
Online optimization and learning
under long-term convex constraints and objective

Shipra Agrawal

Industrial Engineering and Operations Research
Data Science Institute
Columbia University

Based on joint work with Nikhil R. Devanur.

1 / 39



Outline of the talk

Online stochastic convex programming
Generalization of online stochastic packing/covering

Multi-armed Bandits
with concave rewards and convex knapsacks

Linear contextual bandits
with global convex constraints and objective

2 / 39



Outline of the talk

Online stochastic convex programming
Generalization of online stochastic packing/covering

Multi-armed Bandits
with concave rewards and convex knapsacks

Linear contextual bandits
with global convex constraints and objective

3 / 39



The online allocation problem in display advertising

Advertisers specify target user profiles, delivery goals, budgets

I user opens a page at time t, matches target profile of many
ads

I for each ad j , there is a value vtj
I Pick one

(Uncertainty in future user profiles/values/matching of user-ads)

I Maximize the total value of served ads while not exceeding
budgets.

4 / 39



The online allocation problem in display advertising

Advertisers specify target user profiles, delivery goals, budgets

I user opens a page at time t, matches target profile of many
ads

I for each ad j , there is a value vtj
I Pick one

(Uncertainty in future user profiles/values/matching of user-ads)

I Maximize the total value of served ads while not exceeding
budgets.

4 / 39



Online budgeted matching

At every time t,

I a request arrives matches set At of ads.

I Observe value vtj of every ad j ∈ At .

Full information. “Before” making the decision.

I Pick an ad jt from At ,

Online decisions: use At and history before time t

I Goal: Given budget Bj for advertiser j

Maximize
∑

j

∑
t:j=jt

vtj

s.t.
∑

t:j=jt
vtj ≤ Bj ∀j

5 / 39



Online budgeted matching

At every time t,

I a request arrives matches set At of ads.
I Observe value vtj of every ad j ∈ At .

Full information. “Before” making the decision.

I Pick an ad jt from At ,

Online decisions: use At and history before time t

I Goal: Given budget Bj for advertiser j

Maximize
∑

j

∑
t:j=jt

vtj

s.t.
∑

t:j=jt
vtj ≤ Bj ∀j

5 / 39



Online budgeted matching

At every time t,

I a request arrives matches set At of ads.
I Observe value vtj of every ad j ∈ At .

Full information. “Before” making the decision.

I Pick an ad jt from At ,

Online decisions: use At and history before time t

I Goal: Given budget Bj for advertiser j

Maximize
∑

j

∑
t:j=jt

vtj

s.t.
∑

t:j=jt
vtj ≤ Bj ∀j

5 / 39



Online budgeted matching

At every time t,

I a request arrives matches set At of ads.
I Observe value vtj of every ad j ∈ At .

Full information. “Before” making the decision.

I Pick an ad jt from At ,

Online decisions: use At and history before time t

I Goal: Given budget Bj for advertiser j

Maximize
∑

j

∑
t:j=jt

vtj

s.t.
∑

t:j=jt
vtj ≤ Bj ∀j

5 / 39



Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DJSW 2011, KRTV 2014]

I At every time t, we have a set At of options.

I Cost/rewards associated with option j ∈ At is given by vector
vtj = (rtj , ctj).

I Pick an option jt from At , (r †t , c†t) := (rtjt , ctjt ).

Online decisions: use only history before time t

I Goal: Given budget vector B,

Maximize
∑

t r
†
t

s.t.
∑

t c†t ≤ B

6 / 39



Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DJSW 2011, KRTV 2014]

I At every time t, we have a set At of options.

I Cost/rewards associated with option j ∈ At is given by vector
vtj = (rtj , ctj).

I Pick an option jt from At , (r †t , c†t) := (rtjt , ctjt ).

Online decisions: use only history before time t

I Goal: Given budget vector B,

Maximize
∑

t r
†
t

s.t.
∑

t c†t ≤ B

6 / 39



Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DJSW 2011, KRTV 2014]

I At every time t, we have a set At of options.

I Cost/rewards associated with option j ∈ At is given by vector
vtj = (rtj , ctj).

I Pick an option jt from At , (r †t , c
†
t) := (rtjt , ctjt ).

Online decisions: use only history before time t

I Goal: Given budget vector B,

Maximize
∑

t r
†
t

s.t.
∑

t c†t ≤ B

6 / 39



Online packing
[DH 2009, AWY 2009, DCCJS 2010, FHKMS 2010, DJSW 2011, KRTV 2014]

I At every time t, we have a set At of options.

I Cost/rewards associated with option j ∈ At is given by vector
vtj = (rtj , ctj).

I Pick an option jt from At , (r †t , c
†
t) := (rtjt , ctjt ).

Online decisions: use only history before time t

I Goal: Given budget vector B,

Maximize
∑

t r
†
t

s.t.
∑

t c†t ≤ B

6 / 39



Nonlinear constraints and utilities

I Fairness
Maximize min

j
(
∑
t:j=jt

1)

I Under-delivery penalty. (goal Gj for advertiser j)

Minimize
∑
j

(Gj −
∑
t:j=jt

1)+

I Diversity. Let there are m types of users, 0− 1 vector wt gives
type of user t.

Minimize
∑
j

||
∑
t:j=jt

wt ||2

7 / 39



Nonlinear constraints and utilities

I Fairness
Maximize min

j
(
∑
t:j=jt

1)

I Under-delivery penalty. (goal Gj for advertiser j)

Minimize
∑
j

(Gj −
∑
t:j=jt

1)+

I Diversity. Let there are m types of users, 0− 1 vector wt gives
type of user t.

Minimize
∑
j

||
∑
t:j=jt

wt ||2

7 / 39



Nonlinear constraints and utilities

I Fairness
Maximize min

j
(
∑
t:j=jt

1)

I Under-delivery penalty. (goal Gj for advertiser j)

Minimize
∑
j

(Gj −
∑
t:j=jt

1)+

I Diversity. Let there are m types of users, 0− 1 vector wt gives
type of user t.

Minimize
∑
j

||
∑
t:j=jt

wt ||2

7 / 39



Online Stochastic Convex Programming
[A., Devanur 2015]

I At every time t, we have a set At of options.

I Observe vector vtj ∈ [0, 1]d associated with every j ∈ At :

I Pick an option jt from At , v†t := vtjt .

I Goal: Given concave function f , convex set S

Maximize f ( 1
T

∑
t v†t )

s.t. 1
T

∑
t v†t ∈ S

8 / 39



Online Stochastic Convex Programming
[A., Devanur 2015]

I At every time t, we have a set At of options.

I Observe vector vtj ∈ [0, 1]d associated with every j ∈ At :

I Pick an option jt from At , v†t := vtjt .

I Goal: Given concave function f , convex set S

Maximize f ( 1
T

∑
t v†t )

s.t. 1
T

∑
t v†t ∈ S

8 / 39



Online Stochastic Convex Programming
[A., Devanur 2015]

I At every time t, we have a set At of options.

I Observe vector vtj ∈ [0, 1]d associated with every j ∈ At :

I Pick an option jt from At , v†t := vtjt .

I Goal: Given concave function f , convex set S

Maximize f ( 1
T

∑
t v†t )

s.t. 1
T

∑
t v†t ∈ S

8 / 39



Online Stochastic Convex Programming
[A., Devanur 2015]

I At every time t, we have a set At of options.

I Observe vector vtj ∈ [0, 1]d associated with every j ∈ At :

I Pick an option jt from At , v†t := vtjt .

I Goal: Given concave function f , convex set S

Maximize f ( 1
T

∑
t v†t )

s.t. 1
T

∑
t v†t ∈ S

8 / 39



Online Stochastic Convex Programming
[A., Devanur 2015]

I At every time t, we have a set At of options.

I Observe vector vtj ∈ [0, 1]d associated with every j ∈ At :

I Pick an option jt from At , v†t := vtjt .

I Goal: Given concave function f , convex set S

Maximize f ( 1
T

∑
t v†t )

s.t. 1
T

∑
t v†t ∈ S

E.g., Under-delivery penalty: set vtj = 1j .

1

T
‖G−

∑
t

v†t )+‖1 =: h(
1

T

∑
t

v†t )

for a convex function h.
8 / 39



Other examples

I Objective
∑

t ft(u†t) or constraint
∑

t ht(u†t) ≤ B
I Use

vtj := ft(utj)

I Objective
∑

t v†t , constraint
∑

t u†t ≤ B

I vtj ∈ [−1, 1]
I Replace

vtj := (vtj + 1)/2

Change f and S accordingly. Remains concave/convex.

9 / 39



Other examples

I Objective
∑

t ft(u†t) or constraint
∑

t ht(u†t) ≤ B
I Use

vtj := ft(utj)

I Objective
∑

t v†t , constraint
∑

t u†t ≤ B

I vtj ∈ [−1, 1]
I Replace

vtj := (vtj + 1)/2

Change f and S accordingly. Remains concave/convex.

9 / 39



Stochastic input models

I Random Permutation (RP)
I A1,A2, . . . ,AT chosen adversarially, arrive in random order.

I IID
I At at every time t is generated i.i.d. from fixed but unknown

distribution (over sets of options)

10 / 39



Performance Measures

(Notation) v†avg = 1
T

∑T
t=1 v†t

Regret (Competitive difference)

I Regret in objective OPT− f (v†avg)
I OPT: offline optimal in RP model
I expected optimal in IID, bounded by best static policy

I Regret in constraints d(v†avg, S)

Competitive ratio

I The ratio of OPT to f (v†avg)

constraints need to be satisfied at all times
popular measure for online packing
too strong for online convex programming

11 / 39



Performance Measures

(Notation) v†avg = 1
T

∑T
t=1 v†t

Regret (Competitive difference)

I Regret in objective OPT− f (v†avg)
I OPT: offline optimal in RP model
I expected optimal in IID, bounded by best static policy

I Regret in constraints d(v†avg, S)

Competitive ratio

I The ratio of OPT to f (v†avg)

constraints need to be satisfied at all times
popular measure for online packing
too strong for online convex programming

11 / 39



Performance Measures

(Notation) v†avg = 1
T

∑T
t=1 v†t

Regret (Competitive difference)

I Regret in objective OPT− f (v†avg)
I OPT: offline optimal in RP model
I expected optimal in IID, bounded by best static policy

I Regret in constraints d(v†avg, S)

Competitive ratio

I The ratio of OPT to f (v†avg)

constraints need to be satisfied at all times
popular measure for online packing
too strong for online convex programming

11 / 39



Performance Measures

(Notation) v†avg = 1
T

∑T
t=1 v†t

Regret (Competitive difference)

I Regret in objective OPT− f (v†avg)
I OPT: offline optimal in RP model
I expected optimal in IID, bounded by best static policy

I Regret in constraints d(v†avg, S)

Competitive ratio

I The ratio of OPT to f (v†avg)

constraints need to be satisfied at all times
popular measure for online packing
too strong for online convex programming

11 / 39



Our results [A., Devanur SODA 2015]

I Fast algorithms with regret of Õ

(√
1
T

)
for both RP and IID

Regret in objective in time T = (Z + L) · O
(√

C
T

)
Regret in constraints in time T = O

(√
C
T

)
I High probability results.
I f is L-Lipschitz, C = log(d) for ‖ · ‖∞, C = d log(d) for ‖ · ‖2

I Z is a parameter of problem

12 / 39



Our results [A., Devanur SODA 2015]

I Fast algorithms with regret of Õ

(√
1
T

)
for both RP and IID

Regret in objective in time T = (Z + L) · O
(√

C
T

)
Regret in constraints in time T = O

(√
C
T

)
I High probability results.
I f is L-Lipschitz, C = log(d) for ‖ · ‖∞, C = d log(d) for ‖ · ‖2

I Z is a parameter of problem

12 / 39



Special cases

Online Packing: Competitive ratio of 1− O( log(d)√
B

) for both RP

and IID

I Matches the upper bound. [A., Wang, Ye 2009]

I Long line of previous work [DH 2009, AWY 2009, DCCJS
2010, FHKMS 2010, DJSW 2011, KRTV 2014]

I Simultaneous to our work [Gupta, Molinaro 2014]

Smooth objective and constraints Even better logarithmic

regret of Õ
(

log(T )
T

)
in IID case

13 / 39



Qualitative contributions

I Online learning as blackbox (to learn dual variables)

I Analysis techniques modularize role of IID vs. RP stochastic
model

I Fast algorithm with incremental updates

14 / 39



Overall idea

I Consider no constraints, maximize concave function

maximize f (
1

T

∑
t

v†t )

I Main issue: non-separability
I 1

T

∑
t ft(v†t ) is easy

I Simply, v†t = arg maxj∈At ft(vtj).

I What is contribution of v†t to entire objective?

15 / 39



Overall idea

I Consider no constraints, maximize concave function

maximize f (
1

T

∑
t

v†t )

I Main issue: non-separability
I 1

T

∑
t ft(v†t ) is easy

I Simply, v†t = arg maxj∈At ft(vtj).

I What is contribution of v†t to entire objective?

15 / 39



Overall idea

I Consider no constraints, maximize concave function

maximize f (
1

T

∑
t

v†t )

I Main issue: non-separability
I 1

T

∑
t ft(v†t ) is easy

I Simply, v†t = arg maxj∈At ft(vtj).

I What is contribution of v†t to entire objective?

15 / 39



Using Fenchel duality

I Fenchel duality: concave function as min of linear functions

f (v) = min‖θ‖∗≤L f
∗(θ)− θ · v

16 / 39



Using Fenchel duality

I Fenchel duality: concave function as min of linear functions

f (v) = min‖θ‖∗≤L f
∗(θ)− θ · v

f (v)

16 / 39



Using Fenchel duality

I

f ( 1
T

∑
t v†t ) = f ∗(θ∗)− 1

T

∑
t θ
∗ · v†t

for some θ∗ in hindsight

I Use θ∗ · v†t as share of v†t?

Predict dual variable θ∗.

17 / 39



Using Fenchel duality

I

f ( 1
T

∑
t v†t ) = f ∗(θ∗)− 1

T

∑
t θ
∗ · v†t

for some θ∗ in hindsight

I Use θ∗ · v†t as share of v†t?

Predict dual variable θ∗.

17 / 39



Using Fenchel duality

I

f ( 1
T

∑
t v†t ) = f ∗(θ∗)− 1

T

∑
t θ
∗ · v†t

for some θ∗ in hindsight

I Use θ∗ · v†t as share of v†t?

Predict dual variable θ∗.

17 / 39



Online Learning or Online Convex Optimization (OCO)

I At time t,
I pick θt ,
I observe convex function gt(·)
I Loss gt(θt)

I Goal: Minimize total loss, compete with any single θ in
hindsight∑T

t=1 gt(θt) ≤ arg minθ
∑T

t=1 gt(θ) + R(T )

I Algorithms with R(T ) ≤ Õ(
√
T )

I Online gradient descent [Zinkevich 2003], Online mirror
descent, multiplicative weight update algorithm [OCO book by
Elad Hazan].

I Fast update of θt !

18 / 39



Online Learning or Online Convex Optimization (OCO)

I At time t,
I pick θt ,
I observe convex function gt(·)
I Loss gt(θt)

I Goal: Minimize total loss, compete with any single θ in
hindsight∑T

t=1 gt(θt) ≤ arg minθ
∑T

t=1 gt(θ) + R(T )

I Algorithms with R(T ) ≤ Õ(
√
T )

I Online gradient descent [Zinkevich 2003], Online mirror
descent, multiplicative weight update algorithm [OCO book by
Elad Hazan].

I Fast update of θt !

18 / 39



Online Learning or Online Convex Optimization (OCO)

I At time t,
I pick θt ,
I observe convex function gt(·)
I Loss gt(θt)

I Goal: Minimize total loss, compete with any single θ in
hindsight∑T

t=1 gt(θt) ≤ arg minθ
∑T

t=1 gt(θ) + R(T )

I Algorithms with R(T ) ≤ Õ(
√
T )

I Online gradient descent [Zinkevich 2003], Online mirror
descent, multiplicative weight update algorithm [OCO book by
Elad Hazan].

I Fast update of θt !

18 / 39



Our algorithm: Online learning to predict Fenchel dual
variables

Initialize θ1.

At time t,

I Primal decision: Pick

v†t = arg max
v∈At

f ∗(θt)− θt · v

I Online learning observes loss

gt(θt) = f ∗(θt)− θt · v†t

Updates dual variable θt to get θt+1,

19 / 39



Our algorithm: online learning as blackbox

Choose option
v†t = arg minv∈At θt · v

(Online Learning)
See loss gt(θt), predict θt+1

θ1

gt(θ) = f ∗(θ)− θ · v†t

θt+1

20 / 39



Analysis: optimism

Fenchel conjugate over-estimates

f (v)

Algorithm uses optimistic estimates of per-step contribution
(useful later for bandit problems)
Online learning controls the over-estimation

21 / 39



Details for IID

I Algorithm maximizes estimated per-step contribution

f ∗(θt)− θt · v†t ≥ f ∗(θt)− θt · v∗t

I For IID, you can get optimal in expectation at every step,

E[v∗t |Ht−1] = v∗avg

(Not satisfied exactly for RP)

I Every step’s estimated contribution is at least optimal!

f ∗(θt)− θt · E[v†t |θt ] ≥ f ∗(θt)− θt · v∗avg

≥ f (v∗avg)

LHS over-estimating f ( 1
T

∑
t v†t ) too much?

22 / 39



Details for IID

I Algorithm maximizes estimated per-step contribution

f ∗(θt)− θt · v†t ≥ f ∗(θt)− θt · v∗t

I For IID, you can get optimal in expectation at every step,

E[v∗t |Ht−1] = v∗avg

(Not satisfied exactly for RP)

I Every step’s estimated contribution is at least optimal!

f ∗(θt)− θt · E[v†t |θt ] ≥ f ∗(θt)− θt · v∗avg

≥ f (v∗avg)

LHS over-estimating f ( 1
T

∑
t v†t ) too much?

22 / 39



Details for IID

I Algorithm maximizes estimated per-step contribution

f ∗(θt)− θt · v†t ≥ f ∗(θt)− θt · v∗t

I For IID, you can get optimal in expectation at every step,

E[v∗t |Ht−1] = v∗avg

(Not satisfied exactly for RP)

I Every step’s estimated contribution is at least optimal!

f ∗(θt)− θt · E[v†t |θt ] ≥ f ∗(θt)− θt · v∗avg

≥ f (v∗avg)

LHS over-estimating f ( 1
T

∑
t v†t ) too much?

22 / 39



Details for IID

I Algorithm maximizes estimated per-step contribution

f ∗(θt)− θt · v†t ≥ f ∗(θt)− θt · v∗t

I For IID, you can get optimal in expectation at every step,

E[v∗t |Ht−1] = v∗avg

(Not satisfied exactly for RP)

I Every step’s estimated contribution is at least optimal!

f ∗(θt)− θt · E[v†t |θt ] ≥ f ∗(θt)− θt · v∗avg ≥ f (v∗avg)

LHS over-estimating f ( 1
T

∑
t v†t ) too much?

22 / 39



Details for IID

I Algorithm maximizes estimated per-step contribution

f ∗(θt)− θt · v†t ≥ f ∗(θt)− θt · v∗t

I For IID, you can get optimal in expectation at every step,

E[v∗t |Ht−1] = v∗avg

(Not satisfied exactly for RP)

I Every step’s estimated contribution is at least optimal!

f ∗(θt)− θt · E[v†t |θt ] ≥ f ∗(θt)− θt · v∗avg ≥ f (v∗avg)

LHS over-estimating f ( 1
T

∑
t v†t ) too much?

22 / 39



Details for IID
Remains to bound over-estimation error: use Online Learning
regret bounds

I Recall loss function for online learning

gt(θ) = f ∗(θ)− θ · v†t

I Over-estimation =(
1

T

∑
t

f ∗(θt)− θt · v†t

)
− f (

1

T

∑
t

v†t )

=
1

T

∑
t

gt(θt)−min
θ

1

T

∑
t

gt(θ)

≤ R(T )

T
= Õ(

1√
T

)

This bounds the regret in objective!

23 / 39



Details for IID
Remains to bound over-estimation error: use Online Learning
regret bounds

I Recall loss function for online learning

gt(θ) = f ∗(θ)− θ · v†t

I Over-estimation =(
1

T

∑
t

f ∗(θt)− θt · v†t

)
− f (

1

T

∑
t

v†t )

=
1

T

∑
t

gt(θt)−min
θ

1

T

∑
t

gt(θ)

≤ R(T )

T
= Õ(

1√
T

)

This bounds the regret in objective!

23 / 39



Details for IID
Remains to bound over-estimation error: use Online Learning
regret bounds

I Recall loss function for online learning

gt(θ) = f ∗(θ)− θ · v†t

I Over-estimation =(
1

T

∑
t

f ∗(θt)− θt · v†t

)
− f (

1

T

∑
t

v†t )

=
1

T

∑
t

gt(θt)−min
θ

1

T

∑
t

gt(θ)

≤ R(T )

T
= Õ(

1√
T

)

This bounds the regret in objective!
23 / 39



Analysis summary

I Optimistic Fenchel-dual estimate of algorithm’s per-step
contribution is at least OPT

I Online learning regret bounds the gap between actual
contribution and optimistic estimate

24 / 39



Objective + constraints

I Constraints only problem f ( 1
T

∑
t vt) = −d( 1

T

∑
t vt ,S)

Combining objectives and constraints

I Two sets of Fenchel dual variables: θt for distance function,
φt for objective function

I Lagrangian dual variable Z to combine objective and distance

I Z needs to be large enough, appears in regret, constant factor
approximation suffices

I Sample average approximation every doubling epoch

25 / 39



Objective + constraints

I Constraints only problem f ( 1
T

∑
t vt) = −d( 1

T

∑
t vt ,S)

Combining objectives and constraints

I Two sets of Fenchel dual variables: θt for distance function,
φt for objective function

I Lagrangian dual variable Z to combine objective and distance

I Z needs to be large enough, appears in regret, constant factor
approximation suffices

I Sample average approximation every doubling epoch

25 / 39



Objective + constraints

I Constraints only problem f ( 1
T

∑
t vt) = −d( 1

T

∑
t vt ,S)

Combining objectives and constraints

I Two sets of Fenchel dual variables: θt for distance function,
φt for objective function

I Lagrangian dual variable Z to combine objective and distance

I Z needs to be large enough, appears in regret, constant factor
approximation suffices

I Sample average approximation every doubling epoch

25 / 39



Objective + constraints

I Constraints only problem f ( 1
T

∑
t vt) = −d( 1

T

∑
t vt ,S)

Combining objectives and constraints

I Two sets of Fenchel dual variables: θt for distance function,
φt for objective function

I Lagrangian dual variable Z to combine objective and distance

I Z needs to be large enough, appears in regret, constant factor
approximation suffices

I Sample average approximation every doubling epoch

25 / 39



Objective + constraints

I Constraints only problem f ( 1
T

∑
t vt) = −d( 1

T

∑
t vt ,S)

Combining objectives and constraints

I Two sets of Fenchel dual variables: θt for distance function,
φt for objective function

I Lagrangian dual variable Z to combine objective and distance

I Z needs to be large enough, appears in regret, constant factor
approximation suffices

I Sample average approximation every doubling epoch

25 / 39



Objective + constraints

I Constraints only problem f ( 1
T

∑
t vt) = −d( 1

T

∑
t vt ,S)

Combining objectives and constraints

I Two sets of Fenchel dual variables: θt for distance function,
φt for objective function

I Lagrangian dual variable Z to combine objective and distance

I Z needs to be large enough, appears in regret, constant factor
approximation suffices

I Sample average approximation every doubling epoch

25 / 39



Outline of the talk

Online stochastic convex programming
Generalization of online stochastic packing/covering

Multi-armed Bandits
with concave rewards and convex knapsacks

Linear contextual bandits
with global convex constraints and objective

26 / 39



Bandit Model: Pay-per-click advertising

Advertiser pays only if the user clicks on the ad

I user opens a page, matches target profile of many ads

I pick ad j

I observe if user clicks or not: value vtj = bj if the user clicks

(Uncertainty in future user profiles, and user click behavior)

I Click behavior can be observed only on after picking the ad

I Bandit feedback, Exploration-exploitation tradeoff

27 / 39



Bandit Model: Pay-per-click advertising

Advertiser pays only if the user clicks on the ad

I user opens a page, matches target profile of many ads

I pick ad j

I observe if user clicks or not: value vtj = bj if the user clicks

(Uncertainty in future user profiles, and user click behavior)

I Click behavior can be observed only on after picking the ad

I Bandit feedback, Exploration-exploitation tradeoff

27 / 39



Online decisions with bandit feedback

We study a framework combining the

multi-armed
bandit problem

with
global convex

constraints and objective

28 / 39



Combining MAB with online convex programming [A.,
Devanur EC 2014]

I There are N arms, pick one arm to pull at every time step

I Observe the value vector vt for the pulled arm only,
generated i.i.d.
(Show an ad, observe click,conversion)

I Overall goal:

maximize f

(
1

T

∑
t

vt

)
s.t.

1

T

∑
t

vt ∈ S .

I Regret in objective and constraints
I (average) Regret in objective value OPT− f (v†avg)
I (average) Regret in constraints d(v†avg,S)

29 / 39



Combining MAB with online convex programming [A.,
Devanur EC 2014]

I There are N arms, pick one arm to pull at every time step

I Observe the value vector vt for the pulled arm only,
generated i.i.d.
(Show an ad, observe click,conversion)

I Overall goal:

maximize f

(
1

T

∑
t

vt

)
s.t.

1

T

∑
t

vt ∈ S .

I Regret in objective and constraints
I (average) Regret in objective value OPT− f (v†avg)
I (average) Regret in constraints d(v†avg,S)

29 / 39



Combining MAB with online convex programming [A.,
Devanur EC 2014]

I There are N arms, pick one arm to pull at every time step

I Observe the value vector vt for the pulled arm only,
generated i.i.d.
(Show an ad, observe click,conversion)

I Overall goal:

maximize f

(
1

T

∑
t

vt

)
s.t.

1

T

∑
t

vt ∈ S .

I Regret in objective and constraints
I (average) Regret in objective value OPT− f (v†avg)
I (average) Regret in constraints d(v†avg,S)

29 / 39



Our algorithm: simple extension

Optimism under uncertainty

I Same algorithm, but work with high confidence estimates
ṽt1, . . . , ṽtN

ṽjt = arg min
v∈confidence intervalj

θt · v

I f ∗(θt)− θt · ṽtj is UCB estimate of per-step contribution

30 / 39



Our algorithm: simple extension

Initialize θ1. At time t,

I Primal algorithm picks

jt := arg max
j∈At

f ∗(θt)− θt · ṽtj

I Observe vtjt , update UCB estimate for jt .

I Observe online learning loss

gt(θt) = f ∗(θt)− θt · ṽtj

Update dual variables to get θt+1,

31 / 39



Our Contributions [A., Devanur EC 2014]

Over-estimation by Fenchel dual fits perfectly with optimistic UCB
estimates

I Provably optimal performance
I regret goes down as T−1/2

I Known lower bound of T−1/2 on regret for the classic
multi-armed bandit problem

I Matches regret lower bound of Õ( OPT√
B

) for bandits with

knapsack constraints.
I Simplifies earlier work on bandits with knapsacks

[Badanidiyuru, Kleinberg, Slivkins 2013] and extends to
nonlinear

32 / 39



Our Contributions [A., Devanur EC 2014]

Over-estimation by Fenchel dual fits perfectly with optimistic UCB
estimates

I Provably optimal performance
I regret goes down as T−1/2

I Known lower bound of T−1/2 on regret for the classic
multi-armed bandit problem

I Matches regret lower bound of Õ( OPT√
B

) for bandits with

knapsack constraints.
I Simplifies earlier work on bandits with knapsacks

[Badanidiyuru, Kleinberg, Slivkins 2013] and extends to
nonlinear

32 / 39



Our Contributions [A., Devanur EC 2014]

Over-estimation by Fenchel dual fits perfectly with optimistic UCB
estimates

I Provably optimal performance
I regret goes down as T−1/2

I Known lower bound of T−1/2 on regret for the classic
multi-armed bandit problem

I Matches regret lower bound of Õ( OPT√
B

) for bandits with

knapsack constraints.
I Simplifies earlier work on bandits with knapsacks

[Badanidiyuru, Kleinberg, Slivkins 2013] and extends to
nonlinear

32 / 39



Outline of the talk

Online stochastic convex programming
Generalization of online stochastic packing/covering

Multi-armed Bandits
with concave rewards and convex knapsacks

Linear contextual bandits
with global convex constraints and objective

33 / 39



Linear Contextual bandits: Pay-per click advertising

Advertisers specify target user profiles, payment per click

I user opens a page at time t, matches target profile of many
ads

I pick one ad

I “if the user clicks” on the shown ad, publisher gets paid

Uncertainty in future user profiles, uncertainty in clicks

“Click-through rate” depends on a combination of user
profile and ad features.

34 / 39



Linear regression Model

Click-through rates as a linear function of user and ad features.

I Let xt,j be a vector of features of (user t, ad j) combination

I chances of getting clicked is vtj = wT xt,j for some unknown
vector w .

Linear contextual bandit problem: explore-exploit in the feature
space to learn w quickly, even when number of ad user
combinations are large.

35 / 39



Linear contextual bandits with global convex constraints
and objective

In every round t, pick one of the many options (arms) in set At .

I For every j ∈ At , observe “context vector” xt,j ∈ Rd before
making the choice.

I On pulling arm j , observe vector vt ∈ [0, 1]m

Stochastic assumptions:

I Given that arm j is pulled, vector vt is i.i.d. from distribution
with mean W T xtj , matrix W is unknown.

I Set At of context vectors is generated i.i.d. from some
unknown distribution over collection of context vectors

36 / 39



Our algorithm: simple extension

I Same algorithm, but work with LinUCB estimates W̃ T
t xtj for

every j

Initialize θ1. At time t,

I Primal algorithm picks

jt := arg max
j∈At

f ∗(θt)− θt · W̃ T
t xtj

I Observe vt = W T xt,jt + noise, update UCB estimate for W .

I Observe online learning loss

gt(θt) = f ∗(θt)− θt · W̃ T
t xtj

Update dual variables to get θt+1,

37 / 39



Our results

I Õ(d
√
T ) regret for only constraints or only objective

I Tricky to estimate Z even for knapsack problem due to
context uncertainty

I Õ(d OPT
B

√
T ) regret bounds for linear contextual bandits with

knapsack constraints when B ≥ dT 3/4.

I Important: no dependence on number of arms (possible
user+ad types, which is exponential in d)

38 / 39



Conclusion

Sequential decision making: Online learning as black-box

I Fast algorithm

I Modular techniques that work for RP and IID, linear and
convex, full information and bandit

I Any progress in learning gets translated, e.g., smooth
functions

I First formal connection, conjectured since [Mehta et al. 2007]

39 / 39


	Online stochastic convex programming
	Generalization of online stochastic packing/covering

	Multi-armed Bandits
	 with concave rewards and convex knapsacks

	Linear contextual bandits
	with global convex constraints and objective


