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Thompson Sampling (TS) is one of the oldest heuristics for multi-armed bandit problems. It is a randomized
algorithm based on Bayesian ideas, and has recently generated significant interest after several studies
demonstrated that it has favorable empirical performance compared to the state of the art methods. In
this paper, a novel and almost tight martingale-based regret analysis for Thompson Sampling is presented.
Our technique simultaneously yield both problem-dependent and problem-independent bounds: (1) The first
near-optimal problem-independent bound of O(

√
NT lnT ) on the expected regret. (2) The optimal problem-

dependent bound of (1 + ε)
∑
i

lnT
d(µi,µ1)

+ O(N
ε2

) on the expected regret (this bound was first proven by
Kaufmann et al. [Kaufmann et al. 2012b]).

Our technique is conceptually simple, and easily extends to distributions other than the Beta distri-
bution used in the original TS algorithm. For the version of TS that uses Gaussian priors, we prove a
problem-independent bound of O(

√
NT lnN) on the expected regret, and show the optimality of this bound

by providing a matching lower bound. This is the first lower bound on the performance of a natural version
of Thompson Sampling that is away from the general lower bound of Ω(

√
NT ) for the multi-armed bandit

problem.

1. INTRODUCTION
The Multi-Armed Bandit problem (MAB) models the exploration/exploitation trade-off
inherent in sequential decision problems. Many versions and generalizations of MAB
have been studied in the literature; in this paper we will consider a basic and well-
studied version of this problem: the stochastic multi-armed bandit problem. Among
many algorithms available for stochastic MAB, some popular ones include Upper Con-
fidence Bound (UCB) family of algorithms, (e.g., [Lai and Robbins 1985; Auer et al.
2002], and more recently [Audibert and Bubeck 2009; Garivier and Cappé 2011; Mail-
lard et al. 2011; Kaufmann et al. 2012a]), which have good theoretical guarantees, and
the algorithm by [Gittins 1989], which gives optimal strategy under a Bayesian set-
ting with known priors and geometric time-discounted rewards. In one of the earliest
works on stochastic MAB, [Thompson 1933] proposed a natural randomized Bayesian
algorithm to minimize regret. The basic idea is to assume a simple prior distribution
on the parameters of the reward distribution of every arm, and at any time step, play
an arm according to its posterior probability of being the best arm. This algorithm is
known as Thompson Sampling (TS), and it is a member of the family of randomized
probability matching algorithms. TS is a natural algorithm: the same idea has been
rediscovered many times independently in the context of reinforcement learning, e.g.,
in [Wyatt 1997; Strens 2000; Ortega and Braun 2010].

Recently, TS has attracted considerable attention. Several studies (e.g., [Granmo
2010; Scott 2010; Graepel et al. 2010; Chapelle and Li 2011; May and Leslie 2011;
Kaufmann et al. 2012b]) have empirically demonstrated the efficacy of TS. Despite
being easy to implement, competitive to the state of the art methods, and being used
in practice, TS lacked a strong theoretical analysis until very recently. [Granmo 2010;
May et al. 2011] provide weak guarantees, namely, a bound of o(T ) on expected re-
gret in time T . Significant progress was made in more recent work of [Agrawal and
Goyal 2012] and [Kaufmann et al. 2012b]. In [Agrawal and Goyal 2012], the first log-
arithmic bound on expected regret of TS was proven. [Kaufmann et al. 2012b] pro-
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vided a bound that matches the asymptotic lower bound of [Lai and Robbins 1985] for
this problem. However, both of these bounds were problem-dependent, i.e. the regret
bounds are logarithmic in the time horizon T when the problem parameters, namely
the mean rewards for each arm, and their differences, are assumed to be constants.
The problem-independent bounds implied by these works were far from optimal. Ob-
taining a problem-independent bound that is close to the lower bound of Ω(

√
NT ) was

also posed as an open problem by [Li and Chapelle 2012].
In this paper, we give a regret analysis for TS that provides both optimal

problem-dependent and near-optimal problem-independent regret bounds. Our novel
martingale-based analysis technique is conceptually simple and arguably simpler
than the previous work. Our technique easily extends to the distributions other than
Beta distribution, and it also extends to the more general contextual bandits setting
[Agrawal and Goyal 2013b].

Before stating our results, we describe the stochastic multi-armed bandit problem
and TS formally.

1.1. The stochastic multi-armed bandit problem
We consider the stochastic multi-armed bandit problem: We are given a slot machine
with N arms; at each time step t = 1, 2, 3, . . ., one of the N arms must be chosen to
be played. Each arm i, when played, yields a random real-valued reward according
to some fixed unknown distribution associated with arm i with support in [0, 1]. The
random rewards obtained from playing an arm repeatedly are i.i.d. and independent
of the plays of the other arms. The reward is observed immediately after playing the
arm.

An algorithm for stochastic MAB must decide which arm to play at each time step
t, based on the outcomes of the previous t − 1 plays. Let µi denote the (unknown)
expected reward for arm i. A popular goal in designing algorithms for stochastic MAB
is to maximize the expected total reward at time T , i.e., E[

∑T
t=1 µi(t)], where i(t) is the

arm played in step t, and the expectation is over the random choices of i(t) made by the
algorithm. It is common to work with the equivalent measure of expected total regret:
the amount we lose because of not playing optimal arm in each step. To formally define
regret, let us introduce some notation. Let µ∗ := maxi µi, and ∆i := µ∗ − µi. Let ki(t)
denote the number of times arm i has been played up to step t − 1; thus ki(t) is a
random variable. Then the expected total regret in time T is given by

E [R(T )] = E
[∑T

t=1(µ∗ − µi(t))
]

=
∑
i ∆i · E [ki(T + 1)] .

To define different notions of expected regret used in this paper, let E [R(T,Θ)] denote
the expected regret for a MAB instance Θ which is fully specified by the number of
arms and the distributions for the arms. Fixing the problem instance fixes the reward
distributions, and therefore the values of the means µi, i = 1, . . . , N . Then, problem-
dependent bounds on regret are bounds on E [R(T,Θ)] for every problem instance Θ,
in terms of T, µi, i = 1, . . . , N and possibly other distribution parameters associated
with Θ. Problem-independent bounds are bounds on the worst-case expected regret as
a function of the number of arms N and time T , i.e.,

max
Θ

E [R(T,Θ)] ,

where the maximization is over MAB instances with N arms. These are the notions
of regret considered in most classic works on the UCB algorithm for multi-armed ban-
dit problem, e.g. [Auer et al. 2002; Lai and Robbins 1985], and therefore our bounds
are directly comparable with those available for UCB. [Auer et al. 2002] provides
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O(
∑
i:µi<µ∗

log(T )
∆i

) problem-dependent regret bound and O(
√
NT log(T )) problem-

independent regret bound for UCB.
A related notion of regret considered by many recent works on TS, e.g. [Bubeck

and Liu 2014; Russo and Van Roy 2015, 2014; Russo et al. 2013], is Bayesian Regret.
Bayesian regret is expected regret over a (known) prior f over the problem instances.
Using the terminology above, Bayesian regret is defined as

EΘ∼f [E [R(T,Θ)|Θ]].

For priors on reward distributions with [0, 1] support, clearly, this is a weaker notion
of regret than the worst-case problem-independent regret, in that any bound on the
worst-case regret implies the same bound on Bayesian regret for any such prior f , but
not vice-versa. However, we must note that these works allow more general priors and
some of these even accommodate contexts and further complex information structures.
Bayesian regret bounds in those more complex settings are incomparable to the worst-
case regret bounds presented here.

1.2. Thompson Sampling
As mentioned before, TS is a natural algorithm for stochastic MAB. The basic idea
behind TS is to assume a simple prior distribution on the underlying parameters of
the reward distribution of every arm, and at every time step, play an arm according to
its posterior probability of being the best arm. While TS is a specific algorithm due to
Thompson, in this paper we will use TS more generally to refer to a class of algorithms
that have a similar structure and include the original algorithm of Thompson as a spe-
cial case. The general structure of TS involves the following elements (this description
of TS follows closely that of [Chapelle and Li 2011]):

(1) a set ψ of parameters µ̃;
(2) an assumed prior distribution P (µ̃) on these parameters;
(3) past observations D consisting of (reward r) for the arms played in the past time

steps;
(4) an assumed likelihood function P (r|µ̃), which gives the probability of reward given

a parameter µ̃ ∈ ψ;
(5) a posterior distribution P (µ̃|D) ∝ P (D|µ̃)P (µ̃), where P (D|µ̃) is the likelihood func-

tion.

The notation P (·) above denotes probability density function (or probability mass func-
tion for discrete random variables). TS maintains a posterior distribution for the un-
derlying parameters µi, i.e. the expected reward of every arm i. In each round, TS plays
an arm according to its posterior probability of being the best arm, that is, the poste-
rior probability of having the highest value of µi. A simple way to achieve this is to
produce a sample from the posterior distribution of every arm, and play the arm that
produces the largest sample. Below we describe two versions of TS, using Beta priors
and Bernoulli likelihood function, and using Gaussian priors and Gaussian likelihood.

We emphasize that the Beta priors and the Bernoulli likelihood model, or Gaussian
priors and the Gaussian likelihood model for rewards are only used below to design the
Thompson Sampling algorithm. Our analysis of these algorithms allows these models
to be completely unrelated to the actual reward distribution. The assumptions on the
actual reward distribution are only those mentioned in Section 1.1, namely the re-
wards are in the range [0, 1], and are generated i.i.d. upon playing an arm. In the
description of TS using Beta priors and Bernoulli likelihood, for simplicity we do begin
with the description of the algorithm for the Bernoulli bandit problem, i.e., when the
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rewards are either 0 or 1, but as we explain later, the algorithm and its analysis extend
to any distribution of rewards with [0, 1] support.

Thompson Sampling using Beta priors and Bernoulli likelihood. Consider the
Bernoulli bandit problem, i.e., when the rewards are either 0 or 1, and the likelihood of
reward 1 for arm i (the probability of success) is µi. Using Beta priors is convenient for
Bernoulli rewards because if the prior is a Beta(α, β) distribution, then after observing
a Bernoulli trial, the posterior distribution is simply Beta(α + 1, β) or Beta(α, β + 1),
depending on whether the trial resulted in a success or failure, respectively.

TS initially assumes arm i to have prior Beta(1, 1) on µi, which is natural because
Beta(1, 1) is the uniform distribution on (0, 1). Informally, this choice captures the fact
that initially we have no knowledge about the µi. At time t, having observed Si(t)
successes (reward = 1) and Fi(t) failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of
arm i, the algorithm updates the distribution on µi to Beta(Si(t) + 1, Fi(t) + 1). The
algorithm then generates independent samples from these posterior distributions of
the µi’s, and plays the arm with the largest sample value.

ALGORITHM 1: Thompson Sampling using Beta priors
For each arm i = 1, . . . , N set Si = 0, Fi = 0.
foreach t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample θi(t) from the Beta(Si + 1, Fi + 1) distribution.
Play arm i(t) := argmaxi θi(t) and observe reward rt.
If rt = 1, then Si(t) := Si(t) + 1, else Fi(t) := Fi(t) + 1.

end

We have provided the details of TS with Beta priors for the Bernoulli bandit problem.
A simple extension of this algorithm to general reward distributions with support [0, 1]
is described in Agrawal and Goyal [2012]. In this extension, on observing a reward
rt ∈ [0, 1], we toss a coin with bias rt, and use the {0, 1} outcome to update the beta
distribution as above. It is easy to show that any expected regret bounds produced for
Algorithm 1 will also hold for this extension [Agrawal and Goyal 2012].

Thompson Sampling using Gaussian priors and likelihood. As before, let ki(t) denote
the number of plays of arm i until time t− 1, and let i(t) denote the arm played at time

t. Let ri(t) denote the reward of arm i at time t; define µ̂i(t) :=
∑t−1
τ=1:i(τ)=i

ri(τ)

ki(t)+1 . Note that
µ̂i(1) = 0. To derive TS with Gaussian priors, assume that the likelihood of reward
ri(t) at time t, given parameter µi, is given by the pdf of Gaussian distributionN (µi, 1).
Then, assuming that the prior for µ at time t is given by N (µ̂i(t),

1
ki(t)+1 ), and arm i

is played at time t with reward r, it is easy to compute the posterior distribution
Pr(µ̃i|ri(t)) ∝ Pr(ri(t)|µ̃i) Pr(µ̃i) as Gaussian distribution N (µ̂i(t+ 1), 1

ki(t+1)+1 ). In TS
with Gaussian priors, for each arm i, we will generate an independent sample θi(t)
from the distribution N (µ̂i(t),

1
ki(t)+1 ) at time t. The arm with maximum value of θi(t)

will be played.

1.3. Our results
In this article, we bound the finite time expected regret of TS. Henceforth we will as-
sume that the first arm is the unique optimal arm, i.e., µ∗ = µ1 > arg maxi 6=1 µi. As-
suming that the first arm is an optimal arm is a matter of convenience for stating
the results and for the analysis. The algorithms did not use this assumption. The as-
sumption of unique optimal arm is also without loss of generality, since adding more

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



Near-optimal Regret Bounds for Thompson Sampling A:5

ALGORITHM 2: Thompson Sampling using Gaussian priors
For each arm i = 1, . . . , N set ki = 0, µ̂i = 0.
foreach t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample θi(t) independently from the N (µ̂i,
1

ki+1
) distribution.

Play arm i(t) := argmaxi θi(t) and observe reward rt.
Set µ̂i(t) :=

µ̂i(t)ki(t)+rt

ki(t)+2
, ki(t) := ki(t) + 1.

end

arms with µi = µ∗ can only decrease the expected regret; details of this argument were
provided in [Agrawal and Goyal 2012].

THEOREM 1.1. Fix ε ∈ (0, 1). For the N -armed stochastic bandit problem with the
µi satisfying assumptions in the previous paragraph, Thompson Sampling using Beta
priors has expected regret

E[R(T )] ≤ (1 + ε)
N∑
i=2

lnT

d(µi, µ1)
∆i +O(

N

ε2
)

at time T , where d(µi, µ1) := µi log µi
µ1

+ (1− µi) log (1−µi)
(1−µ1) . The big-Oh notation assumes

µi,∆i, i = 1, . . . , N to be constants.

THEOREM 1.2. For the N -armed stochastic bandit problem, Thompson Sampling
using Beta priors has expected regret

E[R(T )] ≤ O(
√
NT lnT )

at time T . The big-Oh notation hides only the absolute constants.

THEOREM 1.3. For the N -armed stochastic bandit problem, Thompson Sampling
using Gaussian priors has expected regret

E[R(T )] ≤ O(
√
NT lnN)

at time T ≥ N . The big-Oh notation hides only absolute constants.

THEOREM 1.4. There exists an instance of the N -armed stochastic bandit problem,
for which Thompson Sampling using Gaussian priors has expected regret

E[R(T )] ≥ Ω(
√
NT lnN)

at time T ≥ N . Here Ω hides only absolute constants.

1.4. Related work
Let us contrast our bounds with the previous work. Let us first consider the problem-
dependent regret bounds, i.e., regret bounds that depend on the problem parameters
N and µi,∆i, i = 1, . . . , N . [Lai and Robbins 1985] essentially proved an asymptotic
lower bound of

[∑N
i=2

∆i

d(µi,µ1) + o(1)
]

lnT for any algorithm for this problem. They also
gave algorithms asymptotically achieving this guarantee. [Auer et al. 2002] gave the
UCB1 algorithm, which achieves a finite time regret bound of

[
8
∑N
i=2

1
∆i

]
lnT + (1 +

π2/3)
(∑N

i=2 ∆i

)
. More recently, Kaufmann et al. [2012a] gave Bayes-UCB algorithm,

and [Garivier and Cappé 2011] and Maillard et al. [2011] gave UCB-like algorithms,
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which achieve the lower bound of Lai and Robbins [1985]. Our regret bound in Theo-
rem 1.1 achieves the lower bounds of Lai and Robbins [1985], and matches the upper
bounds provided by [Kaufmann et al. 2012b] for TS.

Theorem 1.2 and 1.3 show that TS with Beta and Gaussian distributions achieve
a problem independent regret bound of O(

√
NT lnT ) and O(

√
NT lnN) respectively.

This is the first analyis for TS that matches the Ω(
√
NT ) problem-independent lower

bound (see Section 3.3 of [Bubeck and Cesa-Bianchi 2012]) for the stochastic MAB
within logarithmic factors. The problem-dependent bounds can be used to derive
problem-independent bounds. However, the previous work on TS implied only subopti-
mal problem-independent bounds: The results of Agrawal and Goyal [2012] implied a
problem-independent bound of Õ(N1/5T 4/5). In [Kaufmann et al. 2012b], the additive
problem-dependent term was not explicitly calculated, which makes it difficult to de-
rive the implied problem-independent bound, but a preliminary examination suggests
that it would involve an even higher power of T .

To compare with other existing algorithms for this problem, note that the best
known problem-independent bound for the expected regret of UCB1 is O(

√
NT lnT )

(see [Bubeck and Cesa-Bianchi 2012]). Our regret bound of O(
√
NT lnN) for TS with

Gaussian priors is an improvement over the bound for UCB1. More recently, [Audibert
and Bubeck 2009] gave an algorithm MOSS, inspired by UCB1, with regret O(

√
NT )

that matches the Ω(
√
NT ) problem-independent lower bound for the multi-armed ban-

dit problem. However, their algorithm needs to know the time horizon T . It is unclear
whether an O(

√
NT ) regret can be achieved by an algorithm that does not know the

time horizon. Interestingly, Theorem 1.4 shows that this is unachievable for TS with
Gaussian priors, as there is a lower bound of Ω(

√
NT lnN) on its expected regret. This

is the first lower bound for TS that differs from the general lower bound for the prob-
lem.

Much followup work has been conducted in understanding theoretical properties of
Thompson Sampling since our work first appeared in public domain as [Agrawal and
Goyal 2013a] (conference version). We mention some of this work: [Korda et al. 2013]
study TS for the special case of exponential family of distributions, [Kocák et al. 2014]
for spectral bandits, [Agrawal and Goyal 2013b; Russo and Van Roy 2014; Li 2013] for
contextual bandits, and [Russo et al. 2013] for reinforcement learning.

2. PROOFS OF UPPER BOUNDS
In this section, we prove Theorems 1.1, 1.2 and 1.3. The proofs of the three theorems
follow similar steps, and diverge only towards the end of the analysis.

Proof Outline:. Our proof uses a martingale based analysis. Essentially, we prove
that conditioned on any history of execution in the preceding steps, the probability
of playing any suboptimal arm i at the current step can be bounded by a linear
function of the probability of playing the optimal arm at the current step. This is
proven in Lemma 2.8, which forms the core of our analysis. Further, we show that
the coefficient in this linear function decreases exponentially fast with the number of
plays of the optimal arm (Lemma 2.9). This allows us to bound the number of plays of
every suboptimal arm, which in turn bounds the regret. The differences between the
analyses for obtaining the logarithmic problem-dependent bound of Theorem 1.1, and
the problem-independent bound of Theorem 1.2 and Theorem 1.3 are technical, and
occur only towards the end of the proof.

We recall some of the definitions introduced earlier and introduce some new
ones.
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Definition 2.1 (FBn,p, f
B
n,p, F

beta
α,β ). FBn,p(·) denotes the cdf, fBn,p(·) denotes the probabil-

ity mass function of the binomial distribution with parameters n, p, and F betaα,β (·) de-
notes the cdf of the beta distribution with parameters α, β.

Definition 2.2 (Quantities ki(t), i(t), Si(t), µ̂i(t)). i(t) denotes the arm played at
time t, ki(t) denotes the number of plays of arm i until (and including) time t− 1, Si(t)
denotes the number of successes among the ki(t) plays of arm i until time t− 1 for the
Bernoulli bandit case (in other words, Si(t) is the number of times arm i gave reward 1).

Finally, the empirical mean µ̂i(t) for arm i at time t is defined by µ̂i(t) :=
∑t−1
τ=1:i(τ)=i

ri(τ)

ki(t)+1 ,
where ri(τ) is the reward for arm i at time τ (note that µ̂i(t) = 0 when ki(t) = 0). For
Bernoulli bandits, µ̂i(t) = Si(t)

ki(t)+1 .

Definition 2.3 (Quantities θi(t)). θi(t) denotes a sample generated independently
for each arm i, from the posterior distribution at time t. For Algorithm 1, this is gener-
ated from posterior distribution Beta(Si(t) + 1, ki(t)− Si(t) + 1). For Algorithm 2, this
is generated from posterior distribution N (µ̂i(t),

1
ki(t)+1 ).

Definition 2.4 (Quantities xi, yi). For each arm i 6= 1, we will choose two thresh-
olds xi and yi such that µi < xi < yi < µ1. The specific choice of these thresholds will
depend on whether we are proving problem-dependent bound or problem-independent
bound, and will be described at the appropriate points in the proof.

Definition 2.5 (Events Eµi (t) and Eθi (t)). For i 6= 1, Eµi (t) is the event µ̂i(t) ≤ xi,
and Eθi (t) is the event θi(t) ≤ yi.

Intuitively, Eµi (t), Eθi (t) are the events that the estimate µ̂i(t) and the sample value
θi(t), respectively, are not too far above the mean µi. As we show later, these events
will hold with high probability.

Definition 2.6 (History Ft). For t = 1, 2, . . ., define Ft as the history of plays until
time t, i.e. the sequence

Ft = {i(τ), ri(τ)(τ), τ = 1, . . . , t},

where i(τ) denotes the arm played at time τ , and ri(τ)(τ) denotes the reward observed
for arm i(τ) at time τ . Define F0 = {}.

By definition, F0 ⊆ F1 ⊆ · · · ⊆ FT−1. Also by definition, for every arm i, the quanti-
ties Si(t) (this is only defined for the case of Bernoulli rewards), ki(t), µ̂i(t), the distri-
bution of θi(t), and whether or not Eµi (t) is true, are determined by the history of plays
until time t− 1, i.e. by Ft−1.

Definition 2.7. Define, pi,t as the probability

pi,t := Pr(θ1(t) > yi|Ft−1).

Note that pi,t is a random variable determined by Ft−1; we do not explicitly indicate
this dependence by using notation such as pi,t(Ft−1) for brevity.

We prove the following lemma for Thompson Sampling, independent of the type of
priors (e.g., Beta or Gaussian) used.

LEMMA 2.8. For all t, i 6= 1 and all instantiations Ft−1 of Ft−1 we have

Pr
(
i(t) = i, Eµi (t), Eθi (t) Ft−1

)
≤ (1− pi,t)

pi,t
Pr
(
i(t) = 1, Eµi (t), Eθi (t) Ft−1

)
.
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PROOF. Recall that whether or not Eµi (t) is true is determined by the instantiation
Ft−1 of Ft−1. Assume that history Ft−1 is such that Eµi (t) is true (otherwise the proba-
bility on the left hand side is 0 and the inequality is trivially true). It then suffices to
prove that for all such Ft−1 we have

Pr
(
i(t) = i Eθi (t),Ft−1 = Ft−1

)
≤ (1− pi,t)

pi,t
Pr
(
i(t) = 1 Eθi (t),Ft−1 = Ft−1

)
. (1)

We will use the observation that since Eθi (t) is the event that θi(t) ≤ yi, therefore, given
Eθi (t), we have i(t) = i only if θj(t) ≤ yi,∀j. Therefore, for any i 6= 1,

Pr
(
i(t) = i Eθi (t),Ft−1 = Ft−1

)
≤ Pr

(
θj(t) ≤ yi,∀j Eθi (t),Ft−1 = Ft−1

)
= Pr (θ1(t) ≤ yi Ft−1 = Ft−1)

·Pr
(
θj(t) ≤ yi,∀j 6= 1 Eθi (t),Ft−1 = Ft−1

)
= (1− pi,t) · Pr

(
θj(t) ≤ yi,∀j 6= 1 Eθi (t),Ft−1 = Ft−1

)
.

The first equality holds because given Ft−1 = Ft−1 (and hence Sj(t), kj(t), µ̂j(t) and
the distributions of θj(t) for all j), θ1(t) is independent of all the other θj(t) and events
Eθj (t), j 6= 1. Similarly,

Pr
(
i(t) = 1 Eθi (t),Ft−1 = Ft−1

)
≥ Pr

(
θ1(t) > yi ≥ θj(t),∀j 6= 1 Eθi (t),Ft−1 = Ft−1

)
= Pr (θ1(t) > yi Ft−1 = Ft−1)

·Pr
(
θj(t) ≤ yi,∀j 6= 1 Eθi (t),Ft−1 = Ft−1

)
= pi,t · Pr

(
θj(t) ≤ yi,∀j 6= 1 Eθi (t),Ft−1 = Ft−1

)
.

Combining the above two inequalities, we get (1).

Now we are ready to prove the upper bounds on regret in Theorems 1.1, 1.2, and 1.3.

2.1. Proof of Theorem 1.1
We can decompose the expected number of plays of a suboptimal arm i 6= 1 as follows.

E[ki(T )] =

T∑
t=1

Pr(i(t) = i)

=

T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t)) +

T∑
t=1

Pr
(
i(t) = i, Eµi (t), Eθi (t)

)
+

T∑
t=1

Pr
(
i(t) = i, Eµi (t)

)
.

(2)

Next, we bound each of the above terms. For the first term above, applying Lemma
2.8 and some algebraic manipulations using properties of conditional expectations, we
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have
T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t)) =

T∑
t=1

E
[
Pr
(
i(t) = i, Eµi (t), Eθi (t) Ft−1

)]
≤

T∑
t=1

E
[

(1− pi,t)
pi,t

Pr
(
i(t) = 1, Eθi (t), Eµi (t) Ft−1

)]

=

T∑
t=1

E
[
E
[

(1− pi,t)
pi,t

I(i(t) = 1, Eθi (t), Eµi (t)) Ft−1

]]

=

T∑
t=1

E
[

(1− pi,t)
pi,t

I(i(t) = 1, Eθi (t), Eµi (t))

]
. (3)

The second equality above uses that pi,t is fixed given Ft−1. Now, let τk denote the time
step at which arm 1 is played for the kth time for k ≥ 1, and let τ0 = 0. (Note that
for any i, for k > ki(T ), τk > T . Also, τT ≥ T .) Observe that pi,t = Pr(θ1(t) > yi|Ft−1)
changes only when the distribution of θ1(t) changes, that is, only on the time step after
each play of the first arm. Thus, pi,t is the same at all time steps t ∈ {τk + 1, . . . , τk+1},
for every k. Using this observation, we can decompose the above term in the following
way.
T∑
t=1

E
[

(1− pi,t)
pi,t

I(i(t) = 1, Eθi (t), Eµi (t))

]
=

T−1∑
k=0

E

[
(1− pi,τk+1)

pi,τk+1

τk+1∑
t=τk+1

I(i(t) = 1, Eθi (t), Eµi (t))

]

≤
T−1∑
k=0

E
[

(1− pi,τk+1)

pi,τk+1

]
. (4)

We prove the following lemma to bound the sum of 1
pi,τk+1

.

LEMMA 2.9. Let τk denote the time step at which kth trial of the first arm happens,
then for i 6= 1 we have 3

E
[

1

pi,τk+1
− 1

]
≤

{ 3
∆′i

for k < 8
∆′i
,

Θ(e−∆′2i k/2 + 1
(k+1)∆′2i

e−Dik + 1

e∆
′2
i
k/4−1

) for k ≥ 8
∆′i
,

where ∆′i = µ1 − yi and Di = yi ln yi
µ1

+ (1− yi) ln 1−yi
1−µ1

.

PROOF. The proof of this inequality uses careful numerical estimates and appears
in Appendix B.

Substituting the bound from Lemma 2.9 into (4), we obtain the following bound on
the first term on the right hand side of (2).

LEMMA 2.10. For i 6= 1,
T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t)) ≤ 24

∆′2i
+
∑

j≥8/∆′i

Θ

(
e−∆′2i j/2 +

1

(j + 1)∆′2i
e−Dij +

1

e∆′2i j/4 − 1

)
.

3Here for two functions f(x), g(x) taking positive values and with the same domain we say that f(x) =
Θ(g(x)) if there exist absolute constants b, c > 0 such that for all x in the domains of f and g we have
bg(x) ≤ f(x) ≤ cg(x).
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To bound the remaining two terms in (2), we use the fact that as the number of plays
of arm i increases, the probability of violating the events Eµi (t) and Eθi (t) decreases
exponentially. More precisely, we prove the following lemmas.

LEMMA 2.11. For i 6= 1,∑T
t=1 Pr

(
i(t) = i, Eµi (t)

)
≤ 1

d(xi,µi)
+ 1.

PROOF. Let τk denote the time at which the kth trial of arm i happens. Set τ0 = 0.
(Note that τk > T for k > ki(T ). Note also that T ≤ τT .) Recall that the event Eµi (t) was
defined as µ̂i(t) > xi. We have

T∑
t=1

Pr(i(t) = i, Eµi (t)) ≤
T−1∑
k=0

Pr(Eµi (τk+1)).

Each summand on the right hand side in the inequality above is a fixed number even
though the random variables τk+1 appear in it. This is because the distribution of
µ̂i(τk+1) only depends on k and not on τk+1. At time τk+1 for k ≥ 1, µ̂i(τk+1) = Si(τk+1)

k+1 ≤
Si(τk+1)

k , where the latter is simply the average of the outcomes of k i.i.d. plays of arm i,
each of which is a Bernoulli trial with mean µi. Using the Chernoff-Hoeffding bounds
(Fact 1), we obtain Pr(µ̂i(τk+1) > xi) ≤ Pr(Si(τk+1)

k > xi) ≤ e−kd(xi,µi). Substituting, we
get,

T−1∑
k=0

Pr(Eµi (τk+1)) =

T−1∑
k=0

Pr(µ̂i(τk+1) > xi) ≤ 1 +

T−1∑
k=1

exp(−kd(xi, µi))

≤ 1 +
1

d(xi, µi)
.

The last inequality uses the fact that d(xi, µi) > 0.

LEMMA 2.12. For i 6= 1,∑T
t=1 Pr

(
i(t) = i, Eθi (t), Eµi (t)

)
≤ Li(T ) + 1,

where Li(T ) = lnT
d(xi,yi)

.

PROOF. We decompose the probability term into two parts, based on whether or not
ki(T ) is large (ki(t) > Li(t)).

T∑
t=1

Pr
(
i(t) = i, Eθi (t), Eµi (t)

)
=

T∑
t=1

Pr
(
i(t) = i, ki(t) ≤ Li(T ), Eθi (t), Eµi (t)

)
+

T∑
t=1

Pr
(
i(t) = i, ki(t) > Li(T ), Eθi (t), Eµi (t)

)
. (5)

The first term in the above decomposition is bounded by E[
∑T
t=1 I(i(t) = i, ki(t) ≤

Li(T ))], which is bounded trivially by Li(T ). What remains is to bound the second term
by 1. To bound the second term, we demonstrate that if ki(t) is large and the event
Eµi (t) is satisfied, then the probability that the event Eθi (t) is violated, is small. Recall
that Eθi (t) is defined as the event that θi(t) ≤ yi. And, Eµi (t) is the event that µ̂i(t) ≤ xi.
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Then,

T∑
t=1

Pr
(
i(t) = i, ki(t) > Li(T ), Eθi (t), Eµi (t)

)
=

T∑
t=1

E
[
I
(
i(t) = i, ki(t) > Li(T ), Eθi (t), Eµi (t)

)]
= E

[
T∑
t=1

E
[
I
(
i(t) = i, ki(t) > Li(T ), Eθi (t), Eµi (t)

)
Ft−1

]]

= E

[
T∑
t=1

I (ki(t) > Li(T ), Eµi (t)) Pr
(
i(t) = i, Eθi (t) Ft−1

)]

≤ E

[
T∑
t=1

I (ki(t) > Li(T ), µ̂i(t) ≤ xi) Pr (θi(t) > yi Ft−1)

]
. (6)

The third equality above uses the fact that ki(t) and Eµi (t) are determined by the his-
tory Ft−1.

Now, by definition, Si(t) = µ̂i(t)(ki(t) + 1), and therefore, θi(t) is a Beta(µ̂i(t)(ki(t) +
1) + 1, (1− µ̂i(t))(ki(t) + 1)) distributed random variable. A Beta(α, β) random variable
is stochastically dominated by Beta(α′, β′) if α′ ≥ α, β′ ≤ β. Therefore, if µ̂i(t) ≤ xi, the
distribution of θi(t) is stochastically dominated by Beta(xi(ki(t) + 1) + 1, (1−xi)(ki(t) +
1)). Therefore, given an instantiation Ft−1 of Ft−1 such that µ̂i(t) ≤ xi and ki(t) >
Li(T ), we have

Pr (θi(t) > yi Ft−1 = Ft−1) ≤ 1− F betaxi(ki(t)+1)+1,(1−xi)(ki(t)+1))(yi).

Now, using Fact 3 along with the Chernoff-Hoeffding bounds (Fact 1), we obtain that
for any fixed ki(t) > Li(T ),

1− F betaxi(ki(t)+1)+1,(1−xi)(ki(t)+1))(yi) = FBki(t)+1,yi
(xi(ki(t) + 1))

≤ e−(ki(t)+1)d(xi,yi)

≤ e−Li(T )d(xi,yi),

which is smaller than 1
T because Li(T ) = lnT

d(xi,yi)
. Substituting, we get that for any

instantiation Ft−1 of Ft−1 such that µ̂i(t) ≤ xi and ki(t) > Li(T ),

Pr (θi(t) > yi Ft−1 = Ft−1) ≤ 1

T
.

For other instantiations of Ft−1, the indicator term I (ki(t) > Li(T ), µ̂i(t) ≤ xi) in (6)
will be 0. Summing over t, this bounds the second term in (5) by 1 to complete the proof
of the lemma.

Putting it all together: Substituting the results from Lemma 2.10, Lemma 2.11 and
Lemma 2.12 into (2), we obtain

E[ki(T )] ≤ 24

∆′2i
+
∑

j≥8/∆′i

Θ

(
e−∆′2i j/2 +

1

(j + 1)∆′2i
e−Dij +

1

e∆′2i j/4 − 1

)
+Li(T )+1+

1

d(xi, µi)
+1.

(7)
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To obtain the problem-dependent bound of Theorem 1.1, for 0 < ε ≤ 1, we set xi ∈
(µi, µ1) such that d(xi, µ1) = d(µi, µ1)/(1 + ε), and set yi ∈ (xi, µ1) such that d(xi, yi) =
d(xi, µ1)/(1 + ε) = d(µi, µ1)/(1 + ε)2 (4). This gives

Li(T ) = lnT
d(xi,yi)

= (1 + ε)2 lnT
d(µi,µ1) .

Also, by some simple algebraic manipulations of the equality d(xi, µ1) = d(µi, µ1)/(1 +
ε), we can obtain

xi − µi ≥
ε

(1 + ε)
· d(µi, µ1)

ln
(
µ1(1−µi)
µi(1−µ1)

) ,
giving 1

d(xi,µi)
≤ 1

2(xi−µi)2 = O( 1
ε2 ). Here big-Oh is hiding functions of the µi’s and ∆i’s.

Substituting in (7), we get

E[ki(T )] ≤ 24

∆′2i
+

∑
j≥8/∆′i

Θ

(
e−∆′2i j/2 +

1

(j + 1)∆′2i
e−Dij +

1

e∆′2i j/4 − 1

)
+ Li(T ) + 1 +

1

d(xi, µi)
+ 1

≤ 24

∆′2i
+ Θ

(
1

∆′2i
+

1

∆′2i Di
+

1

∆′4i

)
+ (1 + ε)2 lnT

d(µi, µ1)
+O

(
1

ε2

)
= O(1) + (1 + ε)2 lnT

d(µi, µ1)
+O

(
1

ε2

)
.

The big-Oh above hides dependence on the µi’s and ∆i’s. This gives expected regret
bound

E[R(T )] =
∑
i

∆iE[ki(T )]

≤
∑
i

(1 + ε)2 lnT

d(µi, µ1)
∆i +O(

N

ε2
)

≤
∑
i

(1 + ε′)
lnT

d(µi, µ1)
∆i +O(

N

ε′2
),

where ε′ = 3ε, and the big-Oh above hides µis and ∆is in addition to the absolute
constants. This completes the proof of Theorem 1.1.

2.2. Proof of Theorem 1.2
The proof of O(

√
NT lnT ) problem-independent bound of Theorem 1.2 is basically the

same as the proof of Theorem 1.1, except for the choice of the xi’s and yi’s. Here, we pick
xi = µi+

∆i

3 , yi = µ1− ∆i

3 , so that ∆′2i = (µ1−yi)2 =
∆2
i

9 , and using Pinsker’s inequality,
d(xi, µi) ≥ 2(xi−µi)2 =

2∆2
i

9 , d(xi, yi) ≥ 2(yi−xi)2 ≥ 2∆2
i

9 . Then, Li(T ) = lnT
d(xi,yi)

≤ 9 lnT
2∆2

i
,

4This way of choosing thresholds, in order to obtain bounds in terms of the KL-divergences d(µi, µ1) rather
than the ∆i ’s, is inspired by [Garivier and Cappé 2011; Maillard et al. 2011; Kaufmann et al. 2012a].
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and 1
d(xi,µi)

≤ 9
2∆2

i
. Then, substituting these bounds in (7), we get

E[ki(T )] ≤ 24

∆′2i
+

T−1∑
j≥8/∆′i

Θ

(
e−∆′2i j/2 +

1

(j + 1)∆′2i
e−Dij +

1

e∆′2i j/4 − 1

)
+ Li(T ) + 1 +

1

d(xi, µi)
+ 1

≤
T−1∑

j≥8/∆′i

Θ

(
e−∆′2i j/2 +

1

(j + 1)∆′2i
+

1

j∆′2i

)
+O

(
lnT

∆2
i

)

= Θ

(
1

∆′2i
+

lnT

∆′2i

)
+O

(
lnT

∆2
i

)
= O

(
lnT

∆2
i

)
.

Therefore, for every arm i with ∆i ≥
√

N lnT
T , expected regret is bounded by

∆iE[ki(T )] = O(
√

T lnT
N ). For arms with ∆i ≤

√
N lnT
T , total expected regret is bounded

by
√
NT lnT . This gives a total regret bound of O(

√
NT lnT ), completing the proof of

Theorem 1.2.

2.3. Proof of Theorem 1.3
The regret analysis of TS with Gaussian priors follows essentially the same steps as in
the analysis of the version with Beta priors. Here, we choose xi = µi+

∆i

3 , yi = µ1− ∆i

3 ,
Li(T ) =

32 ln(T∆2
i+e

32)
(yi−xi)2 =

288 ln(T∆2
i+e

32)

∆2
i

. We prove lemmas similar to Lemma 2.10-2.12
to bounds the three terms in (2).

To obtain bounds on the first term, observe that the derivation of Lemma 2.8 is
independent of the type of priors used, therefore the derivation of (4) holds as is for
Gaussian priors. We prove the following lemma corresponding to Lemma 2.9.

LEMMA 2.13. Let τj denote the time of the jth play of the first arm. Then

E
[

1

pi,τj+1
− 1

]
≤
{
e64 + 5 ∀j,

5
T∆2

i
, j > Li(T ),

where Li(T ) =
288 ln(T∆2

i+e
32)

∆2
i

.

PROOF. From Definitions 2.3 and 2.7, recall that pi,t denotes the probability of θi(t)
exceeding yi, given Ft−1. And for the algorithm with Gaussian priors θi(t) has distri-
bution N (µ̂i(t),

1
ki(t)+1 ).

Given Fτj , let Θj denote a N (µ̂1(τj + 1), 1
j+1 ) distributed Gaussian random variable.

Let Gj be the geometric random variable denoting the number of consecutive indepen-
dent trials until and including the trial where a sample of Θj becomes greater than yi.
Then observe that pi,τj+1 = Pr(Θj > yi|Fτj ) and

E
[

1

pi,τj+1

]
= E[E[Gj |Fτj ] = E[Gj ]

First, we will bound the expected value of Gj by a constant for all j.
Consider any integer r ≥ 1. Let z =

√
ln r and let random variable MAXr denote

the maximum of r independent samples of Θj . We abbreviate µ̂1(τj + 1) to µ̂1 in the
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following. Then, for any integer r ≥ 1,

Pr(Gj ≤ r) ≥ Pr(MAXr > yi)

≥ Pr(MAXr > µ̂1 +
z√
j + 1

≥ yi)

= E
[
E
[
I

(
MAXr > µ̂1 +

z√
j + 1

≥ yi
)
Fτj
]]

= E
[
I

(
µ̂1 +

z√
j + 1

≥ yi
)

Pr

(
MAXr > µ̂1 +

z√
j + 1

Fτj
)]

.

(8)

The following anti-concentration bound can be derived for the Gaussian r.v. Z with
mean µ and std deviation σ, using Formula 7.1.13 from [Abramowitz and Stegun 1964].

Pr(Z > µ+ xσ) ≥ 1√
2π

x

x2 + 1
e−x

2/2.

For any instantiation Fτj of Fτj , since Θj is Gaussian N (µ̂1,
1
j+1 ) distributed r.v., this

gives

Pr

(
MAXr > µ̂1 +

z√
j + 1

Fτj = Fτj

)
≥ 1−

(
1− 1√

2π

z

(z2 + 1)
e−z

2/2

)r
= 1−

(
1− 1√

2π

√
ln r

(ln r + 1)

1√
r

)r
≥ 1− e−

r√
4πr ln r .

Observe that for large r (in particular for any r ≥ e11), e−
√

r
2π ln r ≤ 1

r2 . Therefore, for
any r ≥ e11,

Pr

(
MAXr > µ̂1 +

z√
j + 1

Fτj = Fτj

)
≥ 1− 1

r2
. (9)

Substituting back in (8), we have for any r ≥ e11,

Pr(Gj ≤ r) ≥ E
[
I

(
µ̂1 +

z√
j + 1

≥ yi
)(

1− 1

r2

)]
=

(
1− 1

r2

)
Pr

(
µ̂1 +

z√
j + 1

≥ yi
)

(10)

Next, we apply Chernoff-Hoeffding bounds to lower bound the probability

Pr
(
µ̂1 + z√

j+1
≥ yi

)
. Recall from Definition 2.2 that µ̂1(t) =

∑t−1
s=1:i(s)=1

r1(s)

k1(t)+1 . Using
Chernoff bounds for t = τj + 1, k1(t) = j:

Pr(µ̂1 + 1
j+1 + x√

j+1
≥ µ1) ≥ 1− e−2x2

.

Here, the term 1/(j + 1) was added to µ̂1 to adjust for the fact that µ̂1 is not simply
average of the past j observations, instead, it is the sum of past j observations divided
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by j + 1 (Definition 2.2). Now, we use x := z − 1√
j+1
≥ z − 1 to get

Pr

(
µ̂1 +

z√
j + 1

≥ µ1

)
≥ 1− e−2(z−1)2

≥ 1− e−2z2+4z ≥ 1− 1

r2
e4
√

ln(r).

Using, yi ≤ µ1, this gives

Pr

(
µ̂1 +

z√
j + 1

≥ yi
)
≥ 1− 1

r2
e4
√

ln(r). (11)

Observe that for large r (in particular, for any r ≥ e64), 1
r2 e
√

ln(r) ≤ 1
r1.5 .

Therefore, substituting, for any r ≥ e64,

Pr(Gj ≤ r) ≥ 1− 1

r2
− 1

r1.5
. (12)

This gives,

E[Gj ] =

∞∑
r=0

Pr(Gj ≥ r)

= 1 +

∞∑
r=1

Pr(Gj ≥ r)

≤ 1 + e64 +
∑
r≥1

(
1

r2
+

1

r1.5

)
≤ 1 + e64 + 2 + 2.7. (13)

This proves a constant bound of E
[

1
pi,τj+1

− 1
]

= E[Gj ]− 1 ≤ e64 + 5 for all j.

Next, we derive a tighter bound for large j. Consider j > Li(T ). Given any r ≥ 1,
define Gj , MAXr, and z =

√
ln r as defined earlier. Then,

Pr(Gj ≤ r) ≥ Pr(MAXr > yi)

≥ Pr(MAXr > µ̂1 +
z√
j + 1

− ∆i

6
≥ yi)

= E
[
E
[
I

(
MAXr > µ̂1 +

z√
j + 1

− ∆i

6
≥ yi

)
Fτj
]]

= E
[
I

(
µ̂1 +

z√
j + 1

+
∆i

6
≥ µ1

)
Pr

(
MAXr > µ̂1 +

z√
j + 1

− ∆i

6
Fτj
)]

.

(14)

where we used that yi = µ1 − ∆i

3 . Now, since j + 1 ≥ Li(T ) =
288 ln(T∆2

i+e
32)

∆2
i

,

2

√
2 ln(T∆2

i + e32)√
j + 1

≤ ∆i

6
.

Therefore, for r ≤ (T∆2
i + e32)2,

z√
j + 1

− ∆i

6
=

√
ln(r)√
j + 1

− ∆i

6
≤ −∆i

12
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Then, since Θj isN (µ̂1(τj+1), 1
j+1 ) distributed random variable, using the upper bound

in Fact 4, we obtain for any instantiation Fτj of history Fτj ,

Pr

(
Θj > µ̂1(τj + 1)− ∆i

12
Fτj = Fτj

)
≥ 1− 1

2
e(j+1)

∆2
i

288 ≥ 1− 1

2(T∆2
i + e32)

This implies

Pr

(
MAXr > µ̂1(τj + 1) +

z√
j + 1

− ∆i

6
Fτj = Fτj

)
≥ 1− 1

2r(T∆2
i + e32)r

Also, for any t ≥ τj + 1, we have k1(t) ≥ j, and using Chernoff-Hoeffding bounds
(Fact 2), we get

Pr

(
µ̂1(t) +

z√
j + 1

− ∆i

6
≥ yi

)
≥ Pr

(
µ̂1(t) ≥ µ1 −

∆i

6

)
≥ 1−e−2k1(t)∆2

i /36 ≥ 1− 1

(T∆2
i + e32)16

Let T ′ = (T∆2
i + e32)2. Therefore, for 1 ≤ r ≤ T ′

Pr(Gj ≤ r) ≥ 1− 1

2r(T ′)r/2
− 1

(T ′)8

When r ≥ T ′ ≥ e64, we can use (12) to obtain

Pr(Gj ≤ r) ≥ 1− 1

r2
− 1

r1.5
.

Combining these bounds,

E[Gj ] ≤
∞∑
r=0

Pr(Gj ≥ r)

≤ 1 +

T ′∑
r=1

Pr(Gj ≥ r) +

∞∑
r=T ′

Pr(Gj ≥ r)

≤ 1 +

T ′∑
r=1

1

(2
√
T ′)r

+
1

(T ′)7
+

∞∑
r=T ′

1

r2
+

1

r1.5

≤ 1 +
1√
T ′

+ +
1

(T ′)7
+

2

T ′
+

3√
T ′

≤ 1 +
5

T∆2
i + e32

.

Above gives an upper bound of E
[

1
pi,τj+1

]
− 1 = E[Gj ]− 1 ≤ 5

T∆2
i

for j > Li(T ).

Substituting the bound from Lemma 2.13 into (4), we obtain the following bound on
the first term on the right hand side of (2).

LEMMA 2.14.
T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t)) ≤ (e64 + 5)(Li(T )) +
5

∆2
i

.
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The proof of Lemma 2.11 can be easily adapted to Gaussian priors. So, this lemma
holds as is for this case. Here, xi = µi + ∆i

3 , therefore, using Pinsker’s inequality
d(xi, µi) ≥ 2(xi − µi)2 =

2∆2
i

9 .

LEMMA 2.15.
T∑
t=1

Pr
(
i(t) = i, Eµi (t)

)
≤ 1

d(xi, µi)
+ 1 ≤ 9

2∆2
i

+ 1.

Corresponding to Lemma 2.12, we prove the following lemma.

LEMMA 2.16. ∑T
t=1 Pr

(
i(t) = i, Eθi (t), Eµi (t)

)
≤ Li(T ) + 1

∆2
i
.

where Li(T ) ≥ 2 ln(T∆2
i )

(yi−xi)2 .

PROOF. The proof of this lemma is similar to the proof of Lemma 2.12. We decom-
pose each summand into two parts, based on whether or not ki(T ) is large (ki(t) >
Li(t)).

T∑
t=1

Pr
(
i(t) = i, Eθi (t), Eµi (t)

)
=

T∑
t=1

Pr
(
i(t) = i, ki(t) ≤ Li(T ), Eθi (t), Eµi (t)

)
+

T∑
t=1

Pr
(
i(t) = i, ki(t) > Li(T ), Eθi (t), Eµi (t)

)
. (15)

The first term in the above decomposition is bounded by E[
∑T
t=1 I(i(t) = i, ki(t) ≤

Li(T ))], which is bounded trivially by Li(T ). What remains is to bound the second term
by 1/∆2

i . To this end, we show that if ki(t) is large and the event Eµi (t) is satisfied, then
the probability that the event Eθi (t) is violated is small. Recall that Eθi (t) is defined as
the event that θi(t) ≤ yi. And, Eµi (t) is the event that µ̂i(t) ≤ xi. Then,

T∑
t=1

Pr
(
i(t) = i, ki(t) > Li(T ), Eθi (t), Eµi (t)

)
≤ E

[
T∑
t=1

Pr
(
i(t) = i, Eθi (t) ki(t) > Li(T ), Eµi (t),Ft−1

)]

≤ E

[
T∑
t=1

Pr (θi(t) > yi ki(t) > Li(T ), µ̂i(t) ≤ xi,Ft−1)

]

Now, θi(t) is a N
(
µ̂i(t),

1
ki(t)+1

)
distributed Gaussian random variable. An N (m,σ2)

distributed r.v. (i.e., a Gaussian random variable with mean m and variance σ2) is
stochastically dominated by N (m′, σ2) distributed r.v. if m′ ≥ m. Therefore, given
µ̂i(t) ≤ xi, the distribution of θi(t) is stochastically dominated by N

(
µ̂i(t),

1
ki(t)+1

)
.

That is,

Pr (θi(t) > yi ki(t) > Li(T ), µ̂i(t) ≤ xi,Ft−1) ≤ Pr
(
N
(
xi,

1
ki(t)+1

)
> yi Ft−1, ki(t) > Li(T )

)
.

Here, we slightly abused the notation for readability: Pr(N (m,σ2) > yi) represents the
probability that a random variable distributed as N (m,σ2) takes value greater than
yi.
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Now, using the concentration of Gaussian distribution (Fact 4), we obtain that for
any fixed ki(t) > Li(T ),

Pr
(
N
(
xi,

1
ki(t)+1

)
> yi

)
≤ 1

2
e−

(ki(t)+1)(yi−xi)
2

2

≤ 1

2
e−

(Li(t))(yi−xi)
2

2 ,

which is smaller than 1
T∆2

i
because Li(T ) ≥ 2 ln(T∆2

i )
(yi−xi)2 . Substituting, we get,

Pr (θi(t) > yi ki(t) > Li(T ), µ̂i(t) ≤ xi,Ft−1) ≤ 1

T∆2
i

.

Summing over t = 1, . . . , T , we get a bound of 1
∆2
i

on the second term in (5), completing
the proof of the lemma.

Substituting the bounds from Lemma 2.14-2.16 in (2), we get

E[ki(T )] ≤ (e64 + 5)
288 ln(T∆2

i + e32)

∆2
i

+
5

∆2
i

+
288 ln(T∆2

i + e32)

∆2
i

+
1

∆2
i

+
9

2∆2
i

+ 1.

Thus the expected regret due to arm i is upper bounded by

∆iE[ki(T )] ≤ 21

2∆i
+ (e64 + 6)

288 ln(T∆2
i + e32)

∆i
+ ∆i.

The above is decreasing in ∆i for ∆i ≥ e√
T

. Therefore, for every arm i with ∆i ≥

e
√

N lnN
T , the expected regret is bounded by

O

(√
T lnN

N
+ 1

)
.

For arms with ∆i ≤ e
√

N lnN
T , the total regret is bounded by e

√
NT lnN . This bounds

the total regret by O(N +
√
NT lnN), or O(

√
NT lnN) assuming T ≥ N . This proves

Theorem 1.3.

3. PROOF OF THE LOWER BOUND
In this section we prove Theorem 1.4. To this end, we construct a problem instance
such that TS has regret Ω(

√
NT lnN) at time T . Let each arm i when played produce a

reward of µi. That is, the reward distribution for every arm is a one point distribution.
Set µ1 := ∆ :=

√
N lnN
T , and µ2 := 0, · · · , µN := 0.

Note that µ̂i(t), i 6= 1, will always be 0, as µ̂i(1) = 0, and these arms will always pro-
duce reward 0 when played. For arm 1, µ̂1(t) = k1(t)µ1

k1(t)+1 ≤ µ1. Every time an arm other
than arm 1 is played, there is a regret of ∆. Let Ft−1 represent the history of plays and
outcomes until time t as defined earlier, which includes ki(t), µ̂i(t), i = 1, . . . , N . Define
At−1 as the event that

∑
i 6=1 ki(t) ≤

c
√
NT lnN

∆ for a fixed constant c (to be specified
later). Note that whether the event At−1 is true, is determined by Ft−1.

Now, if At−1 is not true, then the regret until time t is at least c
√
NT lnN . Therefore,

for any t ≤ T we can assume that Pr(At−1) ≥ 1
2 . Otherwise, the expected regret until
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time t,

E [R(t)] ≥ E
[
R(t)|At−1

]
· 1

2

≥ 1
2c
√
NT lnN = Ω(

√
NT lnN).

We will show that given any instantiation of the history Ft−1 such that the event
At−1 is true, the probability of playing a suboptimal arm is at least a constant, so that
the regret is Ω(T∆) = Ω(

√
NT lnN). For this, we show that with constant probability,

θ1(t) will be smaller than µ1, and θi(t) for some suboptimal arm i will be larger than
µ1.

Now, given any history Ft−1 with any value of k1(t), θ1(t) is a Gaussian r.v. with
mean µ̂1(t) = k1(t)µ1

k1(t)+1 ≤ µ1, therefore, by the symmetry of the Gaussian distribution,

Pr (θ1(t) ≤ µ1 Ft−1) ≥ 1
2 .

Also, given any instantiation Ft−1 = Ft−1, the θi(t)’s for i 6= 1 are independent Gaus-
sian distributed random variables with mean 0 and variance 1

ki(t)+1 , therefore, using
anti-concentration inequality provided by Fact 4 for Gaussian random variables we get

Pr (∃i 6= 1, θi(t) > µ1 Ft−1 = Ft−1)

= Pr
(
∃i 6= 1, (θi(t)− 0)

√
ki(t) + 1 > ∆

√
ki(t) + 1 Ft−1 = Ft−1

)
≥
(

1−
∏
i 6=1

(
1− 1

8
√
π
e−(ki(t)+1) 7∆2

2

))
.

Now, given an instantiation Ft−1 of Ft−1 such that At−1 is true, we have
∑
i 6=1 ki(t) ≤

c
√
NT lnN

∆ , so that the right hand side in the above inequality is minimized when ki(t) =

c
√
NT lnN

(N−1)∆ for all i 6= 1. Then, substituting ∆ =
√

N lnN
T and choosing the constant c

appropriately, we get

Pr (∃i, θi(t) > µ1 Ft−1 = Ft−1) ≥
(

1−
∏
i 6=1

(
1− e− lnN

))
= 1−

(
1− 1

N

)N−1
.

for any Ft−1 such that At−1 is true.
Let us use the notation Ft−1/At−1

to indicate the random variable Ft−1 conditioned
on At−1 being true. Then, to summarize, for any t, the probability of playing a subopti-
mal arm at time t satisfies

Pr (∃i 6= 1, i(t) = i) ≥ Pr (θ1(t) ≤ µ1,∃i, θi(t) > µ1)

= E [Pr (θ1(t) ≤ µ1,∃i, θi(t) > µ1 Ft−1)]

≥ E
[
Pr
(
θ1(t) ≤ µ1,∃i, θi(t) > µ1 Ft−1/At−1

)]
· Pr (At−1)

= E
[
Pr
(
θ1(t) ≤ µ1 Ft−1/At−1

)
· Pr

(
∃i, θi(t) > µ1 Ft−1/At−1

)]
· Pr (At−1)

≥ 1
2 ·
(

1−
(
1− 1

N

)N−1
)
· 1

2

≥ p,

for some constant p ∈ (0, 1). Therefore the regret in time T is at least Tp∆ =

Ω(
√
NT lnN). This proves Theorem 1.4.

Conclusions. In this paper, we proved optimal problem dependent regret bounds for
Thompson Sampling for stochastic MAB problem with Bernoulli arms. Further, we
provided near-optimal problem-dependent and problem-independent regret bounds for
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the general MAB problem with bounded rewards. Specifically, our technique yields
the first problem-independent regret upper bound of O(

√
NT lnT ) for the version of

TS with Beta priors and an upper bound of O(
√
NT lnN) for the version of TS with

Gaussian priors along with a matching lower bound. The availability of strong anti-
concentration bounds for Gaussian distribution allowed us to derive these tight upper
and lower bounds for the version of TS with Gaussian priors. Similar lower bound may
exist for TS with Beta priors.

In addition to near-optimal regret bounds, an important contribution of this paper
is a simple proof technique that is easily adapted to provide optimal or near-optimal
problem-dependent and problem independent bounds, and handle different prior dis-
tributions. The basic techniques presented in this work have also been adapted to
prove Thompson Sampling regret bounds for the contextual bandits problem in subse-
quent work ([Agrawal and Goyal 2013b]).

Acknowledgement. We thank the anonymous referees for careful reading and sug-
gestions that have improved the presentation.
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A. SOME WELL-KNOWN INEQUALITIES
FACT 1 (CHERNOFF-HOEFFDING BOUND). LetX1, . . . , Xn be independent 0−1 r.v.s

with E[Xi] = pi (not necessarily equal). Let X = 1
n

∑
iXi, µ = E[X] = 1

n

∑n
i=1 pi. Then,

for any 0 < λ < 1− µ,

Pr(X ≥ µ+ λ) ≤ exp{−nd(µ+ λ, µ)},

and, for any 0 < λ < µ,

Pr(X ≤ µ− λ) ≤ exp{−nd(µ− λ, µ)},

where d(a, b) = a ln a
b + (1− a) ln (1−a)

(1−b) .

FACT 2 (CHERNOFF–HOEFFDING BOUND). Let X1, ..., Xn be random variables
with common range [0, 1] and such that E [Xt X1, ..., Xt−1] = µ. Let Sn = X1 + . . .+Xn.
Then for all a ≥ 0,

Pr(Sn ≥ nµ+ a) ≤ e−2a2/n,

Pr(Sn ≤ nµ− a) ≤ e−2a2/n.

FACT 3.

F betaα,β (y) = 1− FBα+β−1,y(α− 1),

for all positive integers α, β.

Formula 7.1.13 from [Abramowitz and Stegun 1964] can be used to derive the fol-
lowing concentration for Gaussian distributed random variables.

FACT 4. [Abramowitz and Stegun 1964] For a Gaussian distributed random vari-
able Z with mean m and variance σ2, for any z,

1

4
√
π
· e−7z2/2 < Pr(|Z −m| > zσ) ≤ 1

2
e−z

2/2.

B. THOMPSON SAMPLING WITH BETA DISTRIBUTION
Proof of Lemma 2.9
Let k1(t) = j, S1(t) = s. Let y = yi. Then, pi,t = Pr(θ1(t) > y) = FBj+1,y(s) (using Fact 3).
Let τj + 1 denote the time step after the jth play of arm 1. Then, k1(τj + 1) = j, and

E
[

1

pi,τj+1

]
=

j∑
s=0

fj,µ1
(s)

FBj+1,y(s)
.

Let ∆′ = µ1 − y.
In the derivation below, we abbreviate FBj+1,y(s) as Fj+1,y(s).
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Case j < 8
∆′ . Let R = µ1(1−y)

y(1−µ1) , D = y ln y
µ1

+ (1− y) ln 1−y
1−µ1

. Note that µ1 ≥ y, so that
R ≥ 1.

j∑
s=0

fj,µ1(s)

Fj+1,y(s)
≤ 1

1− y

j∑
s=0

fj,µ1(s)

Fj,y(s)

≤ 1

1− y

byjc∑
s=0

fj,µ1
(s)

fj,y(s)
+

1

1− y

j∑
s=dyje

2fj,µ1(s)

=
1

1− y

byjc∑
s=0

Rs
(1− µ1)j

(1− y)j
+

1

1− y

j∑
s=dyje

2fj,µ1(s)

=
1

1− y

(
Rbyjc+1 − 1

R− 1

)
(1− µ1)j

(1− y)j

+
1

1− y

j∑
s=dyje

2fj,µ1(s)

≤ 1

1− y

(
R

R− 1

)
Ryj

(1− µ1)j

(1− y)j
+

2

∆′

=
µ1

∆′
e−Dj +

2

∆′

≤ 3

∆′
. (16)

Case j ≥ 8
∆′ . We will divide the sum Sum(0, j) =

∑j
s=0

fj,µ1
(s)

Fj+1,y(s) into four partial
sums and prove that

Sum(0, byjc − 1) ≤ Θ
(
e−Dj 1

(j+1)
1

∆′2

)
+Θ(e−2∆′2j),

Sum(byjc, byjc) ≤ 3e−Dj ,

Sum(dyje, bµ1j − ∆′

2 jc) ≤ Θ(e−∆′2j/2),

Sum(dµ1j − ∆′

2 je, j) ≤ 1 + 1
e∆′2j/4−1

.

Together, the above estimates will prove the required bound.
We use the following bounds on the cdf of Binomial distribution [Jeřábek 2004, Prop.

A.4].
For s ≤ y(j + 1)−

√
(j + 1)y(1− y),

Fj+1,y(s) = Θ

(
y(j + 1− s)
y(j + 1)− s

(
j + 1

s

)
ys(1− y)j+1−s

)
. (17)

For s ≥ y(j + 1)−
√

(j + 1)y(1− y),

Fj+1,y(s) = Θ(1). (18)
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Bounding Sum(0, byjc − 1). Using the bounds just given, for any s,

fj,µ1
(s)

Fj+1,y(s)
≤ Θ

 fj,µ1
(s)

y(j+1−s)
y(j+1)−s

(
j+1
s

)
ys(1− y)j+1−s


+Θ(1)fj,µ1

(s)

= Θ

((
1− s

y(j + 1)

)
·Rs · (1− µ1)j

(1− y)j+1

)
+Θ(1)fj,µ1

(s).

This gives

Sum(0, byjc − 1) ≤ Θ

 (1− µ1)j

(1− y)j+1

byjc−1∑
s=0

(
1− s

y(j + 1)

)
·Rs

+ Θ(1)

byjc−1∑
s=0

fj,µ1(s).

(19)

We now bound the first expression on the RHS.

(1− µ1)j

(1− y)j+1

byjc−1∑
s=0

(
1− s

y(j + 1)

)
·Rs =

(1− µ1)j

(1− y)j+1

(
Rbyjc − 1

R− 1

− 1

y(j + 1)

(
(byjc − 1)Rbyjc

R− 1
− Rbyjc −R

(R− 1)2

))
≤ (1− µ1)j

(1− y)j+1

(
1

y(j + 1)

Rbyjc

(R− 1)2

+
(y(j + 1)− byjc+ 1)

y(j + 1)

Rbyjc

(R− 1)

)
≤ (1− µ1)j

(1− y)j+1

3

y(j + 1)

Rbyjc+1

(R− 1)2

≤ e−Dj
3

y(1− y)(j + 1)

R

(R− 1)2

The last inequality uses

(1− µ1)j

(1− y)j
Rbyjc ≤ (1− µ1)j

(1− y)j
Ryj = e−Dj .

Now, R− 1 = µ1(1−y)
y(1−µ1) − 1 = µ1−y

y(1−µ1) . And, R
R−1 = µ1(1−y)

µ1−y . Therefore,

1

y(1− y)(j + 1)

R

(R− 1)2
=

1

y(1− y)(j + 1)
· µ1(1− y)

µ1 − y
· y(1− µ1)

µ1 − y

=
1

(j + 1)

µ1(1− µ1)

(µ1 − y)2
.

Substituting, we get

(1− µ1)j

(1− y)j+1

byjc∑
s=0

(
1− s

y(j + 1)

)
·Rs ≤ e−Dj

1

(j + 1)

µ1(1− µ1)

(µ1 − y)2
.
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Substituting in (19)

Sum(0, byjc − 1) ≤ Θ

(
e−Dj

1

(j + 1)

1

∆′2

)
+ Θ(1)

byjc−1∑
s=0

fj,µ1
(s)

≤ Θ

(
e−Dj

1

(j + 1)

1

∆′2

)
+ Θ(e−2(µ1−y)2j).

Bounding Sum(byjc, byjc). We use fj,µ1
(s)

Fj+1,y(s) ≤
fj,µ1

(s)

fj+1,y(s) =
(

1− s
j+1

)
Rs (1−µ1)j

(1−y)j+1 , to get

Sum(byjc, byjc) =
fj,µ1

(byjc)
Fj+1,y(byjc)

≤
(

1− yj − 1

j + 1

)
Ryj

(1− µ1)j

(1− y)j+1

≤
(1− y + 2

j+1 )

1− y
Ryj

(1− µ1)j

(1− y)j

≤ 3e−Dj . (20)

The last inequality uses j ≥ 1
∆′ ≥

1
1−y .

Bounding Sum(dyje, bµ1j − ∆′

2 jc). Now, if j > 1
∆′ ,then

√
(j + 1)y(1− y) >

√
y > y,

so y(j + 1) −
√

(j + 1)y(1− y) < yj ≤ dyje. Therefore, (using the bounds by [Jeřábek
2004] given in (18)) for s ≥ dyje, Fj+1,y(s) = Θ(1). Using this observation, we derive
the following.

Sum(dyje, bµ1j −
∆′

2
jc) =

bµ1j−∆′
2 jc∑

s=dyje

fj,µ1
(s)

Fj+1,y(s)

= Θ

bµ1j−∆′
2 jc∑

s=dyje

fj,µ1(s)


≤ Θ(e

−2
(
µ1j−bµ1j−∆′

2 jc
)2
/j

)

= Θ(e−∆′2j/2), (21)

where the inequality follows using the Chernoff-Hoeffding bounds (Fact 2).

Bounding Sum(dµ1j − ∆′

2 je, j). For s ≥ dµ1j − ∆′

2 je = dyj + ∆′

2 je, again using the
Chernoff-Hoeffding bounds from Fact 2,

Fj+1,y(s) ≥ 1− e−2(yj+ ∆′
2 j−y(j+1))2/(j+1)

≥ 1− e2∆′e−∆′2j/2

≥ 1− e∆′2j/4e−∆′2j/2

= 1− e−∆′2j/4.
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The last inequality uses j ≥ 8
∆′ .

Sum(dµ1j −
∆′

2
je, j) =

j∑
s=dµ1j−∆′

2 je

fj,µ1(s)

Fj+1,y(s)

≤ 1

1− e−∆′2j/4

= 1 +
1

e∆′2j/4 − 1
. (22)

Combining, we get for j ≥ 8
∆′ ,

E
[

1

pi,τj+1

]
≤ 1 + Θ(e−∆′2j/2 +

1

(j + 1)∆′2
e−Dj +

1

e∆′2j/4 − 1
)
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