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ABSTRACT

Importance sampling (IS) is a powerful tool for rare-event estimation. However, in many settings, we need
to estimate not only the performance expectation but also its gradient. In this paper, we build a bridge
from the IS for rare-event estimation to gradient estimation. We establish that, for a class of problems, an
efficient IS sampler for estimating the probability of the underlying rare event is also efficient for estimating
gradients of expectations over the same rare-event set. We show that both the infinitesimal perturbation
analysis and the likelihood ratio estimators can be studied under the proposed framework. We use two
numerical examples to validate our findings.

1 INTRODUCTION

Gradient estimation for the performance of stochastic systems is an important topic in simulation analysis,
which naturally appears in many problems of interest. A prime example is to solve stochastic optimization
problems, such as in simulation-based optimization or empirical risk minimization in machine learning. In
these contexts, gradient estimation is used in each iteration of the gradient descent or stochastic approximation
algorithm. In addition to optimization, gradient estimation arises in model sensitivity analysis, hedging
financial derivatives, among other applications.

Many gradient estimation methods have been proposed (see Fu (2006) for a thorough introduction).
If we do not have any information about the system, i.e., the model is “black-box” or that we are in
a “zeroth-order” setting, finite-difference approximation is commonly used to estimate gradients. This
approach perturbs the value of each component of the parameter of interest (see Glynn (1989), Fox and
Glynn (1989), and Section 5.2.1 in Fu (2006)). If we know some information about the simulation model
structure or the input probability distribution, then we can devise unbiased or “first-order” estimators. In
particular, infinitesimal perturbation analysis (IPA) or pathwise differentiation, and the likelihood ratio
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(LR) or the score function (SF) method, and their variants, have been commonly used. These methods
operate by interchanging the derivative and expectation operations. IPA, introduced by Ho and Cao (1983),
takes derivative of the sample performance directly, and requires the continuity of the sample performance
(Glasserman (1988)). To handle discontinuities, smoothed perturbation analysis is proposed to smooth the
sample performance by taking a conditional expectation (see Fu and Hu (1997)). The LR or SF method,
proposed by Reiman and Weiss (1989), Rubinstein (1989) and Glynn (1990), takes derivatives of parameters
inside the input distribution and requires the continuity therein (L’Ecuyer (1990)). While the LR estimator
does not require smoothness of the sample performance, it typically have larger variances than those of
IPA. Improvements and complements of the IPA and the LR method include kernel methods (Liu and
Hong (2011)), weak derivatives (Pflug (1989); Heidergott et al. (2010)), and the generalized likelihood
ratio method (Wang et al. (2012); Peng et al. (2018)).

In this paper, we study gradient estimation where the performance is evaluated on a rare-event region.
This problem arises in optimization or sensitivity analysis over tail-related quantities, which appears when
training risk-averse predictive models or conducting performance analyses on extremal risk measures (He
et al. (2022)). In these settings, estimation based on crude Monte Carlo (MC), even just for expectation
evaluations, would be inefficient, because a prohibitively large sample size is required to ensure the rare
event is observed sufficiently adequately. Statistically, this inefficiency manifests as a huge estimation
variance. To address this challenge, variance reduction techniques such as importance sampling (IS), are
known to be powerful in enhancing efficiency. The idea of IS is to draw samples from an alternative
distribution that hits the rare event more frequently and adjusts the estimator with a likelihood ratio to
retain unbiasedness. When the alternative distribution is properly chosen, IS can significantly reduce the
variance of the estimation. Selecting a good alternative distribution has been the key of IS and has been
extensively studied (see, e.g., the surveys Bucklew (2004), Juneja and Shahabuddin (2006), Blanchet and
Lam (2012)).

Despite a vast literature on the application of IS to rare-event estimation problems, there are few
studies on using IS for gradient estimation problems that involve rare events which, as mentioned above,
nonetheless arises in risk-averse model training and performance analysis. In this paper, we study rare-event
gradient estimation by looking at a class of problems that generically arise in this context. More concretely,
we consider estimating the expectation of an objective function that is piecewise polynomial, evaluated
on a rare event that is defined as the excursion of a piecewise linear function applied on a random object.
Under suitable conditions, this objective function can result from both the IPA and the LR or SF methods
in estimating the gradients of rare-event probabilities or related risk quantities. We show that in the specific
case of Gaussian inputs, the IS based on Gaussian mixture designed for the estimation of the underlying
rare-event probability is also efficient for the estimation of the more general objective function. This
suggests that once we obtain an efficient sampler for the rare-event probability, the same sampler could be
used for a wide class of gradient estimation problems on the same rare-event set. Our result thus facilitates
the design of rare-event gradient estimators by identifying a readily obtainable efficient IS. Although our
results only focus on Gaussian inputs, similar theories are conjectured to hold for more general light-tailed
distributions which we relegate to a full journal version of this work.

We briefly review other studies on variance reduction techniques for gradient estimation. The most
relevant work we have seen is Nakayama (1995), which studies the gradients on the performances of highly
reliable Markovian systems. It is shown that when applying a type of IS called “balanced failure biasing”,
all gradients can be estimated as accurately as the performance measure itself. Our study can be viewed
as a generalization of this observation. Besides Nakayama (1995), control variates have been applied in
stochastic gradient descent algorithms to reduce the variance of the gradient estimate and improve the
convergence rates of the algorithms (see Wang et al. (2013) and Driggs et al. (2022)). For empirical risk
minimization problems, stochastic variance reduced gradient (SVRG) was proposed, which progressively
reduces the variance using the averaged gradient at an estimated optimal solution. To save computational
cost, the estimated optimal solution is updated only periodically (Johnson and Zhang (2013); Xiao and
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Zhang (2014)). Another work on variance reduction in empirical risk minimization is Zhao and Zhang
(2015), which uses IS to select the data when running stochastic gradient descent. However, as mentioned
before, there are few works on IS to reduce the variance of the gradient estimator with rare events, even
though IS has been extensively studied in estimating a rare-event probability or its related expectation.

The remainder of this paper is organized as follows: Section 2 introduces our problem class and the
proposed IS for gradient estimation, and shows the efficiency of the proposed IS. In Section 3, we use two
numerical examples to show the efficiency of the mixture IS in the estimation of both rare-event expectation
and gradient. Finally, Section 4 provides concluding remarks.

2 IMPORTANCE SAMPLING FOR GRADIENT ESTIMATION

As we will show momentarily, a class of gradients derived using either IPA or LR can be formulated as

E [ f (X)1{g(X)≥ γ}] , (1)

where {g(X)≥ γ} represents a rare event. We impose the following assumption regarding the underlying
distribution, the function f and the structure of the rare event.
Assumption 1 X ∼ N(µ,Σ) for some µ ∈ Rd and Σ ∈ Rd×d . f (·) is a piecewise polynomial and g(·)
is a piecewise linear function such that we can split {g(x) ≥ γ} into n mutually exclusive polyhedrons
{A(i)x+ b(i) ≥ t(i)}(i = 1, · · · ,n) and f (x) = fi(x) over polyhedron {A(i)x+ b(i) ≥ t(i)}, where f (i)(·) is
a polynomial function. Moreover, for any i = 1,2, . . . ,n, {A(i)x+ b(i) ≥ t(i)} is full-dimensional, i.e.,
P({A(i)X +b(i) ≥ t(i)})> 0 where X ∼ N(µ,Σ).

We show that a class of IPA and LR can be formulated as (1) such that Assumption 1 holds.
Example 1 (IPA) Suppose we are interested in the gradient of E [ f (X ,θ)1{g(X)≥ γ}] w.r.t. θ , where
X ∼ N(µ,Σ) and f (x,θ) is a piecewise polynomial function of x whose coefficients are determined by θ .
Then we have that

∂

∂θ
E [ f (X ,θ)1{g(X)≥ γ}] = E

[
∂

∂θ
f (X ,θ)1{g(X)≥ γ}

]
,

which has the form of (1).
Example 2 (LR) Suppose we are interested in the gradient ∂

∂θ
Eθ [ f (X)1{g(X)≥ γ}]where X ∼N(µ(θ),Σ).

Using LR and noting that
∂

∂θ
log pθ (X) =

∂

∂θ
µ(θ)>Σ

−1(X−µ(θ)),

where pθ (X) is the density of N(µ(θ),Σ), we have

∂

∂θ
Eθ [ f (X)1{g(X)≥ γ}] = Eθ

[(
∂

∂θ
µ(θ)>Σ

−1(X−µ(θ))

)
f (X)1{g(X)≥ γ}

]
.

If f is a piecewise polynomial, then the function
(

∂

∂θ
µ(θ)>Σ−1(X−µ(θ))

)
f (X) is also a piecewise

polynomial. Therefore, the LR estimator can also be written as the form of (1).
For the estimation of the probability P(g(X) ≥ γ), an efficient sampler is given in Bai et al. (2022),

which is described as follows. For each i = 1,2, . . . ,n, let x∗i denote the minimizer of (x−µ)>Σ−1(x−µ)

over the polyhedron {A(i)X +b(i) ≥ t(i)}. The proposed sampler is a Gaussian mixture whose density is

p(x) =
1
n

n

∑
i=1

pi(x) (2)
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where pi(x) is the density of N (x∗i ,Σ). The associated likelihood ratio is given by

L(x) =
ne−

1
2 (x−µ)TΣ−1(x−µ)

e−
1
2 (x−x∗1)

TΣ−1(x−x∗1)+ · · ·+ e−
1
2 (x−x∗n)TΣ−1(x−x∗n)

.

We propose to use the same sampler for the problem (1). Therefore, the proposed estimator for (1) is
given by

f (X̃)L(X̃)1{g(X̃)≥ γ},

where X̃ ∼ p(·). We will show that the proposed estimator is efficient. Typically, for rare-event estimation
problems, the efficiency is defined relative to the mean of the estimator. However, since we are looking at
gradient estimation problems, usually we do not have f > 0 in (1), so it might happen that the mean is
extremely small due to the cancellation between the positive parts of f and the negative parts of f . For
this reason, we use the rare-event probability as the benchmark. This benchmark is reasonable, although
its usefulness would depend on the nature of the downstream tasks in consideration. More precisely, we
have the following theorem.
Theorem 1 Suppose that Assumption 1 holds. Let X̃ be a sample drawn from p(·) as defined in (2) and
X ∼ N(µ,Σ). Then we have that

E
[

f (X̃)2L2(X̃)1{g(X̃)≥ γ}
]

(P(g(X)≥ γ))2 (3)

does not grow exponentially as γ → ∞.

Proof. Without loss of generality, throughout the proof we suppose that µ = 0. Under Assumption 1,
the expectation in (1) can be written as

n

∑
i=1

E
[

fi(X)1{A(i)X +b(i) ≥ t(i)}
]
.

For each i = 1,2, . . . ,n, let N(x∗i ) = {‖x−x∗i ‖2 ≤ ε} denote a neighborhood of x∗i . Since {A(i)x+b(i) ≥ t(i)}
is full-dimensional, by introducing redundant constraints, we may find a full-rank B(i) and a vector s(i)

such that {A(i)x+b(i) ≥ t(i)} ⊂ {B(i)x≥ s(i)} and when ε is sufficiently small,

N(x∗i )∩{A(i)x+b(i) ≥ t(i)}= N(x∗i )∩{B(i)x≥ s(i)}.

See Lemma 7.2 and Lemma 7.1 of Bai et al. (2022) for more details on the construction of B(i) and s(i).
From Lemma 7.2 of Bai et al. (2022), we have that

P({A(i)X +b(i) ≥ t(i)}) poly∼ e−
1
2 x∗>i Σ−1x∗i (4)

where f1(γ)
poly∼ f2(γ) if f1(γ)/ f2(γ) changes at most polynomially in γ .

The second moment of the estimator can be written as

E[( f (X̃))21{g(X̃)≥ γ}L2(X̃)] = E[( f (X))21{(g(X)≥ γ}L(X)] =
n

∑
i=1

E[( fi(X))2L(X)1{A(i)X +b(i) ≥ t(i)}].

For each i, we are going to give an upper bound of E[( fi(X))2L(X)1{A(i)X +b(i)} ≥ t(i)]. We know
that

L(x)≤ ne−
1
2 xTΣ−1x

e−
1
2 (x−x∗i )TΣ−1(x−x∗i )

= ne
1
2 x∗>i Σ−1x∗i−xTΣ−1x∗i .
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We omit the index i in A(i),B(i),b(i),s(i),x∗i from now on for convenience. Let φΣ(x) denote the density of
N(0,Σ). Using the above inequality, we have that

E[( fi(X))2L(X)1{AX +b≥ t}]≤ E[( fi(X))2L(X)1{BX ≥ s}] =
∫
{Bx≥s}

( fi(X))2L(x)φΣ(x)dx

≤
∫
{Bx≥s}

ne
1
2 x∗>Σ−1x∗−xTΣ−1x∗( fi(x))2

φΣ(x)dx

=n
(

1
2π|Σ|

) d
2
∫
{Bx≥s}

( fi(x))2e−
1
2 (x−x∗)TΣ−1(x−x∗)−(x−x∗)TΣ−1x∗−xTΣ−1x∗dx

=n
(

1
2π|Σ|

) d
2

e−x∗>Σ−1x∗
∫
{Bx≥s}

( fi(x))2e−
1
2 (x−x∗)TΣ−1(x−x∗)−2(x−x∗)TΣ−1x∗dx

≤n
(

1
2π|Σ|

) d
2

e−x∗>Σ−1x∗
∫
{Bx≥s}

( fi(x))2e−
1
2 (x−x∗)TΣ−1(x−x∗)dx

≤n
1
|B|

(
1

2π|Σ|

) d
2

e−x∗>Σ−1x∗
∫
{y≥s−Bx∗}

( fi(x∗+B−1y))2e−
1
2 λminyTydy.

Here we used the substitution x = x∗+B−1y in the last step and λmin is the minimum eigenvalue of
(B−1)>Σ−1B−1. Since fi is a polynomial,

∫
{y≥s−Bx∗}( fi(x∗+B−1y))2e−

1
2 λminyTydy can be bounded from

above by a polynomial of absolute values of components of x∗. Therefore, combining the above inequality
with (4), we get the desired result.

In Bai et al. (2022), the same sampler is shown to be relatively efficient for the estimation of the
probability of the rare event {g(X)≥ γ}. Combining this with Theorem 1, we observe that in this case, an
efficient sampler for the underlying rare-event probability is also efficient for the estimation of gradients of a
wide class of expectations defined on the same rare-event set that satisfies Assumption 1. A generalization
of this observation to settings beyond Assumption 1 (e.g., models with general light-tailed underlying
distributions and general performance functions) is left as future work. Another direction of our future
work is to give a tighter bound for the growth of (3) as γ grows in terms of a polynomial whose degree
and coefficients are determined by model parameters.

In many applications, we want the gradient of expectations of positive functions. An example is
expected loss which is typically positive over the entire region in consideration. In this case, with Theorem
1, we can also show relative efficiency using the expectation before taking derivative as the benchmark.
Corollary 2 (IPA) In Example 1, if f (x,θ)> 0 for all x ∈Rd and Assumption 1 holds when the problem
is formulated as (1), then we have

E
[(

∂

∂θ
f (X̃ ,θ)

)2
L2(X̃)1{g(X̃)≥ γ}

]
(
E
[

f (X̃ ,θ)L(X̃)1{g(X̃)≥ γ}
])2

does not grow exponentially as γ → ∞.
Corollary 3 (LR) In Example 2, suppose that f (x)> 0 for all x ∈ Rd and Assumption 1 holds when the
problem is formulated as (1). Let X̃ be a sample drawn from p(·) as defined in (2) with µ = µ(θ), then
we have

E
[(

∂

∂θ
µ(θ)>Σ−1(X̃−µ(θ)) f (X̃)

)2
L2(X̃)1{g(X̃)≥ γ}

]
(
E
[

f (X̃)L(X̃)1{g(X̃)≥ γ}
])2

does not grow exponentially as γ → ∞.
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3 NUMERICAL EXPERIMENTS

In this section, we consider two toy examples and a finance example (pricing a basket option and its delta) to
demonstrate the effectiveness of the IS approach in both the performance function and gradient estimation.

3.1 Toy Examples

In the first toy example, we verify the effectiveness of IS for IPA. Suppose that X = (X1,X2)
> ∼ N(0, I2)

where I2 is the 2×2 identity matrix. The performance function is

f (X ,θ) = θ
2X2

1 +X2
2 +0.01,

and the constraint function is
g(X) = max{2X1 +X2,X2 +2X2} . (5)

We would like to estimate E[ f (X ,θ)1{g(X)≥ γ}]. Specifically, we set γ = 7 and θ = 2, and use the IPA
estimator given by 2θX2

1 1{g(X)≥ γ}.
According to (2) and (5), we obtain x∗1 = (1.4,2.8)> and x∗2 = (2.8,1.4)>. Therefore, the IS distribution

is a mixture of N(x∗1, I2) with probability 50% and N(x∗2, I2) with probability 50%. For sample size from
1000 to 500000, Table 1 shows that the proposed mixture IS works well both for the performance and

Table 1: Means, variances, and variance reduction ratios of performance and gradient estimation (IPA) for
MC and IS in the first toy example (true performance and gradient are 4.72E-02 and 3.78E-02, respectively)

Size
Performance Gradient

IS MC IS MC
mean variance mean variance ratio mean variance mean variance ratio

1000 4.70E-02 8.31E-06 4.89E-02 1.92E-03 231.3 3.77E-02 7.04E-06 3.88E-02 1.51E-03 214.1
2000 4.72E-02 3.94E-06 5.03E-02 9.14E-04 231.7 3.78E-02 3.53E-06 4.02E-02 7.36E-04 208.8
5000 4.72E-02 2.01E-06 4.82E-02 3.35E-04 166.4 3.77E-02 1.74E-06 3.89E-02 2.84E-04 163.4
10000 4.71E-02 8.28E-07 4.60E-02 1.82E-04 219.8 3.77E-02 7.40E-07 3.66E-02 1.48E-04 200.0
20000 4.72E-02 4.51E-07 4.73E-02 7.58E-05 168.0 3.77E-02 3.88E-07 3.79E-02 6.35E-05 163.5
50000 4.72E-02 1.44E-07 4.71E-02 3.97E-05 274.7 3.78E-02 1.30E-07 3.79E-02 3.43E-05 263.2
100000 4.72E-02 7.72E-08 4.73E-02 1.83E-05 236.5 3.77E-02 7.14E-08 3.79E-02 1.45E-05 203.5
200000 4.72E-02 5.33E-08 4.69E-02 9.61E-06 180.2 3.78E-02 4.55E-08 3.75E-02 8.11E-06 178.1
500000 4.72E-02 1.61E-08 4.72E-02 3.66E-06 227.8 3.78E-02 1.38E-08 3.78E-02 2.89E-06 209.2

gradient estimation (via IPA). For example, when the sample size is 500000, the variance reduction ratios
for performance and gradient estimation are 227.8 and 209.2, respectively. When the sample size is small,
e.g., less than 10000, the IS for both performance and gradient estimation has a good accuracy, while
classical MC does not.

Furthermore, we change the rare-event parameter γ from 4 to 11 with sample size 100000, and calculate
the efficiency ratios of performance estimation and gradient estimation, which are given by

Var( f (X ,θ)1{g(X)≥ γ})
(E[ f (X ,θ)1{g(X)≥ γ}])2 and

Var
(

∂

∂θ
f (X ,θ)1{g(X)≥ γ}

)
(E[ f (X ,θ)1{g(X)≥ γ}])2 , (6)

respectively, for classical MC, and

Var
(

f (X̃ ,θ)L(X̃)1{g(X̃)≥ γ}
)(

E[ f (X̃ ,θ)L(X̃)1{g(X̃)≥ γ}]
)2 and

Var
(

∂

∂θ
f (X̃ ,θ)L(X̃)1{g(X̃)≥ γ}

)
(
E[ f (X̃ ,θ)L(X̃)1{g(X̃)≥ γ}]

)2 , (7)

respectively, for IS. The results are shown in Table 2, which indicates that, as γ increases, the efficiency
ratios of performance and gradient estimation will blow up for MC, while they grow very slowly for IS.



Bai, He, Lam, Jiang, and Fu

Table 2: Efficiency ratios in the first toy example (sample size 105)

γ 4 5 6 7 8 9 10 11

Objective
IS 2.31E+00 2.53E+00 3.19E+00 3.88E+00 3.72E+00 4.91E+00 5.10E+00 6.32E+00
MC 2.08E+01 5.56E+01 2.07E+02 8.18E+02 3.63E+03 1.97E+04 1.35E+05 9.72E+05

Gradient
IS 2.18E+00 2.37E+00 2.80E+00 3.54E+00 3.08E+00 4.14E+00 4.26E+00 5.17E+00
MC 1.79E+01 4.73E+01 1.64E+02 6.46E+02 2.95E+03 1.66E+04 1.08E+05 7.61E+05

In the second toy example, we verify the effectiveness of IS for LR. Suppose that the performance
function is

f (X) = X2
1 +X2

2 +0.01,

where X = (X1,X2)∼ N([θ ,0]>, I2). The constraint function is the same as (5). Specifically, we set γ = 7
and θ = 0, and the LR estimator is given by f (X)(X1−θ)1{g(X)≥ γ}.

Similar to the first toy example, we vary the sample size from 1000 to 500000 with γ = 7 and vary the
rare-event parameter γ from 4 to 11 with sample size 100000, respectively, to obtain Tables 3 and 4. From
these tables, we observe the similar results as in the first toy example: The mixture IS works well for both
the performance and gradient estimation (via LR). As the rare-event parameter grows, the efficiency ratios
of performance and gradient estimation for IS grow very slowly, while they blow up for classical MC.

Table 3: Means, variances, and variance reduction ratios of performance and gradient estimation (LR) for
MC and IS in the second toy example (true objective and gradient is 1.89E-02 and 4.25E-02, respectively)

Size
Objective Gradient

IS MC IS MC
mean variance mean variance ratio mean variance mean variance ratio

1000 1.89E-02 1.10E-06 1.76E-02 2.28E-04 207.9 4.25E-02 7.13E-06 3.97E-02 1.33E-03 186.5
2000 1.89E-02 5.07E-07 1.81E-02 9.74E-05 192.2 4.25E-02 3.29E-06 4.16E-02 6.82E-04 207.7
5000 1.89E-02 2.23E-07 1.88E-02 5.22E-05 234.1 4.26E-02 1.44E-06 4.24E-02 3.09E-04 214.5
10000 1.89E-02 1.17E-07 1.84E-02 2.49E-05 213.0 4.25E-02 7.19E-07 4.13E-02 1.72E-04 238.5
20000 1.89E-02 5.29E-08 1.92E-02 1.14E-05 214.6 4.25E-02 3.70E-07 4.35E-02 8.48E-05 229.2
50000 1.89E-02 2.17E-08 1.88E-02 4.46E-06 206.1 4.25E-02 1.39E-07 4.21E-02 2.90E-05 209.3
100000 1.89E-02 1.29E-08 1.90E-02 2.32E-06 180.6 4.25E-02 7.88E-08 4.25E-02 1.60E-05 203.0
200000 1.89E-02 5.43E-09 1.89E-02 1.40E-06 257.7 4.25E-02 3.85E-08 4.26E-02 9.30E-06 241.7
500000 1.89E-02 1.91E-09 1.88E-02 4.31E-07 226.1 4.25E-02 1.24E-08 4.25E-02 3.46E-06 278.7

Table 4: Efficiency ratios in the second toy example (sample size 105)

γ 4 5 6 7 8 9 10 11

Objective
IS 1.62E+00 1.94E+00 2.51E+00 2.85E+00 3.87E+00 4.68E+00 4.06E+00 6.29E+00
MC 1.82E+01 5.13E+01 1.57E+02 7.54E+02 3.17E+03 1.57E+04 1.52E+05 1.29E+06

Gradient
IS 5.12E+00 8.90E+00 1.30E+00 1.86E+01 2.97E+01 4.43E+01 4.16E+01 7.90E+01
MC 8.17E+01 2.42E+02 7.50E+02 4.98E+03 2.58E+04 1.69E+05 1.67E+06 1.92E+07

3.2 Basket Option

In this example, we estimate the price of a basket option and its delta, i.e., the partial derivative of the
option price w.r.t. the underlying asset prices. Suppose that there is a basket option with two underlying
assets, which are driven by geometric Brownian motions S1(t) and S2(t), i.e.,

Si(T ) = Si(0)exp
(
(r− 1

2
σ

2
i )T +σiWi(T )

)
= Si(0)exp

(
(r− 1

2
σ

2
i )T +σi

√
T Xi

)
, (8)
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where Si(T ) is the price of underlying asset i at time T , r is the risk-free interest rate, σi is the volatility of asset i,
and Wi(t), i= 1,2 are standard Brownian motions, which are mutually independent, i.e., (X1,X2)

>∼N(0, I2).
Let X = (X1,X2)

> and S(T ) = (S1(T ),S2(T ))>.
We consider a geometric-average basket option with strike price K, i.e., the payoff function is

V (S(T ),K) =

( 2

∏
i=1

Si(T )

) 1
2

−K

1


(

2

∏
i=1

Si(T )

) 1
2

≥ K

 . (9)

The performance function of interest is E[V (S(T ),K)]. When K is large, {
(
∏

2
i=1 Si(T )

)1/2 ≥ K} is a
rare-event set, and can be reformulated as(

2

∏
i=1

Si(T )

) 1
2

=

(
2

∏
i=1

Si(0)exp
(
(r− 1

2
σ

2
i )T +σi

√
T Xi

)) 1
2

= (S1(0)S2(0))
1
2 exp

((
r− σ2

1 +σ2
2

4

)
T +

1
2

√
T (σ1X1 +σ2X2)

)
≥ K.

Therefore, setting

g(X),
1
2

√
T σ
>X +

1
2
(logS1(0)+ logS2(0))+

(
r− σ2

1 +σ2
2

4

)
T,

where σ = (σ1,σ2)
>, the rare event can be written as {g(X)≥ logK}. Note that g(X) is a linear function.

The objective function in (9) is given in terms of X as(
2

∏
i=1

Si(T )

) 1
2

−K = (S1(0)S2(0))
1
2 exp

((
r− σ2

1 +σ2
2

4

)
T +

1
2

√
T (σ>X)

)
−K. (10)

We note that the above is exponential in X and is thus heavy-tailed, which does not satisfy Assumption
1. But when K is not too large, we expect that a Taylor series expansion could approximate the original
objective function reasonably well. This approximation is heuristic, but from the numerical examples as
we will show, the approximated objective is quite close to the original quantity. More specifically, let
β , (S1(0)S2(0))

1/2 exp
((

r− (σ2
1 +σ2

2 )/4
)

T
)
. Then the payoff function in (9) can be approximated by a

l-th order Taylor series expansion:(
2

∏
i=1

Si(T )

) 1
2

−K = (S1(0)S2(0))
1
2 exp

((
r− σ2

1 +σ2
2

4

)
T +

1
2

√
T (σ1X1 +σ2X2)

)
−K

= β exp
(

1
2

√
T σ
>X
)
−K

≈ β −K +β

(
1
2

√
T σ
>X +

1
222!

T (σ>X)2 + · · ·+ 1
2ll!

T
l
2 (σ>X)l

)
, f (X). (11)

Furthermore, letting A =
√

T σ/2, b = (logS1(0)+ logS2(0))/2+
(
r− (σ2

1 +σ2
2 )/4

)
T , and t = logK, then

the price of the basket option (without discount factor) can be approximated by

E

( 2

∏
i=1

Si(T )

) 1
2

−K

1


(

2

∏
i=1

Si(T )

) 1
2

≥ K


≈ E[ f (X)1{A>X +b≥ t}

]
.
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Note that the RHS above has the form of (1), which satisfies Assumption 1. Therefore, the IS distribution
is chosen as N(x∗, I2), where x∗ is the minimizer of ‖x‖2 over polyhedron {AX +b≥ t} given by

x∗ =
t−b
‖A‖2 A. (12)

Using this IS distribution, we would sample X̃ = (X̃1, X̃2)
> ∼ N(x∗, I2). Then we can compute S̃i(T ),

which is the counterpart of Si(T ) driven by the normal random variable X̃i based on (8). Let L(X̃) be the
likelihood ratio. We have that

E[V (S(T ),K)]≈ E[ f (X)1{g(X)≥} logK] = E[ f (X̃)1
{

g(X̃)≥ logK
}

L(X̃)].

Gradient Estimation

For gradient estimation, we use the IPA to derive the delta estimator. We consider both the original objective
function given in (9) and the approximated function given in (11). For the original objective function, the
IPA estimator of the delta with respect to Si(0) is

1
2Si(0)

(
2

∏
i=1

Si(T )

) 1
2

1{g(X)≥ logK} ,

and the IPA estimator with IS is

1
2Si(0)

(
2

∏
i=1

S̃i(T )

) 1
2

1
{

g(X̃)≥ logK
}

L(X̃).

For the approximated function (11), the IPA estimator for classical MC is

1
2Si(0)

( f (X)+K)1{g(X)≥ logK} ,

and the IPA estimator with IS is

1
2Si(0)

(
f (X̃)+K

)
1
{

g(X̃)≥ logK
}

L(X̃).

Simulation Results

We investigate the variance reduction effects both for the approximated objective function (11) that satisfies
the polynomial setting in the paper and the original exponential objective function (10) that does not
satisfy the piece-wise polynomial setting. Let S1(0) = 50, S2(0) = 60, σ1 = 0.2, σ2 = 0.15, T = 0.1, and
K = 60. For the approximated objective function (11), we set l = 4, i.e., we use a fourth-order Taylor
series expansion (a fourth-order polynomial) to approximate the true objective function. We vary the total
simulation budget from 1000 to 500000, and obtain the following tables.

From Tables 5 and 6, we observe the following: (i) The fourth-order polynomial is quite accurate in
approximating the original exponential objective function and also works in the delta estimation. In Table
5, the price means of IS for the fourth-order polynomial approximation are all about 8.90E-03, which is
the true price according to the Black-Scholes formula. And the price means of MC for the fourth-order
polynomial approximation are also about 8.90E-03 when the sample size is larger than 100000. Similar
results can be found in Table 6. The means of the delta derived by IPA based on the fourth-order polynomial
are close to 6.59E-03, the true delta with respect to S1(0). (ii) Even though the IS parameter (12) is designed
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Table 5: Means, variances, and variance reduction ratios of option prices for MC and IS with the fourth-order
polynomial approximation and the true objective function (true price is 8.90E-03)

Size
Fourth-order polynomial approximation True objective function

IS MC IS MC
mean variance mean variance ratio mean variance mean variance ratio

1000 8.93E-03 1.15E-07 8.54E-03 1.26E-05 109.4 8.88E-03 1.07E-07 9.20E-03 1.55E-05 145.7
2000 8.90E-03 5.82E-08 8.88E-03 5.76E-06 98.8 8.90E-03 4.51E-08 9.12E-03 8.33E-06 184.8
5000 8.91E-03 2.13E-08 8.94E-03 3.25E-06 152.5 8.89E-03 2.16E-08 8.92E-03 3.42E-06 158.1
10000 8.90E-03 1.26E-08 8.93E-03 1.08E-06 85.6 8.90E-03 1.02E-08 8.87E-03 1.16E-06 113.7
20000 8.89E-03 5.93E-09 8.80E-03 6.70E-07 113.0 8.90E-03 5.90E-09 8.87E-03 6.57E-07 111.3
50000 8.90E-03 2.03E-09 8.84E-03 2.65E-07 130.6 8.90E-03 1.94E-09 8.97E-03 2.92E-07 150.3
100000 8.90E-03 1.22E-09 8.92E-03 1.36E-07 111.3 8.90E-03 1.26E-09 8.92E-03 1.45E-07 114.8
200000 8.90E-03 5.05E-10 8.91E-03 5.91E-08 117.0 8.90E-03 4.82E-10 8.92E-03 7.35E-08 152.5
500000 8.90E-03 2.01E-10 8.91E-03 2.73E-08 135.7 8.90E-03 2.25E-10 8.92E-03 2.68E-08 119.2

Table 6: Means, variances, and variance reduction ratios of deltas with respect to S1(0) for MC and IS
with the fourth-order polynomial approximation and the true objective function (true delta with respect to
S1(0) is 6.59E-03)

Size
Delta for polynomial approximation Delta for true objective function
IS MC IS MC

mean variance mean variance ratio mean variance mean variance ratio

1000 6.55E-03 1.16E-07 6.41E-03 3.46E-06 29.8 6.61E-03 1.08E-07 6.81E-03 3.66E-06 33.8
2000 6.59E-03 5.88E-08 6.54E-03 1.72E-06 29.3 6.57E-03 5.63E-08 6.64E-03 2.21E-06 39.3
5000 6.58E-03 2.36E-08 6.68E-03 9.35E-07 39.6 6.59E-03 2.24E-08 6.58E-03 9.52E-07 42.6
10000 6.59E-03 1.28E-08 6.59E-03 3.68E-07 28.8 6.59E-03 1.27E-08 6.56E-03 3.62E-07 28.6
20000 6.58E-03 5.91E-09 6.56E-03 1.72E-07 29.1 6.59E-03 6.70E-09 6.57E-03 1.84E-07 27.5
50000 6.59E-03 2.08E-09 6.58E-03 7.40E-08 35.5 6.59E-03 2.03E-09 6.63E-03 7.64E-08 37.7
100000 6.59E-03 1.24E-09 6.61E-03 4.07E-08 32.7 6.59E-03 1.13E-09 6.59E-03 4.04E-08 35.8
200000 6.60E-03 4.49E-10 6.60E-03 2.11E-08 47.1 6.59E-03 6.04E-10 6.61E-03 1.96E-08 32.4
500000 6.59E-03 2.30E-10 6.60E-03 8.38E-09 36.4 6.59E-03 2.39E-10 6.59E-03 7.09E-09 29.6

for the polynomial function, it also works for the original exponential objective function. For example,
in Table 5, when the sample size is 200000, the variance reduction ratio for the fourth-order polynomial
approximation is 117.0, while the variance reduction ratio for the true objective function is 152.5. (iii)
The proposed IS parameter (12) works well for both the price estimation (objective estimation) and delta
estimation (gradient estimation). As seen in the tables, when the sample size is small (1000 to 20000), the
IS method has good accuracy but the MC does not. The variance reduction ratios for the price estimation
and delta estimation are about 100 and 30, respectively.

Next, we change K from 58 to 70, so that {g(X)≥ logK} becomes rarer, and we use the efficiency ratios
defined in (6) and (7) to measure the efficiency of the price and delta estimation. Let the sample size be 107.
Then we obtain Tables 7 and 8. From the tables, we can see that for both the approximated fourth-order

Table 7: Efficiency ratios for IS and MC in price estimation (sample size 107)

K 58 60 62 64 66 68 70

IS
Approximated 1.14E+00 1.27E+00 1.71E+00 2.20E+00 2.28E+00 2.99E+00 3.63E+00
True objective 1.14E+00 1.27E+00 1.84E+00 1.94E+00 2.28E+00 3.04E+00 3.62E+00

MC
Approximated 2.60E+01 1.73E+02 2.11E+03 4.62E+04 1.62E+06 8.42E+07 6.38E+10
True objective 2.60E+01 1.73E+02 2.14E+03 4.63E+04 1.62E+06 8.71E+07 6.37E+10
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Table 8: Efficiency ratios for IS and MC in delta estimation (sample size 107)

K 58 60 62 64 66 68 70

IS
approximated 5.49E-01 1.18E+00 2.74E+00 5.04E+00 7.82E+00 1.27E+01 1.83E+01
True objective 5.49E-01 1.18E+00 2.82E+00 4.67E+00 7.81E+00 1.36E+01 1.83E+01

MC
approximated 4.74E+00 4.94E+01 9.66E+02 2.90E+04 1.27E+06 8.51E+07 1.64E+10
True objective 4.74E+00 4.94E+01 1.16E+03 2.68E+04 1.27E+06 8.11E+07 1.63E+10

polynomial function and the original exponential objective function, as the rare-event parameter becomes
larger, the efficiency ratios when using IS do not grow significantly, whereas the efficiency ratios grow
very fast when using classical MC.

4 CONCLUSION

This paper studies importance sampling for stochastic gradient estimation involving rare events. We develop
theoretical results to show that, for a class of problems, an efficient IS mixture sampler for estimating
the probability of the underlying rare event will also be efficient for gradient estimations of a wide class
of performance measures defined on the same rare-event set. Several simulation examples, including a
financial derivatives example, are provided and support the theory.
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