the eggs and early larval stages are found at or near the surface. Consequently, reduced productivity of fish
and other marine crops is possible but has not been demonstrated.

There is increased consensus, covering a wide range of aquatic ecosystems, that environmental UV-B, independent of ozone-related
increases, is an important ecological stress that influences the growth, survival and distribution of phytoplankton. Polar ecosystems, where
ozone-related UV-B increases are the greatest and which are globally significant ecosystems, are of particular concern. However, these
ecosystems are characterized by large spatial and temporal variability, which makes it difficult to separate out UV-B-specific effects on single
species or whole phytoplankton communities. There is clear evidence for short-term effects. In one study a 4–23% photoinhibition of
photosystem II activity was measured under the ozone hole. However, extrapolation of short-term effects to long-term ecological consequences
requires various complex effects to be accounted for and quantitative evaluation remains uncertain. q 1998 UNEP. Published by Elsevier
Science S.A. All rights reserved.
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1. Introduction

Solar short-wavelength radiation has been shown to reach
ecologically significant depths in many freshwater and
marine ecosystems [1–6]. Drastic stratospheric ozone deple-
tion over both the Antarctic and Arctic, as well as moderate
decreases in total ozone column over high- and mid-latitude
waters, have been reported. There is strong evidence that
these trends increase the amount of solar UV-B radiation that
penetrates within the euphotic zone, where phytoplankton
productivity takes place. In addition, there is evidence that
ozone depletion alters the UV-B:UV-A:PAR (photosynthet-
ically active radiation) ratio, which may impair the delicate
light-dependent responses of aquatic organisms, including
photosynthesis, photo-orientation, photoinhibition and pho-
toprotection [2,7–11]. Changes in the spectral composition
exceeding those experienced during the evolution of exposed
organisms may pose significant stress for the diverse aquatic
ecosystems [12]. Both UV-B and UV-A radiation affect the

growth and productivity by a number of mechanisms involv-
ing several molecular targets within the exposed cells. While
most organisms possess effective protective and repair mech-
anisms, excessive exposure to solar UV radiation may over-
load their capabilities.

Significant changes of solar UV radiation on aquatic eco-
systems may result in decreased biomass productivity. The
impact of this decrease would be reflected through all levels
of the intricate food web, resulting in reduced food production
for humans [7,13,14], reduced sink capacity for atmospheric
carbon dioxide [15–17], as well as changes in species com-
position and ecosystem integrity. The role of oceanic carbon
dioxide uptake in global warming is of high significance
[18,19]. However, the potential impact of ozone depletion
on atmospheric carbon dioxide, mediated through inhibition
of marine primary production, is uncertain and a more rig-
orous and detailed analysis is urgently needed. Research has
been intensified over the last few decades to evaluate UV-B-
related damage of aquatic ecosystems [20]. Important
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reviews on various aspects of UV effects on aquatic ecosys-
tems include: aquatic ecosystes in general [14,21]; the role
of mycosporine-like amino acids (MAAs) in marine organ-
isms [22]; phytoplankton [10,23,24]; macroalgae [25,26];
corals and coral bleaching [27,28]; lake acidification and UV
penetration [29,162].

2. Dissolved organic matter and solar UV radiation

Solar UV radiation has been shown to degrade dissolved
organic carbon (DOC) photolytically, most of the DOC
being of terrestrial origin and relatively resistant to other
forces [30]. Humic substances are fairly resistant to bacterial
degradation, but after photolytic activity the products (e.g.,
formaldehyde, acetaldehyde, glyoxylate and pyruvate) are
readily taken up by bacterioplankton [31]. Humic substances
strongly absorb UV radiation. Thus, increased breakdown of
DOC and subsequent consumption by bacteria increases the
UV-B penetration into the water column. Close to the surface,
solar UV radiation inhibits bacterioplankton activity and rap-
idly photolyses DOC. However, the uptake of the fragments
is hampered by the inhibition of the bacterial ectoenzymes.
Only when both bacteria and the photolysed DOC circulate
to deeper layers does the uptake rate increase. Another aspect
of DOC photolysis is the generation of photosensitizers,
which upon absorption of UV radiation produce reactiveoxy-
gen species (ROS) or free radicals. Dimethyl sulfide is
released from the water at a rate that is closely correlated with
the concentration of DOC [32]. Dimethylsulfoniopropionate
is considered an osmoregulator in phytoplankton.

3. Measurements and modelling

To determine the effects of solar radiation on marine eco-
systems, the penetration of UV and PAR into the water col-
umn needs to be measured [33,34]. Marine waters showlarge
temporal and regional differences in their concentrations of
dissolved and particulate absorbing substances. Jerlov [35]
classified marine waters into nine types of coastal and five
types of open-ocean waters depending on their transmission.
The ratio between the 0.1% depths for UV-B and PAR can
be used to calculate the detrimental effects on algae by solar
UV-B radiation that hits the organisms in the euphotic zone
[36]. Recent developments allow an accurate measurement
of the underwater light field [37]. Yellow substances, chlo-
rophyll a and other photosynthetic pigments, as well as
organic and inorganic particulate material mainly cause the
spectral attenuation of UV-B radiation in the water column.
The modulation of the open-ocean underwater light field by
phytoplankton has been extensively studied [38], but reports
on the underwater light field in coastal habitats colonized by
macroalgae are scarce, particularly in the UV-B range. Algal
canopies modify the light quality by absorption and scattering
of the incident light.

Recently, a network of dosimeters (ELDONET) was
installed in Europe ranging from Abisko in Northern Sweden
to Gran Canaria with a total of 26 instruments [39]. Two of
the instruments are located at high altitudes and six are located
under water where they operate in conjunction with a terres-
trial counterpart (Fig. 1). These instruments record solar
radiation fully automatically in three channels (UV-B, UV-
A, PAR). The data are transmitted to a server in Pisa and are
available to the public on the Internet in graphical and numer-
ical form (http://power.ib.pi.cnr.it:80/eldonet/). Othernet-
works have been installed, e.g., Biospherical Instruments
(San Diego, CA) is responsible for obtaining and distributing
irradiance data from the US National Science Foundation UV
Spectroradiometer Monitoring Network (http://www.
biospherical.com). Data are available from stations in San
Diego (CA), Ushuaia (Argentina), Barrow (AK) and three
Antarctic stations (South Pole, Palmer and McMurdo). Great
care is necessary to guarantee quality control of the light
measurements [40].

Underwater UV irradiance has been measured at northern
latitudes (798N, Spitsbergen, Norway). The measurements
showed significant short-term increases due to local ozone
holes over those reported in winter 1994–1995 in the Euro-
pean SESAME campaign (Second European Stratospheric
Arctic and Midlatitude Experiment), in which a depletion of
20–30% of the stratospheric ozone was observed [41].

Another approach to quantifying the underwater light cli-
mate is modelling [42]. Within limits, the optical character-
istics of the water column can be obtained from satellite data
(e.g., CZCS and SeaWiFS, Fig. 2). These instruments cover
only the visible range, but attempts have been and are being
made to extrapolate the data into the UV range so as to make
these remotely sensed data relevent to UV studies.

There have been great efforts to develop techniques for
measuring algal biomass by using remote sensors. Most work
has focused on quantifying chlorophyll from phytoplankton
in surface oceanic waters [43]. Piazena and Hader [36]¨
discussed the applicability of remote sensing to detecting and
quantifying phytoplankton in the water. One major obstacle
for remote monitoring is the fact that overflying instruments
mainly determine the surface signal. Therefore, profound
knowledge of the vertical distribution of phytoplankton as
well as the distribution of algal groups is necessary to derive
a quantitative analysis of biomass productivity [36]. Moor-
ing of optical instruments has been used to determine phy-
toplankton production in the oligotrophic waters of the
Sargasso Sea [44]. Meinesz et al. [45] have studied macroal-
gal biomass and distribution on the bottom of clear waters in
Polynesia.

Recently Behrenfeld and Falkowski [46] have evaluated
models used to estimate photosynthetic rates derived from
satellite-based chlorophyll concentration measurements. In
addition, they [47] have evaluated various primary produc-
tivity models, provided a classification scheme for these pro-
ductivity models and show that many of these, apparently
different, models show fundamental synonymy. If equivalent
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Fig. 1. Locations of the terrestrial, aquatic and high-altitude instruments in the ELDONET network of solar dosimeters: circles, terrestrial instruments; squares,
underwater instruments; triangles, high-altitude instruments.

Fig. 2. Chlorophyll concentration in the ocean. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center.
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Fig. 3. Microbial loop (continuous arrows) in an aquatic habitat.

parameterizations are used for satellite-derived chlorophyll
measurments and the maximum chlorophyll-specific carbon
fixation rate, then estimates of global annual primary produc-
tion were found to be due primarily to these variables.

4. Bacterioplankton and picoplankton

Use of modern epifluorescence microscopy techniques has
substantially changed our perception of the role of bacteria
in aquatic ecosystems over the recent past. Bacterioplankton
productivity is far greater than previously thought, having
high division and turnover rates [48]. The productivity is
comparable to or exceeds phytoplankton primary productiv-
ity [32]. Bacterioplankton are no longer regarded solely as
final decomposers of organic material (Fig. 3). According to
the ‘microbial loop hypothesis’, bacterioplankton are seen in
the centre of a food web, having a similar function to phy-
toplankton and protists [49]. It has been shown that bacter-
ioplankton play a central role in the carbon flux in aquatic
ecosystems by taking up DOC and remineralizing the carbon.

The effect of solar UV on bacterioplankton depends on the
spectral attenuation coefficients in the water column and the
time pattern of exposure and protection for the organisms as
they are passively moved in the mixing layer. Bacterioplank-
ton seem to lack UV-screening pigments such as mycospor-
ines or scytonemins, possibly because of their small size
[50,51]. As a consequence, bacterioplankton are more prone
to UV-B stress than larger eukaryotic organismsandexposure
produces about double the amount of cyclobutane dimers as
shown in a case study in the Gulf of Mexico [52,53]. This
damage is at least partially offset by photoreactivation [54].
The equilibrium between UV damage and photorepair is gov-
erned by the passive movement of the cells within the mixing
layer, where they are alternately exposed to high levels of
damaging solar UV radiation near the surface and beneficial
UV-A/blue light at greater depths. Other macromolecular
components of the bacterial cells, as well as ectoenzymes
responsible for the cleavage of external organic matter, are
affected by solar UV-B radiation [55]. The bacterioplankton

serve as food for heterotrophic flagellate picoplankton (-1
mm). The bacterial plankton population is limited by UV
damage, viruses and heterotrophic flagellates [56,57]. This
effect is partially offset by an effective repair mechanism
using the photolyase enzyme. UV/blue radiation (360–430
nm) is most effective in the induction of the activity. It should
also be mentioned that the viruses and nanoflagellates show
a high sensitivity to solar UV radiation [58].

5. Cyanobacteria

Cyanobacteria are a group of prokaryotes that possess a
higher plant-type oxygenic photosynthesis. In addition to
being key players in aquatic productivity, several of these
organisms are capable of fixing atmospheric nitrogen either
as free-living organisms or in symbiosis with many other
species including protists, animals and plants [59]. They use
the enzyme nitrogenase to reduce atmospheric nitrogen into
ammonium ions (NH4

q), which they make available for
aquatic eukaryotic phytoplankton as well as higher plants
[60–63]. The agricultural potential of cyanobacteria as a
biological fertilizer for wet soils, such as in rice paddies [64],
has been recognized. Cyanobacteria are cosmopolitan and
must possess a high potential of adaptation to diverse envi-
ronmental factors. However, UV-B is known to affect proc-
esses such as growth, survival, pigmentation and motility, as
well as the enzymes of nitrogen metabolism and CO2 fixation
[65,66]. Depending on the species, growth and survival
decrease within a few hours of UV-B irradiation. Cyanobac-
teria also fix atmospheric nitrogen in mid-latitudeagricultural
systems, though not as massively as in paddy rice fields;
therefore UV-B effects on these organisms could also be
relevant on a global scale.

In addition to DNA, which is a highly susceptible cellular
target, the photosynthetic pigments are also affected. The
phycobiliproteins, especially, are readily bleached and
cleaved [61,67,68]. Bleaching of these accessory pigments
is far more efficient than that of chlorophyll a or carotenoids
[67]. At lower doses the energy transfer to the reaction centre
of photosystem II is impaired [61]. Simultaneously with
destruction, an increased synthesis of phycobiliproteins has
been observed under mild UV-B stress. The fact that these
pigments strongly absorb in the UV-B range and that they
form a peripheral layer around the sensitive central part con-
taining the DNA might indicate that phycobilins are effective
screening pigments, as well [68]. They are capable of inter-
cepting more than 99% of UV-B radiation before it penetrates
to the genetic material.

UV-B-induced inhibition of photosynthetic activity has
been demonstrated in a number of marine and freshwater
cyanobacteria. Sinha et al. [61] reported that, in addition to
the bleaching of the photosynthetic pigments, RuBisCO
(ribulose-1,5-bis-phosphate carboxylase/oxygenase) activ-
ity was severely affected by UV-B treatment. Ammonium
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uptake was reduced by 10% in cultures exposed to solar
radiation.

The nitrogen-fixing enzyme nitrogenase is inhibited by
UV-B even after a few minutes of in vivo exposure. A com-
plete loss of activity was found within 35–55 min depending
upon the species [69]. The inactivation may possibly be due
to the inhibition of ATP synthesis by UV-B. In contrast to
the effect on nitrogenase, a stimulation of nitrate reductase
by UV-B was found in all nitrogen-fixing cyanobacterial
strains studied so far [67], while the ammonia-assimilating
enzyme glutamine synthetase (GS) is inhibited.

Many cyanobacteria have developed a number of adaptive
strategies to reduce the negative effects of excessive radia-
tion, including the avoidance of brightly irradiated habitats,
the synthesis of UV-screening pigments and the production
of chemical scavengers that detoxify the highly reactive oxi-
dants produced photochemically [70]. Screening pigments
include scytonemin and MAAs, as well as a number of spec-
troscopically characterized but chemically unidentified
water-soluble pigments (e.g., a brown-colored pigment from
Scytonema hofmanii and a pink extract from Nostoc spon-
giaeforme) [69,71]. Cyanobacteria such as Scytonema and
Nostoc form filaments that are embedded in a mucilaginous
sheath. The screening pigment from Scytonema hofmannii
shows an absorption maximum at 314 nm and is released into
the medium during the late stationary phase of growth. These
organisms are more tolerant of UV-B irradiation than those
that do not contain such covering [67]. For example, other
species of Scytonema that do not produce this pigment are
unable to survive 2 h of UV-B irradiation (2.5 W my2).
Karsten and Garcia-Pichel [72] showed that screening pig-
ments such as scytonemins, carotenoids and MAAs are incor-
porated into the cytoplasm or the outer slime sheath,
efficiently protecting the organisms from solar short-wave-
length radiation.

6. Phytoplankton

Considerable recent work, covering a wide range of aquatic
ecosystems, has contributed to an increased consensus that
environmental UV-B, independent of ozone-related
increases, is an important ecological stress that influences the
growth, survival and distributions of phytoplankton. On a
global scale, phytoplankton are the most important biomass
producers in aquatic ecosystems. The organisms populate the
top layers of the oceans and freshwater habitats where they
receive sufficient solar radiation (photosynthetic available
radiation, PAR) for photosynthetic processes. This layer is
called the euphotic zone, the base of which is defined as the
depth where gross daily photosynthetic carbon fixation bal-
ances phytoplankton respiratory losses over a day (typically
a depth to which 1–0.1% of PAR penetrates). Within this
zone, phytoplankton are simultaneously exposed to solar UV
radiation, in addition to longer-wavelength radiation. Infor-
mation required to estimate quantitatively ozone-related UV-

B damage to phytoplankton include: the spectral character-
istics of solar radiation penetrating to depth and its space–
time variability; a biological weighting function (BWF) of
the biological effect; an exposure–response curve (ERC); a
quantitative model of phytoplankton inhibition by UV-B; and
an assessment of how vertical mixing influences variable
irradiance exposures of phytoplankton and their physiologi-
cal response. We are far from a full quantitative understand-
ing, but advances in each of these areas have been made
during the past few years and recent reviews include Refs.
[21,23,24,73,74].

While it has long been known that DOC influences the
penetration of UV-B radiation, recent work has provided
quantitative data that permit a more accurate estimated of
DOC breakdown by UV-B, the resultant reduction of absorp-
tion in the UV region, and consequent increased penetration
to depth. Among other things, this recent work permits a more
accurate estimation of the penetration of UV-B to depth based
upon knowledge of in-water DOC concentrations. This may
be especially important in assessing the potential influence
of increased UV-B on freshwater ecosystems.

BWFs describing the spectrally weighted sensitivity of
phytoplankton photosynthesis to UV and visible irradiance,
have recently been determined by a number of workers [75–
77]. There is general agreement that the biologicalweighting,
while highest in the UV-B, also contains a significant UV-A
component. However, in spite of this broad agreement,BWFs
have been shown to vary by species, region, mixing charac-
teristics of the water column and, perhaps, other environmen-
tal variability. As a consequence, it is now recognized that a
single, or even a few, BWFs may be inadequate for a complete
description of an ecosystem, thus making quantitative anal-
ysis more complex.

ERCs [23,24,75] have recently been determined. To esti-
mate the ERC one must determine if the measured damage is
a function solely of cumulative exposure or whether it is a
function of exposure rate. As noted by these authors, this
difference is fundamental, and it has an important impact on
both the design and interpretation of experiments and on the
extrapolation of experimental results to real-world predic-
tions. Further, the shape of the ERC influences model accu-
racy. In addition, the ERC, which is important for accurate
modelling, shows a range of experimental variability [77],
probably dependent on the balance between damage and
repair and, thus, on the time-scale considered. Recent work
has shown two forms of ERC in phytoplankton from different
hydrographic environments, thus making accurate modelling
of ozone-related impacts more complex.

Models have been developed [23,76–79] in an effort to
estimate the impact of ozone depletion. These efforts repre-
sent important advances in our effort to quantify possible
impacts, identifying the most significant processes and
unknowns and evaluating uncertainities. However, these
recent advances continue to underscore the difficulty of using
short-term observations to estimate longer-term (days to
years) ecological response [2,70,77,79–81].
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Fig. 4. Photosynthetic quantum yield measured on site using a PAM fluorimeter in the Mediterranean brown alga Padina pavonica harvested from 0 m (closed
bars) and 6 m depth (open bars) at 1 h intervals [20].

Solar UV affects growth and reproduction, photosynthetic
energy-harvesting enzymes [82–88] and other cellular pro-
teins, as well as photosynthetic pigment contents [10,89–
92]. The uptake of ammonium and nitrate is affected by solar
radiation in phytoplankton [93–96], as well as in macroalgae
[97]. Phytoplankton respond with the production of heat-
shock proteins, as well as changes in the cellular amino acid
pools. One of the major targets is the DNA, which strongly
absorbs in the short-wavelength range of solar radiation.Solar
UV-B has been found to induce DNA damage and DNA
synthesis delay in many organisms [98–101]. UV-B effects
have also been studied on the ecosystem level using meso-
cosms [102,103].

7. Macroalgae and seagrasses

While phytoplankton are motile in the water column [7],
most macroalgae are sessile and therefore restricted to their
growth site [104]. Macroalgae show a distinct and fixed
pattern of vertical distribution in their habitat. Some of these
plants inhabit the supralittoral (coast above the high-water
mark) exposed only to the spray from the surf, whereas others
populate the eulittoral (intertidal zone), which is character-
ized by the regular temporal change in the tides [105]. Still
others are never exposed to air, since they are restricted to
the sublittoral zone. The range in exposure can be substantial,
from over 1000 W my2 (total solar radiation) at the surface
to less than 0.01% of that which reaches the understorey of a
kelp habitat [106]. Macroalgae have developed mechanisms
to regulate their photosynthetic activity to adapt to the chang-
ing light regime and protect themselves from excessive radi-
ation [25]. They use the same mechanism of photoinhibition
as higher plants to decrease the photosynthetic electron trans-
port during periods of excessive radiation. This phenomenon

facilitates thermal dissipation of excessive excitation. Differ-
ent algal species occupy different depth niches and are
adapted to different solar exposure [26]. They also differ in
their ability to cope with enhanced UV radiation [107]. A
broad survey was carried out to understand photosynthesis in
aquatic ecosystems and the different adaptation strategies to
solar radiation of ecologically important species of green, red
and brown algae from the North Sea, Baltic Sea, Mediterra-
nean, Atlantic, polar and tropical oceans [26,106,108–113].

Photoinhibition can be quantified by oxygen exchange
[114] or by PAM (pulse amplitude modulated) fluorescence
measurements developed by Schreiber et al. [115] and based
on transient changes of chlorophyll fluorescence. Surface-
adapted macroalgae, such as several brown (Cystoseira,
Padina, Fucus) and green algae (Ulva, Enteromorpha)show
a maximum of oxygen production at or close to the surface
[26,116]; whereas algae adapted to lower irradiancesusually
thrive best when exposed deeper in the water column (the
green algae Cladophora, Caulerpa, most red algae) [26]. It
is interesting to note that respiration is inhibited to a far
smaller degree than photosynthesis.

PAM fluorescence allows the determination of the photo-
chemical and non-photochemical quenching [117].
Recently, an underwater PAM instrument was developed for
in situ measurement of the quantum yield of fluorescence,
which promises advances in the knowledge on ecophysiology
of macroalgae. The increase in non-photochemicalquenching
is related to the violaxanthin cycle, which is believed to
quench excess excitation energy both in algae and in higher
plants [26,118]. Even algae harvested from rock pools,
where they are exposed to extreme irradiances, show signs
of photoinhibition after extended periods of exposure (Fig.
4). Deep-water algae and those adapted to shaded conditions
are inhibited even faster when exposed to direct solar radia-
tion. Large differences were also found in the recovery
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Table 1
Structure, absorption maximum and retention time (HPLC) of some common mycosporines [139]

between high light-adapted and protected species. A consid-
erable proportion of photoinhibition is due to PAR (400–700
nm). Exclusion studies were carried out to determine the
effects of solar UV-B and UV-A radiation [83]. Increasing
exposure to solar radiation resulted in a shift of the compen-
sation point to higher irradiances. The compensation point
defines the irradiance at which photosynthetic oxygen pro-
duction and respiratory oxygen consumption balance each
other. Exclusion of UV-B partially reduced the effects. This
trend increased when about half or all of the UV-A radiation
was excluded (Schott filters WG 360 and 395).

Chronic photoinhibition occurs when algae are exposed to
excessive irradiance. The inhibition is characterized by pho-
todamage of PS II reaction centres and subsequentproteolysis
of the D1 protein [119]. In contrast, dynamic photoinhibition
is readily reversible and follows a diurnal pattern with the
lowest quantum yield around or soon after noon [26,120].
The lowest light compensation point for photosynthesis has
been reported in Arctic and Antarctic algae [121–123].

The long-term effects of solar UV on the primary produc-
tivity of macroalgae still need to be evaluated. Shallow-water
specimens in coral reefs undergo a 50% reduction in
photosynthetic efficiency during the middle of the day and
show a complete recovery by late afternoon. Both UV-A and
UV-B cause depression of the photosynthetic rate in the
brown alga Laminaria digitata [124].

Recently, different methods for measuring light absorption
in macroalgae have been compared [125]. The absorption
determined by using an integrating sphere and by the opal-
glass technique in a spectrophotometer in thin macroalgae
was intercalibrated. Garcıa-Pichel [126] has developed a´
scalar irradiance fibre-optic microprobe for the measurement
of ultraviolet radiation at high spatial resolution.

The photoprotective mechanism of the xanthophyll cycle
has been investigated mostly in microalgae [127] and to less
extent in macroalgae, e.g., the green alga Ulva lactuca [128]
and the brown algae Dictyota dichotoma [129] and Lobo-
phora variegata [130]. Red algae did not show the xantho-
phyll cycle.

Another mechanism for protection against UV radiation
(UV-A and UV-B) is the production of screening pigments
such as carotenoids or UV-absorbing MAAs (Table 1).
MAAs have been found in green, red and brown algae from

tropical, temperate and polar regions. Since these substances
are chemically very stable, they accumulate in the sediment
of lakes and can be used of a permanent record for past
ultraviolet radiation environments [131]. In tropical algae,
enhanced levels of carotenoids and UV-absorbing com-
pounds were detected in tissues from the canopy compared
to tissues from understorey locations in turf-forming rhodo-
phytes [110,111]. Current research indicates that solar UV-
B is a stress factor for macroalgae and seagrasses even at
current levels; therefore further increases in UV-B may
reduce biomass production and changes in species composi-
tion in macroalgae ecosystems.

8. Zooplankton

Phytoplankton concentrations depend not only on nutrient
availability, light, temperature and UV stress but also strongly
on the grazing losses due to zooplankton activity [132]. The
zooplankton communities in turn not only depend on phyto-
plankton availability but also on grazing pressure as well as
solar UV and temperature. Even at current levels, solar UV-
B radiation can be a limiting factor, and small increases in
UV-B exposure could result in significant reductions in the
size of the consumer community [133,134]. However, var-
iability in cloud cover, water quality and vertical distribution
and displacement within the water column can all have an
impact on the magnitude of the UV-B effect. Also, related to
temperature effects, the macrozooplankton biomass in the
California Current has decreased by 80% since 1951 due to
climatic warming by more than 1.58C in some places [135].
As in phytoplankton, UV-B-induced DNA damage and pho-
toenzymatic DNA repair have also been demonstrated in zoo-
plankton [136]. In planktonic embryos of copepods
photoreactivation of UV-induced damage was found to be an
efficient repair mechanism [137]. However, UV severely
affects survival, fecundity and sex ratio in several intertidal
copepods, while others remained largely unaffected [138].

9. Secondary consumers

Other UV-B sensitive marine organisms include sea
urchins and corals [27,140]. However, many organisms
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seem to have adapted to solar UV by different strategies. For
example, the planula larvae of the coral Agaricia agaricites
show a pronounced variation in UV-B sensitivity along a
depth gradient [141] and the green sea urchin Strongylocen-
trotus droebachiensis uses MAAs that it derives from its diet
for UV absorption. This latter adaptation was determined by
feeding an MAA-rich red alga, Mastocarpus stellatus, and an
MAA-deficient brown alga, Laminaria saccharina, to sea
urchins [142].

Although humans use about 8% of the productivity of the
oceans, that fraction increases to more than 25% for upwell-
ing areas and to 35% for temperate continental shelf systems
[143]. For about one-sixth of the world’s population (pri-
marily developing nations), the oceans provide more than
one-third of their animal protein [144]. Many of the fisheries
that depend upon the oceanic primary productivity are unsus-
tainable. Although the primary causes for a decline in fish
populations are predation and poor food supply for larvae,
overfishing of adults, water temperature, pollution and dis-
ease [145,146], exposure to increased UV-B radiation may
contribute to that decline. The eggs and larvae of many fish
are sensitive to UV-B exposure [147–149]. However, impre-
cisely defined habitat characteristics and the unknown effect
of small increases in UV-B exposure on the naturally high
mortality rates of fish larvae are major barriers to a more
accurate assessment of ozone depletion on marine fish pop-
ulations. Actual in-lake experiments have demonstrated that
ambient UV levels in the surface waters of temperate lakes
are adequate to induce 100% mortality of yellow perch eggs
in low-DOC lakes but not in lakes with higher DOC levels
[150].

Amphibian populations are in serious decline in many
areas of the world [151], and scientists are seeking expla-
nations for this phenomenon [152,153]. Worrest and Kimel-
dorf [154] noted several adverse effects of increased
exposure to UV-B radiation on the systemic development of
boreal toad (Bufo boreas boreas) tadpoles in the laboratory.
They questioned whether an increased exposure to UV-B
radiation in nature could have an adverse impact on amphib-
ian development. Vetter and colleagues (submitted for pub-
lication), using a newly developed chemiluminescent
immunoblot assay capable of measuring thymine–thymine
pyrimidine dimers (TT dimers) in DNA, have investigated
DNA damage and repair in pelagic fish eggs and larvae. Since
the typical method of thymine dimer repair is photoenzymatic
repair, the observed amount of DNA damage at any time of
day is the net result of damage rates and repair rates. They
find that over a day the typical diel pattern of DNA damage,
at least for northern anchovy, resembles a dose-rate meter
rather than a cumulative dose meter, i.e., DNA damage
increases as the sun rises, reaches a peak level of damage
near solar noon, and is followed by a period of rapid repair
in the afternoon when UV-B is decreasing but the visible light
utilized for repair is still abundant. An understanding of this
diel cycle of damage and repair is essential for the correct

interpretation of relationships between solar irradiance and
levels of DNA damage in field samples.

As reported by several authors [155–159], field studies in
which amphibian embryos were exposed to natural sunlight
or to sunlight with UV-B radiation removed have shown
conflicting results. Some studies resulted in increased embry-
onic mortality after UV-B exposure, whereas others show
that current levels of UV-B radiation are not detrimental.
Abiotic factors, such as water depth, water colour and dis-
solved organic content at the egg-laying sites, effectively
reduce UV-B penetration through the water and reduce expo-
sure to UV-B radiation at all life-history stages. Biotic factors,
such as jelly capsules around eggs, melanin pigmentation of
eggs and colour of larvae and metamorphosed forms, further
reduce the effectiveness of UV-B penetration.

Most amphibian population declines are probably due to
habitat destruction or habitat alteration. Some declines are
probably the result of natural population fluctuations. Other
explanations for the population declines and reductions in
range include disease, pollution, atmospheric changes and
introduced competitors and predators. UV-B radiation is one
agent that may act in conjunction with other stresses to affect
amphibian populations adversely.

10. Ecosystems

10.1. Freshwater

The succession of periphytic and limnic algal communities
is controlled by a complex array of external conditions, stress
factors and interspecies influences [160]. Freshwater eco-
systems have a high turnover and the success of an individual
species is difficult to predict, but the development of general
patterns of community structure follows defined routes
[161]. Even though transparency for solar UV-B is consid-
erably lower than in oceanic waters, increased solar UV-B is
an additional stress factor which may change species com-
position and biomass productivity [29,36,162,163]. The
interaction of UV-B and heavy-metal concentrations resulted
in synergistic inhibition of nutrient uptake, enzyme activity,
carbon fixation, ATP synthesis and oxygen evolution in a
number of phytoplankton species [160,164]. 67 freshwater
species of algae (Chlorophyta and Chromophyta) were
screened in an experiment to determine their UV-Bsensitivity
[165]. The algae were selected to represent different ecosys-
tems ranging from high-altitude lakes to thermal springs. The
most sensitive species lost 30–50% of their oxygen-evolving
capacity during a 2 h UV-B exposure (2 W my2). Many
UV-B-resistant species were found in high mountain
locations. They often have solid cell walls encrusted with
sporopollenin. In another experiment the effects of solar UV-
B on growth and species composition were studied in an
exclusion experiment in a high-altitude mountain lake [166].
In this study no significant differences were found between
the control (full sunlight) and the UV-B-depleted enclosure.
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However, it should be mentioned that UV-A also has been
found to affect growth and photosynthesis [167]. In other
organisms UV-A had a beneficial effect, partially counter-
acting UV-B inhibition [168]. In addition to the primary
producers, the significance of heterotrophic picoplankton in
freshwater ecosystems needs to be taken into account [169].

The results of an experiment by Bothwell et al. [80] rein-
force the view that predictions of responses by ecosystems to
elevated UV-B exposure should not be based solely on single-
species assessments. As reported, greater algal growth
occurred in an artificial stream under UV-B exposure than in
the control, after some lag time. The explanation of this sur-
prising (at that time) result was that the grazers, larval chi-
ronomids, were more sensitive to UV-B radiation than their
food, the algae.

10.2. The Antarctic aquatic ecosystem

Productivity in the Southern Ocean is characterized by
large-scale spatial and temporal variability [78,170,171].
This makes it difficult to filter out UV-B-specific effects from
other variable environmental effects [77], or to estimate the
impact on single species or whole phytoplankton communi-
ties [172,173]. Especially at high latitudes, variability in
solar elevation, cloud cover, deep vertical mixing and the
cover of ice and snow significantly confound field results of
UV-B effects on phytoplankton and the consequent interpre-
tation of these results. With increasingly complete observa-
tions, recent estimates of the effect of 50% ozone reduction
on integral water column productivity are relatively consis-
tent, less than 5% [76] and 0.7–8.5% (depending on BWF,
assumed mixing regime and cloudiness [174]), with earlier
estimates (6%, [2]).

Observations by many workers, which vary greatly in both
time and space, show convincing evidence of UV-B damage
to phytoplankton, but in order to determine long-term effects,
acclimation and adaptation phenomena [28,175,176] as well
as other factors [77] need to be assessed. Several models
have been developed [76–78,177] to permit estimation of
ecosystem productivity loss based on short-term observa-
tions. While it has long been known that vertical mixing is a
major complication in attempting to quantify UV-B effects
on phytoplankton, only recently have the interactive effects
of ozone depletion and vertical mixing on photosynthesis of
Antarctic phytoplankton been modelled [77]. Field results
of these workers [174], in agreement with others
[2,178,179], clearly demonstrate that photosynthesis of Ant-
arctic phytoplankton is inhibited by ambient UV during incu-
bation in fixed containers. The difficulty comes in the
generalization of these experimental results to Antarctic
waters where mixing significantly alters the exposure of phy-
toplankton to UV-B. To estimate this environmental influ-
ence, Neale and coworkers [77] have developed a model of
UV-influenced phytoplankton during vertical mixing. They
find that near-surface UV strongly inhibits photosynthesis
under all modelled conditions and that inhibition of photo-

synthesis can be enhanced or decreased by vertical mixing,
dependent upon the depth of the mixed layer. Further, they
show that an abrupt 50% reduction in stratospheric ozone
could, as a worst case, lower daily integrated water column
photosynthesis by as much as 8.5%. Note that this modelling
result is consistent with the results of Smith [2] and cowork-
ers, who specifically targeted the marginal ice zone (MIZ),
where meltwater provides stability and minimizes vertical
mixing, for their studies. However, Neale and coworkers also
note that inhibition associated with realistic environmental
variability can have a stronger influence on integrated water
column photosynthesis than UV-B effects: vertical mixing
by about "37%, measured variable sensitivity of phyto-
plankton to UV by about "46% and cloudiness by about
"15%. These workers conclude ‘‘that ozone depletion can
inhibit primary productivity in open waters of the Antarctic,
but that natural variability in exposures of phytoplankton to
UV, associated with vertical mixing and cloud cover, has a
major role in either enhancing or diminishing the impact on
water column photosynthesis’’. They also note that ‘‘regard-
less of these natural interactions, UV is a significant environ-
mental stressor, and its effects are enhanced by ozone
depletion’’ [77].

10.3. The Arctic aquatic ecosystem

Though being in a similar situation of increasing UV-B
stress as the Antarctic aquatic ecosystems, the Arctic differs
in many respects from its antipode [180,181]. The Arctic
ocean is a nearly closed water mass with limited water
exchange with the Atlantic and Pacific oceans. It represents
25% of the global continental shelf and receives about 10%
of the world river discharge. This considerable freshwater
inflow causes pronounced stratification year round and is
responsible for high concentrations of POC and DOC, which
strongly affect the penetration of solar UV into the water
column. The plumes of major rivers can be traced several
hundred kilometres [182]. Another difference between the
Arctic and the Antarctic is the greater importance of macroal-
gae in the Arctic. The Arctic aquatic ecosystem is one of the
most productive ecosystems on earth and is a source of fish
and crustaceans for human consumption. Both endemic and
migratory species breed and reproduce in this ocean in spring
and early summer, at a time when recorded increases in UV-
B radiation are maximal. Productivity in the Arctic ocean has
been reported to be higher and more heterogeneous than in
the Antarctic ocean [183]. In the Bering Sea, the sea-edge
communities contribute about 40–50% of the total productiv-
ity. Because of the shallow water and the prominent stratifi-
cation of the water layer, the phytoplankton may experience
relatively high levels of solar UV-B. In addition, many eco-
nomically important fish (e.g., herring, pollock, cod and
salmon) spawn in shallow waters where they are exposed to
this increased solar UV-B radiation when ozone is depleted.
Many of the eggs and early larval stages are found at or near
the surface. It is possible, given the general relationships
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between primary and fish production, that reduced productiv-
ity of fish and other marine crops would affect not only
humans in the region but also natural predators (otters, seals,
foxes, ice bears). However, further careful analysis is nec-
essary to quantify UV-B-related phytoplankton inhibitation
and possible effects on the flow of energy to higher trophic
levels. Currently we cannot accurately estimate if ozone-
related impacts will, or will not, influence fish and other
important marine crops.

The high concentrations of humic substances, which tend
to be strong absorbers of UV-B radiation, may alter the under-
water light penetration significantly [181]. On the other
hand, UV-B is known to attack humic substancesphotochem-
ically, altering the absorptive nature of the water column and
leading to faster uptake by bacteria and heterotrophic nano-
flagellates [181]. The problem is more complicated and not
well understood since UV-B has been found to be more
detrimental for small phytoplankton organisms [50] and
even more so for the bacterioplankton [32]. In contrast, a
recent study of size-fractionated phytoplankton in a lake indi-
cated that cells larger than 2 mm were twice as sensitive to
solar UV-B as smaller cells [184]. The Arctic ocean is often
nutrient limited, especially with respect to the inorganicnutri-
ents such as nitrogen and phosphorus. The nitrogen cycle
governs the primary productivity of the marine ecosystems.
The same is true for the oligotrophic lakes and streams. Nitro-
gen and phosphorus uptake are UV-B sensitive [185], which
may augment the UV-B sensitivity of Arctic phytoplankton
communities. Low doses of UV-B increase the uptake of
phosphate, which is probably used for DNA repair, while it
impairs the uptake at higher doses. All these effects have an
impact on the biogeochemical cycles.

11. Conclusions and consequences

Potential consequences of enhanced levels of exposure to
UV-B radiation include loss of biomass, such as food sources
for humans; changes in species composition; decrease in
availability of nitrogen compounds; and reduced uptake
capacity for atmospheric carbon dioxide, resulting in the
potential augmentation of global warming. Although there is
significant evidence that increased UV-B exposure is harmful
to aquatic organisms, damage to ecosystems is still uncertain.
One of the most important concepts for assessing the impacts
of enhanced levels of UV-B exposure on aquatic ecosystems
is that complex rather than simple responses are likely to be
the rule. Responses will not be limited to simple decreases in
primary production. In fact, shifts in community structure
may initially be more common and result in small detectable
differences in ecosystem biomass.
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