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Outline of the talk

Online stochastic convex programming
Generalization of online stochastic packing/covering

Multi-armed Bandits
with concave rewards and convex knapsacks

Linear contextual bandits
with global convex constraints and objective
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The online allocation problem in display advertising

Advertisers specify target user profiles, delivery goals, budgets
> user opens a page at time t, matches target profile of many
ads
» for each ad j, there is a value vy

> Pick one
(Uncertainty in future user profiles/values/matching of user-ads)
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The online allocation problem in display advertising

Advertisers specify target user profiles, delivery goals, budgets
> user opens a page at time t, matches target profile of many
ads
» for each ad j, there is a value vy
» Pick one
(Uncertainty in future user profiles/values/matching of user-ads)
» Maximize the total value of served ads while not exceeding
budgets.



Online budgeted matching

At every time t,

> a request arrives matches set A; of ads.
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Online budgeted matching

At every time t,

>

v

v

v

a request arrives matches set A; of ads.
Observe value vy of every ad j € As.
Full information. “Before” making the decision.

Pick an ad j; from A;,

Online decisions: use A; and history before time t

Goal: Given budget B; for advertiser j

Maximize Zj Zt:j:jt Vij
s.t. th:jt th S Bj VJ
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Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DIJSW 2011, KRTV 2014]

> At every time t, we have a set A; of options.
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Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DIJSW 2011, KRTV 2014]

> At every time t, we have a set A; of options.
» Cost/rewards associated with option j € A; is given by vector
vy = (11, €4).
» Pick an option j; from A, (r;r,cl) := (1, C4j, )
Online decisions: use only history before time t
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Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DIJSW 2011, KRTV 2014]

v

At every time t, we have a set A; of options.

v

Cost/rewards associated with option j € A; is given by vector
vij = (ry, €4)-
Pick an option j; from A, (ri,cl) := (rej,» €j,).

Online decisions: use only history before time t

v

v

Goal: Given budget vector B,

Maximize > rl
s.t. Ztci <B
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Nonlinear constraints and utilities

» Fairness

Maximize mjn(Z 1)

J .
t)=Jt
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» Fairness

Maximize mjn(Z 1)

i =
ty=Jt
» Under-delivery penalty. (goal G; for advertiser j)

Minimize ) (G — > 1)*

ty=jt
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Nonlinear constraints and utilities

» Fairness

Maximize mjn(Z 1)

i
t)=Jt
» Under-delivery penalty. (goal G; for advertiser j)
Minimize ) (G — > 1)*
J tj=j

> Diversity. Let there are m types of users, 0 — 1 vector w; gives
type of user t.

Minimize ZH Z we||?

tj=je
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Online Stochastic Convex Programming
[A., Devanur 2015]

> At every time t, we have a set A; of options.
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Online Stochastic Convex Programming
[A., Devanur 2015]

v

At every time t, we have a set A; of options.

v

Observe vector vy; € [0,1]9 associated with every j € A

v

Pick an option j; from Ay, vJ,_[ = Vi,

v

Goal: Given concave function f, convex set S

Maximize f(+3, vJ,_[)
st. + Ztvi €S



Online Stochastic Convex Programming
[A., Devanur 2015]

> At every time t, we have a set A; of options.
» Observe vector v € [0, 1]¢ associated with every j € A
» Pick an option j; from A, v;r = Vi,

» Goal: Given concave function f, convex set S

Maximize f(+3, v)
st. XY vies

E.g., Under-delivery penalty: set v = 1;.
1 Y+ 15
16 =S v I = a5 v
t t

for a convex function h.
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Other examples

» Objective ), ft(ui) or constraint ) _, ht(ui) <B
> Use
vij = fr(ug)

» Objective Ztvl, constraint ), uI <B
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Other examples

» Objective ), ft(ui) or constraint ) _, ht(ui) <B
> Use
vy = fe(uy)
» Objective Ztvl, constraint ), uI <B
> Vi € [—1, 1]
» Replace
vy = (vg +1)/2

Change f and S accordingly. Remains concave/convex.
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Stochastic input models

» Random Permutation (RP)
» Ai1,As, ..., A1 chosen adversarially, arrive in random order.
» |ID

» A; at every time t is generated i.i.d. from fixed but unknown
distribution (over sets of options)
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Performance Measures

(Notation) vlvg =1 ZtT:1 VI
Regret (Competitive difference)
> Regret in objective OPT — f(vlvg)

» OPT: offline optimal in RP model
» expected optimal in |ID, bounded by best static policy

> Regret in constraints d(vivg, S)
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Performance Measures

(Notation) vlvg = % ZtT:;l VI

Regret (Competitive difference)
> Regret in objective OPT — f(vlvg)

» OPT: offline optimal in RP model
» expected optimal in |ID, bounded by best static policy

> Regret in constraints d(vivg, S)
Competitive ratio
» The ratio of OPT to f(vivg)

constraints need to be satisfied at all times
popular measure for online packing
too strong for online convex programming
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Our results [A., Devanur SODA 2015]

» Fast algorithms with regret of 0 <ﬁ) for both RP and 11D
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Our results [A., Devanur SODA 2015]

» Fast algorithms with regret of O <ﬁ) for both RP and IID

Regret in objective intime T = (Z+1L)-0 ( g)
Regret in constraints in time T = O <\@)

» High probability results.
» fis L-Lipschitz, C = log(d) for || - ||cc, C = dlog(d) for || - ||2
» Z is a parameter of problem
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Special cases

Online Packing: Competitive ratio of 1 — O(Ioé%j)) for both RP
and 11D
» Matches the upper bound. [A., Wang, Ye 2009]
» Long line of previous work [DH 2009, AWY 2009, DCCJS
2010, FHKMS 2010, DJSW 2011, KRTV 2014]
» Simultaneous to our work [Gupta, Molinaro 2014]

Smooth objective and constraints Even better logarithmic
regret of O (@) in 11D case
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Qualitative contributions

» Online learning as blackbox (to learn dual variables)

» Analysis techniques modularize role of I1ID vs. RP stochastic
model

» Fast algorithm with incremental updates
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Overall idea

» Consider no constraints, maximize concave function

maximize f(% Z vI)
t
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maximize f(— E vi)
T
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Overall idea

» Consider no constraints, maximize concave function
- 1
maximize f(— E vi)
T
t
» Main issue: non-separability

> 33, fi(vi) is easy
> Simply, vi = arg max;ca, f:(v).

» What is contribution of VI to entire objective?

15/39



Using Fenchel duality

» Fenchel duality: concave function as min of linear functions

f(V) = minHeH*SL f*(0) —0-v
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Using Fenchel duality
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for some 6" in hindsight
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Using Fenchel duality

F(LY, ) =F(0") - 13,6% V]
for some 6" in hindsight

> Use 6% - v| as share of vi?

Predict dual variable 6*.
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Online Learning or Online Convex Optimization (OCO)

> At time t,
> pick O,
» observe convex function g(-)
> Loss g¢(6:)
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Online Learning or Online Convex Optimization (OCO)

> At time t,
> pick O,
» observe convex function g(-)
> Loss g¢(6:)
» Goal: Minimize total loss, compete with any single @ in
hindsight

S 1 8:(8:) < argming Y, g:(6) + R(T)

» Algorithms with R(T) < O(v/T)
» Online gradient descent [Zinkevich 2003], Online mirror
descent, multiplicative weight update algorithm [OCO book by
Elad Hazan].
» Fast update of 6;!
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Our algorithm: Online learning to predict Fenchel dual
variables

Initialize 6.

At time t,
» Primal decision: Pick

T — (0, -0, -
ve = argmax f7(0;) — 0; v

» Online learning observes loss
gt(0:) = £7(6:) — 0: - VI

Updates dual variable 8, to get 01,
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Our algorithm: online learning as blackbox

o
Choose option
vI = argminyecp, 0; - v
g(0) = *(0) — 6 - v]
[ (Online Learning)

See loss g:(6;), predict 6441

0t+1
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Analysis: optimism

Fenchel conjugate over-estimates

f(v)

Algorithm uses optimistic estimates of per-step contribution
(useful later for bandit problems)
Online learning controls the over-estimation
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Details for 1ID

> Algorithm maximizes estimated per-step contribution

F(8:) — 0, - vl > F*(0;) — 0, - v}
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Details for 1ID

» Algorithm maximizes estimated per-step contribution
F*(0;) — 0; - vl > F*(0;) — 0 - v}
» For IID, you can get optimal in expectation at every step,
EV; [ Heo1] = Vi

(Not satisfied exactly for RP)

> Every step’s estimated contribution is at least optimall!

F7(0:) — 0; - E[vi[0:] > £*(0:) — 0 - Vg > (Vi)

avg —

LHS over-estimating f(+ ", VI) too much?



Details for 1ID

Remains to bound over-estimation error: use Online Learning
regret bounds

» Recall loss function for online learning

g:(0) =*(6) — 0 - v}
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Details for 1ID

Remains to bound over-estimation error: use Online Learning
regret bounds

> Recall loss function for online learning
g:(6) = 17(8) — 6 -v]

» Over-estimation =

1 o1
= T t gt(0:) — mem T g:(0)
R(T) 1

INA
I
O

This bounds the regret in objective!
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Analysis summary

» Optimistic Fenchel-dual estimate of algorithm'’s per-step
contribution is at least OPT

> Online learning regret bounds the gap between actual
contribution and optimistic estimate
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Objective + constraints

» Constraints only problem f(3 Y, v¢) = —d(+ >, v¢, S)

25 /39



Objective + constraints

» Constraints only problem f(3 Y, v¢) = —d(+ >, v¢, S)

Combining objectives and constraints

25/39



Objective + constraints

» Constraints only problem f(3 Y, v¢) = —d(+ >, v¢, S)

Combining objectives and constraints

» Two sets of Fenchel dual variables: 0; for distance function,
¢, for objective function

25 /39



Objective + constraints

» Constraints only problem f(3 Y, v¢) = —d(+ >, v¢, S)

Combining objectives and constraints

» Two sets of Fenchel dual variables: 0; for distance function,
¢, for objective function

» Lagrangian dual variable Z to combine objective and distance

25 /39



Objective + constraints

» Constraints only problem f(3 Y, v¢) = —d(+ >, v¢, S)

Combining objectives and constraints

» Two sets of Fenchel dual variables: 0; for distance function,
¢, for objective function

» Lagrangian dual variable Z to combine objective and distance

» Z needs to be large enough, appears in regret, constant factor
approximation suffices

25 /39



Objective + constraints

» Constraints only problem f(3 Y, v¢) = —d(+ >, v¢, S)

Combining objectives and constraints

» Two sets of Fenchel dual variables: 0; for distance function,
¢, for objective function

» Lagrangian dual variable Z to combine objective and distance

» Z needs to be large enough, appears in regret, constant factor
approximation suffices

» Sample average approximation every doubling epoch
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Outline of the talk

Multi-armed Bandits
with concave rewards and convex knapsacks
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Bandit Model: Pay-per-click advertising

Advertiser pays only if the user clicks on the ad
> user opens a page, matches target profile of many ads
> pick ad j
» observe if user clicks or not: value vy = b; if the user clicks

(Uncertainty in future user profiles, and user click behavior)
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Bandit Model: Pay-per-click advertising

Advertiser pays only if the user clicks on the ad
> user opens a page, matches target profile of many ads
> pick ad j
» observe if user clicks or not: value vy = b; if the user clicks

(Uncertainty in future user profiles, and user click behavior)

» Click behavior can be observed only on after picking the ad

» Bandit feedback, Exploration-exploitation tradeoff
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Online decisions with bandit feedback

We study a framework combining the

multi-armed
bandit problem

global convex
constraints and objective

’ with
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Combining MAB with online convex programming [A.,
Devanur EC 2014]

» There are N arms, pick one arm to pull at every time step

» Observe the value vector v; for the pulled arm only,
generated i.i.d.
(Show an ad, observe click,conversion)
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» There are N arms, pick one arm to pull at every time step

» Observe the value vector v; for the pulled arm only,
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(Show an ad, observe click,conversion)
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Combining MAB with online convex programming [A.,
Devanur EC 2014]

v

There are N arms, pick one arm to pull at every time step

v

Observe the value vector v; for the pulled arm only,
generated i.i.d.
(Show an ad, observe click,conversion)

» Overall goal:
mice £ 730w ) st £ 3 wes
maximize =y v st. =) v .
T T
> Regret in objective and constraints

> (average) Regret in objective value OPT — f(v],,)
> (average) Regret in constraints d(v],,, S)
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Our algorithm: simple extension

Optimism under uncertainty
» Same algorithm, but work with high confidence estimates
Ve, ..oy Ve

Vi = arg “min_ 0; v
veconfidence interval;

> f*(6¢) — 6, - Vs is UCB estimate of per-step contribution

30/39



Our algorithm: simple extension

Initialize 61. At time t,
> Primal algorithm picks

= F5(8:) — Oy - Uy
Je = arg max (0¢) — O¢ - Ty

» Observe v, update UCB estimate for j;.

» Observe online learning loss
g:(0:) = *(0:) — 0 - Vyj

Update dual variables to get 041,
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Our Contributions [A., Devanur EC 2014]

Over-estimation by Fenchel dual fits perfectly with optimistic UCB
estimates
» Provably optimal performance
> regret goes down as T 1/2
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» Known lower bound of T~%/“ on regret for the classic
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Our Contributions [A., Devanur EC 2014]

Over-estimation by Fenchel dual fits perfectly with optimistic UCB
estimates

» Provably optimal performance
> regret goes down as T 1/2

» Known lower bound of T~1/2 on regret for the classic
multi-armed bandit problem

» Matches regret lower bound of 5(%) for bandits with

knapsack constraints.

» Simplifies earlier work on bandits with knapsacks
[Badanidiyuru, Kleinberg, Slivkins 2013] and extends to
nonlinear

32/39



Outline of the talk

Linear contextual bandits
with global convex constraints and objective
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Linear Contextual bandits: Pay-per click advertising

Advertisers specify target user profiles, payment per click

> user opens a page at time t, matches target profile of many
ads

» pick one ad
» "“if the user clicks” on the shown ad, publisher gets paid

Uncertainty in future user profiles, uncertainty in clicks

“Click-through rate” depends on a combination of user
profile and ad features.
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Linear regression Model

Click-through rates as a linear function of user and ad features.
> Let x;j be a vector of features of (user t, ad j) combination

» chances of getting clicked is v = w ' x;; for some unknown
vector w.
Linear contextual bandit problem: explore-exploit in the feature
space to learn w quickly, even when number of ad user
combinations are large.
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Linear contextual bandits with global convex constraints
and objective

In every round t, pick one of the many options (arms) in set A;.

» For every j € A, observe “context vector” x;; € RY before
making the choice.

» On pulling arm j, observe vector v; € [0,1]™
Stochastic assumptions:
» Given that arm j is pulled, vector v; is i.i.d. from distribution
with mean WTxtj, matrix W is unknown.

> Set A; of context vectors is generated i.i.d. from some
unknown distribution over collection of context vectors

36
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Our algorithm: simple extension

> Same algorithm, but work with LinUCB estimates W, x; for
every j

Initialize 61. At time t,

» Primal algorithm picks
Jr = argmaxf*(6;) — 0 - Wthtj
JEA:
» Observe v; = WTxtJt + noise, update UCB estimate for W.
» Observe online learning loss

gt(at) = f*(et) — Ht . WtTth

Update dual variables to get 01,
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Our results

> é(dﬁ) regret for only constraints or only objective

» Tricky to estimate Z even for knapsack problem due to
context uncertainty

> O(dogﬁ) regret bounds for linear contextual bandits with
knapsack constraints when B > dT3/%.

» Important: no dependence on number of arms (possible
user+ad types, which is exponential in d)
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Conclusion

Sequential decision making: Online learning as black-box
> Fast algorithm

Modular techniques that work for RP and IID, linear and
convex, full information and bandit

v

v

Any progress in learning gets translated, e.g., smooth
functions

First formal connection, conjectured since [Mehta et al. 2007]

v
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