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Abstract

We study revenue optimization in a repeated auction between a single seller and a single buyer.
An essential difference between a repeated auction setting and a single-shot interaction is that in the
former, the seller can extract much higher revenue, close to the entire surplus of the buyer. However,
in order to extract such a high revenue, even the simplest dynamic mechanisms in the literature make
several strong assumptions about the buyer behavior. In particular, the widely used solution concept of
dynamic incentive compatibility requires that the buyer make his current round decision with an infinite
lookahead, namely, taking into account the consequences of his choices today on the utility of all the
future rounds. This requires the buyer to completely understand and trust the seller’s mechanism, and
further believe that a) the interaction will last, and b) the seller will stick to his announced mechanism,
for all future rounds. What if a buyer is not informed of and/or lacks trust in the seller’s mechanism?
Such a buyer could:

1. express his limited trust on the seller by evaluating his decisions today only based on its effect on
the utility of k future rounds (a k-lookahead buyer).

2. completely disregard the seller’s description of the mechanism, and instead make his decisions
through his favorite learning algorithm using only past feedback from the mechanism.

Can we design mechanisms which are robust against such buyer behaviors?
In this paper, we answer this question by designing a simple state-based mechanism that is simultane-

ously near optimal against a k-lookahead buyer for all k, a buyer who is a no-regret learner, and a buyer
who is a policy-regret learner. That is, against each kind of buyer our mechanism gets a constant fraction
of the optimal revenue possible against that buyer. We complement our positive results with almost tight
impossibility results showing that the revenue approximation tradeoffs achieved by our mechanism for
different k’s are near optimal.
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1 Introduction

Developing a theory of repeated auctions that outlines the boundaries for what is and is not possible is
of both scientific and commercial significance. On the application side, it is partly motivated by online
sale of display ads in ad exchanges via repeated auctions. An essential difference that sets apart the re-
peated/dynamic setting from its one-shot counterpart is the significantly higher revenue that is achievable in
the former. The key reason for this difference is simply that bundling may increase revenue, and repeated
interactions provide ample opportunities to bundle across time.

In its gross form, a dynamic mechanism that bundles across time could simply demand the buyer to pay
her entire surplus for T rounds, save some small ε, upfront for the promise of getting the item for free in all
future rounds. Such a mechanism exploits concentration bounds in a way that one-shot mechanisms cannot.
Indeed, a risk-neutral buyer with no outside option would have no choice but to accept this offer to get a
utility of Θ(ε), with high probability, or else get 0 utility. Such mechanisms that threaten buyers to get either
tiny or 0 utility have several drawbacks, the most prominent being that they force the buyer to make a huge
payment upfront which is unappealing. This motivated a string of recent work [ADH16, MLTZ16a, BML16,
MLTZ17] proposing mechanisms that satisfy per round ex-post individual rationality, i.e. that the buyer’s
utility is non-negative in every round under his optimal strategy, rather than interim individual rationality,
which only requires that the buyer’s long-term expected utility is non-negative.

Nevertheless, the ability of these dynamic mechanisms to extract high revenue depends crucially on
several non-trivial assumptions:

1. The buyer completely understands the seller’s mechanism. In particular, he understands, and can
optimally respond to the conseqeunces of his actions today on his utility k rounds later, for all k;

2. The buyer believes that the interaction with the seller will last for all future rounds;

3. The buyer believes that the seller will stick to her proposed mechanism for all future rounds.

In particular, the notion of ‘infinite look-ahead buyers’ which is baked into the widely used concept of
dynamic incentive-compatibility, requires that the buyer’s action in every round takes into account the con-
sequences of his action on his utility in all future rounds, thus relying on all of the above assumptions.
There are important practical reasons invalidating these assumptions. Firstly, the buyer may not be fully
informed about and/or trust all the details of the seller’s mechanism. Furthermore, cognitive/computational
limitations or uncertainty about future may prevent buyers from being infinite lookahead. In the context of
online advertising, for example, given the number and variety of display ad exchanges in the market, with
credibility levels all across the spectrum, the buyers often don’t trust that the seller will faithfully implement
the announced mechanism [Exc].

As a result, the seller often faces a buyer population that employs a variety of strategies, beyond perfectly
rational infinite lookahead utility maximization, in order to maximize their perceived utility. Such a buyer
could

1. be myopic or more generally, have a limited lookahead, i.e., evaluate his decisions today only based
on their effect on the utility of k future rounds (a k-lookahead buyer).

2. be a learner, i.e., completely disregard the seller’s description of the mechanism, and instead make his
decisions through his favorite learning algorithm using only his observed feedback so far.

In face of such heterogeneous behaviors, the revenue optimal solution for seller is to have a tailored mecha-
nism for each buyer behavior. However, there are strong reasons precluding the implementation of different
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mechanisms, each targeting a specific buyer behavior. Such discriminative targeting may be legally infeasi-
ble, and it may also be practically infeasible, as it could be hard for the seller to identify a buyer’s response
behavior. The latter may not even be well-defined, as buyers may change their response strategy across time.
These observations motivates us to we ask the following question.

Can we design mechanisms which are robust against heterogeneous buyer behaviors?

Specifically, we seek a single mechanism that gets near optimal revenue simultaneously against buyers with
different lookahead and learning behaviors, i.e., against each kind of buyer, obtains a constant fraction of
the optimal revenue achievable by mechanisms tailored for that specific buyer.

Our Setting and Research Questions We study a repeated interaction between a single seller and a single
buyer over multiple rounds. At the beginning of each round t = 1, 2, . . ., there is a single fresh good for
sale whose private value vt ∈ V for the buyer is drawn from a publicly known distribution1 F with finite
expectation µ. The buyer observes the valuation vt and makes a bid bt. The good for sale in round t has to
be either allocated to the buyer or discarded immediately (i.e., not carried forward). The buyer’s valuations
are additive across rounds.

Our goal is to investigate the sensitivity of revenue extraction to variations in both the lookahead attitude
and learning behavior of the buyers. On lookahead attitudes, by current understanding the notion of forward-
looking buyer is a key driver of increase in revenue in dynamic mechanisms, but is a strong assumption like
infinite lookahead really necessary? We ask the following questions.

1. Is the infinite lookahead assumption really necessary to get a revenue close to the full surplus? If
buyers are forward looking, i.e., k-lookahead for finite k ≥ 1, but not infinite lookahead, what loss
should the seller suffer because of this?

2. How does a mechanism that gets close to the full surplus as revenue with forward-looking buyers,
fare against myopic (0-lookahead) buyers? Can we design a robust mechanism that simultaneously
achieves a high revenue against all lookahead levels, including myopic buyers?

On learning behavior, along similar lines, we question the necessity of assuming a completely informed
buyer — we ask how well can a dynamic mechanism fare against a buyer using reasonably sophisticated
learning algorithms to decide bids based on the past observations. Formally, we model learning behavior of
buyers using the popular concept of no-regret learning, and allow different levels of learning sophistication
by considering buyers who minimize simple regret vs. policy regret (defined in section 2).

Our Contributions In this paper, we answer the above questions by formalizing the notion of robustness
to the buyer’s lookahead attitude. In particular, we make the following contributions:

1. We introduce a novel revenue optimization framework to study robust dynamic mechanisms. In
this framework, a desirable mechanism is required to simultaneously achieve a high revenue against a
range of buyer behaviors, namely, (a) buyers with different lookahead attitudes (myopic, k-lookahead,
infinite lookahead), and (b) learning buyers using different learning strategies (no-regret learning,
policy-regret learning).

1As we explain later, for our positive results, the seller only needs to know the mean µ and not the whole distribution F .
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2. We provide impossibility results on the achievable revenue tradeoffs in our framework, showing
that, for all ε ∈ [0, 1], no mechanism that is non-payment forceful (see definition in Section 2) and
obtains an average per round revenue of (1 − ε)µ against an infinite lookahead buyer, can simulta-
neously get average per round revenue more than 2εRevMye against a myopic buyer, where RevMye

is the optimal revenue in a single-item auction against a single buyer with distribution F . See Theo-
rem 4.5.

3. We present a simple state-based mechanism (named M(ε, ρ, p)) with the following desirable prop-
erties; see Theorem 4.3.
Robustness: It simultaneously earns an average per round revenue of at least (i) (1 − ε)µ against
a forward-looking buyer (k-lookahead for any k ≥ 1), (ii) ε

2RevMye against a myopic buyer, (iii)
(1− ε)µ against a policy-regret learner, (iv) ε

2RevMye against a no-regret learner2, for any parameter
ε ∈ (0, 1].
Near-optimality: Even if a mechanism were tailored to a specific behavior, the average per round
revenue achievable would be bounded by: RevMye for a myopic buyer [Mye81], and by µ for any
forward-looking or learning buyer (the revenue upper bound of µ is trivial as it is the entire surplus).
Thus, our mechanism achieves a constant factor approximation to the optimal revenue achievable in
each individual setting, by choosing say ε = 1

2 . Further, as demonstrated by our impossibility result,
the specific revenue tradeoff against myopic and forward looking buyers achieved by our mechanism
is also near-optimal.
Individual Rationality: Our mechanism is interim individually rational (IIR) for a k-lookahead buyer
for every k ≥ 0; see the discussion above or Section 2 for a definition. Moreover, it is “almost
per-round ex-post IR” for k-lookahead buyers, with large enough k (see Section 2.4 for a precise
definition). For buyers who are learning, per-round ex-post IR is not the right measure because no-
regret-learning algorithms should be explorative, and will venture into negative utility strategies as
well. A meaningful measure is whether at the end of the game, the buyer’s learning strategy achieves
a non-negative, or close to non-negative, overall utility. Accordingly, we show that under mild as-
sumptions on the class of experts, any no-regret learning, or no-policy-regret learning algorithm is
guaranteed to get a buyer utility no smaller than −o(T ).

The above results answer the question of whether the assumption of infinite lookahead is indispensable for
earning the full surplus as revenue. We show that a much weaker assumption of forward-looking buyer is
enough. Our results characterize precisely the loss that the seller must suffer in order for her revenue to be
robust against both forward-looking and myopic buyers. Further, our impossibility result demonstrates that
robustness is an appropriate lens to analyze dynamic mechanisms, as it rules out unappealing mechanisms
that extract unreasonably high seller revenue while providing close-to-zero utility to the buyer: any mecha-
nism that extracts almost full surplus for the seller against forward-looking buyers (i.e., ε ' 0) would have
close to 0 revenue against myopic buyers, and thus is not robust. In particular, it should also be appreciated
that the ability of mechanisms to “threaten” the buyers or “promise” things in the future is non-existent when
the buyer is myopic, and very limited when the buyer is 1-lookahead or k-lookahead for small k. Moreover,
strategems that are tailored to a certain kind of lookahead behavior may fail for different lookahead behav-
ior. Our mechanisms have to walk a thin line to simultaneously extract revenue from buyers with different
lookahead attitudes.

2While the tradeoff for myopic vs k lookahead buyer is ε
2
RevMye vs (1− ε)µ, the tradeoff that we can obtain for no-regret vs

no-policy-regret learner is actually slightly better: εRevMye vs (1 − ε)µ. But when we want a single mechanism to get all four
simultaneously, we have to settle for the ε

2
RevMye vs (1− ε)µ tradeoff for no-regret vs no-policy-regret as well
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Similarly, our results also answer the question of whether the buyer has to trust the seller’s words com-
pletely in order for the seller to extract a very high revenue. We show that the buyer can learn a great deal
himself through a no-policy-regret learning algorithm and against such a buyer, the seller can earn a very
high revenue (almost the entire surplus). But, such sophisticated buyer learning behavior is not necessary
for a high revenue. We show that even if the buyer follows a simple no-regret learning strategy, we can get
a constant fraction of RevMye.

2 Our framework

In this section, we present the main components of our framework, including a state-based mechanism
design setting, formal models for buyers’ heterogeneous lookahead and learning behaviors, and a revenue
optimization objective to calibrate the mechanisms against different behaviors.

2.1 Setup

We study a repeated interaction between a single seller and a single buyer for a finite number of rounds T .
At the beginning of each round t = 1, 2, . . . , T , there is a single fresh good for sale whose private value
vt ∈ V for the buyer is drawn from a publicly known distribution F with bounded support and expectation
µ. The buyer observes his value vt at the beginning of the round and makes a bid bt. The good for sale
in round t has to be either allocated to the buyer or discarded immediately (i.e., not carried forward). The
buyer’s valuations are additive across rounds.

Round outcome. The outcome of the game in round t is a pair (xt, pt), where xt ∈ {0, 1} indicates
whether or not the buyer received the good and pt ∈ R is the payment made by the buyer to the seller. For
the outcome pair (xt, pt) in round t, the linear utility ut of the buyer in round t is given by ut = vtxt − pt,
and the seller’s revenue is given by pt.

State-based mechanism. A mechanism M is defined as a 5-tuple M = (S, Q, x, p, s1), where

1. S is the state space over which the mechanism operates. The state space S can be finite dimensional
or countably infinite dimensional. The cardinality of S can be finite, countably infinite or uncountably
infinite.

2. x : S × R+ → ∆{0,1} is the (randomized) allocation function, which at the beginning of round t
receives as input the state st ∈ S in round t, the bid bt ∈ R+ made by the bidder in round t, and
outputs the allocation xt ∈ {0, 1} for the bidder in round t, where xt ∼ x(st, bt).

3. p : S×R+×{0, 1} → R is the payment function, which at the beginning of round t takes as input the
state st ∈ S in round t, the bid bt ∈ R+ made by the bidder in round t, and the allocation xt sampled
as above, and outputs the payment pt for the bidder in round t, i.e., pt = p(st, bt, xt). We restrict our
mechanisms to require that the payment pt is always non-negative, and 0 when the bid is 0, i.e.,

p(st, bt, xt) ≥ 0, and p(st, 0, xt) = 0, for any st, bt, xt. (1)

This ensures that the mechanisms are non-payment forceful, as they cannot be forced to pay the buyer
in any state and they cannot force payments out of buyers who bid 0.
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4. Q : S ×R+×{0, 1}×R→∆S is a state-transition function that takes as input at the end of round t
the state st ∈ S, the bid bt ∈ R+ of the bidder in round t, the allocation xt ∈ {0, 1} and the payment
pt ∈ R, and outputs the distribution of next state st+1 for round t+ 1, i.e., st+1 ∼ Q(st, bt, xt, pt). 3

5. s1 ∈ S is the starting state.

2.2 Lookahead behaviors

`-lookahead utility. We will define lookahead attitudes of buyers using the concept of `-lookahead utility.
Assuming there are at least ` remaining rounds following round t, the buyer computes `-lookahead utility of
a bid b in round t as the expected utility over the current round plus the maximum expected utility obtainable
over the next ` rounds. More precisely, at round t, given the current state st and valuation vt, for any `, the
buyer’s expected `-lookahead utility for bid b, assuming T ≥ t+ `, is defined as:

U t` (st, vt, b) := E
[
vt xt(b)− pt(b) + sup

b′
U t+1
`−1 (st+1, vt+1, b

′)

∣∣∣∣st, vt] , (2)

U t0(st, vt, b) := E
[
vt xt(b)− pt(b)

∣∣∣∣st, vt] , (3)

where xt(b) ∼ x(st, b), pt(b) = p(st, b, xt(b)), st+1 ∼ Q(st, b, xt(b), pt(b)). And, the expectation was
taken over the random values vt+1 ∼ F and any randomization in the mechanism.

Buyer lookahead behaviors. We define the following types of buyers with different lookahead attitudes:4

• k-lookahead buyer: A k-lookahead buyer is a buyer who, in every round t, picks his bid bt to maximize
min{k, T − t}-lookahead utility, i.e.,

bt = max
b∈R+

U tmin{k,T−t}(st, vt, b) (4)

We refer to the bid bt computed above as a k-lookahead optimal bid. (Note that in general, the
maximizer in the abvoe equation may not exist, see technical remark 2.) Two special cases of k-
looahead buyers are:

– Myopic buyer: We refer to a 0-lookahead buyer as a myopic buyer.

– Infinite-lookahead buyer: If a mechanism lasts for T rounds, we refer to a k-lookahead buyer
with k ≥ T − 1 as an infinite-lookahead buyer.

• Forward-looking buyer: A forward looking buyer maximizes kt-lookahead utility for some kt ∈
{1, . . . , T − t}, at every time t. Thus, a forward-looking buyer may use different lookaheads at
different time steps, but always looks ahead at least one step.

3Given that our price function is a deterministic function of st, bt, xt we could have also suppressed pt from the arguments of
Q.

4See Technical Remark 2 for some comments about this definition.
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Technical Remark. To be completely formal, the definition of k-lookahead buyer given above requires
that the maximizer in (4) exists. There are mechanisms in which this maximizer does not exist. For instance,
consider a single-state mechanism that offers the item at a price of ε, whenever the bid is 1 − ε < 1, and
does not offer the item when the bid is 1. This mechanism has no optimal k-lookahead bid for any k. Such
mechanisms are undesirable as they make it difficult for the buyers to decide what bid to use, and therefore
for the sellers to understand what revenue to expect, even if they know their buyer’s lookahead attitude. For
this reason, the mechanisms that we construct are such that there always exists an optimal k-lookahead bid.
On the other hand, our impossibility results hold even if optimal lookahead policies do not exist as long as
a k-lookahead buyer is assumed to use a good enough approximately optimal bid, which is guaranteed to
exist given our assumption about the boundedness of the support of F .

2.3 Learning behaviors

No-regret learning. To formally model a broad class of buyer learning behaviors, we use the concept of
no-regret learning, a widely studied solution concept in the context of T round online prediction problem
with advice from N experts. In this problem, at every round t = 1, . . . , T , an adversary picks reward
gt = {g1,t, . . . , gN,t} where gi,t is the reward associated with expert i. The learner needs to pick an expert
it ∈ [N ], and observe reward git,t. Regret in time T is defined as

Regret(T ) = max
i∈[N ]

T∑
t=1

gi,t −
T∑
t=1

git,t. (5)

A no-regret online learning algorithm for this problem uses the past observations gi1,1, . . . , git−1,t−1 to
make the decision it in every round t such that Regret(T ) ≤ o(T ). When the number of experts N is finite,
there are efficient and natural algorithms (e.g., EXP3 algorithm based on multiplicative weight updates) that
achieve O(

√
NT logN) regret.

Note that the regret compares the total reward achieved by the learner with the reward of best single
expert in hindsight. Furthermore, even if the adversary is adaptive (i.e., generates gt adaptively based on
i1, . . . , it), the performance of the best expert is being evaluated over the sequence of inputs g1, . . . ,gT

produced by the adversary in response to the learner’s decision, and not those that would be produced if this
expert was used in all rounds. This is an important distinction between the above definition of regret, for
which efficient online learning algorithms like EXP3 are known, vs. the more sophisticated ‘policy regret’
which we define next.

Policy regret learning. A no-policy-regret learning algorithm is a more sophisticated learner based on the
definition of policy regret from [ADT12]. Such an algorithm faces an adaptive adversary, and achieves o(T )
policy regret, defined as:

Policy-regret(T ) = max
j1,...,jT∈CT

T∑
t=1

gjt,t(j1, . . . , jt)−
T∑
t=1

git,t(i1, . . . , it). (6)

where C(T ) is some benchmark class of deterministic sequences of experts of length T , and the gjt,t and
git,t have been explicitly written as a function of past decisions to indicate adaptive adversarial response to
the sequence of choices so far. A special case is where C(T ) is the class of single expert sequences, i.e.,

Policy-regret(T ) = max
i

T∑
t=1

gi,t(i, . . . , i)−
T∑
t=1

git,t(i1, . . . , it). (7)
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Buyer learning behaviors. We consider a buyer who only gets to observe whether the current state is
good (st ∈ ⊥) or bad (st /∈ ⊥), and the valuation vt, before making the bid, and the outcome (allocation,
price) after making the bid, but does not know (or does not trust) anything else about the seller’s mechanism.
Using these observations, the buyer is trying to decide bids bt, using a learning algorithm under the experts
learning framework described above. We formalize the notion of different levels of learning sophistication
among buyers by considering two classes of learners:

• No-regret learner: Such a buyer considers, as experts, a finite collection E of mappings from the state
information (st = ⊥ or st 6= ⊥) and valuation vt to a bid, i.e., set of experts

E = {f : [⊥, 6⊥]× V̄ → V̄ }; (8)

where V̄ is an discretized (to arbitrary accuracy) version of V , in order to obtain a finite set of experts.
The buyer uses a no-regret learning algorithm to decide which expert ft ∈ E to use in round t to set
bt = ft(st, vt). The adversarial reward at time t is given by the buyer’s tth-round utility, determined
by the seller’s mechanism’s output, i.e., on making bid bt = ft(st, vt) in round t, the reward is given
by buyer’s utility

ut(bt) := E[vtxt − pt|st, vt, bt]

so that for a no-regret learning buyer (refer to (5)),

Regret(T ) = max
f∈E

T∑
t=1

ut(f(st, vt))−
T∑
t=1

ut(bt) = o(T ) (9)

Here, we slightly abused the notation to define f as a function of st, vt, where as technically it is only
a function of f(1(st = ⊥), vt), that is, it only uses whether st = ⊥ or st 6= ⊥.

• Policy-regret learner: This more sophisticated buyer uses a no-policy-regret learning algorithm. Fol-
lowing (7), the important distinction from the definition of regret in the previous paragraph is that now
the total utility of best expert must be evaluated over the trajectory of states achieved by the expert.
To make explicit the dependence of tth round utility on past decisions through the state at time t, let
us denote the utility in round t as u(bt, st) Then, following (7), policy-regret of such a buyer is given
by:

Policy-Regret(T ) = max
f∈E

T∑
t=1

ut(f(s′t, vt), s
′
t)−

T∑
t=1

ut(bt, st), (10)

where s′1, . . . , s
′
T is the (possibly randomized) trajectory of states that would be observed on using the

expert to decide the bids in all rounds. We define a no-policy-regret learning buyer as those for which
the above quantity is guaranteed to be o(T ).

While constructing such a no-policy-regret learner is difficult in general, for our proposed stochastic
state-based mechanisms and the above special case of single expert sequences, this is achievable
by some simple learning strategies. In fact, a simple buyer learning strategy that will work for our
mechanism to achieve no-policy-regret with high probability, is to explore each possible bid for some
time and then use the best single bid for the rest of the time steps.
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2.4 Individual rationality

For k-lookahead buyers. We define a mechanism to be interim individually rational (IIR) for a k-lookahead
buyer iff at any time t, state st, valuation vt, and bid bt that is k-lookahead optimal at time t, we have that:

U tmin{k,T−t}(st, vt, bt) ≥ 0.

Note that the non-payment-forceful condition 3 in state-based mechanism’s definition 2 guarantees that IIR
is satisfied for all k.

We also define a mechanism to be per round ex-post individually rational for a k-lookahead buyer iff
for any time t, state st, valuation vt, and bid bt that is k-lookahead optimal at time t, we have that:

Ext∼x(st,bt)[xt · vt − pt(st, bt, xt)|vt, st] ≥ 0. (11)

While we do not impose ex-post individual rationality as a hard constraint on our mechanisms, our con-
structions will satisfy almost per-round ex-post individual rationality for bidders that are k-lookahead with
large enough k. A mechanism is almost per-round ex-post individual rational if there exist bids b1, . . . , bT
that satisfy (11), and which, with high probability, are both k-lookahead near-optimal (utility-wise) at the
respective time steps t for the buyer, and guarantee near-optimal average T round revenue for the seller,
assuming T is large enough.5

For learning buyers. As discussed in the introduction, per-round individual rationality is not a meaningful
measure of IR for learning buyers. A natural measure of IR is after the end of T rounds, whether the no-
regret strategy followed by the buyer will result in ex-post non-negative utility for the buyer. That is, whether∑T

t=1 ut(bt) ≥ 0, where ut(·) is the round t utility as defined in the previous section.

3 Our Mechanisms: M(ε, ρ) and M(ε, ρ, p)

We prove our positive results by proposing a class of mechanisms M(ε, ρ, p) parametrized by ε, ρ and p.
For illustration purposes, we also define a simpler mechanism M(ε, ρ) parameterized just by ε and ρ.

For both these mechanisms, the state-space is R × N. The current state will be denoted by a pair
st = (b̄, n), roughly corresponding to the current average of bids in the rounds where allocation was 1, and
the number of those rounds, respectively.

A high level description of mechanisms M(ε, ρ) and M(ε, ρ, p) is as follows. Mechanism M(ε, ρ)
accepts the current bid (makes an allocation of 1) if the buyer is in a ‘good state’, that is, if the average
of bids accepted in the past is above the threshold of (1 − ε)µ. Otherwise, it rejects the bid (makes no
allocation), and with probability ρ, transfers the buyer in a good state. Mechanism M(ε, ρ, p) behaves the
same way as M(ε, ρ) when the buyer is in a good state. But in the bad state, if the buyer’s current bid bt is
above p, then with probability ρ, it accepts the bid and transfers the buyer to a good state.

Below are the precise definitions.

Definition 1 (Mechanism M(ε, ρ)) • State Space S: The state space is S = R × N. We represent a
state s ∈ S by a pair (b, n) ∈ R×N. We refer to states s = (b, n) with b ≥ (1− ε)µ as ‘good states’,
and all the other states as ‘bad states’. Abusing notation a little, if s is a good state we evaluate s 6= ⊥
as true, and if s is a bad state we evaluate s = ⊥ as true.

5The constant lower bounds on k and T for this guarantee only depend on the bounded on the support of F and its variance, and
the approximation guarantees required for the near-optimality of the k-lookahead utility and the near-optimality of the revenue.
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• Starting state s1: The mechanism starts in the borderline good state, i.e.,

s1 = ((1− ε)µ, 0).

• Allocation rule x(st, bt): Given current state st, bid bt, this mechanism allocates if and only if the
current state is a good state. The allocation xt ∼ x(st, bt) is determinstic here, and is given by

xt =

{
1, if st 6= ⊥,
0, otherwise.

• Payment rule p(st, bt, xt): This is a first price mechanism, i.e.,

p(st, bt, xt) =

{
bt, if xt = 1,
0, otherwise.

• State-transition function Q(st, bt, xt, pt): Q(st, bt, xt, pt) provides the distribution of next state
st+1. Let st = (b, n). Then, in this mechanism, if xt = 1, the next state st+1 ∼ Q(st, bt, xt, pt)
is deterministic, and is given by the new average bid:

st+1 = (
bn+ bt
n+ 1

, n+ 1)

Otherwise, if xt = 0 (then it must also be the case that st = ⊥), then,

st+1 =

{
((1− ε)µ, n), with probability ρ,
st, with probability 1− ρ.

Definition 2 (Mechanism M(ε, ρ, p)) Mechanism M(ε, ρ) has exactly the same state-space, starting state,
and payment rule as the mechanismM(ε, ρ) defined above. The allocation rule and state-transition function
are slightly different, as defined below.

• Allocation rule x(st, bt): Given current state st, bid bt, this mechanism always allocates in a good
state, otherwise, it allocates with probability ρ if the bid bt is above the price p. That is,

x(st, bt) =


Bernoulli(1, 0), if st 6= ⊥,
Bernoulli(ρ, 1− ρ), if st = ⊥ and bt ≥ p,
Bernoulli(0, 1), otherwise.

• State-transition function Q(st, bt, xt, pt): In this mechanism, next state st+1 ∼ Q(st, bt, xt, pt) is a
deterministic function of st = (b, n) and xt.

st+1 =


(
bn+bt
n+1 , n+ 1

)
, if st 6= ⊥,

((1− ε)µ, n+ 1), if st = ⊥ and xt = 1,
st, otherwise.
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4 Revenue Tradeoffs

Notation. We will use the shorthand RevMk ≡ E
[∑T

t=1 pt
T

]
to denote the expected average revenue for

mechanism M starting at state s1 facing a k-lookahead buyer in all rounds t = 1, . . . , T , with the un-
derstanding that the expectation symbol denotes expectation over all trajectories that could result from the
randomness in the buyer’s values and bids, the allocation in each round, and the state transitions. We simi-
larly define RevM+ to be the revenue against any forward-looking buyer.

4.1 Warmup: Revenue tradeoffs of mechanism M(ε, ρ)

In this section, as an illustrative example, we first analyze the revenue achieved by mechanism M(ε, ρ)
against different kinds of buyers. This mechanism turns out to be almost too good to be true for forward-
looking buyers : in Lemma 4.2, we prove that using this mechanism against such buyers, the seller can
achieve (1− ε)µ revenue for arbitrarily small ε by using a small ρ ≤ ε. Given the definition of mechanism
M(ε, ρ), observe that a very small ρ effectively leads to a threat-based mechanism: a mechanism that
threatens to put a buyer indefinitely into a bad state if the buyer’s average bid ever goes below (1 − ε)µ.
Therefore, if the buyer is forward-looking, she will never bid in a way to take her average bid below this
threshold, thus giving a high revenue to the seller. However, if the buyer is myopic (possibly because she
doesn’t believe the threat), this mechanism completely fails : in Lemma 4.1, we show that against myopic
buyers, M(ε, ρ) will result in 0 revenue for the seller.

This illustrates the significance of our requirement that the mechanism should achieve a nontrivial rev-
enue against both myopic and forward-looking buyers: this requirement rules out such undesirable mecha-
nisms like those described above. In next section, we propose a simple mechanism that can achieve close to
optimal revenue tradeoff against all these different types of buyers.

Lemma 4.1 Rev
M(ε,ρ)
0 = 0, i.e., M(ε, ρ) fails against a myopic buyer.

Proof: Given st, vt at time t, the myopic buyer make a bid bt that maximizes 0-lookahead expected utility,
given by

U0
t (st, vt, bt) = E[vtxt − pt|vt, st]

where xt, pt are given by the allocation and payment rules of the mechanism, as a function of the bid bt
and st. The expectation is over randomization in these rules. Now, by definition of M(ε, ρ) mechanism, if
st 6= ⊥, then xt = 1 and pt = bt, irrespective of the bid value, so that U0

t = vt − E[bt], which is maximized
by picking bt = 0. If st = ⊥, then xt = 0, pt = 0 in M(ε, ρ), making the utility U0

t = 0, irrespective of the
bid value.

Therefore, a dominant strategy for the myopic buyer is to always bid 0, irrespective of the current state
and valuation. Since the payment rule is first price rule (i.e., pt = bt when xt = 1, and 0 otherwise), this
makes the seller’s revenue 0.

Lemma 4.2 For any ε > 0,M(ε, ρ) with ρ ≤ ε achieves a seller’s revenue of Rev
M(ε,ρ)
+ ≥ (1− 1

T )(1−ε)µ.

We omit the proof of above lemma, which follows the same lines of argument as the proof of a similar bound
for mechanism M(ε, ρ, p), stated as part (c) in Theorem 4.3.
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4.2 Main results: Revenue tradeoffs of mechanism M(ε, ρ, p)

Here, we present our main result that the proposed mechanism M(ε, ρ, p) simultaneously achieves near-
optimal revenue in face of a wide variety of buyer behaviors, namely, different lookahead attitudes: myopic,
forward-looking, k-lookahead, and infinite lookahead, and broad classes of learning behaviors, formally
modeled as no-regret learners and policy regret learners. Refer to Section 2 for formal definitions of these
behaviors. The proof of this theorem is provided in Appendix A.

Theorem 4.3 The mechanism M(ε, ρ, p∗) with p∗ = arg maxp p(1 − F (p)) and ρ ≤ ε
2−ε , satisfies the

following properties:

(a) The optimal k-lookahead bid exists for all k ≥ 0, 0 ≤ t ≤ T .

(b) The revenue against any myopic buyer is bounded as

Rev
M(ε,ρ,p∗)
0 ≥ ρ

ρ+ 1
Rmye −

1

T
,

where Rmye is the one round Myerson revenue, namely, Rmye = p∗(1− F (p∗)).

(c) The revenue against any forward-looking buyer is bounded as

Rev
M(ε,ρ,p∗)
+ ≥ (1− 1

T
)(1− ε)µ.

(d) The revenue against any k-lookahead buyer (for k ≥ 1) is bounded as

Rev
M(ε,ρ,p∗)
k ≥ (1− 1

T
)(1− ε)µ.

(e) The revenue against a no-regret learner using class E of experts (refer to (8)) is bounded as

Rev
M(ε,ρ,p∗)
LS ≥ ρ

ρ+ 1
RevMye − o(1).

(f) The revenue against a policy-regret learner with benchmark class CT containing all single expert
sequences is bounded as

Rev
M(ε,ρ,p∗)
LP ≥ (1− ε)µ− o(1).

(g) Against all types of buyers – myopic, forward-looking and k-lookahead – the mechanism is IIR. For
large enough constant k, the mechanism also satisfies almost per-round ex-post IR (see section 2.4).
Further, against no-regret and no-policy-regret learning buyers, the mechanism guarantees an almost
non-negative ex-post utility, namely at least −o(T ).

Corollary 4.4 For large T , for any ε ∈ (0, 1), the mechanismM(ε, ρ, p∗) with p∗ = arg maxp p(1−F (p)),
with ρ = ε

2−ε , simultaneously achieves an average per round revenue of at least (i) (1 − ε)µ against a
forward-looking buyer, (ii) ε

2RevMye against a myopic buyer, (iii) (1 − ε)µ against a policy-regret learner,
(iv) ε

2RevMye against a no-regret learner.
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4.3 Impossibility results for achievable revenue tradeoffs

Theorem 4.5 There exists a bounded, monotone hazard rate distribution F such that, for all ε ∈ [0, 1],
no mechanism that is non-payment forceful (see equation (1) in the definition of state-based mechanism
in Section 2 ) can simultaneously have expected per round revenue at least ε · RevMye, against a myopic
buyer with per round value distribution F , and expected per round revenue at least (1 − ε

2) · µ, against an
infinite look-ahead buyer with per round distribution F , where, as usual, RevMye = maxx x(1−F (x)) and
µ = Ex∼F [x].

Main Ideas We show our impossibility result by showing that there are distributions (even exponential
distribution conditioned to lie in [0, 1] works) for which any mechanism that gets Ω(ε) ·RevMye average per
round revenue against a myopic buyer, will also necessarily offer her a utility that is Ω(ε) · µ on average.
But simultaneously getting a revenue of (1− ε)µ against the infinite lookahead buyer means that an infinite
lookahead buyer is being left with at most εµ utility. If a myopic buyer is able to earn strictly more than εµ
utility, so can an infinite lookahead buyer. This caps the utility achievable by a myopic buyer, which we use
to cap the revenue achievable against a myopic buyer. Surprisingly the same argument doesn’t work if we
do a infinite vs 1-lookahead comparison, i.e., while the result may seem intuitive in hindsight, it is definitely
not.

5 Other related work

There are several streams of literature in dynamic mechanism design. We begin with the stream that is
closest to our work.
Optimal dynamic mechanisms. [PPPR16] show that the optimal deterministic dynamic mechanism sat-
isfying ex-post IR constraints even in a single buyer 2 rounds setting, when the values are correlated is
NP-hard. I.e., buyer learns his value of each round when it begins, and both buyer and seller know the dis-
tribution from which these values are drawn. They show that the optimal deterministic mechanism when the
rounds have independent valuations can be computed in polynomial time. The optimal randomized mech-
anism even with correlated valuations can be computed in polynomial time. [MLTZ16a] study the single
seller single buyer setting and show that with the IIR constraint, a very simple class of mechanisms called
bank-account mechanisms that maintain a single scalar variable as state already obtain a significantly higher
revenue and welfare compared to the single shot optimal. [ADH16] and [MLTZ16b] characterize the optimal
ex-post IR mechanisms and consider approximations thereof via simple mechanisms (mainly in the single
seller, single buyer setting, but their results also extend to the multi-bidder case) that again hold a single
scalar variable as state. [BML16], consider a single seller single buyer setting and show that the seller can
earn almost the entire surplus as revenue, even after imposing per round ex-post IR requirements and mar-
tingale utilities for the buyer. [MLTZ17] study oblivious dynamic mechanism design, namely, one where
the seller is not aware of the future distributions of the buyer, and just the distribution for this round: they
show that even with just this information, one can construct an ex-post IR dynamic incentive compatible
mechanism that gets a 1

5 of the optimal dynamic mechanism that knows all future distributions.
Mechanism design for buyers with evolving values. Another major focus area in dynamic mechanism
design is one where buyers experience the same or related good repeatedly over time, and their value for
the good evolves with time/usage. Initiated by the work of Baron and Besanko [BB84] there is a large body
of work [Bes85, Bat05, CL00, BS14, ES07] that study optimizations in the presence of evolving values.
Recent works include those by [BS15, AS13], where they consider general models where value evolution
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could depend on the action of the mechanism. [KLN13, PST14] study revenue optimal dynamic mechanism
design where the buyer’s value evolves based on signals that she receives each period. [CDKS16] study
martingale value evolution for the buyer and show that simple constant pricing schemes followed by a free
trial earns a constant fraction of the entire surplus.
Bargaining, durable goods monopolist and Coase conjecture. There is a large body of literature in
economics that studies settings where the value is initially drawn from a distribution, but in subsequent
rounds, the value remains the same, i.e., there is not a fresh draw in every round. This setting can be
motivated based on several applications including bargaining, durable goods monopoly and behavior based
discrimination. See [FVB06] for an excellent survey and references there in for an overview of this area.
Dynamically arriving and departing agents. Yet another body of work that comes under the umbrella of
dynamic mechanisms is one where agents arrive and depart dynamically. Naturally focus is quite different
from what we do in this paper.
Lookahead Search. The study of k-lookahead search can be viewed in the context of bounded rationality,
as pioneered by Herb Simon [Sim55]. He argued that, instead of optimizing, agents may apply a class of
heuristics, termed satisfying heuristics in decision making, A natural choice of such heuristics is restricting
the search space of best-response moves. Lookahead search in decision-making has been motivated and
examined in great extent by the artificial intelligence community [Nau83, dKaS92, SKN09]. Lookahead
search is also related to the sequential thinking framework in game theory [SW94]. More recently, [MTV12]
study the quality of equilibrium outcomes for look-ahead search strategies for various classes of games.
They observe that the quality of resulting equilibria increases in generalized second-price auctions, and
duopoly games, but not in other classes of games. No prior work studies dynamic mechanisms that are
robust against various lookahead search strategies.

6 Discussion and further remarks

Applications to online advertising. On the practical side, the study of robust dynamic mechanisms in
this paper is motivated by the online sale of display ads in ad exchanges via repeated auctions. Display ad
exchanges are online market places for trading ad impressions in real time that account for a significant and
increasing fraction of overall sales of Internet display ads. At the heart of these exchanges is a repeated
interaction between a seller and a buyer who bids in real time, with hundreds of thousands of repeated
auctions per day, stretching over several weeks/months. While new dynamic mechanisms can be studied
to deploy in such advertising exchanges, ensuring that such strategies are robust against various responses
from advertising agencies is very important.

Practicality of single buyer setting. While analyzing a single buyer mechanism is a natural first step in
studying the landscape of what is and isn’t possible, we claim that this investigation is already practically
relevant for two reasons. Firstly, most of the billions of auctions run in display ad exchanges everyday are
very thin, i.e., involve very few buyers, sometimes just one. In such mechanisms the buyer gets a large part
of the surplus, and it becomes important in these auctions to devise methods to move some surplus from the
buyer to the seller, without also reducing the buyer surplus to too little. Our results and mechanisms will
provide insight and guidance in these situations. Secondly, even when there are multiple buyers, in many
situations the revenue is primarily driven by a single buyer, where the ideas in our paper become relevant.

Independence of valuations across rounds. Our setting also assumes independence of valuations across
rounds, which is used crucially in our proofs. When interacting with the same buyer repeatedly, can inde-
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pendence across rounds be possible? Indeed it is contrived when the same good is being sold across several
rounds. But in the online advertising application, for example, every round’s good is an opportunity to show
an ad impression to a user who is identified by a vector of features. As a result, there might be little or no
correlation between users across the rounds. Based on this observation, independence is a natural first-step
assumption in these settings.

Further, our mechanisms depend only on a single parameter of the buyer’s valuation distribution, namely
its mean µ. In this sense, they are quite robust to assumptions on the buyer’s valuation distribution as well.

Finite vs. infinite number of rounds. While it is cleanest to present all our results in an infinite rounds
setting, the definition of seller revenue, which is the limit of the average revenue across T rounds, as T →∞,
would be more involved to define: in particular, the limit need not exist for all mechanisms. Still our bounds
on the revenue of our constructed mechanisms would hold under lim inf , and our impossibility results would
hold under appropriate use of lim inf and lim sup. To simplify exposition, we focus on the finite horizon
case where the number of rounds T is large, and we study all lookaheads from k = 0 to T (the T -lookahead
buyer is effectively the infinite lookahead buyer). The finiteness costs us a (1− 1

T ) or 1− o(1) factor in our
revenue bounds (refer to Theorem 4.3). As T grows, 1 − o(1) factor becomes effectively 1, and irrelevant
in our characterization results.
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A Proof of Theorem 4.3

Proof: Properties (a) and (b) for myopic buyers are proven in Lemma A.1. Property (a) for k-lookahead
optimal bids for k ≥ 1 is proven in Lemma A.3.

Property (c) follows almost immediately from Lemma A.3, where we show that for any k ≥ 1 and time
t, such that st 6= ⊥, any optimal k-lookahead bid is such that the next state st+1 is deterministically a good
state, i.e., st+1 6= ⊥. Since mechanism M(ε, ρ, p) starts in a good state (s0 6= ⊥), as a consequence of this
lemma, a forward-looking buyer using optimal kt-lookahead optimal bid for kt ≥ 1 for all t, will remain in
good states for all the T rounds. By the definition of a good state, this implies that the average bid for the
first T − 1 rounds is at least (1− ε)µ. In the T -th round, the buyer will behave as a myopic buyer, and even
if we count that revenue as 0, the T -round revenue is at least (T − 1)(1 − ε)µ, and the average revenue in
the property (c) immediately follows.

Property (d) is a direct corollary of property (c).
Properties (e) and (f) are proven in Lemma A.6 and Lemma A.7 respectively.
For property (g), observe that in mechanismM(ε, ρ, p), the payment is equal to the bid whenever alloca-

tion is 1, and 0 otherwise, therefore, IIR property holds trivially. For a myopic buyer, as we show in Lemma
A.1, the optimal myopic bid is 0 in a good state, and p∗ in a bad state whenever vt ≥ p∗. This bidding
strategy is ex-post IR. For a forward-looking buyer, a consequence of Lemma A.3 is that the k-lookahead
buyer always remains in good state, and the k-lookahead optimal bid at any time t with st 6= ⊥ should be
such that the next state is a good state. An ex-post IR strategy that can achieve this is to bid vt(1− ε) at all
time steps t. This strategy will keep the buyer in good state for large t with high probability (as long as ε is
large enough), and further achieve near-optimal average buyer utility (close to εµ).

For a learning buyer, the fact that
∑T

t=1 ut(bt) ≥ −o(T ) follows immediately from the no-regret and
no-policy regret guarantees (refer to (9) and (10)) since the benchmark class considered (E) contains an
expert that can bid 0 at all time steps to get ≥ 0 total utility.

Lemma A.1 The mechanism M(ε, ρ, p∗) satisfies the following properties against a myopic buyer:

(a) An optimal myopic bid exists for all time steps t.

(b) The average per round revenue against a myopic buyer is bounded as:

Rev
M(ε,ρ,p∗)
0 ≥ ρ

ρ+ 1
Rmye −

1

T
,

whereRmye is the one round Myerson revenue, namely,Rmye = maxp p(1−F (p)) = p∗(1−F (p∗)).

Proof:
Buyer’s optimal myopic bid: Let us first understand a myopic buyer’s bidding strategy under mechanism
M(ε, ρ, p∗). At any time t, given st, vt, the myopic buyer makes the bid bt that maximizes 0-lookahead
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expected utility, given by U t0(st, vt, bt) = E[xtvt − pt|vt, st]. Now, consider two cases:
(a) st 6= ⊥: in this case, by definition of allocation rule in M(ε, ρ, p∗), xt = 1, pt = bt, so that U0

t =
E[vt − bt], irrespective of the value of bid bt. Therefore, the (unique) utility maximizing strategy for the
buyer is to bid 0, i.e.,

bt = 0 when st 6= ⊥.

(b) st = ⊥: in this case, by definition of allocation rule in M(ε, ρ, p∗), with probability ρ, xt = 1, pt = bt
if bt ≥ p∗, so that U0

t = E[(vt − bt)1(bt ≥ p∗)]. Therefore, the whenever vt ≥ p∗, the (unique) utility
maximizing strategy for the buyer is to bid p∗, otherwise xt = 0 and any bid less than p∗ (including 0) is
optimal, i.e.,

bt = p∗, xt = 1 when st = ⊥, vt ≥ p∗, and
bt < p∗, xt = 0 when st = ⊥, vt < p∗

Seller’s revenue The seller’s expected revenue is E[ 1
T

∑T
t=1 pt]. Now, for mechanism M(ε, ρ, p∗), pt = bt

whenever xt = 1 and 0 otherwise. For a myopic buyer as described above, E[pt|st 6= ⊥] = 0, E[pt|st =
⊥] = p∗ Pr(vt ≥ p∗) = p∗(1− F (p∗)). Substituting:

Rev
M(ε,ρ,p∗)
0 = E[

1

T

T∑
t=1

pt]

=
1

T

T∑
t=1

E[pt|st 6= ⊥] Pr(st 6= ⊥) + E[pt|st = ⊥] Pr(st = ⊥)

= p∗(1− F (p∗))
1

T

T∑
t=1

Pr(st = ⊥).

Here,
∑T

t=1 Pr(st = ⊥) is the expected number of times bad state is visited in the T time steps. Now,
by definition, mechanism M(ε, ρ, p∗) starts in good state s0 = ((1 − ε)µ, 0) 6= ⊥. A myopic buyer will
bid 0 in this state which will get accepted (see the above discussion in optimal myopic bid), and she will
immediately go to the bad state ((1 − ε) µ

n+1 , 0) = ⊥. Transfer from bad state to the borderline good state
s0 = ((1 − ε)µ, 0) happens with probability ρPr(vt ≥ p∗) = ρ(1 − F (p∗)). Again, in s0 the myopic
bidder will bid 0 and immediately transfer back to a bad state. Therefore, the sequence of states takes the
form 6⊥ ⊥⊥⊥⊥⊥ 6⊥ ⊥⊥⊥ 6⊥ ⊥⊥ . . ., i.e., sequence of bad states interspersed with single good states. The
expected length of a subsequence 6⊥ ⊥+ is 1 + 1

ρ(1−F (p∗)) , with ρ(1−F (p∗))
1+ρ(1−F (p∗)) ≥

ρ
ρ+1 fraction of bad states.

Accounting for the interruption in the last 6⊥ ⊥+ sequence due to end of time horizon T , we have that the
expected number of steps in a bad state is at least

T
ρ(1− F (p∗))

1 + ρ(1− F (p∗))
− 1 ≥ T ρ

ρ+ 1
− 1.

Substituting, we get:

Rev
M(ε,ρ,p∗)
0 ≥ p∗(1− F (p∗))

(
ρ

ρ+ 1
− 1

T

)
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Lemma A.2 Under mechanism M(ε, ρ, p) with ρ ≤ ε, at any time t < T , an optimal 1-lookahead bid
exists, and is such that the next state st+1 is deterministically a good state, i.e., st+1 6= ⊥.

Proof: By definition, an optimal 1-lookahead bid bt (if exists) maximizes 1-lookahead expected utility, i.e.,

bt = arg maxb U
t
1(st, vt, b)

In mechanismM(ε, ρ, p), for any t such that st 6= ⊥, the allocation and payment are always xt = 1, pt = bt.
Therefore, using recursive relation between U tk and U t+1

k−1,

U t1(st, vt, bt) = E[(vt − bt) + sup
b′
U t+1

0 (st+1, vt+1, b
′)|vt, st] (12)

where st+1 ∼ Q(st, bt, 1, bt). Now, for mechanism M(ε, ρ, p), bids get accepted in bad state with at most ρ
probability, therefore,

E[sup
b′
U t+1

0 (st+1, vt+1, b
′)|st+1 = ⊥] ≤ ρµ,

where as
E[sup

b′
U t+1

0 (st+1, vt+1, b
′)|st+1 6= ⊥] = µ

which can be achieved by b′ = 0. Also, for M(ε, ρ, p), if st is a good state, then depending on the bid,
the next state st+1 will be deterministically bad or good state. For any bid bt such that st+1 is a bad state,
substituting above in (12), we have that 1-lookahead utility is at most

vt + ρµ,

where as if st+1 is a good state, then U t1(st, vt, bt) ≥ (vt − bt) + µ. This is maximized by the minimum bid
required to keep st+1 as good state. In fact, in any good state st, the bid bt = (1− ε)µ, always ensures st+1

is a good state, and makes the 1-lookahead utility atleast

vt + εµ

Therefore, if ε > ρ, then there exists at least one bid such that st+1 6= ⊥ with strictly better 1-lookahead
utility than any other bid such that st+1 = ⊥. This proves that any 1-lookahead optimal bid will have the
stated property.

Lemma A.3 Under mechanism M(ε, ρ, p) with ρ ≤ ε
2−ε , for any k ≥ 1 and time t, such that st 6= ⊥, an

optimal k-lookahead bid exists, and is such that the next state st+1 is deterministically a good state, i.e.,
st+1 6= ⊥.

Proof: We prove by induction. In Lemma A.2, this property was proven for 1-lookahead policy. Assume
this is true for 1, . . . , k − 1, then we prove for k.

By definition, a k-lookahead optimal bid (if exists) maximizes the k-lookahead utility. In mechanism
M(ε, ρ, p), if st 6= ⊥, then xt = 1, pt = bt, and depending on the value of bid bt, the next state st+1 is either
bad or a good state deterministically. Suppose for contradiciton that the k-lookahead optimal bid bt is such
that st+1 is a bad state. Then, we will show that there exists a bid b′t that achieves strictly better k-lookahead
utility.
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Consider the bidding strategy that bids k-lookahead optimal bid bt at time t, k − 1-lookahead optimal
bid bt+1 at time t + 1, and so on. Let τ ∈ [1, k] be a random variable defined as the minimum of k and
the number of steps it takes to reach a good state under this strategy, when starting from the bad state st+1

at time t + 1, i.e., minimum τ such that st+τ+1 6= ⊥ or τ = k. Now, for i = 1, . . . , τ , let At+i be the
event that a Bernoulli(ρ) coin toss is a success. In M(ε, ρ, p) mechanism, in a bad state st+i, nothing gets
added to the utility if At+i is false, and at most vt+i gets added to the utility if At+i is true. Therefore, the
contribution to the utility in steps t, t+ 1 . . . , t+ τ is upper bounded by

vt +

τ∑
i=1

vt+i1(At+i).

Therefore,

U tk(st, vt, bt) ≤ vt + E[
τ∑
i=1

vt+iI(At+i)

+1(τ < k)E[sup
b
U t+τ+1
k−τ−1(st+τ+1, vt+τ+1, b)|st+τ+1]|st, vt] (13)

Next, we compare the above upper bound on utility achieved by bt to the k-lookahead utility achieved
by b′t = (1− ε)µ at time t. To lower bound this k-lookahead utility, we consider the utility of the following
bidding strategy starting from b′t = (1 − ε)µ at time t. Let τ ′ be a random variable which given st, vt, has
the same distribution as the random variable τ defined above. Then,

• in steps t to t+ min{τ ′, k − 1}, bid (1− ε)µ

• if τ ′ = k, bid 0 at time t+ τ ′

• if τ ′ < k, use k− j−1 lookahead optimal bid starting for time t+ j+ 1 for j = τ ′, τ ′+ 1, . . . , k−1.

Then, the k-lookahead utility for bid b′t = (1− ε)µ can be lower bounded by the utility of the above strategy

U tk(st, vt, b
′
t) ≥ vt − (1− ε)µ+ E[

τ ′∑
i=1

vt+i − (1− ε)τ ′ + 1(τ ′ = k)(1− ε)µ

+1(τ ′ < k)E[sup
b
U t+τ

′+1
k−τ ′−1(st+τ ′+1, vt+τ ′+1, b)|st+τ ′+1]|st, vt] (14)

Now, we show that the last term from (14) dominates the last term from (13). Since τ and τ ′ have the
same distribution, in fact it suffices to compare only the expected sup utility terms for each i.

Note that by definition of τ , when τ = i, the state st+i+1 reached in (13) is a borderline good state, i.e.,
st+i+1 = ((1 − ε)µ, n) for some n. Also, the bidding strategy used to obtain (14) is such that it doesn’t
leave the good state until at least time t+ τ ′ + 1. Therefore, when τ ′ = i the state st+i+1 6= ⊥. Now, using
Lemma A.4 for k − i− 1, we have for all i, s 6= ⊥,

E[sup
b
U t+i+1
k−i−1(st+i+1, vt+i+1, b|st+i+1 = s] ≥ E[sup

b
U t+i+1
k−i−1(st+i+1, vt+i+1, b|st+i+1 = ±] (15)

Therefore, we derive that the last term in (14), is greater than or equal to the corresponding term in (13).
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Using this observation, and subtracting (13) from (14), we can bound the total difference (denoted as ∆)
in k lookahead utilities of bt and b′t as

∆ := U tk(st, vt, b
′
t)− U tk(st, vt, bt)

≥ E[
τ ′∑
i=1

vt+i − (τ ′ + 1)(1− ε)µ+ I(τ ′ = k)(1− ε)µ|st, vt]− E[
τ∑
i=1

vt+iI(At+i)|st, vt]

Since τ and τ ′ have the same distribution given st, vt, we can replace τ ′ by τ in above:

∆ ≥ E[
τ∑
i=1

vt+i − (τ + 1)(1− ε)µ+ I(τ = k)(1− ε)µ|st, vt]− E[
τ∑
i=1

vt+iI(At+i)|st, vt]

Combining the first and last term in above, we get
∑τ

i=1 vt+iI(At+i). Now, vt+iI(At+i)− µ(1− ρ), i =
1, 2, . . . form a martingale, and τ is a finite stopping time (τ ≤ k), therefore, by Wald’s equation,

E[
∑τ

i=1 vt+iI(At+i)|st, vt] = E[τ |st, vt]E[vt+1I(At+1)|st, vt] = E[τ |st, vt]µ(1− ρ)

In the last expression we used that At+1 and vt+1 are independent, given st, vt. Substituting, we obtain, (in
below we drop the conditional on st, at for notatioal brevity)

∆ ≥ E[τ ]µ(1− ρ)− (E[τ ] + 1)(1− ε)µ+ Pr(τ = k)(1− ε)µ
= E[τ ](ε− ρ)µ− (1− ε)µ+ Pr(τ = k)(1− ε)µ
= E[τ ](ε− ρ)µ− Pr(τ < k)(1− ε)µ

Now, let X be a geometric random variable with success probability ρ, then τ stochastically dominates
min{X, k}. And, from Lemma A.5

E[τ ] ≥ E[min{X, k}] = 1
ρ Pr(X < k) + Pr(X ≥ k),

Pr(τ < k) ≤ Pr(X < k) = 1− (1− ρ)k−1

The proof is completed by the following algebraic manipulations:

∆ ≥ E[τ ](ε− ρ)µ− Pr(τ < k)(1− ε)µ

=
1

ρ
Pr(X < k)(ε− ρ)µ+ Pr(X ≥ k)(ε− ρ)µ− Pr(X < k)(1− ε)µ

=
(ε− ρ)µ

ρ
− (1− ε)µ+ Pr(X ≥ k)(−(ε− ρ)µ

ρ
+ (ε− ρ)µ+ (1− ε)µ)

=
εµ

ρ
− (2− ε)µ+ (1− ρ)k−1µ(2− ρ− ε

ρ
)

We are given that ρ ≤ ε
(1−ε) . Consider two cases: 2 − ρ − ε

ρ > 0 and 2 − ρ − ε
ρ ≤ 0. In the first case, the

second term above is positive so that ∆k+1 >
εµ
ρ − (2 − ε)µ ≥ 0, because ρ ≤ ε

(2−ε) . In the second case,
∆k+1 is minimized for k = 1, i.e., when ∆k+1 = ∆2 = εµ

ρ − (2− ε)µ+ µ(2− ρ− ε
ρ) = (ε− ρ)µ > 0.

This proves that U tk(st, vt, b
′
t)−U tk(st, vt, bt) = ∆ > 0 when ρ ≤ ε

(2−ε) , proving a contradiction that bt
is not k-lookahead optimal. Thus, the k-lookahead optimal bid if exists will ensure that st+1 6= ⊥.

In fact, by induction optimal k − 1-lookahead bid exists, so that the optimal k-lookahead bid for any t
such that st 6= ⊥ is given by:

bt := arg max
b:(b̄n+b)/(n+1)≥(1−ε)µ

E[vt − b+ max
b′

U t+1
k−1(st+1, vt+1, b

′)|st, vt],
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which by applying this lemma for k − 1, k − 2, . . . can be derived to be the minimum bid that would keep
st+1 as a good state.

Lemma A.4 Under mechanism M(ε, ρ, p) with ρ ≤ ε
2−ε , an optimal k-lookahead bid bt at time t, when

starting from any good state st = s 6= ⊥, would achieve at least as much utility as when starting from a
borderline state st = s′ = ((1− ε)µ, n). That is,

U tk(s, vt, bt) ≥ U tk(s′, vt, bt),∀s 6= ⊥, s′ = ((1− ε)µ

Proof: Consider the case when the starting state is a borderline state s′ = ((1−ε)µ, n). Opening up the recur-
sive definition of k-lookahead utility, we obtain the following expression in terms of bids bt+1, . . . , bt+k−1

which are optimal k − 1, k − 2, . . . , 1 lookahead bids respectively.

U tk(s
′, vt, bt) := E[

t+k∑
τ=t

vτx(sτ , bτ )− p(sτ , bτ , xτ )|st = s′, vt]

Using Lemma A.3, the optimal k-lookahead bid for any k ≥ 1 is such that the next state is a good state,
so that if the starting state s′ is a good state, then so are the states sτ , τ = t + 1, . . . , t + k in the above
expression. This further implies that if the starting state is a borderline state s′ = (1− ε)µ, n, then the sum
of bids bt, bt+1, . . . , bt+k−1 must be atleast (1− ε)µk. Since in good state, the allocation is always 1 and the
payment is equal to the bid, we obtain the following upper bound on the utility:

U tk(s
′, vt, bt) = E[

t+k∑
τ=t

vτ − bτ |st, vt]

≤ vt + E[
k∑
i=1

vt+i]− k(1− ε)µ.

Now, on starting from another good state, say s = (b, n′) 6= ⊥, since b ≥ (1 − ε)µ, the sum of bids
bt, bt+1, . . . , bt+k−1 needs to be at most (1 − ε)µ to remain in a good state, and bt+k = 0 as the optimal
myopic bid (for good state) will be used in this last step. Therefore, for any s 6= ⊥,

U tk(s, vt, bt) ≥ vt + E[
k∑
i=1

vt+i]− k(1− ε)µ ≥ U tk(s′, vt, bt)

Lemma A.5 Let X be a geometric random variable with success probability ρ, then

E[min{X, k}] =
1

ρ
Pr(X < k) + Pr(X ≥ k)
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Proof:

E[min{X, k}] = E[XI(X < k)] + Pr(X ≥ k)k

=

k−1∑
j=1

(1− ρ)j−1ρj + k(1− ρ)k−1

= E[X]−
∞∑
j=k

(1− ρ)j−1ρj + k(1− ρ)k−1

= E[X]− (1− ρ)k−1
∞∑
j=1

(1− ρ)j−1ρ(j + k − 1) + k(1− ρ)k−1

= E[X]− (1− ρ)k−1E[X]− (1− ρ)k−1
∞∑
j=1

(1− ρ)j−1ρ(k − 1) + k(1− ρ)k−1

=
1

ρ
(1− (1− ρ)k−1)− (1− ρ)k−1(k − 1) + k(1− ρ)k−1

=
1

ρ
(1− (1− ρ)k−1) + (1− ρ)k−1

=
1

ρ
Pr(X < k) + Pr(X ≥ k)

Lemma A.6 (Claim (e) of Theorem 4.3) Against a buyer who is no-regret learner for the class E of experts
(refer to Equation (8) and (9)), the mechanism M(ε, ρ, p) achieves a revenue of atleast

Rev
M(ε,ρ,p∗)
LS ≥ ρ

ρ+ 1
RevMye − o(1).

Proof: Let us first consider trajectories of states of form 6⊥ ⊥⊥⊥⊥⊥ 6⊥ ⊥⊥⊥ 6⊥ ⊥⊥ . . ., i.e., sequence of
bad states interspersed with single good states.

Consider the bidding function f(st, vt) such that f(st, vt) = p∗ when st = ⊥ and vt ≥ p∗, and 0
otherwise. This is (arbitrarily close to) one of the experts in the class E of experts that the buyer is using. In
the mechanismM(ε, ρ, p), with probability ρ, the bid p∗ made in a bad state will get accepted, to earn utility
ut(f(st, vt)) = ρ(vt − p∗) for the buyer. Therefore, for any sequence of states and valuations, the first term
in the regret definition (9) is at least

T∑
t=1

ut(f(st, vt)) ≥ ρ
∑

t:st=⊥,vt≥p∗
(vt − p∗) +

∑
t:st 6=⊥

vt

Since the buyer is using a no-regret learning algorithm, she must be achieving a utility that is within o(T )
of the above utility. Now, the maximum utility in good states is vt, and in mechanism M(ε, ρ, p), the buyer
cannot not make any positive utility in bad states where vt ≤ p∗. Therefore, the buyer can afford to lose at
most o(T ) of the bad state auctions where vt ≥ p∗. This means that any no-regret learning buyer must bid
bt ≥ p∗ in all except o(T ) of the time steps with st ∈ ⊥, vt ≥ p∗. Let B be the number of bad states, and
B′ be the number of those bad states where vt ≥ p∗ and the bidder bids at least p∗, then,

E[B′] ≥ E[B](1− F (p∗))− o(T )
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Also, let G be the number of good states. Then, due to the construction of the mechanism M(ε, ρ, p), the
buyer could have obtainedG−1 good states (all except the first good state), only by winningG−1 bad state
auctions. And, since bad state auctions can be won only with probability ρ, we have that E[G] ≤ E[B]ρ+ 1.
This gives,

E[B] ≥ 1

ρ+ 1
(T − 1),

Combining above observations

E[B′] ≥ E[B](1− F (p∗))− o(T ) ≥ 1

ρ+ 1
(1− F (p∗))(T − 1)− o(T ).

Therefore, the total expected revenue of seller is atleast

ρp∗E[B′] ≥ ρ

ρ+ 1
p∗(1− F (p∗))(T − 1)− o(T ) =

ρ

ρ+ 1
RevMyeT − o(T )

Now, consider sequences of states with more than one consecutive good states, e.g., 6⊥ ⊥⊥⊥⊥ 6⊥6⊥6⊥
⊥⊥⊥⊥ 6⊥6⊥ . . . etc. Then, in a subsequence of consecutive good states the bid average over all good states
except the first one (call them trailing states) must be at least (1 − ε)µ, so that the buyer makes at most
v̄ − (1 − ε)µ utility, where v̄ denotes the average valuation over those states. On the other hand, the above
expert f , which bids 0 in good states, makes v̄ utility in each of those trailing states (in hindsight). Further, in
the bad states, and in rest of the (non-trailing) good states, f is achieving the best possible utility. Therefore,
given the no-regret condition, the number of trailing states can be at most o(T ) and do not effect the revenue
calculations above.

Lemma A.7 (Claim (f) of Theorem 4.3) Against a buyer who is a policy regret learner for a class C of
sequences containing all sequences of single experts (refer to Equation (10)), the mechanism M(ε, ρ, p)
achieves a revenue of at least

Rev
M(ε,ρ,p∗)
LP ≥ (1− ε)µ− o(1).

Proof: The sequence of constant bid (1−ε)µwould keep a buyer always in good state (1−ε)µ, and achieve a
utility of εµ. Therefore, if the class CT contains this sequence, the policy-regret learning buyer must achieve
εµ − o(T ) utility. Now, bad states can achieve at most ρµ utility on average, therefore, of ρ < ε − o(1),
this implies that the bad states can be at most o(T ). This implies that the trailing good states are atleast
T − o(T ). Since the buyer needs to maintain a bidding average of at least (1 − ε) over the trailing good
states, this gives revenue of atleast (1− ε)µT − o(T ).

B Proof of Theorem 4.5

Proof: We will take our cumulative density function F to be the exponential distribution of rate 1, con-
ditioned on being less than 1. In particular, F is supported on [0, 1] and defined as follows F (x) =
e
e−1 · (1 − e−x), x ∈ [0, 1]. It is easy to see that RevMye = eW (1)+W (1)−2

e−1 ≈ 0.19 (where W (·) is the
product-log function), µ = e−2

e−1 ≈ 0.42, and that F is a monotone hazard rate distribution.
Now let M = (S, Q, x, p, s1) be a mechanism as defined in Section 2. Consider a myopic buyer being

at state st ∈ S of the mechanism at time t. Given his realized value vt ∼ F and facing the (randomized)
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allocation rule x(st, ·) and price rule p(st, ·, ·) of the mechanism in state st, he would map his value vt to
some bid bt to maximize his expected utility Ex∼x(st,bt)[x] · vt − Ex∼x(st,bt)[p(st, bt, x)].

For any state s ∈ S, let us denote by bs : R→ ∆R+
the (potentially randomized) mapping from realized

value to bid under which the revenue of mechanism M against a myopic buyer is at least ε · RevMye. Note
that this mapping only depends on s for a myopic buyer. We do not need to require that for all s, v, bs(v) is
optimal. The only assumption that we will make is that, for all s, v, v′, the distribution over bids bs(v) does
not result in worse utility for a buyer with value v compared to the distribution bs(v′). Given this definition,
let us also define the effective allocation probability and effective price functions, x̂ : S × R → [0, 1] and
p̂ : S × R→ R respectively, as follows:

∀s, v : x̂(s, v) = Eb∼bs(v),x∼x(s,b)[x] and p̂(s, v) = Eb∼bs(v),x∼x(s,b)[p(s, b, x)].

Via standard argumentation, for all s ∈ S, x̂(s, ·) and p̂(s, ·) satisfy the incentive compatibility constraint
that:

∀v, v′ : x̂(s, v) · v − p̂(s, v) ≥ x̂(s, v′) · v − p̂(s, v′).

Moreover, given that M is non-payment forceful, for all s ∈ S, we get that

p̂(s, 0) = 0.

Using Myerson’s payment identity, it is standard to argue that any mechanism (x̂(s, ·), p̂(s, ·)) satisfying
the above constraints can be implemented as a distribution over take-it-or-leave-it offers of the item at dif-
ferent prices. That is, there exists a distribution Gs over prices such that the expected revenue and expected
buyer utility resulting from (x̂(s, ·), p̂(s, ·)) can be written as:

Revsmyop = Ev∼F [p̂(s, v)] ≡ Ev∼F,p∼Gs [p · 1v≥p]
∗
=

e

e− 1
Ep∼Gs [p · e−p];

Utsmyop = Ev∼F [x̂(s, v) · v − p̂(s, v)] ≡ Ev∼F,p∼Gs [(v − p) · 1v≥p]
∗
=

e

e− 1
Ep∼Gs [e

−p].

(In the above, the equalities ∗= follow by plugging in for F the distribution defined above.) So, in particular,
since it can be assumed without loss of generality that Gs is supported on [0, 1], it follows that Utsmyop ≥
Revsmyop. To summarize, in any state s ∈ S, a myopic buyer makes at least as high a utility as he pays a
payment.

Now consider a mechanism that has expected per round revenue against a myopic buyer at least ε ·
RevMye. It follows from the above derivation that it should also then give expected per round utility at least
ε ·RevMye to a myopic buyer. As an infinite look-ahead buyer (aiming to maximize his utility) can certainly
pretend to be myopic, this means that the mechanism must give expected per round utility at least ε ·RevMye

to an infinite look-ahead buyer. Hence, the mechanism can make at most µ − ε · RevMye ≥ (1 − ε
2) · µ

revenue from an infinite look-ahead buyer.
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