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Introduction

Multi Armed Bandit problems have been widely studied in the context of sequential analysis.

The application areas include clinical trials, adaptive filtering, online advertising etc. The study

is also characterized as a policy selection which maximizes a gambler’s reward when there are

multiple slot machines that are generating them. It is under this framework, that we describe the

model and develop subsequent results. Lai and Robbins [8] studied this problem under statistical

settings and developed asymptotically efficient adaptive allocation rules.

In this current work, we provide an alternate (and simpler) technique to derive the lower bound

result in Lai and Robbins [8]. We use this bounding technique to demonstrate the complexity

of bandit problems where an extra initial information about the parameter(s) in the arms is

available. Finally, we add insights on the fundamental complexity of these sampling problems by

establishing necessary and sufficient conditions for optimal policies. Our proof techniques rely on

martingale techniques and information theory arguments and hence substantially differ from the

traditional approach of Lai and Robbins [8] which hinges upon the change of measure argument.

Model Formulation and Related Literature

In the typical two armed bandit setting, there are two statistical populations characterized by

univariate density functions fθi(x), i = 1, 2 where θi being the unknown parameter assumed to

belong to a family set Θ. The set of policies that are considered are adaptive i.e. they depend

only on the past actions and observations. Such a policy π at each time instant samples from one

of the populations. The reward obtained from sampling from arm i is Yt = Y
(i)
t if sampled from

ith arm at time t. The total reward obtained by a policy π until stage n is

Rewardn(π, θ) = Eπ,nθ

n∑
i=1

Y
(i)
t

where Eπ,nθ denotes expected value w.r.t to joint distribution of P π,nθ of observations collected

until stage n. We also define the oracle policy π∗ as the policy that ex-ante knows the parameter
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governing the arms. Such a policy π∗ always selects the arm which has the highest mean reward

i.e. arm for which µ(θ) is the highest. The efficiency of a policy π is determined by comparing it

with respect to the oracle policy. The regret of a policy is defined as

Rn(π, θ) := Rewardn(π∗, θ)−Rewardn(π, θ)

Rn(π, θ) can also be simplified as,

Rn(π, θ) := |µ(θ1)− µ(θ2)|Eπ,nθ [Tinf (n)]

The objective is to construct policies that would minimize the regret R(n) as n→∞. Lai and

Robbins[] establish the complexity of any policy satisfying a set of assumptions (given below),

has to make at least o(log(n)) sub optimal pulls asymptotically. We develop here a similar bound

in the worst case scenario. The set of all policies considered in this study, is much bigger. The

proof technique used here is predicated by information theoretic arguments, much simpler, in

establishing the fundamental complexity of multi armed bandit problems.

Assumptions (in the Lai and Robbins Formulation):

In the following, I(θ, λ) is the Kullback-Liebler divergence between probability distribution func-

tions f(x; θ) and f(x;λ) and µ(r) is the mean of the density function f(x; r), Θ be the set from

which the parameters governing the arms are chosen from.

• ∀ε > 0 and ∀θ, λ such that µ(λ) > µ(θ),∃∆ = ∆(ε, θ, λ) > 0 for which |I(θ, λ)− I(θ, λ
′
) |< ε

whenever µ(λ) ≤ µ(λ′) ≤ µ(λ) + ∆

• ∀λ ∈ Θ and ∀∆ > 0, ∃λ′ ∈ Θ such that µ(λ) < µ(λ′) < µ(λ) + ∆

• Let θ = (θ1, θ2, ....θk) and Θ∗j defined as θ : µ(θj) > maxi 6=jµ(θi). The set of feasible rules

satisfy for every θ ∈ Θ∗j , as n→∞ Σi 6=jEθTn(i) = o(na) for every a > 0 where Tn(i) is the

number of times an inferior arm i is pulled until stage n

Theorem 1 For every such feasible rule satisfying the above set of assumptions,

limn→∞ Pθ{Tn(j) ≥ (1 − ε)(log(n))/I(θj , θ
∗)} = 1 and liminfn→∞EθTn(j) ≥ log(n)

I(θj ,θ∗)
for every

θ ∈ Θj and every ε > 0 where, Θj = {θ : µ(θj) < maxi 6=jµ(θi)}

Proof : Refer to Theorem 2, Lai and Robbins [8]

Main Results

Lower bounds for bandit problem

We present here an alternate characterization of the same problem. Our proof approach does not

rely on the strict set of assumptions as needed in the Lai - Robbins [8] formulation of the bandit
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problem. Instead, we develop bounds on the worst case performance of any adaptive policy. The

proof here is for the case of a bandit with 2 arms.

Lemma 2 The lower bound on the sum of error probabilities in hypothesis testing in terms of the

Kullback - Liebler number is given by,

P π,tH(0)
(ψt = 1) + P π,tH(1)

(ψt = 0) ≥ 1

2
exp{−I(P π,tH(0)

, P π,tH(1)
)}

Proof : Refer to Tysabakov [13], 2009, Theorem 2.2

Lemma 3 Let Θ be a parameter set in R2 such that if (θa, θb) ∈ Θ then |µ(θa) − µ(θb)| ≥ ε for

some ε > 0, Then for any arbitrary policy π, configurations θ(0), θ(1) ∈ Θ and all n, we have

Sn(π,Θ) = sup
θ∈Θ2

Eπ,nθ [Tinf(n)] ≥
1

4

n∑
t=1

exp{−I((P π,tθ(0)
, P π,tθ(1)

))}

Proof : The proof is based on mapping the above problem to a hypothesis testing problem and

using lemma 1. Without loss of generality, let us assume arm 2 to be the best. i.e. µ(θ2) > µ(θ1).

Thus, the oracle policy, π∗ plays arm 2 at every decision time.

Now, for any 2 configurations θ(0), θ(1) ∈ Θ and any arbitrary policy π we have

Sn(π,Θ) = sup
θ∈Θ2

Eπ,nθ [Tinf(n)]

= sup
θ∈Θ2

Σn
t=1P

π,t
θ (πt 6= π∗t )

≥
n∑
t=1

(P π,tθ0
(πt 6= π∗t ) + P π,tθ1

(πt 6= π∗t ))/2

(1)

Choose θ3 such that µ(θ2) > µ(θ3) > µ(θ1) and consider the following configurations θ(0) :

(θ1, θ3) and θ1 : (θ2, θ3). The existence of θ3 is clear from the assumption on the parameter family.

Fix the time horizon, t = 1, 2.......n and consider the following hypothesis testing problem,

Hypothesis H(0): θ(0) is the parameter set defining the arms, versus

Hypothesis H(1): θ(1) is the parameter set defining the arms

π∗t , the oracle policy plays arm 2 under H(0) and plays arm 1 under H(1). Let pt denote a

particular policy that plays arm 1 always and define ψt = 1(πt = pt)

{ψt = 1} = {πt = pt} = {πt 6= π∗t }underH(0)

{ψt = 0} = {πt 6= pt} = {πt 6= π∗t }underH(1)
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Hence, P π,tθ(0)
(ψt = 1) + P π,tθ(1)

(ψt = 0) = P π,tθ0
(πt 6= π∗t ) + P π,tθ1

(πt 6= π∗t ))

From Lemma 1,

P π,tθ0
(πt 6= π∗t ) + P π,tθ1

(πt 6= π∗t )) ≥
1

2
exp{−I(Pθ(0) , Pθ(1))}.

which implies,

Sn(π,Θ) ≥ 1

4

n∑
t=1

exp{−I((P π,tθ(0)
, P π,tθ(1)

))}

Theorem 4 Under the assumptions on the parameter family, the performance of any adaptive

policy i.e. the worst case regret on the inferior sampling rate is o(log(n))

Sn(π,Θ) ≥ C log(n)

where C is a constant. The explicit value of the constant can be found in the proof below.

Proof : For a particular policy π, let Jπi (t) be the subset of indices from 1,2,....t when the policy

π selects ith arm. With the same configurations described earlier as the parameters defining the

arms, we apply lemma 2. Calculating I(., .), the KL distance explicitly, we have

I((P π,tθ(0)
, P π,tθ(1)

)) = Eθ(0)

(
log

(
f(X1, θ1)f(X2, θ1)......f(XJπ1

, θ1)f(Y 1, θ3)f(Y 2, θ3)......f(YJπ2 , θ3)

f(X1, θ2)f(X2, θ2).....f(XJπ1
, θ2)f(Y 1, θ3)f(Y 2, θ3).....f(YJπ2 , θ3)

))
= Eθ(0)

(
log

(
f(X1, θ1)f(X2, θ1)......f(XJπ1

, θ1)

f(X1, θ2)f(X2, θ2).....f(XJπ1
, θ2)

))
= Eθ(0)

(
Σ
Jπ1
t=1 log(

f(X1, θ1)

f(X1, θ2)
)

)
= I(θ1, θ2)Eθ(0) (Jπ1 ) ,

= I(θ1, θ2)Eθ(0) [Tinf (n)],

where I(θ1, θ2) is the KL distance between the density functions f(x; θ1) and f(x; θ2)

From Lemma (2),

Sn(π,Θ) ≥
n∑
t=1

exp{(−I(θ1, θ2)Eθ(0)[Tinf (n)])}

≥
n∑
t=1

exp{(−I(θ1, θ2) sup
θ∈Θ2

Eπ,nθ [Tinf(n)])}

=
1

4

n∑
t=1

exp{−I(θ1, θ2)St}

≥ n

4
exp{(−I(θ1, θ2)Sn)}

(2)
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where for brevity we write St := St(π,Θ) and the last step follows since St is a non decreasing

sequence. The above result is true for any arbitrary adaptive policy and all n.

Taking logarithm on both sides of the last statement, we get

Sn(I(θ1, θ2) +
log(Sn)

Sn
) ≥ log(n)− log(4)

The last statement is true only if for any ε, the numerical sequence Sn satisfies for all n large

enough Sn ≥ ( 1
I(θ1,θ2)+ε + o(1)) log(n), since log(Sn)

Sn
≤ ε for every ε > 0 for n large enough.

If the horizon of the play is decided to be finite (i.e. fixed n) , then, consider the solution,

Sn′ = argminSn↑(I(θ1, θ2)Sn + log(Sn) ≥ log(n)− log(4)

Fixing C = S′n
log(n) completes the statement of the theorem.

Sufficient conditions: General MAB problem

The discussion so far characterized an alternate way of deriving the Lai and Robbins [8] lower

bound on optimal sampling. Lai and Robbins [8] also formulate a policy which attains the lower

bound (i.e. asymptotically optimal). Stemming from that work, is a rich stream of literature on

various optimal policies for bandit problems and its variants. To name a few, [?] characterized

set of asymptotically optimal policies which at time depended only on the observed sample mean.

The more recent work of [2] provides a simple policy for the traditional bandit problem with

the reward having a bounded support. The following proofs in the paper was in some sense,

motivated by the ideas in Auer et al. [2]. To wit, the proof techniques hinge upon martingale

techniques rather than measure theoretic arguments as in [8]. Instead of a detailed survey, we

refer the reader to the works of Woodroofe [14], Agarwal [?] etc. and the more recent additions

of Goldenshluger and Zeevi [7, 6] Rusmevichientong and Tsitsiklis [?] develop optimal policies

for variants of the traditional bandit problems.

The underlying intuition in all the aforementioned papers, is to develop a policy that captures

the ideal interplay between the growth of information and sampling the best arm. In the theorem

below, we mathematically establish the characteristics that are “hidden” or ”exploited” in all

these works. Thus explaining the intuitive and quantitative connect that models the bandit type

problems.

Let the ith observation from arm j be denoted by Xi
j . Let X1, X2.....Xt denote the vector of

observations till time t. Clearly, this vector depends on the policy and observations at each time

step. Then the probability density function (p.d.f.) of this vector is given by
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f(X1, X2.....Xt+1) = f(X1
1 )f(X2

1 )....f(X
Jπ1 (t+1)
1 )f(X1

2 )f(X2
2 )....f(X

Jπ2 (t+1)
2 ) (3)

Equation (3) follows from the adaptive nature of the policy i.e. the decision step at time t+ 1

is adapted w.r.t. to the filtration Ft = σ(X1, Y1, X2, Y2...Xt, Yt). For the sake of completion, we

give a proof in the appendix.

We define empirical fisher information of the parameter in arm i in the following way:

F it = −∂
2log(f(Xt))

∂θ2
i

= −
t∑

j=1

∂2log(f(Xj
i ))

∂θ2
i

I{Yj = i} (4)

which follows from (1) and that the 2 arms are independent of each other.Reference to the above

characterization of fisher information can be found in [12]

The expected fisher information in this problem has the following expression,

EF it := −E[
∂2log(f(Xt))

∂θ2
i

|θi] = E[Jπi (t)]F (θi) (5)

where the last equality follows from (1) and Wald’s equation type argument (F (θi = −E[∂
2log(f(Xi))

∂θ2i
|θi]

i.e. Fisher information collected from arm i from one pull of that arm )

Few observations and assumptions before we proceed.

For the exponential family random variables, the empirical and expected fisher information are the

same. In particular, for normal random variable every time it is sampled, the fisher information

increases at the rate 1. With that in mind, and the following regularity assumption,

−∂2log(f(Xi))
∂θ2i

] ≤ M(θi) for some M for each arm i. This kind of condition is satisfied by most of

the common distributions e.g. the exponential family.

In all further discussions, myopic policy is denoted as one which at each time step chooses the

arm with highest sample mean thus far.

Yt = 1I(µ̂t(θ1) ≥ µ̂(θ2)) + 2I(µ̂t(θ2) ≥ µ̂(θ1)) (6)

Now we develop a sufficiency result for the bandit problem using the empirical fisher informa-

tion characterization and establish the connect between the growth of empirical fisher information

and the expected fisher information. The key ideas underlying the proof and the statement of the

theorem can be articulated as:

• Fair exploration Any policy should not be dictatorial in the choice of the arms as such

a policy can always be vanquished by swapping the arm parameters. Hence, any policy

should “optimally” explore all the arms and learn “on the fly” the best arm. This condition
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ensures the policy samples atleast as much indicated by lower bound which is the required

information needed for any policy to distinguish the parameter family.

• Proximity to myopic policy Expected number of times an optimal policy differs from

the corresponding myopic policy is not significantly high. As the number of samples from

the arms increases, the estimate of the parameters is proximal to the true parameters.

Therefore, the myopic policy would be able to perform significantly better and closer to the

optimal policy asymptotically. Hence, any proposed policy should try to mimic the actions

of the corresponding myopic policy except for “small” exploration phases. We prove the

expected difference of less than O(log(T )) is sufficient.

Theorem 5 The sufficient conditions for a policy Yt, to have regret O(log(T )) in the traditional

multi armed bandit problem is

1)
∑∞

t=1 P (F it ≤ C1log(t)) <∞ for each arm i

2)
∑T

t=1E[Yt 6= Y m
t ] ≤ C2log(T )

where F it is the empirical fisher information till time t observed from arm i. Y m
t represents the

decision of myopic policy at time t. Also, w.l.o.g lets assume µ(θ2) ≥ µ(θ1) i.e. arm 2 is the

superior arm. Define, Z(t) = |X̄2(t− 1)−µ(θ2)| where X̄2(t− 1) is the sample mean of arm 2 till

time t− 1

Proof :

E[T inf(T )] =
T∑
t=1

E[Yt = 1]

=
T∑
t=1

(E[Yt = 1, Y m
t = 2] + E[Yt = 1, Y m

t = 1])

≤(a) C2log(T ) +
T∑
t=1

E[Yt = 1, Y m
t = 1]

≤ C2log(T ) +
T∑
t=1

E[Y m
t = 1]

=(b) C2log(T ) +
T∑
t=1

(X̄1(t− 1) ≥ X̄2(t− 1))

= C2log(T ) +
T∑
t=1

P (X̄1(t− 1) ≥ X̄2(t− 1), Z(t) > x) +
T∑
t=1

P (X̄1(t− 1) ≥ X̄2(t− 1), Z(t) < x)

= C2log(T ) +A(T ) +B(T )

(7)
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where (a) follows from condition (2) and (b) follows from the definition of myopic policy and

A(T ) :=
T∑
t=1

P (X̄1(t− 1) ≥ X̄2(t− 1), Z(t) > x), B(T ) :=
T∑
t=1

P (X̄1(t− 1) ≥ X̄2(t− 1), Z(t) < x)

(8)

We bound A(T ) an B(T ) separately with the following observation, If F it > Cilog(t) then

M(θi)J
π
1 (t) > Cilog(t) which implies Jπ1 (t) > Ci

M(θi)
log(t)

i.e. if for a particular policy the empirical fisher information is increasing at a particular rate then

the number of pulls of that arm should also increase with the same rate. (here, same in in O(.)

sense and it is pathwise) s

A(T ) ≤
T∑
t=1

P (Z(t) > x) =

T∑
t=1

P (Z(t) > x,F 2
t > C1log(t)) +

T∑
t=1

P (Z(t) > x,F 2
t < C1log(t))

≤a
T∑
t=1

2exp{− x2

4σ2
C1log(i)}+

T∑
t=1

P (F 2
t < C1log(t))

(9)

where (a) follows from Chernoff bound (see Appendix), the above observation and sufficient

condition (1).

B(T ) ≤ P (X̄1(t− 1) ≥ X̄2(t− 1), θ2 − x < X̄2(t− 1) < θ2 + x)

≤ P (X̄1(t− 1) ≥ X̄2(t− 1), θ2 − x < X̄2(t− 1))

≤ P (X̄1(t− 1) > θ2 − x)

= P (X̄1(t− 1)− θ1 > θ2 − θ1 − x, F 1
t > C1log(t)) + P (X̄1(t− 1)− θ1 > θ2 − θ1 − x, F 1

t < C1log(t))

≤ exp{−(θ2 − θ1 − x)2

4σ2
C1log(t)}+ P (F 1

t < C1log(t)))

(10)

(by chernoff bound again and similar conditions as above)

By suitably choosing constants 0 < x < θ2 − θ1 and C1 ≥ max{8σ2

x2
, 8 σ2

(θ2−θ1−x)2
} and using con-

dition (1) both the above terms are summable giving as O(log(T )) regret.

Empirical fisher information is a pathwise quantity, the sufficient conditions ensure the growth

of the empirical fisher information, below we refer to the martingale theory to relate it to the

growth of expected fisher information.

Corollary 1 If the empirical fisher information increases at the rate of condition (1), then the

expected fisher information increases at O(log(t)) asymptotically.
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Proof :

∞∑
i=1

P (|F it − Jπi F (θi)| > Jπi ε) =
∞∑
i=1

P (|F it − Jπi F (θi)| > Jπi ε, F
i
t > Cilog(t)) +

∞∑
i=1

P (|F it − Jπi F (θi)| > Jπi ε, F
i
t < Cilog(t))

≤
∑

2exp{−Ci
Jπi

2ε2

4σ2
}+ P (F it < Cilog(t))

(11)

where the first term is bounded by Azuma - Hoeffeding inequality (See Lemma in Appendix) and

the second term is bounded by sufficient condition (1). Essentially, the LHS is summable which

implies,

lim
t−>∞

P (|F it − Jπi F (θi)| < Jπi ε) = 1 (by B-C lemma) (12)

Now, observe

P (
F it−O(log(t))

Jπi
> ε) ≤ P (

F it−Jπi F (θi)
Jπi

> ε/2) + P (
Jπi F (θi)−O(log(t))

Jπi
> ε/2)∀ε

For some suitable ε, we consider the limiting behavior and using lim
t−>∞

P (|F it − Jπi F (θi)| >
Jπi ε) = 0 and sufficient condition (1) we have

1 = lim
t−>∞

P (F it −O(log(t)) > ε) ≤ 0 + lim
t−>∞

P (Jπi F (θi)−O(log(t)) > ε/2)

hence, lim
t−>∞

P (Jπi F (θi)−O(log(t)) > ε/2) = 1

Now by Markov’s inequality, (O(log(t)) + ε)P (Jπi F (θi)−O(log(t)) > ε/2) ≤ E[Jπi F (θi)]

Now as t tends to ∞, the expected fisher information E[Jπi F (θi)] also grows as O(log(t))

Simple examples of optimal policies

(a) Forced sampling policy

Consider the following policy

(b) Finite time analysis policy.

We would like to highlight before the end of this section that similar sufficient conditions

can characterize also other variants of aforementioned bandit problems. In some sense, these

conditions can form the basis and drive in necessary intuition for the design of optimal algorithms

for new experiments.
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Necessary condition of optimality

Theorem 6 Given a policy π∗, the growth of empirical fisher information of that policy (for

each arm) should be such that, its deviation from the expected fisher information should decay

exponentially (in the number of pulls of the arm) for the adversarial configuration.

Where adversarial configuration is the worst possible configuration as chosen by the adversary

for that particular policy. The intuition being, if it does not decay exponentially then there is a

smaller order growth in pathwise inferior sampling rate which would contradict the lower bounds

obtained earlier. If it indeed decays exponentially quicker, its a good sign towards optimality, still

some set of sufficiency conditions has to be met.

Proof : We prove that if the claimed policy π∗ is indeed optimal then it should satisfy the

above statement. Since, the policy is optimal, the mix-max lower bound obtained is O(log(t)).

In particular the E[T inf(t)] ≥ Clog(t) for the worst case configuration. It follows that

E[I(Y1 = 1) + I(Y2 = 1) + I(Y3 = 1) + ......I(Yt = 1)] ≥ Clog(t) which clearly implies atleast

Clog(t) indicators have to be 1′s hence, Jπ1 (t) > Clog(t)

We follow the similar ideas as before to form the Fisher information martingale and use

Azuma-Hoeffeding inequality to conclude the result.

P (|F it − Jπi F (θi)| > Jπi ε) = P (|F it − Jπi F (θi)| > Jπi ε, J
π
i (t) > Cilog(t)) (13)

Note: We cannot use the strong law of large numbers because of lack of independence in the

subsequent observations.

Insights when we have additional initial information

Earlier, we discussed the complexity of the bandit learning problem by establishing a O(log(n))

lower bound. In this section, we explore certain minimal conditions on the structure of the

parameter space, where optimal learning is possible in finite time (Sn ≤M for some M , ∀n). The

proofs below are for bandits for 2 arms and can be extended for arbitrary number of arms. In

the following cases, we refer to (θ1, θ2) as the true parameter pair in the arms. Define Xj
i as the

reward obtained by jth pull of arm i and Si(n) = Σn−1
j=1X

j
i

Information on the convex combination of the parameters

Suppose, γ = λµ(θ1) + (1 − λ)µ(θ2) (where 0 ≤ λ ≤ 1) is an input to the bandit problem, then

the regret obtained by strategy opt conv is finite.

opt conv strategy: Pull each arm once, Pull the arm with higher realization (say r) till t = τ ,
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Pull the other arm for all t ≥ τ + 1 where τ = inf{n ≥ 3 : Sr(n) ≤ (n− 1)γ}

Proof : The proof technique here maps the learning problem to that of that of hitting times

of random walks. We then use finiteness of hitting time moments to prove optimality of the above

strategy. Without loss in generality, lets say µ(θ1) ≥ µ(θ2), then

E[T inf(t)] = E[πt 6= π∗t ] = 1 + P (X1
2 ≥ X1

1 )E[min(τ, t)] ≤ 1 + P (X1
2 ≥ X1

1 )E[τ ]

E[τ ] is finite since S(n)− nγ is a random walk martingale with negative mean (µ(θ2)− γ) [4] To

be more specific, there exists M such that E[τ |X1
2 ≥ X1

1 , γ] ≤M . Hence,

E[τ ] ≤
∫ ∞
γ

MdF2(x) +

∫ γ

−∞
[F2(γ) +

∫ ∞
γ

MdF2(x)]dF2(x) = M(1− F2(γ)2) + F2(γ)2)

rand opt conv strategy: Fix a large positive number U . Let µj(t) be the estimated mean of

arm j at time t. Define

p(t) = 1, µ2(t) ≥ U
p(t) = µ2(t)

U , γ < µ2(t) < U

p(t) = 0, µ2(t) ≤ γ

Pull each arm once, set p = 1 in favor of the higher realization. Update the probability p(t) as

defined above after every pull then on. Pull arm 2 with probability p(t) and arm 1 with probability

1− p(t) till the end of the horizon. Following the analysis above, we get

E[T inf(t)] ≤ 1 + P (X1
1 ≥ X1

2 )Σt
j=1E[

µ1(j)

U
]

A lower bound for the above problem,

For the case of normal populations with λ = 1/2(γ = (θ1 + θ2)/2) the following strategy gives a

much tighter bound. Let δ = (θ1 − θ2)/2

Strategy: Define Ln = Σ
Jπ1
i=1(X1

i −γ)+Σ
Jπ2
i=1(X2

i −γ). Pull an arm uniformly at random, If Ln ≥ 0,

then pull arm 1 at stage n, otherwise pull arm 2. If arm 1 has greater mean, then

E[regret] =
1

2
+ Σn

i=1P (Li < 0)

=
1

2
+ Σn

i=1F (−δ
√

(i))

=
1

2
+ Σn

i=1F (δ
√

(i))

≤ 1

2
+ Σ∞i=1

1

δ
√

(i)
exp−δ

2i

2

≤ 1

2
+

2

(k − k′)γ
1

exp((k − k′)2γ2)/8− 1
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Consider the configurations (H0 : (θ1, θ2), H1 : (θ2, θ1), the KL divergence between the arms is

(θ2 − θ1)2

Using the inequality () above,

Sn(Π,Θ) ≥ Σn
t=1E[Jπ1 ](θ1 − θ2)2 + E[Jπ2 ](θ1 − θ2)2

= Σn
t=1E[Jπ1 ](θ1 − θ2)2 + (t− E[Jπ1 ])(θ1 − θ2)2

= Σn
t=1exp(−t(θ1 − θ2)2)

=
1

exp((k − k′)2γ2)− 1

where θ2 = kγ, θ1 = k′γ k > 1andk′ < 1

For any other general distribution

Proceeding similarly as before.

Sn(Π,Θ) ≥ Σn
t=1E[Jπ1 ](I1(θ1, θ2)− I2(θ2, θ!)) + tI2(θ2, θ1) = Σn

t=1exp(−(I1 − I2)E[Jπ1 ]− tI2)

= Σn
t=1exp(−(I1 − I2)St − tI2)

= Σn
t=1exp(−(I1 − I2)Sn − tI2)

≥ 1

exp(I2)− 1

normal population

also plots

Information on the parameter family - set of discrete parameters

Information on the first highest arm, second highest

follow lai and second highest finite analysis.

Lower bounds in an adversarial setup

In the following version of the traditional bandit problem, once the horizon of the problem is

specified, an adversary is allowed to choose the parameter configuration governing the rewards

from the arms. In such a situation, an adversary can choose the parameters as close to each other

not allowing the decision maker to learn the parameters easily in the exploration phase.

Lets say that the adversary picks the parameter with a O( 1√
(n)

) separation. Lets say, the param-

eters chosen in the arms be of the form (θ1 − 1

2
√

(n)
, θ1 + 1

2
√

(n)
)

12
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Appendix

The probability density function of the vector of observations X1, X2.....Xt is given by

f(X1, X2.....Xt+1) = f(Xt+1|Ft)f(X1, X2, ...Xt)

= f(X
Jπ1 (t)+1
1 I{Yt+1 = 1}+X

Jπ2 (t)+1
2 I{Yt+1 = 2}|Ft)f(X1, X2, ...Xt)

= f(X1
1 )f(X2

1 )....f(X
Jπ1 (t+1)
1 )f(X1

2 )f(X2
2 )....f(X

Jπ2 (t+1)
2 )

(14)

since, Yt+1 is Ft measurable, the above follows. (where Jπk (t) denotes the number of pulls of arm

k till time t.

Azuma hoeffeding lemma

forced sampling proof.

finite time analysis proof
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