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ABSTRACT
Kernel Logistic Regression (KLR) is a powerful probabilis-
tic classification tool, but its training and testing both suf-
fer from severe computational bottlenecks when used with
large-scale data. Traditionally, L1-penalty is used to induce
sparseness in the parameter space for fast testing. However,
most of the existing optimization methods for training l1-
penalized KLR do not scale well in large-scale settings. In
this work, we present highly scalable training of KLR model
via three first-order optimization methods: Fast Shrinkage
Thresholding Algorithm(FISTA), Coordinate Gradient De-
scent (CGD), and a variant of Stochastic Gradient Descent
(SGD) method. To further reduce the space and time com-
plexity, we apply a simple kernel linearization technique
which achieves similar results at a fraction of the compu-
tational cost. While SGD appears the fastest in training
large-scale data, we show that CGD performs considerably
better in some cases on various quality measures. Based
on this observation, we propose a multi-scale extension of
FISTA which improves its computational performance sig-
nificantly in practice while preserving the theoretical global
convergence rate. We further propose a two-stage active
set training scheme for CGD and FISTA, which boosts the
prediction accuracies by up to 4%. Extensive experiments
on several data sets containing up to millions of samples
demonstrate the effectiveness of our approach.

Categories and Subject Descriptors
1 [Algorithms/Models]: Classification

Keywords
large-scale classification, kernel logistic regression, kernel
linearization, L1-regularization, first-order optimization meth-
ods, two-stage active set training

1. INTRODUCTION
1.1 Kernel Logistic Regression
Kernel Logistic Regression (KLR) [25, 30] is a powerful prob-
abilistic classification tool [7]. Given N training points, the
following minimization is used to train KLR:

min
w

F (w) = −
N∑

i=1

log(σ(yiw
T ki)) (1)

where ki is the i-th column of the kernel matrix K of the
training data, and σ(v) = 1/(1 + exp−v). The possibility of
using different kernels allows one to learn a nonlinear clas-
sifier in the feature space.

However, its training and testing both suffer from severe
computational bottlenecks when used with large-scale data.
Moreover, when the number of training data is small com-
pared to the number of the features, straightforward KLR
training may lead to over-fitting. KLR with L1-regularization
in which an extra λ‖ · ‖1 is added to penalize large “w”
has received considerable attention since it enforces spar-
sity in w. Specifically, L1-regularized KLR often yields a
sparse solution w whose nonzero components correspond to
the underlying more “meaningful” features. Therefore, it
greatly saves the testing time especially when the feature
dimension is huge for only a few features are used in com-
putation. Indeed, L1-regularized KLR makes it possible to
learn and apply KLR at large scale with similar performance
as of L2-regularization. In [16, 26], it is shown that L1-
regularization can outperform L2-regularization especially
when number of observations is smaller than the number of
features. Thus, L1-regularization technique has been widely
used in many other problems, such as compressed sensing [3,
4] and Lasso [20], despite the fact that it is more challeng-
ing to solve L1-regularization than L2-regularization due to
the non-smoothness of ‖ · ‖1. In this paper, we consider the
following Sparse Kernel Logistic Regression (SKLR) model.

min
w

F (w) = −
N∑

i=1

log(σ(yiw
T ki)) + λ‖w‖1 (2)

We choose Radial Basis Function (RBF) kernel to form the
Kernel matrix K, i.e.,

k(i, j) = exp
− ‖xi−xj‖2

σ2 (3)



1.2 Kernel linearization
Non-linear kernel classifiers are attractive because they can
approximate the decision boundary better given enough train-
ing data. Unfortunately, methods that operate on the non-
linear kernel matrix scale poorly with the size of the train-
ing data, thus unsuitable for the large-scale computation. In
[19], the advantages of the linear and nonlinear approaches
are combined using the “Fourier Kernel Linearization”. In
this paper, we will follow this line to speed up the method
and make large-scale computation possible.

1.3 Algorithms for L1-regularization
Various first-order optimization algorithms have been pro-
posed to solve the L1-regularized problems. In this pa-
per, we explore three algorithms, (Fast) Iterative Shrinkage-
Thresholding algorithm (FISTA/ISTA) [1], the Coordinate
Gradient Descent algorithm (CGD) [22] and the Stochastic
gradient descent (SGD) [2, 23]. FISTA is an accelerated
proximal-gradient algorithm which was originally proposed
to solve the linear inverse problem arising in image process-
ing. In [13, 15], it has been proven that its complexity bound
is optimal among all the first-order methods. CGD is a
coordinate-descent type of algorithm. [29] extended the for-
mer work to L1-regularized convex minimization problems
which achieves the aforementioned goals. [18] and [12] ap-
plied a block-coordinate version of CGD to solve the Group
Lasso problems with least squares and logistic regression re-
spectively. SGD uses approximate gradients from subsets of
the training data and updates the parameters in an online
fashion. In many applications this results in less training
time in practice than batch training algorithms. The SGD-
C method that we use in our study is based on the Stochastic
sub-Gradient Descent algorithm [23] originally proposed to
solve the L1-regularized log-linear models. It uses the cumu-
lative penalty heuristic to improve the sparsity of w. SGD-C
also incorporates the gradient-averaging idea from the dual
averaging algorithm [27], which extends Nesterov’s work [14]
to L1-regularized kernel logistic regression.

1.4 Our contribution
In this paper, we explore and analyze three algorithms FISTA,
CGD and SGD for solving the L1-regularized large-scale
KLR, which has never been performed to the best of our
knowledge. We observe that CGD performs surprisingly
better than FISTA in the number of iterations to conver-
gence. For large-scale data with size up to millions, SGD
appears faster in terms of the training time, but it comes
with the loss of optimality guarantee upon termination, and
SGD has lower prediction accuracy or sparsity compared
to the deterministic methods (i.e. FISTA and CGD) in
some cases. We also study the effect of various values of
the regularization parameter on the training time, predic-
tion accuracy, and sparsity. In the algorithmic aspect, we
propose a two-stage active-set training approach which can
boost the prediction accuracy by up to 4% for the deter-
ministic algorithms. Based on the observation that CGD
converges faster than FISTA on SKLR problems, we adopt
the feature of CGD and propose a multiple-scaled FISTA
which improves its performance significantly while preserv-
ing the theoretical global convergence rate. We have also
applied the gradient-averaging technique in [27, 14, 28] and
the cumulative penalty heuristic in [23] to SGD to make it
well-suited for large-scale SKLR training.

The subsequent sections of our paper are organized as fol-
lows. In Section 2, we discuss the technical details of the
three optimization algorithms and the relevant extensions
to them. We then talk about kernel linearization and the
two-stage active set training in Section 3. The experiment
results on various data sets are presented in Section 4. We
end the paper with some concluding remarks.

2. OPTIMIZATION ALGORITHMS
2.1 Fast Iterative Shrinkage-Thresholding Al-

gorithm (FISTA)
To solve the L1-regularized KLR, we need to minimize the
sum of two convex functions

min
x
{F (x) ≡ f(x) + g(x) : x ∈ Rm} (4)

where g(x) = ‖x‖1 is a continuous convex function and

f(x) = −∑N
i=1 log(σ(yiw

T ki)) is a smooth function with
Lipschitz continuous gradient such that

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x− y‖
where L(f) > 0 is the Lipschitz constant of ∇f but it is
often expensive to compute L(f).

In [1], Beck and Teboulle solve F (x) with g(x) unchanged
and f(x) replaced by its quadratic approximation, i.e,

Qµ(x; xk) := f(y) + 〈x− xk,∇f(xk)〉+
1

2µ
‖x− xk‖2 + g(x)

pµ(xk) = argmin
x

Qµ(x; xk)

However, we can extend the original FISTA and make a bet-
ter quadratic approximation by introducing the approximate
Hessian matrix Hk. It is not surprising that it will result
in better computational performance, and the improvement
highly depends on the quality of Hk. More specifically,

Qµ(x; xk) := f(y) + 〈x− xk,∇f(xk)〉
+

1

2µ
(x− xk)T Hk(x− xk) + λ‖x‖1 + g(x),

pµ(xk) = argmin
x

Qµ(x; xk)

where pµ(xk) has the closed form when Hk is a diagonal
matrix, and its ith component is computed as followed

pµ(xk)i = max(|zi − λµ

Hii
k

, 0|, 0) · sgn(zi) (5)

where Hii
k is the ith diagonal element of Hk, and zi is defined

as

zi = xi
k − µ

Hii
k

(∇f(x))i.

The diagonal approximated Hessian can be chosen in the
following ways:

Hk = I (6)

Hii
k = min(

∂2f(xk)

∂(xj
k)2

, Hii
k−1) (7)

Hii
k =

∂2f(xk)

∂(xj
k)2

(8)

Note that the original FISTA proposed in [1] simply uses (6).
We propose to use (7) or (8) to extend FISTA to Multiple-
scale FISTA. It is so named because the choice of Hk is



equivalent to choosing a different and tailored step-length
for each coordinate (feature). The Multiple-scale FISTA
performs much better than the original FISTA as shown in
Section 4.3 Table 7 since it carries more information of the
second order derivative. In order to make our convergence

Algorithm 1 Multiple-scale FISTA (with backtracking)

1: Given µ > 0, some η < 1, and y0 ∈ Rn. Set x1 =
y0, t1 = 1.

2: for k = 1, 2, · · · do
3: Find the smallest nonnegative integers ik such that

with µ̄ = ηikµ

F (pµ̄(xk)) ≤ Qµ̄(pµ̄(xk), xk).

4: Set µ ← ηikµ and compute

yk ← pµ(xk)

tk+1 ← 1 +
√

1 + 4t2k
2

xk+1 ← yk + (
tk − 1

tk+1
)(yk − yk−1)

5: end for

hold, the following conditions are critical.

F (pµ̄(xk)) ≤ Qµ̄(pµ̄(xk), xk). (9)

Hk−1 −Hk Â 0 (10)

Condition (9) indicates that the quadratic approximation
lies above the true function, which implies that the true ob-
jective value will decrease even more while we minimize the
quadratic approximation. Condition (10) is also necessary
for the proof of the following theorem, and it is satisfied by
first two choices of Hk.

Theorem 1. Suppose the sequences {xk} and {yk} are
generated by FISTA with Hk−1 − Hk Â 0 for k = 1, 2 · · ·
and x∗ is the optimal solution, then we have

F (yk)− F (x∗) ≤ C

(k + 2)2

where C = 4(F (y0)− F (x∗)) + 2L(f)‖x∗ − y0‖2H0 .

Proof. See Section 6.

2.2 Coordinate Gradient Descent (CGD)
CGD is a simple method to conceptualize, very similar in
structure to the gradient descent methods. Theoretical frame-
work for solving non-smooth separable convex minimization
using a coordinate gradient method was developed in [22].
They provide global convergence results as well as a local
linear rate of convergence for the CGD method (which oth-
erwise lacks a global complexity result). [29] extended the
aforementioned work to least squares and logistic regression
with L1-regularization.

CGD is viewed as a hybrid of gradient descent and coor-
dinate descent methods with connection to gradient distri-
bution method for unconstrained smooth optimization. To
explain it further, we use∇f(x) to build a quadratic approx-
imation of f at x and apply coordinate descent to generate

an improving direction d at x. We choose a subset of coor-
dinate indices {1, 2, ..., m} as Jk (using the Gauss-Southwell
rule) and a symmetric positive definite Hk (approximation
of ∇2f(x)) and move x along the descent direction,

dH(x; J) = arg mind{∇f(x)T d+ dT Hd
2

+g(x+d)|dj = 0∀j 6=
J}

It is worth mentioning that solving dH(x; J) is essentially
the same as solving pµ(xk) of FISTA, and it also admits a
simple closed form solution. Once we have the descent direc-
tion, a suitable step length satisfying the Armijo’s conditions
(as indicated below) is used for the descent.

In the numerical implementation of CGD, one could approx-
imate the Hessian, Hk = I or θkI where θk ∈ R. Alter-
nately, as suggested by [29], we use the similar trick (which
Multiple-scale FISTA is inspired from) for the approxima-
tion of Hessian at each iteration,

Hk = diag[min{max{∇2f(xk)jj , 10−10}, 1010}]j=1,2,...m

and it performs extremely well in terms of convergence rate
on the data sets that we experimented on. This consider-
able gain in performance can be used as an advantage while
handling huge data sets.

Algorithm 2 CGD

1: Choose x0 ∈ Rn.
2: for k = 0, 1, · · · do
3: Choose a Hk Â 0 and a non empty set J ⊆ N
4: Solve for dk = dHk (x, Jk) using x = xk, J = Jk, H =

Hk

5: Choose αk using Amijo’s rule given below
6: Set xk+1 = xk + αkdk with αk > 0
7: end for

Algorithm 3 Armijo Rule

1: Choose αk
init > 0, a large value.

2: Reduce αk gradually till we find the largest one, that
satisfies

3: F (xk + αdk) ≤ F (xk) + αkδk

4: δk = ∇f(xk)T dk + dkT
Hdk

2

CGD is a Gauss-Seidel type of algorithm, while FISTA is
of the Jacobi type. However, the iterations of the two al-
gorithms have an intimate relationship, as discussed in [18].
Basically, the backtracking line-search in FISTA is equiva-
lent to choosing an appropriate Hk (but limited to a scalar
multiple of the identity) in Algorithm 2 so that the Armijo’s
descent condition is automatically satisfied.

2.3 Stochastic Gradient Descent (SGD)
The basic idea of a stochastic gradient descent method is
to use a subset of the training samples to approximate the
current gradient of the objective function in each iteration
and update the feature vector in an online fashion. Since the
L1-regularized KLR is non-smooth, the method applied here
is a sub-gradient method. As pointed out in [23], a direct
application of the simple SGD does not result in efficient



training and quality solutions because the naive SGD does
not enforces sparsity well.

Here we adapt the SGD algorithm with cumulative penalty
(SGD-C) proposed by [23]. The two key features of SGD-C
are the clipping-at-zero technique and the cumulative penal-
ties. The former ensures that during a gradient update, the
L1 penalty is applied to the features to the extent that it
does not change their signs. (See Lines 11 and 13 in Al-
gorithm 4.) Note that this is equivalent to applying the
shrinkage operator (5) in ISTA. The second feature keeps
track of the total penalty that could have been applied to
a feature and the actual penalty that has been applied so
that the feature is updated in each iteration based on the
difference of the two. (See Lines 4 and 15 in Algorithm 4.)
The goal of this approach is to smooth out the effects of
noisy gradients. We remark that we did not implement the
“lazy update” approach, i.e. updating only the features used
in the current sample. The reason is that the kernel matrix
is usually dense for non-linear kernels, so the “lazy update”
does not actually help speed up the algorithm.

For estimating the gradient of the logistic loss function l(w) =

−∑N
i=1 log(σ(yiw

T ki)), we take the a convex combination
of the gradients using the current sample point and the pre-
vious gradient vector, as similarly done in [28] and [27] for
the Regularized Dual Averaging (RDA) method. Note that
in RDA, the average gradients on all previous data points
is used for the gradient step in each iteration. In our im-
plementation, we took a slightly different approach and put
more weight on the gradient estimated by the current point,
i.e.

gk =
k − 1

k
g(ak) +

1

k
gk−1, (11)

where gk is the gradient used in iteration k, and g(ak) is
the gradient of l on the data point ak. The intuition behind
the gradient averaging technique is inline with that of the
cumulative penalties - we try to smooth out the randomness
in the gradients by taking into account the information from
the previous iterations.

We follow [23] to use exponential decay

ηk = η0α
−k/N (12)

for the learning rates, where N is the total number of sam-
ples. We formally state the procedures discussed above in
Algorithm 4.

3. IMPLEMENTATION
3.1 Kernel linearization
Nonlinear kernel classifiers are attractive because they can
approximate the decision boundary better given enough train-
ing data. However, they do not scale well in both training
time and storage in large-scale settings, and it may take days
to train on data sets with millions of points. On the other
hand, linear classifiers run much more quickly, especially
when the number of features is small, but behave relatively
poorly when the underlying decision boundaries are non-
linear. Kernel linearization [19] combines the advantages of
the linear and nonlinear classifiers. The key idea is to map
the training data to a low-dimensional Euclidean space by a

Algorithm 4 SGD-C

1: u ← 0, w0
i ← 0, qi ← 0∀i.

2: for k = 0, 1, · · · do
3: η ← η0α

−k/N (η0 = 0.5, α = 2).
4: u ← u + η λ

N
5: Select a sample with index kj .
6: hk ← 1

k
hk−1 + k−1

k
∇l(wk; ak)

7: wk ← wk − ηhk

8: for i = 1, · · · , m do
9: z ← wk

i

10: if wk
i > 0 then

11: wk
i ← max(0, wk

i − (u + qi))
12: else if wk

i < 0 then
13: wk

i ← min(0, wk
i + (u− qi))

14: end if
15: qi ← qi + (wk

i − z)
16: end for
17: end for

randomized feature map z : Rn → RD, D ¿ n, so that

k(x, y) = 〈φ(x), φ(y)〉 ≈ z(x)′z(y). (13)

Therefore, we can directly put the transformed data z(x)
to the linear classifier and speed up the computation. To
calculate z(x), randomized Fourier transform is used as,

zj(x) =

√
2

D
cos(ωjx + b). (14)

Since we use the RBF kernel, i.e.

k(i, j) = exp
− ‖xi−xj‖2

σ2 ,

ωj and b are sampled from the following distribution

wjk ∼ N(0,
2

σ2
), b ∼ U(0, 2π).

The following theorem (Claim 1 in [19]) establishes the con-
vergence of the approximation.

Theorem 2. Let M be a compact subset of Rd with di-
ameter diam(M). Then, for the mapping z defined in (14),
we have

Pr

[
sup

x,y∈M
|z(x)′z(y)− k(y, x)| ≥ ε

]

≤ 28

(
σdiam(M)

ε

)2

exp

(
− Dε2

4(d + 2)

)
, (15)

where σ2 ≡ E[ω′ω] is the second moment of the Fourier
transform of k. Further, supx,y∈M |z(x)′z(y) − k(y, x)| ≤ ε

with any constant probability when D = Ω
(

d
ε2

log σdiam(M)
ε

)
.

3.2 A two-stage active-set training scheme
To boost the prediction performance of the deterministic
algorithms discussed in Section 2, we propose a two-stage
active-set approach on top of the algorithms. Specifically,
we first use CGD/FISTA to solve the kernel logistic regres-
sion problem to optimality as usual. We then record the
support of the optimal solution, i.e. the indices of the non-
zero entries or the active set. Next, we optimize the problem



Data set training test no. features factor of λmax

mnist10k 10,000 1000 784 0.5,0.2,0.1,0.05
gisette 6,000 1000 5,000 0.5,0.2,0.1,0.05
cod-rna 483,565 5000 8 0.001
mnist8M 1,560,154 19,000 784 0.1

Table 1: Various data sets used in the experiments.

again with regard to only the active set, while keeping the
entries outside the active set at zero throughout the second
stage. The regularization parameter λ for the second stage
is chosen to be smaller than the that in the first stage, for
example, 10% of the original to improve the prediction per-
formance of the solution while preserving the current spar-
sity. Note that choosing a λ equal to the value in the first
stage does not make sense since the solution from the first
stage is optimal for that particular λ. Setting the second
stage λ larger than that in the first stage may improve spar-
sity, but it may very likely impact prediction accuracy. We
have observed through our experiments that the proposed
approach can usually boost the prediction accuracy by up
to 4%. Preliminary numerical results for medium-scale data
are summarized in Table 6. We remark that the work in-
volved in the second stage is far less than the first stage,
since the active set is only a fraction of the entire feature
set.

4. EXPERIMENTS
4.1 Data sets
We selected four data sets for our experiments, with two
at medium-scale and the other two at large-scale. The at-
tributes of the data sets are summarized in Table 1. mnist10k
is from the MNIST data set [9] for classifying the handwrit-
ten digit ’3’. The gisette data is one of five datasets of the
NIPS 2003 feature selection challenge [5] for separating the
highly confusable digits ’4’ and ’9’. mnist8 is the augmented
version of the original MNIST dataset through performing
careful elastic deformation [11]. We chose to classify the
handwritten digit ’8’. cod-rna is a bio-medical data set in-
troduced in [24].

4.2 Methodology
All experiments were run in Matlab R2009b environment on
a 64-bit computer with a quad-core Intel Xeon 2GHz CPU
and 32G memory. In the subsequent sections, whenever
FISTA is mentioned, it refers to the one with our multi-scale
extension, unless we specifically state that it is the original
FISTA.

4.2.1 Medium-scale data sets
We first used mnist10k and gisette data to illustrate the ef-
fectiveness of kernel linearization, by testing the algorithms
with the RBF kernel, and the linearized RBF kernel. For
fair comparisons, we ran either FISTA or CGD first till the
solution produced by the algorithm satisfied the termination
condition, which we will discuss in Section 4.2.4. We then
recorded the objective function value of this solution and
used it as the reference objective value for the remaining
two algorithms, i.e. we stopped the other two algorithms on
the same data set only when they had returned a solution
with an objective value less or equal to the reference value.1

1For SGD-C, we stopped the algorithm when the average
objective value of the most recent 20 iterations was within

For the reason discussed in Section 4.2.2, we ran SGD-C
twice. In the first run, the objective value was computated
for each iteration, and the algorithm was terminated with
the aforementioned condition. We then ran SGD-C again
for the same number of iterations as in the first run but
without computing the objective values. The reported CPU
times are from the second run.

4.2.2 Large-scale data sets
For the large-scale data sets (i.e. MNIST and cod-rna), we
ran the experiments with only the linearized RBF kernels.
For comparisons, again we tested CGD first till the termina-
tion criterion was met. We then recorded the reference ob-
jective value as done for the medium-scale data sets. FISTA
was run till either the stopping criterion was met or the
objective value reached the reference value. We allowed a
maximum of 3000 iterations for FISTA and 5000 iterations
for CGD. Here, we note that SGD-C does not actually re-
quire objective function evaluation to compute the solution
of the current iteration – we need the objective values only
when we are to determine the stopping point. The run-
ning time of SGD-C should be independent of the size of
the data set. Since computing the objective function value
involves the entire data set, the work load is very high, and
it does not make sense to do the extra work in each SGD-C
iteration. So, instead of stopping SGD-C by checking the
objective values, we ran the algorithm for a large number of
iterations, for example, as the size of the data set or several
times of that. The running time in this case does not reflect
the actual time required for SGD-C to produce a solution
of the same quality as FISTA or CGD. Nevertheless, it still
allows us to compare the other aspects of the algorithms.

4.2.3 The regularization parameter λ
One of the key parameters to set for the SKLR problem is the
penalty λ on the L1-norm. There are two major approaches
for choosing λ. One is through computing the regularization
path, as done in [30]. Specifically, we start with a large λ, on
which the optimization algorithms converge faster. We then
gradually decrease λ and use the solution from the previous
λ as the starting solution for the current λ. This technique
is also known as continuation or warm-starting [6]. [10] uses
10-fold cross validation to compute the hold-out accuracy
and select the λ that achieves the highest accuracy.

With a given kernel matrix K, we can also explicitly com-
pute an upper bound λmax on the meaningful range of λ
following the formulation given in [8],

λmax = ‖KT b̃‖∞, (16)

where

b̃i =

{
N−/N, if yi = 1,
−N+/N, yi = −1,

i = 1 · · ·N.

N− and N+ above denote the number of positive and nega-
tive training labels respectively. The optimal solution is the
zero vector for any λ larger than λmax. For medium-scale
datasets, we ran the three algorithms with four values of
λ: 0.5λmax, 0.2λmax, 0.1λmax, and 0.05λmax. We show in
Section 4.3 that usually a good balance between accuracy

1% higher than the reference value, i.e.
∣∣∣ F̄SGD−Fref

Fref

∣∣∣ ≤ 0.01.



Alg/Data set mnist10k λ = 0.5λmax λ = 0.2λmax λ = 0.1λmax λ = 0.05λmax

SGD-C
RBF 84.6/3.0e+001/0.1 88.1/8.2e+001/0.2 90.6/1.3e+002/0.3 91.3/1.4e+002/0.6

linearRBF 84.5/4.1e+000/2.6 90.3/6.7e+000/6.8 91.5/9.3e+000/13.2 92.8/1.2e+001/23.8

FISTA
RBF 85.3/4.8e+003/0.1 88.7/1.1e+004/0.3 90.4/1.1e+004/0.6 91.9/6.3e+003/2.7

linearRBF 84.6/4.4e+000/1.4 89.6/2.2e+001/4.6 91.5/3.3e+001/9.2 92.7/3.5e+001/16.0

CGD
RBF 85.4/6.1e+002/0.3 88.5/3.5e+003/14.3 90.2/5.7e+003/37.5 92.4/6.2e+003/100.0

linearRBF 84.8/3.0e-001/1.4 89.4/3.6e-001/4.0 91.3/9.8e-001/9.6 92.6/2.6e+000/20.2

Table 2: Results for mnist10k: each cell reads (ac-
curacy(%)/cpu/sparsity(%)). The results were ob-
tained without using the two-stage active set ap-
proach.

and sparsity occurs at around 0.2λmaxto0.1λmax. In Table
1, we have specified the actual factors of λmax that we used
in our experiments. This approach is simple and the chosen
parameter values are usually appropriate enough for ensur-
ing that we test the optimization algorithms in the relevant
regime for classification.

4.2.4 Stopping criterion: duality gap
Our stopping criterion for the deterministic algorithms (i.e.
FISTA and CGD) is based on the duality gap of the cur-
rent solution. The duality gap is the difference between the
primal and the dual objective values. Since strong duality
holds for the L1-regularized kernel logistic regression prob-
lems, the optimal solution for a given λ has zero duality gap.
Hence, the duality gap is a measure of the optimality of the
current solution.

Computing the duality gap for L1-regularized logistic regres-
sion has been discussed in [8], and a more general version has
also been discussed in [17]. The same method applies to the
kernel version in our case. Note that computing the duality
gap requires evaluation of the true gradient, which is avoided
in SGD-C. So, for SGD-C, we either use the user-supplied
maximum number of iterations or the reference objective
value as the termination criterion.

4.3 Results
We present the results for different data sets in Tables 2, 3,
and 52. We compare the relative efficiency of the three opti-
mization algorithms through plotting the objective function
values against the CPU time (Figure 1) and the duality gap
against the CPU time for the RBF and the linearized RBF
kernels. We have also plotted the sparsity against CPU time
graph (Figure 2) to gain some insight on how the sparsity
changes as the algorithms progress in optimization. Here,
we define sparsity as the percentage of non-zero entries in
the solution. To illustrate the effect of the regularization
parameter λ on the test accuracy and the sparsity of the
solutions, we have plotted the graph of the prediction accu-
racy/sparsity/training time against the four values of λ for
the medium-scale data sets. (See Figures 3 and 4.)

We can see from Table 2 that by using RBF kernels with the
kernel linearization technique, we can achieve very similar
prediction accuracies as RBF kernels but at only a fraction
of the computational cost. For the gisette data, by cross-
referencing Table 6 with Table 3, we see that our two-stage
active set approach can also boost the prediction accura-
cies of the linearized RBF kernels up to the level inline with
the RBF kernels. Indeed, the two-stage active set approach

2We have omitted the results of FISTA on mnist8M for the
training time exceeded the maximum limit of ten hours.

Alg/Data set gisette λ = 0.5λmax λ = 0.2λmax λ = 0.1λmax λ = 0.05λmax

SGD-C
RBF 81.6/3.8e+001/0.6 88.8/6.5e+001/2.1 92.5/1.3e+002/16.6 89.1/7.6e+001/54.9

linearRBF 79.5/2.0e+001/5.8 86.3/6.2e+001/16.6 88.7/8.2e+001/26.3 89.6/2.3e+002/37.9

FISTA
RBF 82.2/6.0e+003/1.2 89.6/6.7e+003/11.0 91.0/9.5e+003/28.6 93.0/1.1e+004/62.8

linearRBF 79.6/8.3e+000/3.6 86.2/1.1e+001/12.4 88.6/1.3e+001/20.0 90.2/2.1e+001/31.3

CGD
RBF 82.8/5.9e+002/35.9 89.6/2.2e+003/100.0 91.1/2.9e+003/100.0 92.3/4.0e+003/100.0

linearRBF 78.8/6.6e-001/2.6 86.0/2.5e+000/12.2 88.7/6.1e+000/20.0 90.1/1.2e+001/33.2

Table 3: Results for gisette: each cell reads (ac-
curacy(%)/cpu/sparsity(%)). The results were ob-
tained without using the two-stage active set ap-
proach.

Model Software Accuracy (%)
L2-regularized Logistic regression LIBLINEAR 86.59

L1-regularized KLR with linearization CGD 88.5
L2-regularized KLR with linearization SGD 88.0

Table 4: Comparison on prediction accuracy of dif-
ferent learning models on cod-rna.

has improved the accuracies of both FISTA and CGD by
up to 4% on both medium-scale data sets across all four
values of λ. We have also compared the prediction perfor-
mance of SKLR with kernel linearization with other popular
classification methods in Table 4. SKLR has produced bet-
ter results on the cod-rna data. In particular, compared to
L2-regularized KLR, SKLR has a 100-time less test compu-
tation work load, taking into account the 1% sparsity in its
solution.

To compare and analyze the performance of the three opti-
mization algorithms for solving the SKLR problem, we con-
sider three aspects: convergence speed, sparsity, and predic-
tion accuracy. In terms of convergence speed, it is clear from
Figure 1 that CGD has considerable advantage over FISTA
and SGD-C. Although this is surprising from the theoretical
point of view, we believe that the excellent computational
performance of CGD should be attributed to the use of the
diagonal approximate Hessian matrix as well as the tailored
Armijo line-search rule. In fact, we have applied the same
diagonal approximate Hessian matrix to FISTA in our exper-
iments (multi-scale FISTA). This indeed has yielded signifi-
cant improvement in computational performance for FISTA
as we show in Table 7. The advantage of cheap per iteration
cost of SGD-C is more obvious when dealing with large-scale
data. It appears from Table 5 that SGD-C is able to produce
a solution of similar quality as CGD and FISTA at only less
than 10% of the training time. However, we need to keep
in mind that the gain in speed for SGD-C comes with the
condition of not computing any objective function values,
thus sacrificing the optimality guarantee upon termination.

Tables 5 and 3 show that CGD and FISTA are able to pro-
duce solutions of better sparsity than SGD-C with the lin-
earized RBF kernels. Figure 2 also shows that CGD keeps

Data set Alg Accuracy (%) Training time Iters Sparsity (%)

cod-rna
SGD-C 88.5 1.08e+003 1450695 3.8
FISTA 88.5 2.71e+004 3000 1.6
CGD 88.5 1.48e+004 3993 1.4

mnist8M
SGD-C 83.4 2.36e+003 3120308 16.4
CGD 85.5 2.74e+004 1991 17.6

Table 5: Results for large-scale data sets. FISTA
and CGD were run with the two-stage active set
approach. The kernel type is RBF with kernel lin-
earization.



Data set Alg λ = 0.5λmax λ = 0.2λmax λ = 0.1λmax λ = 0.05λmax

mnist10k
FISTA 84.90 (+0.3) 90.90 (+1.3) 92.90 (+1.4) 93.30 (+0.6)
CGD 85.20 (+0.4) 90.80 (+1.4) 91.90 (+0.6) 93.20 (+0.6)

gisette
FISTA 82.90 (+3.3) 88.40 (+2.2) 90.60 (+2) 90.60 (+0.4)
CGD 83.00 (+4.2) 88.60 (+2.6) 90.80 (+2.1) 90.90 (+0.8)

Table 6: The boosted prediction accuracies (%) with
the two-stage active set approach on the medium-
scale data sets. The numbers in the brackets are
the improvements over the corresponding entries in
Tables 2 and 3. The kernel type is RBF with kernel
linearization.

Data set Alg λ = 0.5λmax λ = 0.2λmax λ = 0.1λmax λ = 0.05λmax

mnist10k FISTA 61.64 52.82 26.13 25.27
gisette FISTA 40.72 24.81 30.17 20.45

Table 7: Improvement in the number of iter-
ations with multi-scale FISTA on mnist10k and
gisette. The number in the table are computed as
(no. iters multi-scale FISTA / no. iters original
FISTA)×100%.

the sparsity at a much lower level than the other two meth-
ods throughout the training process (except for mnist8M).
However, for RBF kernels, CGD performed particularly bad
in terms of sparsity. FISTA and SGD-C appear to be more
consistent in sparsity performance. Another interesting ob-
servation here is that CGD always started with a very low
sparsity level (very few non-zero entries in the solution)
and converged to a higher sparsity level, while SGD-C and
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Figure 1: Objective values against training time for
RBF kernels with linearization. λ = 0.2λmax for the
plots of medium-scale data. λ = 0.001λmax for cod-
rna, and λ = 0.1λmax for mnist8M.
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Figure 2: Sparsity against Training time for RBF
kernels with linearization. λ = 0.2λmax for the plots
of medium-scale data. λ = 0.001λmax for cod-rna, and
λ = 0.1λmax for mnist8M.

FISTA did exactly the opposite.

The three algorithms have generally yielded similar results in
terms of prediction accuracy. The deterministic algorithms
have a slight edge in that aspect because of the optimality
guarantee upon termination. These observations are evident
from Tables 2, 3, 5, and Figures 3 and 4.

Figures 3 and 4 illustrate the effect of the regularization
parameter λ on the training time, prediction accuracy, and
sparsity. The general trend for all three algorithms is that
as λ increases, we need less training time and obtain better
sparsity with the price of a decreasing accuracy. The de-
crease in training time, i.e. faster convergence for a larger λ
was discussed in [6] on L1-minimization for compressed sens-
ing, and that forms the basis for the continuation scheme
mentioned in Section 4.2.3. Our observation here confirms
that it is possible to use continuation to solve SKLR too.
We also observe from the plots that a good tradeoff between
sparsity and accuracy is around 0.1λmax to 0.2λmax.

5. CONCLUSION
We have carried out a comparative study of three popular
first-order optimization algorithms on medium and large-
scale L1-regularized kernel logistic regression problems. We
have also proposed a multiple-scale extension to FISTA and
a two-stage active set training scheme, which helps improve
the prediction accuracies of the deterministic learning al-
gorithms. Through our experiments, We demonstrated the
effectiveness of kernel linearization and the computational
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Figure 3: Comparisons of prediction accu-
racy/sparsity/training time across different values
of λ for mnist10k with linearized RBF kernels. The
plots are based on Table 2.
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Figure 4: Comparisons of prediction accu-
racy/sparsity/training time across different values
of λ for gisette with linearized RBF kernels. The
plots are based on Table 3.

advantage that it brings, which makes large-scale kernel
learning highly feasible. Our observations show that while
SGD-C remains to be the most efficient algorithm for large-
scale data, the deterministic algorithms (especially CGD)
are also well-capable of handling a wide range of data with
optimality guarantee. Finally, the success of the algorithms
that we have introduced in this paper demonstrates the po-
tential and computational advantage of sparse modeling in
large-scale classification.

6. PROOF OF CONVERGENCE RATE FOR
MULTI-SCALE FISTA

In this section, we give the proof for Theorem 1. Since it’s
similar to ideas in [21], we only state the main results and
modifications made on the original proof.

F (x) = f(x) + g(x) (17)

Lemma 1. Let {xk} and {yk} be generated by multi-scaled
FISTA. Define

θk :=
1

tk

such that

xk+1 = yk + θk(θ−1
k−1 − 1)(yk − yk−1).

. If x∗ is the optimal solution of (17), then

1
θ2

k
(F (yk+1)− F (x∗)) ≤ 1

θ2
k−1

(F (yk)− F (x∗))

+L(f)
2

(‖x∗ − wk)‖2Hk
− ‖x∗ − wk+1‖2Hk

)
(18)

where

wk = yk−1 + θ−1
k−1(yk − yk−1)

‖x‖H = xT Hx

Proof. The proof is very similar to Proposition 2 of [21].
We first replace all the squared norms ‖ ·‖2 by ‖ ·‖Hk . Then
we add the function g(yk+1) to the first inequality and g(y)

to the second inequality. By using the fact
1−θk+1

θ2
k+1

≤ 1
θ2

k
and

the convexity of g(y), i.e.,

g(y) ≤ (1− θk)g(xk) + θkg(x∗)

for y = (1− θk)xk + θkx∗, we conclude that (18) is true.

We now prove Theorem 1 in the following.

Proof. Sum up (18) from 1 to k, we have the following

1
θ2

k
(F (yk)− F (x∗)) ≤ (F (y0)− F (x∗))

+L(f)
2
‖x∗ − x0‖2H0

(19)

We use the relation Hk −Hk+1 Â 0 to achieve the last term
in (19) since

‖x∗ − wk‖Hk−1 − ‖x∗ − wk‖Hk = ‖x∗ − wk‖Hk−1−Hk ≥ 0

It’s not hard to verify that θk ≤ 2
k+2

, therefore by multiply-

ing both sides by θ2
k, we have

F (yk)− F (x∗) ≤ C/(k + 2)2

where C = 4(F (y0)− F (x∗)) + 2L(f)‖x∗ − y0‖2H0 .
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