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Abstract

I study a model of regime change in which the government can communicate

with different levels of precision as a function of the underlying fundamentals. In

the model, higher precision of communication corresponds to a lower dispersion

of private information among market participants. I compare a policy of an

uncommitted government, which chooses the precision of communication after it

learns the realization of fundamentals, to a policy of a committed government,

which commits to a state-dependent policy before it learns the realization of

fundamentals. I find that an uncommitted government communicates imprecisely

for weak fundamentals and precisely for strong fundamentals. In contrast, a

committed government communicates precisely for weak fundamentals and

imprecisely for strong fundamentals. Consequently, a committed government

saves its regime more often than an uncommitted one. An uncommitted gov-

ernment can benefit from a rule that enforces constant precision of communication.
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1 Introduction

Policymakers sometimes make statements that are precise and at other times make

statements that are vague. Moreover, policymakers can choose the level of precision of

their statements based on the information they are communicating, and they are often

precise when they are in a strong position, but vague when they are in a weak position.

For example, the Mexican government was forthcoming about the size of its foreign

currency reserves when they were growing between 1990 and early 1994. When the risk of

a speculative currency attack arose in Mexico in March 1994, the government pronounced

that it was ready to spend $30 billion of foreign currency reserves to defend the peso

against this attack.1 In contrast, in April 1994, after reserves had declined significantly,

Mexican Finance Minister Pedro Aspe refused to disclose the level of reserves, saying

instead that “there were huge capital inflows in January and February. That portion of

Mexico’s reserves has been drawn down.”2 A week later, Aspe was even vaguer when

he characterized the level of reserves as “adequate.”3 Market participants had limited

information about the reserves and other important economic data until a series of

speculative attacks forced the government to float the peso in December 1994.4

Did the Mexican government use the best possible communication policy when it

became vaguer about the economic situation in the difficult year 1994? In this pa-

per, I explore this question in a theoretical model, and I ask the following questions.

First, how should the communication policy of a government respond to changes in eco-

nomic fundamentals? Second, to what extent does such a communication policy require

commitment? Finally, can institutionalized transparency requirements that prevent the

government from manipulating the quality of information improve welfare?

To answer these questions, I extend the global game model of Morris and Shin (2003),

1The risk of a currency attack emerged as a consequence of the killing of a presidential
candidate. See “Political Trauma: Mexicans Struggle To Cope With Shock Of Candidate’s
Killing.” The Wall Street Journal 25 March 1994.

2“Aspe says rates have topped, now declining - analyst.” Reuters News 27 April 1994.
3“Finance Secretary on back-up credit and consultation agreements with USA, Canada.”

BBC Monitoring Service: Latin America 3 May 1994.
4For a detailed discussion of the government’s management of information on foreign re-

serves, see Braun, Mukherji, and Runkle (1996). See Adler (1994), Edwards (1998), and Section
3 for additional evidence that the Mexican government decreased communication and data dis-
closure in 1994.
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which is a model used to study currency attacks, bank runs, and political revolutions.5

In this model, a continuum of agents (currency speculators) decides whether or not

to attack a regime. The payoffs of these agents depend on whether or not the regime

falls, which in turn depends on the fundamental strength (type) of the government (the

level of liquid reserves or the determination of the government) relative to the size of

the attack by all agents. These agents are informed by a private signal regarding the

fundamental strength of the government. The government’s interest is in preserving the

regime. I extend the Morris and Shin (2003) framework by allowing the government,

which observes fundamentals, to change the precision of this private signal in response

to the realization of the fundamental.6

My modeling of the precision of communication as directly related to the dispersion of

private signals is motivated by evidence from neuroscience. This evidence suggests that

the precision of a stimulus can be quantified by the induced dispersion in its perception by

human subjects.7,8 For example, in the context of public announcements, the dispersion

of perception will be lower if the government uses precise language such as “$30 billion”

instead of vaguer language such as “adequate level of reserves.”9 This modeling choice is

5For example, Morris and Shin (1998) analyze currency attacks, Morris and Shin (2004)
study debt runs, Goldstein and Pauzner (2005) analyze bank runs, and Edmond (2013) studies
political revolutions.

6In practice, the government can also bias the mean of signals that it distributes. As I discuss
in Section 2, such an action may sometimes be infeasible, as may have been the case in Mexico’s
1994-1995 crisis. Moreover, as I show in Subsection 6.2, the main results related to precision
of communication survive if the government can also bias the mean of its communication.

7Neuroscience provides evidence that human perception of a stimulus is probabilistic, with a
random element. Moreover, in experiments, neuroscientists can vary the accuracy of perception
by changing qualities of the stimulus. For example, in an experiment conducted by Stocker
and Simoncelli (2006), human subjects observed a moving object. By increasing the visual
contrast of the object, the researchers could predictably decrease the dispersion of the subjects’
perception of the object’s speeds. For additional evidence, see Yang and Stevenson (1997), Ernst
and Banks (2002), or Körding and Wolpert (2004).

8Several papers before me modeled higher quality of information distributed by policy-
makers as lower dispersion of private signals. For example, Heinemann and Illing (2002) model
higher “transparency” and Myatt and Wallace (2014) model higher “clarity of communication”
as a lower dispersion of private signals.

9Linguists have a clear understanding of the characteristics of vague language as opposed to
precise language. For example, Channell (1994) classifies vague words and phrases into several
groups that include approximations of quantities involving numbers (about 15, 3 or 4), approx-
imations of quantities with round numbers (100 instead of 98.2), nonnumerical approximations
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also supported by the Mexican experience. As Latin American Newsletters reported in

May 1994, “Reserves declined significantly, although estimates of how much vary widely

from US $ 6bn to US $ 12bn.”10

In the model, the government observes the realization of fundamentals and then

determines the precision of information that it distributes. If the information is very

precise, then all agents receive similar signals regarding the strength of the government.

In contrast, if the information is very vague, then agents receive very different signals.

Agents know that the precision of the information they are receiving is driven by the

realization of fundamentals, and they take this into account when deciding whether to

attack the regime.

In my framework, I compare the policy of an uncommitted government with the pol-

icy of a committed government. An uncommitted government chooses the precision of

its communication after it learns the realization of fundamentals to maximize the prob-

ability of saving its own regime. A committed government commits to a state-dependent

precision of communication policy before it learns the realization of fundamentals to

maximize the expected probability of regime survival over all types of the government.

Because the government varies the precision of information with the state of the

world, the agents’ posterior beliefs do not belong to the same class of distributions

as agents’ signals (and in fact do not belong to any standard class of distributions). I

make the analysis tractable by considering threshold strategies for the agents. Threshold

strategies are intuitive, as low signals correspond to weak governments and high signals

correspond to strong governments. I provide conditions under which agents choose to

use threshold strategies both under lack of commitment and under commitment. The

agents’ attack threshold serves as a sufficient statistic for agents’ beliefs, which allows

for a simple characterization of the policies of both an uncommitted and a committed

government.

I first show that an uncommitted government communicates imprecisely when it is

weak and precisely when it is strong.11 In particular, a government uses a threshold pol-

of quantities (a lot of, many), and vague references to categories (stuff like that, something).
10“Surviving the first attack; Banco de Mexico beats off devaluation.” Latin American

Newsletters 12 May 1994.
11The analysis of an uncommitted government is consistent with Edmond (2013), as I discuss

later in the introduction.
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icy and switches from the lowest available precision below the threshold to the highest

available precision above the threshold. An uncommitted government chooses precision

to minimize the size of the attack conditional on the realization of fundamentals, as

a smaller attack allows the regime to be saved with a higher probability. Therefore, a

weak, uncommitted government communicates imprecisely to leave an incorrect impres-

sion among some agents that it is strong to avoid their attacks. A strong, uncommitted

government communicates precisely to persuade most agents that an attack is not worth-

while.12

A government’s lack of commitment can lead to too much aggressiveness on the part

of agents, which in turn increases the likelihood of the regime falling. This is because

the policy of an uncommitted government can change agents’ beliefs in a way that

increases the agents’ attack threshold and leads agents to attack for a larger set of

signals. Indeed, the agents near the attack threshold are certain that the government

cannot be very strong, as a very strong government communicates precisely and hence

distributes signals above the threshold. At the same time, the agents near the threshold

know that the government can be very weak, as a very weak government communicates

vaguely, and hence the signals of agents near the attack threshold are consistent with a

government being very weak. Consequently, attacks against the regime become larger,

which causes a higher probability of the regime falling.

The policy of a committed government is determined as a result of the interaction

of two motives. First, a government wants to minimize the attack to save the regime,

given its type. Second, a government seeks to manipulate the beliefs of agents to make

them less aggressive and to minimize the attack against governments of other types.

Whereas the first motive affects the policies of both an uncommitted and a committed

government, only a committed government considers the effect of its policy on agents’

beliefs and hence obtains a better outcome. The interaction of these two motives, which

can either compete or agree depending on the government’s type, results in a commu-

nication policy that is non-monotone in fundamentals. I analytically characterize the

policy of a committed government and show that, for extreme fundamentals, the second

12In the model, the chosen dispersion of information is unobserved. My main results continue
to hold if agents receive several signals that allow them to better estimate a government’s
action. See Subsection 6.1 for details.
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motive dominates and prescribes a policy that is opposite to a policy of an uncommitted

government.

Particularly, I show that a committed government communicates precisely when it

is weak and imprecisely when it is strong to lower the agents’ attack threshold and help

governments of other types. If a government communicates precisely when it is very

weak, it distributes only weak signals. Consequently, agents that receive signals near the

attack threshold realize that these signals cannot come from a very weak government.

If a government communicates imprecisely when it is very strong, it distributes a wide

range of signals. Therefore, agents that receive signals near the threshold realize that

these signals likely come from a very strong government. More intuitively, by revealing

its weakness and concealing its strength, a committed government ensures that agents

that receive signals near the threshold, and therefore are pivotal for the determination

of whether the regime survives, realize that the regime is not very weak but can be very

strong.

My final set of results is motivated by the fact that implementing a fully optimal

policy of a committed government may be difficult for some countries. First, some gov-

ernments may lack the willpower to commit to the optimal policy and may instead use

the policy of an uncommitted government. Second, the optimal policy has a complex non-

monotone structure, and hence may be difficult to implement. A simple rule of constant

precision of communication can be easier to commit to and implement. I show that this

simple rule can save the regime more often than a policy of an uncommitted government.

Constant precision of communication should be chosen to approximate the policy of a

committed government. Particularly, the rule prescribes constant precise communication

if the government’s type is weak on average, and constant imprecise communication if

the government’s type is strong on average. Under some conditions, a communication

policy of any constant precision is better than a policy of an uncommitted government.

My theoretical results allow me to provide an interpretation of Mexico’s experience

as follows. Since the Mexican government communicated precisely in good times and

vaguely in bad times, its policy was consistent with a policy of an uncommitted gov-

ernment in my model. This policy, however, was blamed for worsening the crisis. For

example, Edwards (1998) writes, “In what in retrospect proved to be a serious mistake

that greatly eroded credibility, the authorities decided against the general disclosure of
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information.” According to the International Monetary Fund (IMF), “In the wake of the

1994 crisis in Mexico, the international financial community recognized the essential role

of data transparency for meeting the challenges and risks of globalization and reducing

the likelihood of financial crises.”13 This attribution of Mexico’s crisis to the govern-

ment’s communication policy is consistent with my model’s implication that a policy of

an uncommitted government can make agents more aggressive, which leads to a greater

chance of regime falling.

In 1996, the IMF responded to the Mexico’s crisis by introducing the Special Data

Dissemination Standard (SDDS). A country that subscribes to the SDDS must publish

specific data with specific periodicity under control of the IMF, and hence the IMF

views the SDDS as a mechanism for committing countries to transparency. Currently,

65 countries, including Mexico, have subscribed to the SDDS. This policy response by the

international community is consistent with my theoretical result that constant precision

can be more effective than a policy implemented by an uncommitted government.

My paper makes a contribution to the study of global games (Carlsson and Van

Damme, 1993; Morris and Shin, 1998) by analyzing a situation in which agents do not

know the precision of their private information because it is chosen strategically by the

government as a function of its type. Most closely related are global game models with

endogenous information structures,14 and policy applications of global game models that

study how to prevent currency attacks, debt runs, bank runs, and political revolutions.15

The most closely related global game paper is Edmond (2013), who studies how the

government chooses dispersion of private signals conditional on government’s type to

save its own regime with the highest probability (is uncommitted in terms of my paper).

My analysis of an uncommitted government is consistent with the analysis of Edmond

(2013). The main contribution of my paper is the analysis of a committed government

and of simple policies that can help an uncommitted government to obtain a better

outcome. In particular, I show that a policy of a committed government is opposite to

13“The Special Data Dissemination Standard 2013. Guide for Subscribers and Users.” IMF
2013.

14For example, Heinemann and Illing (2002), Metz (2002), Bannier and Heinemann (2005),
Angeletos and Werning (2006), Hellwig, Mukherji, and Tsyvinsky (2006), Angeletos, Hellwig,
and Pavan (2007), Edmond (2015), Szkup and Trevino (2015), and Yang (2015).

15For example, Angeletos, Hellwig, and Pavan (2006), Angeletos and Pavan (2013), Edmond
(2013), and Szkup (2015).
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the policy of an uncommitted government for extreme fundamentals, and that constant

precision of communication can be more effective than a policy of an uncommitted

government.

Heinemann and Illing (2002) and Bannier and Heinemann (2005) study government

transparency in global games and model higher transparency as a lower dispersion of

private signals. Their analysis of conditions under which constant precise communication

is better than constant imprecise communication is consistent with my analysis of the

policies of constant precision of communication. These papers, however, restrict their

attention to policies of constant precision of communication. In contrast, I allow the

government to vary dispersion of private signals with the state of the world and concen-

trate on comparing policies of uncommitted and committed governments. I show that

both an uncommitted government and a committed government necessarily use policies

of non-constant communication, and discuss commitment mechanisms to bring a policy

of a government that cannot commit closer to a fully optimal policy of a committed

government.

My paper is related to the literature on the disclosure of public information by poli-

cymakers (Morris and Shin, 2002; Angeletos and Pavan, 2007),16 as it also demonstrates

that proper choice of the precision of information, publicly distributed by a policymaker,

can help avoid socially undesirable coordination. This literature studies whether disclo-

sure of public information improves welfare, given that public information contains noise;

and hence agents, which coordinate on public information, can over-coordinate on that

noise. I model public communication differently—more precise communication as lower

dispersion of private signals—that is, the government chooses how vaguely to commu-

nicate a correct message, and the aggregate noise does not play a role in my paper.

Another difference is that I study the role of precision of communication in a model of

regime change, as opposed to the very different “beauty contest” model.17

My analysis of a committed government shares intuitions with the literature on

16See also Woodford (2005), Amador and Weil (2010, 2012), Myatt and Wallace (2014),
Chahrour (2014), Angeletos, Iovino, and La’O (2015).

17In a “beauty contest” model, the agent’s payoff depends continuously on the state of the
world and the average action of other agents, as opposed to inherently discontinuous global
game models of regime change.
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Bayesian persuasion, such as Kamenica and Gentzkow (2011).18 In particular, the op-

timal communication policy of a committed government in my paper also manipulates

posterior beliefs, to elicit a specific action from agents. Whereas papers in the Bayesian

persuasion literature consider a general information structure, I restrict my attention

to a specific class of information structures (unbiased communication with continuously

distributed private signals), which enables me to study public communication by the

government. I also consider a fairly general model of coordination (with a continuum of

states of the world and agents), which is difficult to address using the approach of the

Bayesian persuasion literature.

Finally, my paper contributes to the literature on the role of vagueness in economics,19

due to its focus on how a policymaker can vary vagueness of its communication to avoid

socially undesirable coordination in a model of regime change.

2 Model of State-Dependent Communication Policy

In this section, I set up a model of the state-dependent precision of government com-

munication. For this purpose, I extend a standard global game of regime change as in

Morris and Shin (2003) by allowing the government to choose the dispersion of private

signals as a function of economic fundamentals. I use this model for policy analysis in

the rest of the paper.

I consider a one-period model with a government and a continuum of agents.

Government

In the model, the government tries to defend its regime against an attack by many small

agents. The regime survives if the attack size is smaller than the realization of economic

18See Bergemann and Morris (2015) and Taneva (2015) for an alternative approach to in-
formation design. See Goldstein and Leitner (2015), Faria-e-Castro, Martinez, and Philippon
(2015), Bouvard, Chaigneau, and de Motta (2015) for an application of the Bayesian persuasion
approach to the disclosure of banks’ stress test results.

19For example, de Jaegher (2003), Lipman (2009), Serra–Garcia, van Damme, and Potters
(2011), Agranov and Schotter (2012, 2013), and Blume and Board (2012, 2013).
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fundamentals:

Attack ≤ θ + ξ. (1)

The attack size is the share of agents that attack, and thus is always between 0 and

1. Higher realizations of fundamentals allow to defeat larger attacks, and thus corre-

spond to stronger governments. For an example of a currency attack, the fundamentals

can characterize the amount of foreign reserves, the government’s desire to support its

exchange rate, or the ability and willingness of foreign governments to help.

The fundamentals consist of θ, the part of the fundamentals that the government

knows, and ξ, the part of the fundamentals that the government does not know. Funda-

mentals θ can be interpreted as the government’s type. I assume that the prior distribu-

tion of θ is normal, N (µprior, σ
2
prior), with probability density function p(θ). I also assume

that the prior distribution of ξ is normal, N (0, σ2
ξ ), with probability density function

ϕ(ξ). The expectation of ξ is 0, which implies that on average the government knows the

realization of fundamentals. The only role of shock ξ is to select an equilibrium for an

uncommitted government, as for any, even arbitrarily small σ2
ξ > 0, there exists a finite

number of equilibriums, whereas for σ2
ξ = 0 there exists a continuum of equilibriums.20

The government gets utility 1 if the regime survives and 0 if it falls. I separately

analyze a government that cannot commit to its policy and a government that can

commit. An uncommitted government chooses the precision of its communication after

it learns θ to save its regime with the highest probability. A committed government

chooses which precision to use for each realization of θ before it learns θ. The goal of a

committed government is to maximize the expected probability of regime survival.

Information structure

The government observes θ and communicates it to the agents. The government can

use either more precise sentences or vaguer sentences. More precise sentences result in a

20The reason is that the action of a government do not affect the regime’s survival for
fundamentals below 0 or above 1 if σ2

ξ = 0. At the same time, the government’s action will be

determined uniquely for any σ2
ξ > 0. In the analysis of a committed government I will assume

that σ2
ξ = 0, as the policy of a committed government will be determined uniquely even if

σ2
ξ = 0.
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lower dispersion of information obtained by the agents, whereas vaguer sentences result

in higher dispersion. Each agent receives a private signal xi = θ + εi. Private noise εi is

distributed normally with mean 0 and standard deviation σ(θ) chosen by the government

based on the realization of the fundamentals.21 That is εi ∼ N (0, σ2(θ)). I use fσ(θ)(x) to

denote the probability density function of normal distribution with standard deviation

σ(θ) and mean 0 at x.

The government’s policy is a measurable function σ(θ) : R → [P, I]. I denote the

set of available policies as S ≡ {σ(·) : R → [P, I]}. I use σ(·) to denote a government’s

policy, which is a function of fundamentals, and σ(θ) to denote a government’s action,

that is the value of the function at the realization of fundamentals θ. The lowest avail-

able standard deviation P ∈ R corresponds to precise communication and the highest

available standard deviation I ∈ R corresponds to imprecise communication. I assume

that P > 0, that is agents always receive at least slightly different impressions from the

same press conference. I also assume that I < +∞, that is agents always have at least

some agreement about the government’s message.

I assume that agents do not observe the government’s action σ(θ). This assumption

allows me to study the role of precision of communication in an analytically tractable

framework easily comparable with the existing literature.22 In reality, agents do not

know the exact level of precision of communication used by the government, but may

have some sense if the government is precise or vague. In Subsection 6.1, I show that my

main results hold if agents receive several signals and thus can form precise estimates of

government’s action σ(θ).

I also assume that the government does not bias the information that it distributes. A

government may choose not to bias its communication because of reputation costs, either

of the government itself, or of the government officials who distribute the information.23

21The normality assumption streamlines the exposition, but my results hold under general
assumptions on the noise distributions available to the government. See Subsection 6.1 for
details.

22The assumption that agents perfectly observe σ(θ) is unreasonable in the current model,
as it would allow the government to reveal the state of the world perfectly and with common
knowledge by using different precision levels in different states of the world. In the model
in the current section, agents can estimate the government’s action σ(θ) by Bayes’ rule as
E[σ(θ)|xi, σ(·)]. Hence the information structure allows agents to know the precision of the
government’s communication with some noise.

23In the case of Mexico’s crisis, the official statements regarding foreign reserves were usually
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In the case of Mexico’s crisis, for example, the government’s officials did not exaggerate

the level of reserves. At the same time, as I show in Subsection 6.1, my main results

hold if the government biases the mean of the signals it distributes.

Agents

In the model, agents know the distributions of θ and ξ, and whether the government is

committed or not. Agents do not know the realizations of θ and ξ, but use their private

information xi to estimate θ and make a binary decision whether to attack the regime.

In the case of a currency attack, for example, an agent either sells short one unit of the

currency or does nothing.24 Agent i’s strategy is Xi ⊂ R, which is a set of signals for

which the agent attacks. In what follows, we will often consider strategies of threshold

form, which can be described with one number x∗ ∈ R such that an agent attacks for

signals xi ∈ (−∞, x∗].
If an agent attacks and the regime falls, an agent receives payoff π(θ + ξ). The cost

of attacking the regime is c ∈ (0, 1) and does not depend on whether the attack is

successful. Consequently, the agent’s payoff is as follows:

UAGENT =


π(θ + ξ)− c if attacks and regime falls,

−c if attacks and regime survives,

0 if does not attack.

(2)

The agent’s payoff π(θ + ξ) weakly decreases in the fundamentals θ + ξ, that is the

agent’s payoff is lower if the government is stronger. In the case of a currency attack, for

example, stronger fundamentals may correspond to lower subsequent devaluation and

thus to a lower payoff. I assume that c < π(θ + ξ) < C for all values of θ + ξ, where

made by Finance Minister Pedro Aspe and Central Bank Governor Miguel Mancera, who had
a great reputation for their professionalism in Mexico and the international community. Since
detailed data on Mexico’s reserves during 1994 was disclosed in 1995, a lie about the volume of
reserves during 1994 would have been revealed in 1995, and would have damaged the reputation
of a lying official.

24The binary choice is a standard assumption in global games. See, for example, Morris
and Shin (1998). In a currency attack model with risk-neutral agents and bounded trading
positions, an agent either does nothing or sells the currency short up to the boundary of its
position.
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C ∈ R is a constant. The assumption that c < π(θ + ξ) reduces the number of cases I

have to consider, but is not important for the results. The assumption that π(θ+ξ) < C

guarantees that the behavior of the payoff function at −∞ does not determine the

behavior of agents and can be relaxed.

Timing

If the government can commit, the timing is as follows:

0. The government publicly announces and commits to a policy σ(·) ∈ S.

1. Nature chooses fundamentals θ ∼ N (µprior, σ
2
prior) and ξ ∼ N (0, σ2

ξ ).

2. The government learns θ and distributes private signals xi = θ + εi, εi ∼ N (0, σ2 (θ)).

3. Each agent i observes a private signal xi and decides whether to attack.

4. An attack happens, the regime survival and payoffs are determined.

If the government cannot commit, then the timing is as above but without period 0.

That is an uncommitted government chooses which precision of communication to use

in period 2.

3 Equilibrium without Commitment

In this section I study the communication policy of an uncommitted government. I show

that a weak uncommitted government communicates imprecisely and a strong uncom-

mitted government communicates precisely. The policy of an uncommitted government

may be a natural real world policy to consider, and I use it as a benchmark when I study

the fully optimal policy of a committed government in Section 4.

I am looking for perfect Bayesian equilibriums in symmetric threshold strategies. In

that equilibrium each type of the government chooses the precision of its communication

to save its own regime with the highest probability. Each agent uses Bayes’ rule to infer

the distribution of fundamentals conditional on the agent’s information and chooses

whether to attack the government to maximize its expected payoff.
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I focus on the threshold strategies for agents to simplify the exposition. Particularly,

agents that receive signals xi ≤ x∗ attack, and agents that receive signals xi > x∗ do

not attack. Threshold strategies are intuitive as low signals correspond to weak fun-

damentals, and thus high expected payoff, whereas high signals correspond to strong

fundamentals, and thus low expected payoff. I will show in Lemma 1 in Subsection

3.5 that an equilibrium in threshold strategies exists if the government uses levels of

precision which are not too different.25

3.1 The probability of regime survival

To describe the government’s problem, we have to derive the probability of regime sur-

vival conditional on the realization of fundamentals θ. The probability that the regime

survives given θ, σ(θ), and x∗ is as follows:

P S(θ, σ(θ), x∗) = Φ

θ − Φ
(
x∗−θ
σ(θ)

)
σξ

 , (3)

where Φ(·) is the cumulative distribution function of standard normal.

To derive expression (3), note that the attack size is Φ
(
x∗−θ
σ(θ)

)
. Indeed, the gov-

ernment distributes signals centered at θ with dispersion σ(θ), and agents that receive

signals below x∗ attack. Thus, according to (1), the regime survives if:

Φ

(
x∗ − θ
σ(θ)

)
≤ θ + ξ. (4)

By computing the probaility that (4) holds, we obtain (3).

Expression (3) for the probability of regime survival is intuitive. The regime survives

with higher probability if the fundamental θ is stronger. That happens because stronger

governments survive larger attacks and because under stronger fundamentals agents

receive higher signals and attack less. The regime survives with lower probability if the

agents’ attack threshold x∗ is higher, that is if the agents attack more often. I discuss

the impact of σ(θ) on the probability of regime survival in Subsection 3.4.

25That is for each P > 0 and c ∈ (0, 1) we can find r > 1 such that as long as I < rP , there
exists an equilibrium in which agents use threshold strategies.
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3.2 Agent’s behavior

An agent attacks the regime if the expected payoff from the attack is at least c. Indeed,

this strategy maximizes the expected payoff in (2) because the attack cost is always

equal to c. Thus an agent attacks if it receives a signal in the following set:

X∗ = {xi : E[agent’s payoff|xi, x∗, σ(·)] ≥ c}. (5)

Agents condition their expected payoff on their private information xi, the strategy used

by other agents x∗, and the government’s communication policy σ(·).
Agents use Bayes’ rule to infer the distribution of θ. According to the rule, the

probability density function of θ conditional on the private signal xi is as follows:

f(θ|xi) =
p(θ)fσ(θ)(xi − θ)

+∞∫
−∞

p(θ)fσ(θ)(xi − θ)dθ
. (6)

The numerator of (6) is the product of the prior probability of θ and the probability of

receiving signal xi conditional on θ; the denominator is the normalization factor. Note

that the conditional distribution of θ is neither normal nor continuous in θ.

The agents compute the expectation in (5) using the distribution of θ in (6) as follows:

E[agent’s payoff|xi, x∗, σ(·)] =

∫∫
Φ(x

∗−θ
σ(θ) )>θ+ξ

π(θ + ξ)ϕ(ξ)f(θ|xi)dξdθ. (7)

The agents take the expected payoff over the range of fundamentals (θ, ξ) for which the

regime falls. According to (4), this range of fundamentals is given by Φ
(
x∗−θ
σ(θ)

)
> θ + ξ.

3.3 Government’s problem and equilibrium definition

An uncommitted government maximizes the probability that its regime survives sepa-

rately for each realization of fundamentals θ:

P S(θ, σ(θ), x∗) −→ max
σ(θ)

(8)

s.t. E[agent’s payoff|xi = x∗, x∗, σ(·)] = c. (9)
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An uncommitted government ignores the affect of its policy on the determination of x∗ in

(9) because by changing σ(θ) for a single realization of θ the government cannot change

x∗. Hence, even though each type of government understands how x∗ is determined, it

takes it as if it was exogenous when it chooses its action σ(θ), and hence ignores the

effect of its action on strategy x∗ used by agents.

A perfect Bayesian equilibrium in symmetric threshold strategies is defined below.

In a threshold equilibrium, a set of signals X∗ that lead agents to attack must have a

threshold form (−∞, x∗].

Definition 1. Threshold equilibrium without commitment is (σNC(·), x∗) such

that:

1. The government chooses σNC(θ) to solve (8) for each θ and given x∗.

2. Agents use (6) and (7) to compute their expected payoff given x∗ and σNC(·).

3. Agents attack for signals xi ≤ x∗, where x∗ is determined by (9).

3.4 Communication policy of an uncommitted government

Proposition 1 characterizes the government’s policy in a threshold equilibrium.

Proposition 1. In any threshold equilibrium, an uncommitted government communi-

cates imprecisely for weak fundamentals and precisely for strong fundamentals:

σNC(θ) =


I if θ < x∗,

[P, I] if θ = x∗,

P if θ > x∗.

(10)

Proof. The proof follows immediately from (3) and (8).

Proposition 1 is consistent with Proposition 7 in Edmond (2013). The main contri-

bution of my paper, however, is the analysis of the policy of a committed government

in Section 4 and of simple policies in Section 5.

16



To understand the result of Proposition 1, note that the government’s problem (8)

is equivalent to:

Φ

(
x∗ − θ
σ(θ)

)
−→ min

σ(θ)
. (11)

An uncommitted government minimizes the attack size for each realization of the fun-

damentals, as smaller attacks are less likely to overthrow the regime. It follows that for

θ < x∗, the government communicates imprecisely, and for θ > x∗, the government com-

municates precisely. Intuitively, a weak government communicates imprecisely to leave

an incorrect impression among some agents that it is strong and thereby avoid their

attacks. A strong government communicates precisely to persuade most agents that it

is strong and also experience a small attack.

The communication policy of the government of Mexico during the 1994 crisis is

consistent with a policy of an uncommitted government described by Proposition 1.

While the government officials were forthcoming about announcing the data on GDP

growth and foreign reserves while the economy and reserves were growing, they started to

avoid disclosing the data after a recession started at the second half of 1993 and reserves

declined in March 1994. On March 16, 1994 The New York Times published an article

titled “Mexico Slips Quietly into Recession,” where quietly referred to that the Mexican

government officials avoided acknowledging the unfavorable data on GDP growth, even

though “The Treasury and the central bank have been known to make elaborate formal

announcements when there is good news [. . . ].” As Adler (1994) noted, “There appear to

have been delays starting in January, 1994 in the release of customary government data

(e.g. monetary statistics, production, employment, trade and capital flows figures).” The

government’s lack of transparency during 1994 was blamed for exacerbating the crisis,

which is consistent with my model, as I discussed in the introduction and discuss in

more detail in Section 5.

3.5 Existence of a threshold equilibrium without commitment

Lemma 1 provides a sufficient condition for the existence of a threshold equilibrium

without commitment.
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Lemma 1. There exists r > 1 such that for any I ≤ rP there exists a threshold equilib-

rium without commitment (σNC(·), x∗). In the equilibrium, the agents’ attack threshold

x∗ is a solution to (9) and the government’s communication policy is given by (10).

Proof. The proof is in the Appendix.

According to Lemma 1, a threshold equilibrium exists if the government uses levels

of precision that do not vary to a great extent. Note that as in any global game with an

informative prior, multiple equilibriums are possible under some parameter values.26 It

is easy to see that a solution x∗ ∈ R to (9) exists. Indeed, the expected payoff becomes

larger than c for low enough signals xi and close to 0 for high enough signals xi.
27 Since

the expected payoff changes continuously in private signals, the existence of x∗ follows.

Lemma 1 assumes that I and P are not too different to guarantee that agents’

strategies have a threshold form. To explain the intuition behind this result, consider

σ(·) ≡ P . Then the posterior distribution of θ conditional on xi is N ( P 2

σ2
prior+P

2µprior +

σ2
prior

σ2
prior+P

2xi,
σ2
priorP

2

σ2
prior+P

2 ). This distribution shifts to the right as xi increases. Consequently,

agents with higher signals expect their payoff to be lower because π(θ + ξ) decreases in

θ. It follows from (5) that agents use threshold strategies.

4 Optimal Policy of a Committed Government

In this section, I characterize the outcome for a commitment and its optimal communi-

cation policy. The optimal policy allows the government to save its regime more often

compared to the policy of an uncommitted government or a policy of constant precision

of communication.

I examine the policy of a committed government for the following reasons. First, this

policy allows a government to save its regime with the highest probability, and hence

is the best possible policy. Second, the corresponding analysis demonstrates the gov-

ernment’s incentives and helps to understand whether the best possible communication

26Global game models have multiple equilibriums if the precision of prior information is
sufficiently higher than the precision of private information. See Hellwig (2002) or Morris and
Shin (2003) for details.

27More formally, this is guaranteed by I2 − P 2 < σ2
prior, which follows from I ≤ rP for an

appropriate choice of r.
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policy can be implemented in practice. Finally, I use this analysis to propose simple

communication policies in Section 5.

Subsection 4.1 formulates the government’s problem, states the main result, and

explains its intuition. Subsection 4.2 characterizes the threshold outcome under com-

mitment. Subsection 4.3 describes properties of the optimal communication policy. Sub-

section 4.4 provides the conditions that guarantee the existence of the threshold outcome

under commitment.

4.1 Government’s problem, incentives and the main result

In this subsection, I describe the problem of a committed government. Then I show

that a committed government communicates with a very different precision relative to

an uncommitted government: precisely for very weak fundamentals and imprecisely for

very strong fundamentals. This motivates a more detailed analysis of a policy enacted

by a committed government in Subsections 4.2-4.4.

To present the main result first, we assume that the outcome under commitment

exists and has a threshold form. That is agents with signals xi ≤ x∗ attack and agents

with signals xi > x∗ do not attack. I will provide conditions for the existence of the

threshold outcome under commitment in Lemma 6.

4.1.1 Government’s problem and incentives

A committed government maximizes the expected probability that the regime survives:

+∞∫
−∞

P S(θ, σ(θ), x∗)p(θ)dθ −→ max
σ(·)

(12)

s.t. E[agent’s payoff|xi = x∗, x∗, σ(·)] = c. (13)

Note that we can express x∗ from (13) as a function of σ(·), that is x∗ = x∗ (σ (·)).28

It follows, that a committed government considers how its policy affects the position of

the threshold agent x∗ when it chooses its policy σ(·).
A change in the government’s action σ(θ̃) at fundamentals θ̃ has two effects. First,

28If there are several solutions x∗ to (13), then the government chooses the smallest one.
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it changes the survival probability of government θ̃. Second, it changes the beliefs of

the agents and hence the position of the threshold agent x∗, thus affecting the proba-

bility of survival for governments of all other types. More formally, the derivative of the

government’s utility (12) with respect to a change in the government’s action σ(θ̃) is

proportional to:29

∂P S(θ̃, σ(θ̃), x∗)

∂σ(θ̃)︸ ︷︷ ︸
change in the survival

probability for θ̃

+

+∞∫
−∞

∂P S(θ, σ(θ), x∗)

∂x∗
p(θ)dθ

︸ ︷︷ ︸
change in the survival

probability for θ 6= θ̃ w.r.t. x∗

· ∂x
∗ (σ (·))
∂σ(θ̃)︸ ︷︷ ︸

change in x∗

. (14)

The first term in expression (14) shows that by changing its action at fundamentals

θ̃, the government changes the probability of regime survival at those fundamentals. The

first term affects the decision of both a committed and an uncommitted governments.

The second term shows that a change in the government’s action σ(θ̃), also changes

x∗, and hence the probability of survival of all governments θ 6= θ̃. Only a committed

government considers the second term, and hence the impact of its action on agents’

strategy. Consequently only a committed government can make a fully optimal decision

regarding its communication policy.

Assumption 1. The government perfectly knows the realization of fundamental, that

is σ2
ξ = 0.

For the rest of the paper I assume that Assumption 1 holds. Under Assumption 1,

the regime survives for a realization of fundamentals θ if∫
X∗

fσ(θ)(xi − θ)dxi ≤ θ, (15)

where the left-hand side is the attack size and X∗ is a set of signals that trigger an attack

by the agents. Consequently, for any realization of the fundamentals θ, the regime either

29More formally, consider θ̃ ∈ R such that σ(·) is continuous at θ̃. If the government increases
σ(θ̃) by δ in a neighborhood of θ̃ of length ε, then the government’s utility changes by the
product of εδ and the amount in expression (14).
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survives or falls; that is, P S(θ, σ(θ), x∗) ∈ {0, 1}. This property allows me to simplify

the analysis under commitment without loss of intuition.

4.1.2 Definition of the outcome under commitment

The threshold outcome under commitment consists of a government’s policy σC(·) ∈ S,

an agents’ attack threshold x∗ ∈ R, and a regime survival threshold θ∗ ∈ R. The regime

survival threshold θ∗ is such that the regime survives for fundamentals θ ≥ θ∗ and falls

for fundamentals θ < θ∗; that is, strong regimes survive and weak regimes fall.30

Definition 2. Threshold outcome under commitment is (σC(·), x∗, θ∗) such that:

1. The government chooses σC(·) to solve (12) and (13).

2. Agents use Bayes’ rule to compute their expected payoff given θ∗ and σC(·).

3. The set of signals xi for which an agent chooses to attack is X∗ = (−∞, x∗].

4. The set of fundamentals for which the regime survives is given by (15) and is equal

to [θ∗,+∞).

I will show in Lemma 6 in Subsection 4.4 that the threshold outcome under com-

mitment exists if the government uses levels of precision that are not too different.31 To

streamline the exposition of the main results, in Subsections 4.1–4.3 I assume that the

conditions of Lemma 6 are satisfied, and hence the outcome under commitment exists

and has a threshold form.

4.1.3 The main result

Proposition 2, the main result of the paper, establishes that for weak and strong funda-

mentals, a committed government communicates with the opposite precision relative to

that of an uncommitted government.

30The role of θ∗ is the same as the role of the probability of regime survival function
PS(θ, σ(θ), x∗). That is, PS(θ, σ(θ), x∗) = 0 for θ < θ∗ and PS(θ, σ(θ), x∗) = 1 for θ ≥ θ∗.
It appears to be convenient to include θ∗ in the definition of the outcome under commitment.

31That is for each P > 0 and c ∈ (0, 1) we can find r > 1 such that as long as I < rP , the
outcome under commitment has a threshold form.
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Proposition 2. A committed government communicates precisely when fundamentals

are weak and imprecisely when fundamentals are strong. That is there exist two thresholds

θ, θ ∈ R such that:

σC(θ) =

P if θ ≤ θ,

I if θ ≥ θ.
(16)

Proof. The proof is in the Appendix.

To explain the intuition behind Proposition 2, let us examine (14) in more detail.32

For weak and strong fundamentals, the government’s policy does not affect the proba-

bility of regime survival, and hence the first term in (14) disappears. Indeed, if θ̃ < 0

or θ̃ ≥ 1, the regime either falls or survives for any government’s policy. Thus for weak

and strong fundamentals, the government can affect only utility coming from the second

term of (14). That is, a government of type θ̃ tries to increase the survival chances of

governments θ 6= θ̃ by minimizing x∗. A problem of a committed government for weak

and strong fundamentals is as follows:33

x∗ −→ min
σ(θ̃)

(17)

s.t. E[agent’s payoff|xi = x∗, x∗, σ(·)] = c. (18)

Let us contrast the problem of an uncommitted government (11) with a problem of a

committed government (17-18) when fundamentals are weak or strong. An uncommitted

government minimizes the size of the attack against itself to maximize its own survival

chances. A committed government minimizes x∗ to help governments of other types to

save the regime.

To lower the position of the threshold agent x∗, the government communicates pre-

cisely for very weak fundamentals and imprecisely for very strong fundamentals. If a

government communicates precisely when it is very weak, it distributes only weak sig-

32Under Assumption 1 the derivative of PS(·) with respect to σ(θ̃) is understood to belong
to {−∞, 0,+∞}.

33I abuse notation here. The problem should be understood as with respect to changing the
government’s policy in a neighborhood of θ̃.
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nals. Consequently, agents that receive signals near the threshold x∗ realize that their

signals cannot come from a very weak government, and thus must come from stronger

governments, attacking which is unprofitable. If a government communicates imprecisely

when it is very strong, it distributes a wide range of signals. Therefore, agents that re-

ceive signals near the threshold x∗ realize that their signals likely come from a very strong

government. More intuitively, by revealing its weakness and concealing its strength, a

committed government ensures that agents that receive signals near the threshold x∗,

and hence are pivotal for the determination of whether the regime survives, realize that

the regime is not very weak but can be very strong.

4.2 Characterization of the threshold outcome under commitment

I characterize the outcome under commitment in three steps. First, I determine the

position of the threshold agent x∗ as a function of θ∗ and σC(·). Second, I show that the

government saves its regime if that is possible given x∗ and determine θ∗ as a function of

x∗ and σC(·). Third, I show how the government optimally manipulates agents’ beliefs.

This allows me to determine the government’s communication policy σC(·) given x∗, θ∗.

Together, these three relations determine the outcome under commitment.

4.2.1 Agents’ beliefs and determination of x∗

In this subsection, I explain how agents compute their expected payoff. This allows to

determine x∗ as a function of θ∗.

Agents use Bayes’ rule to compute the expected payoff given the government’s policy

σ(·) ∈ S and the regime survival threshold θ∗. Under the assumption that σ2
ξ = 0, the

expected payoff in a threshold outcome can be obtained from (6) and (7) as follows:

E[agent’s payoff|xi, θ∗, σ(·)] =

θ∗∫
−∞

π(θ)p(θ)fσ(θ)(xi − θ)dθ

+∞∫
−∞

p(θ)fσ(θ)(xi − θ)dθ
. (19)

To concentrate on studying the threshold outcome, I must find sufficient conditions that

guarantee that the agents use threshold strategies.
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Lemma 2 establishes that the agents’ attack region has a threshold form if I is

sufficiently close to P and provides an equation that determines x∗ as a function of θ∗.

Lemma 2. Let P > 0. Then there exists r > 1 such that for any I ≤ rP , any σ(θ) :

R→ [P, I], and any θ∗ ∈ [0, 1] the agent’s attack region has a threshold form (−∞, x∗].
The threshold x∗ is the unique solution to

θ∗∫
−∞

π(θ)p(θ)fσ(θ)(x
∗ − θ)dθ

+∞∫
−∞

p(θ)fσ(θ)(x∗ − θ)dθ
= c. (20)

Proof. The proof is in the Appendix.

Assumptions of Lemma 2 will be enough to establish the existence of the threshold

outcome under commitment in Lemma 6. As I mentioned before, in Subsections 4.1–4.3

I assume that conditions of Lemma 6 (or alternatively of Lemma 2) are satisfied, that

is I ≤ rP .

4.2.2 The government saves viable regimes, determination of θ∗

In this subsection, I show that, given x∗, the government chooses to save regimes that

can be saved. This property allows me to determine the regime’s survival threshold θ∗

for any agents’ attack threshold x∗.

I use an argument by contradiction to explain that the government saves regimes

that can be saved given x∗. Pick a value of fundamentals θ such that the regime falls

under the current communication policy, but the government can change σ(θ) to save the

regime. This change in σ(θ) leads to a direct utility gain since now the regime survives

for more fundamentals. Moreover, agents realize that their expected payoff becomes

smaller and attack less. It follows that after the deviation, the regime survives under

more fundamentals.

Given x∗, the regime survival region, that is the set of fundamentals for which the

regime survives, has a threshold form. Indeed, the attack size Φ
(
x∗−θ
σ(θ)

)
decreases in θ

for a fixed σ(θ). Hence the government that saves its regime for fundamentals θ′, can

save the regime for any stronger value of fundamentals θ by using σ(θ) = σ(θ′).
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I then determine the regime survival threshold θ∗, which is the smallest value of

fundamentals for which the regime survives. The attack size Φ
(
x∗−θ∗
σ(θ∗)

)
at the regime

survival threshold must be equal to the regime survival threshold θ∗. Indeed, if the

attack size was smaller than θ∗, the government would be able to save the regimes in a

left neighborhood of θ∗. Also note that the government must minimize the attack size at

θ∗. Indeed, if the government was able to decrease the attack size at θ∗, then the attack

size would be lower than θ∗ and the government would be able to save the regimes in a

left neighborhood of θ∗. This argument allows me to characterize σC(θ∗) as a function

of x∗:34

σC(θ∗) =


P if θ∗ < x∗,

Σ if θ∗ = x∗,

I if θ∗ > x∗.

(21)

Lemma 3 summarizes this discussion and expresses θ∗ as a function of x∗.

Lemma 3. Given x∗, the government saves its regime, if possible. The regime survival

region is [θ∗,+∞), where θ∗ is the unique solution to

Φ

(
x∗ − θ∗

σC(θ∗)

)
= θ∗, (22)

and σC(θ∗) is given by (21).

Proof. The proof is in the Appendix.

4.2.3 Optimal belief manipulation, determination of σC(·)

In this subsection, I show how the government manipulates agents’ beliefs. This allows

me to construct the optimal policy σC(·) given thresholds x∗ and θ∗.

The government manipulates beliefs optimally if it cannot decrease the position of

the threshold agent x∗. To prove this claim by contradiction, assume that by deviating

on a subset of fundamentals the government could make the threshold agent x∗ believe

34Note that the policy of a committed government at fundamentals θ∗, given by (21), is the
same as the policy of an uncommitted government at any realization of θ, given by (10).
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that the expected payoff is less than c. Then the position of the threshold agent would

move to x∗∗ < x∗. But then the government would be able to save the regime for a larger

set of fundamentals according to (22).

The expected payoff of the threshold agent x∗ can be written as follows:

E[agent’s payoff|x∗, θ∗, σ∗(·)] =

θ∗∫
−∞

π(θ)p(θ)fσ(θ)(x
∗ − θ)dθ

θ∗∫
−∞

p(θ)fσ(θ)(x∗ − θ)dθ +
+∞∫
θ∗
p(θ)fσ(θ)(x∗ − θ)dθ

. (23)

Signals that the threshold agent receives from θ < θ∗ correspond to fundamentals that

produce payoff π(θ) > c. When an agent receives more signals from θ < θ∗, it becomes

more certain that the payoff from the attack will be higher than c. The government

wants to minimize the amount of these pessimistic signals, given by

θ∗∫
−∞

p(θ)fσ(θ)(x
∗ − θ)dθ. (24)

Signals that the threshold agent receives from θ ≥ θ∗ correspond to regimes under

which attacking brings no payoff. When an agent receives more signals from θ ≥ θ∗,

it becomes more certain that the payoff from the attack will be lower than c. The

government wants to maximize the amount of these optimistic signals, given by

+∞∫
θ∗

p(θ)fσ(θ)(x
∗ − θ)dθ. (25)

The government chooses σC(θ) to solve the corresponding minimization and maximiza-

tion problems separately for each realization of fundamentals θ.

More intuitively, the government tries to lower the position of the threshold agent to

make agents less aggressive. The government accomplishes this by redistributing the op-

timistic beliefs towards the threshold agent, to make the agent more optimistic about the

survival chances of the regime, and thus move its position to the left. On the one hand,

the redistribution requires insulating the threshold agent from signals that are more

likely under weak fundamentals. The mass of pessimistic beliefs (24) held by the thresh-
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old agent must be minimized. On the other hand, this redistribution requires sending

more signals to the threshold agent from fundamentals under which the regime survives.

The mass of optimistic beliefs (25) held by the threshold agent must be maximized.

Proposition 3 demonstrates how the government constructs the optimal policy σC(·)
given x∗ and θ∗.

Proposition 3. Given x∗ and θ∗, the government’s policy σC(·) satisfies the following

conditions:

1. If θ < θ∗, then σC(θ) solves

min
σ∈[P,I]

fσ(x∗ − θ). (26)

2. If θ ≥ θ∗, then σC(θ) solves

max
σ∈[P,I]

fσ(x∗ − θ) (27)

s.t. Φ

(
x∗ − θ
σ

)
≤ θ. (28)

Proof. The proof is in the Appendix.

I next illustrate how the optimal policy σC(·) affects agents’ beliefs and attack sizes.

Let c = 0.36, π(θ) ≡ 1, and p(θ) ≡ 1.35 When the government communicates with the

constant precision of P = 0.1, the corresponding regime survival and the agents’ attack

thresholds are θ∗C = 0.64 and x∗C = 0.67. When the government uses policy σC(·) with

[P, I] = [0.1, 0.5], the corresponding thresholds are θ∗ = 0.1 and x∗ = −0.03.

The top panel of Figure 1 on page 45 shows agents’ expected payoffs as a function

of signal xi in the case of the constant precision of communication σ(·) ≡ P and in the

case of the optimal communication policy σC(·). Under policy σC(·), agents receiving

intermediate signals are more confident that the regime will survive. At the same time,

agents receiving strong signals are more confident that the regime will fall. Fortunately,

the later feature does not induce larger attacks. Indeed, agents receiving higher signals

35p(θ) ≡ 1 means that the prior distribution of θ is improper and is uniform on the real line.
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still believe that the regime will fall with probability less than c = 0.36 (the horizontal

dotted line), and thus do not attack.

The bottom panel of Figure 1 shows attack sizes as a function of fundamentals in the

case of the constant precision of communication σ(·) ≡ P and in the case of the optimal

communication policy σC(·). Under policy σC(·), the attacks are smaller exactly where

it is important—for the intermediate values of fundamentals. At the same time, the

government communicates imprecisely when fundamentals are strong, provoking larger

attacks. Fortunately, the attacks are smaller than the regime strength (the 45-degree

dotted line) and thus do not force the government to abandon its regime.

4.3 Properties of the optimal communication policy

I start this subsection by explaining how to construct the optimal policy σC(·) according

to Proposition 3. Then I show that the optimal policy is non-monotone. Finally I provide

an example of the optimal policy.

To construct the optimal policy σC(·), define σL(θ) as a solution to (26) and σH(θ)

as a solution to (27):

σL(θ) ≡ argmin
σ∈[P,I]

fσ(x∗ − θ), (29)

σH(θ) ≡ argmax
σ∈[P,I]

fσ(x∗ − θ). (30)

Lemma 4 describes shapes of σL(θ) and σH(θ).36

Lemma 4. 1. Policy σL(θ) is
⋂

-shaped and symmetric around x∗.

2. Policy σH(θ) is
⋃

-shaped and symmetric around x∗.

Proof. The proof is in the Appendix.

Policy σL(θ) affects posterior beliefs of the threshold agent x∗ in the weakest possible

way and hence is
⋂

-shaped and symmetric around x∗. Indeed, for fundamentals far away

from x∗, the government communicates precisely to isolate agent x∗ from the signals.

For fundamentals near x∗, the government communicates imprecisely to avoid persuad-

ing agent x∗ that the fundamentals are in that range. Policy σH(θ) affects posterior

36Analytical expressions for σL(·) and σH(·) are in the Appendix.
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beliefs of the threshold agent x∗ in the strongest possible way and hence is
⋃

-shaped

and symmetric around x∗. Indeed, for fundamentals far away from x∗, the government

communicates imprecisely to send at least some signals to agent x∗. For fundamentals

near x∗, the government communicates precisely to send as many signals to agent x∗ as

possible.

The optimal policy σC(·) consists of σL(θ) below θ∗, then is determined by constraint

(28) in a right neighborhood of θ∗, and is given by σH(θ) for larger fundamentals. Com-

munication policy σC(·) is non-monotone as a combination of a
⋂

-shaped policy below θ∗

and a
⋃

-shaped policy above θ∗. This non-monotonicity result shows one more difference

between policies of a committed and an uncommitted governments: the optimal policy

σC(·) is not monotone, whereas according to Proposition 1 the policy of an uncommitted

government σNC(·) is monotone.

Corollary 1. The government’s policy σC(·) is not monotone.

Proof. The proof is in the Appendix.

Figure 2 on page 46 illustrates how to construct the optimal policy σC(·) according to

Proposition 3. The parameter values are the same as in the example of Figure 1. The top

panel of Figure 2 shows policies σH(θ) and σL(θ) for x∗ = −0.03 and [P, I] = [0.1, 0.5].

Consistently with Lemma 4, function σH(·) is
⋃

-shaped and σL(·) is
⋂

-shaped and both

are centered at x∗.37 To construct the optimal policy I combine σL(·) for θ < θ∗ = 0.1,

a policy determined by (28) in a right neighborhood of θ∗, and σH(·) after that. The

combination of these policies is shown at the bottom panel of Figure 2.

The policy of Figure 2 satisfies the following properties. First, for weak fundamen-

tals the government is precise and for strong fundamentals the government is imprecise,

consistently with Proposition 2. Second, the government uses precision that minimizes

the attack size in the right neighborhood of θ∗, that is constraint (28) is binding, con-

sistently with Lemma 3. Finally, the optimal communication policy is non-monotone,

consistently with Corollary 1.

37Moreover σL(·) takes only two values: P and I. The reason is that the probability density
function fσ(t) is quasi-concave in σ and thus can be minimized only at the boundaries of [P, I].
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4.4 Existence of the outcome under commitment

This subsection establishes technical results which are necessary for a rigorous analysis

of the outcome under commitment. I advise a reader who is not interested in these

technical details to proceed to Section 5 without any loss of intuition.

Let Θ∗ ⊂ R be a regime survival region, that is, a set of fundamentals for which the

regime survives. Agents infer the conditional distribution of θ using (6). The expression

for expected payoff (7) must be modified to consider Assumption 1 and a general form

of Θ∗ and is as follows:

E[agent’s payoff|xi,Θ∗, σ(·)] =

∫
R\Θ∗

π(θ)p(θ)fσ(θ)(xi − θ)dθ∫
R
p(θ)fσ(θ)(xi − θ)dθ

. (31)

The expected payoff in (31) is a continuous function of xi for any σ(·) ∈ S.38

For each regime survival region Θ∗ and communication policy σ(·), denote the set of

signals that trigger an attack as follows:

X(Θ∗, σ(·)) = {xi : E[agent’s payoff|xi,Θ∗, σ(·)] ≥ c}. (32)

Indeed, since the attack costs c, an agent with signal xi attacks the regime if and only

if the expected payoff is at least c. Function X(Θ∗, σ(·)) decreases; that is, if Θ∗1 ⊂ Θ∗2,

then X(Θ∗1, σ(·)) ⊃ X(Θ∗2, σ(·)). Intuitively, agents attack less if the regime survives

more often.

For each agents’ attack region X∗ and communication policy σ(·), denote the set of

fundamentals for which the regime survives as follows:

Θ(X∗, σ(·)) = {θ :

∫
X∗

fσ(θ)(xi − θ)dxi ≤ θ}. (33)

38A proof that the integral in the denominator of (31) is continuous in xi is as follows. Func-
tion fσ(θ)(xi − θ) : R2 → R is continuous in xi and measurable in θ. Moreover fσ(θ)(xi − θ) is
locally uniformly integrably bounded because it is bounded and p(θ) is a finite measure. Con-
sequently, the integral in the denominator of (31) is continuous. The proof that the integral in
the numerator is continuous is the same. See Border (2002) for a definition of the local uniform
integrability and sufficient conditions for functions defined with integrals to be continuous.
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Indeed, the regime survives if and only if the attack size is smaller than the value of

the fundamentals. Note that Θ(X∗, σ(·)) does not contain θ < 0 and contains all θ ≥ 1.

Function Θ(X∗, σ(·)) decreases; that is, if X∗1 ⊂ X∗2 , then Θ(X∗1 , σ(·)) ⊃ Θ(X∗2 , σ(·)).
Intuitively, the government defends its regime more often if agents attack less.

I define the outcome conditional on communication policy σ(·) ∈ S. I consider only

symmetric outcomes, so that all agents have the same strategies and beliefs.

Definition 3. Outcome conditional on σ(·) is (σ(·), X∗,Θ∗) such that X∗ =

X(Θ∗, σ(·)) and Θ∗ = Θ(X∗, σ(·)).

Now I can define the outcome under commitment.

Definition 4. Outcome under commitment is an outcome (σ(·), X∗,Θ∗) conditional

on σ(·) such that σ(·) is chosen by the government to solve:∫
Θ∗

p(θ)dθ → max
σ(·)

(34)

s.t. Θ∗ = Θ(X(Θ∗, σ(·)), σ(·)) (35)

Note that problem in (34-35) is similar to that in (12-13), but allows for a possibility

of non-threshold outcomes.

Definition 5. Threshold outcome is an outcome (σ(·), X∗,Θ∗) with X∗ = (−∞, x∗]
and Θ∗ = [θ∗,+∞).

Lemma 5 guarantees that for any communication policy σ(·) ∈ S there exists an

outcome conditional on that policy, and the payoff of the government is well defined for

all policies.39

Lemma 5. For any σ(·) ∈ S, there exists an outcome (σ(·), X∗,Θ∗) conditional on σ(·).

Moreover, the outcome can be chosen such that for any Θα: Θα ⊂ Θ (X (Θα, σ(·)) , σ(·)),

Θα ⊂ Θ∗ and X∗ ⊂ X(Θα, σ(·)).

Proof. I sketch a proof under the assumption that fundamentals are distributed dis-

cretely on the real line. This assumption allows me to provide a simple proof in the

39That is, there exists a conditional outcome with a regime survival region Θ∗, such that for
any other conditional outcome with a regime survival region Θ∗′, Θ∗ ⊃ Θ∗′.
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main text. A detailed proof for the fundamentals distributed continuously on the real

line is in the Appendix.

For each σ(·) ∈ S, function ΘX(Θ∗) ≡ Θ(X(Θ∗, σ(·)), σ(·)) increases in Θ∗. The set

of subsets of fundamentals is a complete lattice.40 By the Tarski fixed point theorem (see,

e.g., Ok, 2010), there exists the greatest fixed point Θ∗ = ΘX(Θ∗). The corresponding

agents’ attack region is X∗ ≡ X(Θ∗, σ(·)).

Lemma 6 establishes that under additional assumptions, the outcome under commit-

ment exists and has a threshold form.

Lemma 6. Let P > 0. Then there exists r > 1 such that for any I < rP there exists an

outcome under commitment (σ∗(·), X∗,Θ∗) and it has a threshold form. That is X∗ =

(−∞, x∗] and Θ∗ = [θ∗,+∞).

Proof. I sketch a proof under the assumption that fundamentals are distributed dis-

cretely on the real line. This assumption allows me to provide a simple proof in the

main text. A detailed proof for the fundamentals distributed continuously on the real

line is in the Appendix.

I start by constructing a candidate for the outcome under commitment. Let θ∗ be

the smallest regime that survives in at least one conditional outcome. Denote the corre-

sponding outcome as (σ0(·), X0,Θ0). Note that min{Θ0} = θ∗. We can use (σ0(·), X0,Θ0)

to construct a new outcome with Θ∗ = [θ∗,+∞). Note that the government must aban-

don its regime for fundamentals outside Θ∗ = [θ∗,+∞) because θ∗ is the minimum of

all regimes that can be saved. Define a candidate for the optimal policy as follows:

σ∗(θ) =

σ0(θ∗) if θ ∈ [θ∗,+∞) \Θ0,

σ0(θ) otherwise.
(36)

I can establish that (σ∗(·), X(Θ∗, σ∗(·)),Θ∗) is an outcome under commitment. First,

note that for I sufficiently close to P , the agents’ attack region has a threshold form:

X(Θ∗, σ∗(·)) = (−∞, x∗] for some x∗ ∈ R. The intuition for that result was discussed in

40ΘX(·) is defined on a set of measurable subsets of the fundamentals. When the funda-
mentals are distributed continuously on the real line, the set of all measurable subsets of the
fundamentals is no longer a complete lattice. I modify the proof accordingly in the Appendix.
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Subsection 3.5, and the result was stated in Lemma 2. Also note that agents become less

aggressive if the government uses σ∗(·): X(Θ∗, σ∗(·)) ⊂ X0. Indeed, the agents receive

the same signals from θ ∈ (−∞, θ∗]∪Θ0, but signals θ ∈ (θ∗,+∞) \Θ0 now correspond

to surviving regimes, and hence to 0 payoff.

Next, I verify that the regime survives for all fundamentals in [θ∗,+∞). First, the

government successfully defeats any attack that occurs for θ ∈ Θ0, including θ = θ∗,

because the agents are less aggressive. Second, the government defeats attacks for fun-

damentals θ ∈ [θ∗,+∞) \ Θ0 because these fundamentals are stronger than θ∗ and the

government uses the same precision as in θ∗ in them. More formally, for θ ∈ [θ∗,+∞)\Θ0:

Φ
(
x∗−θ
σ∗(θ)

)
= Φ

(
x∗−θ
σ0(θ∗)

)
≤ Φ

(
x∗−θ∗
σ0(θ∗)

)
≤ θ∗ ≤ θ.

5 Simple Policies in Theory and Practice

In this section, I show that an uncommitted government can benefit from a rule that

prevents it from manipulating the quality of information it distributes. I show that a

simple rule of constant precision of communication can bring a government’s policy

closer to a fully optimal policy of a committed government. The analysis of this section

is consistent with a policy response of international community to the Mexico’s 1994

crisis.

The analysis is motivated by the fact that it may be difficult to implement the optimal

policy of a committed government. First, the optimal policy requires commitment, and

hence may be infeasible for some impatient governments. Second, the optimal policy

has a complex non-monotone structure, and hence its implementation may require the

expertise not available to all governments. A government may be able implement a simple

policy of constant precision of communication even if a fully optimal policy is infeasible.

5.1 A policy of constant precision can benefit an uncommitted government

Corollary 2 provides very narrow conditions under which an uncommitted government

gets the same utility as a government that communicates with constant precision.

Corollary 2. Let σ2
ξ = 0, π(·) ≡ 1, and p(·) ≡ 1. Then in the unique threshold equilib-

rium without commitment, the government uses policy as in (10) and θ∗ = 1− c.
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Proof. The proof is in the Appendix.

Under the restrictive conditions of Corollary 2, an uncommitted government gets the

same outcome for any P < I, and also for any P = I ∈ R. Corollary 2 assumes that

the prior distribution of fundamentals is uniform on the real line and that agent’s payoff

π(θ) does not depend on θ. In reality, however, these two assumption likely fail, hence

the conclusion of Corollary 2 does not hold.

Proposition 4 states that a government that communicates with constant precision

can save its regime more often than an uncommitted government.

Proposition 4. An uncommitted government can benefit from a rule that enforces con-

stant precision of communication.

Proof. A proof by example is provided below.

I prove Proposition 4 by providing an example. In the example, I necessarily relax

the assumptions of Corollary 2. I assume that θ is distributed as N (µ, 1). I take σ2
ξ = 0,

[P, I] = [0.1, 0.5], c = 0.5. I choose π(θ) = max{1 − b · θ, 1}. Parameter µ determines

the mean of the fundamentals and parameter b determines how important are weak

fundamentals in affecting agents’ payoffs. I consider b ≥ 0, and hence an agent’s payoff

function weakly decreases in fundamentals.

For various values of µ and b, I compute the expected probabilities of regime survival

under three policies: precise communication σ(·) ≡ P , imprecise communication σ(·) ≡
I, and a policy of an uncommitted government. Figure 3 on page 47 shows which of

the three policies maximizes the government’s utility for µ ∈ [0, 1.2] and b ∈ [0, 4].

First, the figure shows that when fundamentals are weak on average (µ is low), the best

policy is σ(·) ≡ P , and when fundamentals are strong on average (µ is high), the best

policy is σ(·) ≡ I. Intuitively, the simple rule of constant precision of communication

approximates the policy used by a committed government, which communicates precisely

for weak fundamentals and imprecisely for strong fundamentals.41

41This results is consistent with Bannier and Heinemann (2005), who show that if the prior
distribution of fundamentals has low mean, then the regime falls less often if the dispersion
of private signals is low whereas if the prior distribution of fundamentals has high mean, then
the regime falls less often if the dispersion of private signals is high. The point of my analysis
is to compare these constant dispersions of private signals with a policy of an uncommitted
government, which varies dispersion with the state of the world.
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Figure 3 also shows that precise communication σ(·) ≡ P is preferred when an

agent’s payoff is higher for lower values of fundamentals (that is b is larger).42 The

reason is that by being imprecise for weak fundamentals, a government increases the

attack threshold of the agents, thus incentivizing the agents to be more aggressive. If

a weak government communicates imprecisely, as an uncommitted government does, it

sends both weak and intermediate signals to agents. Consequently, agents with signals

near the attack threshold realize that there is a good chance that the government is very

weak, and overthrowing its regime could bring a very high payoff (b is positive). Thus,

agents become more aggressive, attack more, and thereby reduce the set of fundamentals

for which the regime survives. The government can avoid this adverse effect of imprecise

communication by communicating precisely in all states of the world.

A communication policy implemented by an uncommitted government can be worse

than a policy of any constant precision. The reason is that the communication policy of an

uncommitted government can change agents’ beliefs in a way that increases their attack

threshold and induces them to attack when signals are higher. The region of parameters

for which this happens is indicated with plus signs on Figure 3. This happens when low

fundamentals are important in determining agent’s payoff (b is high) and fundamentals

are high on average (µ is high). By communicating precisely when fundamentals are

strong, the government also induces agents to be more aggressive, as the agents with

signals near the attack threshold realize that the fundamentals cannot be very strong, as

a very strong government distributes signals above the threshold. Consequently, for high

b and µ, an uncommitted government uses almost the worst possible communication

policy. Committing to any σ(·) ≡ σ ∈ [P, I] improves the government’s outcome.

5.2 The SDDS of the IMF as a commitment mechanism

The lack of governmental transparency was considered a factor that contributed to the

crisis in Mexico in 1994-1995 and the emerging market crises of 1997-1998. According to

an IMF Staff Report, “Lack of transparency was a feature of the buildup to the Mexican

42This results is consistent with Heinemann and Illing (2002) and Iachan and Nenov (2015),
who show that if agents’ payoff decreases in fundamentals, then then the regime falls less
often if the dispersion of private signals is low. The point of my analysis is to compare this
constant dispersions of private signals with a policy of an uncommitted government, which
varies dispersion with the state of the world.
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crisis of 1994-95 and to the emerging market crises of 1997-98. . . . Inadequate economic

data, hidden weaknesses in financial systems, and lack of clarity about government poli-

cies and policy formulation contributed to a loss of confidence that ultimately threatened

to undermine global stability.” This assessment by the IMF is consistent with a property

of my model, that the communication policy of an uncommitted government can make

agents more aggressive, leading to a regime falling more often.

The policy response of the IMF to the Mexico’s crisis is consistent with Proposition

4, which states that a government can benefit from a rule that enforces a constant level of

precision of communication. In 1996 the IMF introduced the Special Data Dissemination

Standard (SDDS),43 which prescribes the subscribed countries disclose specific data in

a particular format with specific periodicity. Currently, 65 countries, including Mexico,

are subscribed to the SDDS. The IMF views the SDDS as a mechanism for committing

countries to transparency. For example, after China subscribed to the SDDS in 2015,

First Deputy Managing Director of the IMF David Lipton said that “The subscription

to the SDDS underscores China’s strong commitment to transparency.”44

Several features of the SDDS enforce a country’s commitment to transparency. First,

a country must publish specific data and metadata (the description of how the data is

constructed), which must be accessible from the Dissemination Standard Bulletin Board,

a website created by the IMF. Second, the SDDS prescribes specific periodicity with

which the data have to be published, and restricts the amount of time, which a country

has to collect and publish the data. Moreover, a country must publish the advance

release calendar, that is announce in advance the dates on which it is publishing the

data. Finally, the IMF controls that the countries follow the SDDS and issues an annual

observance report for each country. These requirements make it costly for a country to

be vaguer by publishing only favorable data or postponing the disclosure of unfavorable

data, and hence bring a country closer to communicating with constant precision.

The SDDS prescribes a country to disclose detailed information on foreign currency

reserves and debt, the data that agents use to decide whether to attack a country’s

currency or run on its debt. For example, a guide on reporting foreign reserves “In-

43The Mexico’s crisis as a motivation behind the SDDS is mentioned in “The Special Data
Dissemination Standard 2013. Guide for Subscribers and Users.” IMF 2013.

44“The People’s Republic of China Subscribes to the IMF’s Special Data Dissemination
Standard.” Press Release No. 15/466. October 7, 2015.
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ternational Reserves and Foreign Currency Liquidity. Guidelines for a Data Template”

contains 108 pages of instructions including 4 table templates recommended for disclos-

ing data. A guide on reporting debt, “Public Sector Debt Statistics. Guide for Compilers

and Users” contains 231 pages including 13 table templates recommended for disclosing

data.

6 Extensions

In this section, I extend the model of Section 2. In Subsection 6.1, agents can receive

multiple signals and the distribution of noise can be non-normal. In Subsection 6.2, the

government can communicate a biased message. The main results of the paper hold

under these extensions.

6.1 Multidimensional signals and general noise distributions

I extend the model of Section 2 as described below. I keep the assumption that σ2
ξ = 0.

Assumption A1. Agents receive K private signals.

Under Assumption A1, each agent receives K signals, hence its signal xi is a K-

dimensional vector xi = (xi,1, . . . , xi,K). The signals are independent for each agent

and between agents. The role of this extension is to relax the assumption that agents

do not directly observe the precision of communication σ(θ) of the government. As K

increases, the agents are able to better discriminate between various actions σ(θ), and

thus there inference about θ becomes more related to the government’s action σ(θ).

Assumption A2. The prior distribution of θ, p(θ), is strictly positive and continuous

on R or is improper uniform on R.

Assumption A3. An agent attacks the regime if all agent’s signals are high and does

not attack if all the signal are low for any government’s policy and any actions of other

agents.

Assumption A3 requires that low signals correspond to weak fundamentals and high

signals correspond to strong fundamentals. This assumption is intuitive and I expect

that any reasonably parametrized model should satisfy it.45 More formally, the assump-

45The assumption is satisfied, for example, if the prior distribution of fundamentals is im-
proper uniform on R.
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tion states that E [agent’s profit|xi + x · 1,Θ∗ = [1,+∞) , σ(·)] is strictly less than c for

any government’s policy if x is high enough (here 1 is the vector of 1s of length K).

Also, E [agent’s profit|xi + x · 1,Θ∗ = [0,+∞) , σ(·)] is strictly greater than c for any

government’s policy for x low enough.

Assumption A4. The distribution of private noise has a probability density function

fσ(·) that satisfies the following properties:

1. Function fσ(θ) is strictly positive. It is also continuous, unimodal and symmetric

in θ.

2. Equation fs(t) = fσ(t) has a unique positive solution t(s, σ). Function t(s, σ) :

[P, I]2 → R+ is strictly increasing and continuous.

Assumption A4 is satisfied by normal, Laplace, logistic, and Student’s t-distribution

with ν > 2 degrees of freedom.46

Lemma 7 states that the main results of the paper hold under Assumptions A1-A4.

Lemma 7. Consider the model in Section 2 that is extended by Assumptions A1-A4.

Assume that there exists an equilibrium without commitment and an outcome under

commitment.47 There exist two thresholds θ, θ ∈ R such that:

σNC(θ) =

I if θ ≤ θ,

P if θ ≥ θ,
σC(θ) =

P if θ ≤ θ,

I if θ ≥ θ,

where σNC(·) is the government’s communication policy in an equilibrium without com-

mitment and σC(·) is the government’s communication policy in an outcome under com-

mitment.

Proof. The proof is in the Appendix.

46For normal distribution, for example, t(σ, s) =
√

2log(σ/s)
σ2−s2 σs with t(s, s) = s.

47If an equilibrium without commitment does not exist, then an uncommitted government
still uses a strategy that satisfies Lemma 7 against any rationalizable strategy of agents. A
committed government that uses a strategy that does not satisfy Lemma 7 on a set of positive
measure can get a strictly higher utility by changing its strategy according to Lemma 7.
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6.2 Biased communication

In the real world, a government may hide some information from the agents or provide

agents with false information. In that case, agents’ private signals are biased. We can

model biased communication by introducing the bias function b(θ) : R → R, in which

case agents receive signals xi = θ + b(θ) + εi. The bias function b(·) can be a part of a

fully optimal communication policy (b(·), σ(·)), in which a government chooses both the

bias and the precision of communication.48

Even though in the real world a government can bias its communication, the magni-

tude of the bias is likely to be bounded. Indeed, by providing agents with information

that is too distorted, the government may harm its reputation. Another justification for

considering a finite bias is that the optimal bias choice is finite in a model with convex

costs of biasing signals.

Lemma 8 states that the main results of the paper about the precision of communi-

cation hold if the government communicates with a finite bias.

Lemma 8. Consider the model in Section 2 that contains bias b(·) bounded by M > 0.

Assume that there exists an equilibrium without commitment and an outcome under

commitment.49 Then there exist two thresholds θ, θ ∈ R such that:

σNC(θ) =

I if θ ≤ θ,

P if θ ≥ θ.
σC(θ) =

P if θ ≤ θ,

I if θ ≥ θ,

where σNC(·) is the government’s communication policy in an equilibrium without com-

mitment and σC(·) is the government’s communication policy in an outcome under com-

mitment.

48Characterization of b(·) is beyond the scope of this paper. See Edmond (2013) for an
analysis of the bias chosen by an uncommitted government.

49The statement of footnote 47 applies here.
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7 Conclusion

In this paper, I examine the role of the precision of government communication in global

coordination games of regime change. I characterize how the government chooses the

precession of its communication based on the strength of economic fundamentals and

the government’s ability to commit to its policy. An uncommitted government chooses

precision of communication discretionary and may have to abandon its regime more often

relative to a government that uses constant precision of communication. A government

that can commit to a communication policy uses a very different precision, relative to an

uncommitted government, and saves its regime more often. I argue that a government

may be able to commit to a simple policy of constant precision of communication, even

if it cannot commit to a fully optimal policy, and thus can save its regime more often

relative to a policy of an uncommitted government.

More generally, my results can be applied in other contexts, such as the business

cycles management by a central bank. For example, Schaal and Taschereau-Dumouchel

(2015) use a global game approach to study the business cycle dynamics in an economy

where firms coordinate their production decisions. The intuition of my paper holds in

such a framework, hence a central bank may be able to choose precision of communication

to reduce the frequency and length of recessions.

40



References

Adler, M. (1994). “Lessons from Mexico’s roller-coaster ride in the first quarter of

1994,” The Columbia Journal of World Business, 29 (2), 84-91.

Agranov, M. and Schotter, A. (2012). “Ignorance is Bliss: An Experimental Study of

the Use of Ambiguity and Vagueness in the Coordination Games with Asymmetric

Payoffs,” AEJ: Microeconomics, 4 (2), 77-103.

Agranov, M. and Schotter, A. (2013). “Language and Government Coordination:

An Experimental Study of Communication in the Announcement Game,” Journal

of Public Economics, 104, 26-39.

Amador, M. and Weill, P.-O. (2010). “Learning from Prices: Public Communication

and Welfare,” Journal of Political Economy, 118 (5), 866-907.

Amador, M. and Weill, P.-O. (2012). “Learning from Private and Public Observa-

tions of Others’ Actions,” Journal of Economic Theory, 147 (3), 910-940.

Angeletos, G.-M., Hellwig, C., and Pavan, A. (2006). “Signaling in a Global Game:

Coordination and Policy Traps,” Journal of Political Economy, 114 (3), 452-484.

Angeletos, G.-M., Hellwig, C., and Pavan, A. (2007). “Dynamic Global Games of

Regime Change: Learning, Multiplicity, and the Timing of Attacks,” Economet-

rica, 75 (3), 711-756.

Angeletos, G.-M., Iovino, L., and La’O, J. (2015). “Real Rigidity, Nominal Rigidity,

and the Social Value of Information,” American Economic Review, forthcoming.

Angeletos, G.-M. and Pavan, A. (2007). “Efficient Use of Information and Social

Value of Information,” Econometrica, 75 (4), 1103-1142.

Angeletos, G.-M. and Werning, I. (2006). “Crises and Prices: Information Aggrega-

tion, Multiplicity, and Volatility,” American Economic Review, 96 (5), 1720-1736.

Bannier, C. E. and Heinemann, F. (2005). “Optimal Transparency and Risk-Taking

to Avoid Currency Crises,” Journal of Institutional and Theoretical Economics

JITE, 161 (3), 374-391.

41



Bergemann, D. and Morris, S. (2015). “Bayes Correlated Equilibrium and The Com-

parison of Information Structures in Games.”

Blume, A. and Board, O. (2012). “Intentional Vagueness.”

Blume, A. and Board, O. (2013). “Language Barriers,” Econometrica, 81, 781-812.

Border, K. C. (2002). “Differentiating an Integral: Leibniz’s Rule.”

Bouvard, M., Chaigneau, P., and de Motta, A. (2015). “Transparency in the Finan-

cial System: Rollover Risk and Crises,” Journal of Finance, 70 (4), 1805-1837.

Braun R. A., Mukherji A., and Runkle D. E. (1996) “Delayed Financial Disclosure:

Mexicos Recent Experience,” Federal Reserve Bank of Minneapolis Quarterly Re-

view, 20 (4), 13-21.

Carlsson, H. and van Damme, E. (1993). “Global Games and Equilibrium Selec-

tion,” Econometrica, 61 (5), 989-1018.

Chahrour, R. (2014). “Public Communication and Information Acquisition,” Amer-

ican Economic Journal: Macroeconomics, 6 (3), 73-101.

Channell, J. (1994). “Vague Language,” Oxford University Press.

de Jaegher, K. (2003). “A Game-Theoretic Rational for Vagueness,” Linguistics and

Philosophy, 26, 637-59.

Edmond, C. (2013). “Information Manipulation, Coordination, and Regime

Change,” Review of Economic Studies, 80 (4), 1422-1458.

Edmond, C. (2015). “Non-Laplacian Beliefs in a Global Game with Noisy Signal-

ing.”

Edwards, S. (1998). “The Mexican Peso Crisis: How Much Did We Know? When

Did We Know It?” The World Economy, 21 (1), 1-30.

Ernst, M. O. and Banks M. S. (2002). “Humans Integrate Visual and Haptic Infor-

mation in a Statistically Optimal Fashion,” Nature, 415 (6870), 429-433.

42



Faria-e-Castro, M., Martinez, J., and Philippon, T. (2015). “Runs versus Lemons:

Information Disclosure and Fiscal Capacity.”

Goldstein, I. and Leitner, Y. (2015). “Stress Tests and Information Disclosure.”

Goldstein, I. and Pauzner, A. (2005). “Demand–Deposit Contracts and the Proba-

bility of Bank Runs,” The Journal of Finance, 60 (3), 1293-1327.

Iachan, F. and Nenov, P. (2015). “Information Quality and Crises in Regime-Change

Games,” Journal of Economic Theory, 158B, 739-768.

Heinemann, F. and Illing, G. (2002). “Speculative Attacks: Unique Equilibrium and

Transparency,” Journal of International Economics, 58 (2), 429-450.

Hellwig, C. (2002). “Public Information, Private Information, and the Multiplicity

of Equilibria in Coordination Games,” Journal of Economic Theory, 107 (2),

191-222.

Hellwig, C., Mukherji, A., and Tsyvinski, A. (2006). “Self-Fulfilling Currency Crises:

The Role of Interest Rates,” American Economic Review, 96 (5), 1769-1787.

Kamenica, E. and Gentzkow, M. (2011). “Bayesian Persuasion,” American Eco-

nomic Review, 101 (6), 2590-2615.

Körding, K. P. and Wolpert, D. M. (2004). “Bayesian Integration in Sensorimotor

Learning,” Nature, 427 (6971), 244-247.

Lipton, B. (2009). “Why is Language Vague?”

Metz, C. E. (2002). “Private and Public Information in Self-fulfilling Currency

Crises,” Journal of Economics, 76 (1), 65-85.

Morris, S. and Shin, H. S. (1998). “Unique Equilibrium in a Model of Self-Fulfilling

Currency Attacks,” American Economic Review, 88 (3), 587-597.

Morris, S. and Shin, H. S. (2002). “Social Value of Public Information,” American

Economic Review, 92 (5), 1521-1534.

43



Morris, S. and Shin, H. S. (2003). “Global Games: Theory and Applications,” in

Advances in Economics and Econometrics (Proceedings of the Eighth World

Congress of the Econometric Society), edited by M. Dewatripont, L. Hansen and

S. Turnovsky; Cambridge University Press.

Morris, S. and Shin, H. S. (2004), “Coordination risk and the price of debt,” Euro-

pean Economic Review, 48 (1), 133-153.

Myatt, D. P. and Wallace, C. (2014). “Central Bank Communication Design in a

Lucas-Phelps Economy,” Journal of Monetary Economics, 63, 64-79.

Ok, E. A. (2012). “Elements of Order Theory.”

Schaal, E. and Taschereau-Dumouchel, M. (2015). “Coordinating Business Cycles.”

Serra-Garcia, M., van Damme, E., and Potters, J. (2011). “Hiding an Inconvenient

Truth: Lies and Vagueness,” Games and Economic Behavior, 73 (1), 244-261.

Stocker, A. A. and Simoncelli, E. P. (2006). “Noise Characteristics and Prior Expec-

tations in Human Visual Speed Perception,” Nature Neuroscience, 9 (4), 578-585.

Szkup, M. and Trevino, I. (2015). “Information Acquisition in Global Games of

Regime Change.”

Taneva, I. (2015). “Information Design.”

Woodford, M. (2005). “Central Bank Communication and Policy Effectiveness,”

NBER Working Paper No. 11898.

Yang, M. (2015). “Coordination with Flexible Information Acquisitions,” Journal

of Economic Theory, 158, 721-738.

Yang, J. and Stevenson, S. B. (1997). “Effects of Spatial Frequency, Duration, and

Contrast on Discriminating Motion Directions,” Journal of the Optical Society of

America A, 14 (9), 2041-2048.

44



Expected payoff

Attack size

�

Figure 1: Expected payoff and attack sizes when the government uses the optimal com-
munication policy σC(·) with [P, I] = [0.1, 0.5] and communicates with constant precision
σ(·) ≡ P . Note that under the assumptions of the example, the expected payoff is equal
to P (θ < θ∗|xi) and the attack size is equal to P (xi ≤ x∗|θ).
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C

Figure 2: The top panel shows policy σH(·) that maximizes the impact of communication
on posterior beliefs of the threshold agent and policy σL(·) that minimizes the impact
of communication on posterior beliefs of the threshold agent. The bottom panel shows
the optimal communication policy σC(·).
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Figure 3: This figure shows the best policy out of three policies: σ(·) ≡ P , σ(·) ≡ I, and
σNC(·) for various values of µ and b (the best policies correspond to regions marked P,
I, and NC respectively). Parameter µ is the average value of fundamentals. Parameter b
captures the importance of weak fundamentals. Plus signs show the region of parameters
in which any policy of constant precision of communcition σ(·) ≡ σ ∈ [P, I] is better
than σNC(·).
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Appendix

Proof of Proposition 1

Proof. The proof is provided in the main text.

Proof of Lemma 1

Proof. Let P > 0 and let P̃ ∈ (P,
√
P 2 + σ2

prior).

Step 1. For any government’s policy σ(·) : R → [P, P̃ ] there exists x∗ such that

E[agent’s payoff|xi = x∗, x∗, σ(·)] = c.

Proof. Define

π(x∗, θ) ≡
∫

Φ(x
∗−θ
σ(θ) )−θ>ξ

π(θ + ξ)ϕ(ξ)dξ. (37)

Then, for the threshold agent x∗

E[agent’s payoff|xi = x∗, x∗, σ(·)] =

+∞∫
−∞

π(x∗, θ)f(θ|x∗)dθ. (38)

Let us prove that (38) becomes less than c as x∗ goes to +∞. Pick t ∈ R such that

π(+∞, θ) < c/2 for all θ > t. Then

+∞∫
−∞

π(x∗, θ)p(θ)fσ(θ)(x
∗ − θ)dθ

+∞∫
−∞

p(θ)fσ(θ)(x∗ − θ)dθ
(39)

≤

t∫
−∞

π(+∞, θ)p(θ)fσ(θ)(x
∗ − θ)dθ +

+∞∫
t

π(+∞, θ)p(θ)fσ(θ)(x
∗ − θ)dθ

+∞∫
−∞

p(θ)fσ(θ)(x∗ − θ)dθ
(40)
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≤C ·

t∫
−∞

p(θ)fσ(θ)(x
∗ − θ)dθ

+∞∫
−∞

p(θ)fσ(θ)(x∗ − θ)dθ
+
c

2
. (41)

Where C is a constant that bounds π(·) from above. On Step 1 in the proof of Lemma

2, I formally show that the ratio of integrals in (41) converges to 0 as x∗ converges to

+∞ as long as P̃ <
√
P 2 + σ2

prior. Hence (38) becomes less than c as x∗ goes to +∞
A similar argument establishes that (38) goes to π(−∞) > c as x∗ goes to −∞. Since

both π(x∗, θ) and f(θ, x∗) are continuous in x∗, an argument similar to the one described

in footnote 38 establishes that the expectation in (38) is continuous in x∗. Hence, there

exists at least one x∗ that solves E[agent’s payoff|xi = x∗, x∗, σ(·)] = c.

Step 2. E[agent’s payoff|xi, x∗, σ(·) ≡ P ] is strictly decreasing in xi.

Proof. For σ(·) ≡ P , the conditional posterior of θ is:

f(θ|xi) =
p(θ)fσ(θ)(θ − xi)

+∞∫
−∞

p(θ)fσ(θ)(θ − xi)dθ
∼ N

(
P 2

σ2
prior + P 2

µprior +
σ2
prior

σ2
prior + P 2

xi,
σ2
priorP

2

σ2
prior + P 2

)
.

(42)

Hence as xi increases, the conditional distribution of θ shifts to the right. Also for

σ(·) ≡ P function π(x∗, θ) strictly decreases in θ. It follows that

E[agent’s payoff|xi, x∗, σ(·) ≡ P ] =

+∞∫
−∞

π(x∗, θ)f(θ|xi)dθ (43)

strictly decreases in xi.

Step 3. We can choose P̃ ∈ (P,
√
P 2 + σ2

prior) such that the following statement

is correct. Let x∗ be a solution to E[agent’s payoff|xi = x∗, x∗, σNC(·)] = c for P and

I ≤ P̃ . Then {xi : E[agent’s payoff|xi, x∗, σNC(·)] ≥ c} = (−∞, x∗].

Proof. By the argument similar to the argument of Step 1, there exists x̂ ∈ R such that

for xi < −x̂ an agent attacks for any government’s policy σ(·) : R → [P, P̃ ] even if no

other agent attacks. Moreover, we can choose x̂ so that for xi > x̂ an agent does not
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attack for any government’s policy σ(·) : R → [P, P̃ ] even if all other agents attack. It

follows that x∗ necessarily satisfies |x∗| < x̂.

To finish the proof of Lemma 1, it is enough to prove, that for P̃ close enough to P

the derivative of E[agent’s payoff|xi, x∗, σNC(·)] with respect to xi is negative for any x∗

and xi such that |xi| < x̂ and |x∗| < x̂.

E[agent’s payoff|xi, x∗, σNC(·)] = (44)

=

x∗∫
−∞

Φ
(
x∗−θ
I

)
−θ∫

−∞
π(θ + ξ)ϕ(ξ)p(θ)fI(θ − xi)dξdθ +

+∞∫
x∗

Φ
(
x∗−θ
P

)
−θ∫

−∞
π(θ + ξ)ϕ(ξ)p(θ)fP (θ − xi)dξdθ

x∗∫
−∞

p(θ)fI(θ − xi)dθ +
+∞∫
x∗

p(θ)fP (θ − xi)dθ

=
∆π + π

∆f + f
,

where:

f =

+∞∫
−∞

p(θ)fP (θ − xi)dθ, (45)

π =

+∞∫
−∞

Φ
(
x∗−θ
P

)
−θ∫

−∞

π(θ + ξ)ϕ(ξ)p(θ)fP (θ − xi)dξdθ, (46)

∆f =

x∗∫
−∞

p(θ)fI(θ − xi)dθ −
x∗∫
−∞

p(θ)fP (θ − xi)dθ, (47)

∆π =

x∗∫
−∞

Φ
(
x∗−θ
I

)
−θ∫

−∞

π(θ + ξ)ϕ(ξ)p(θ)fI(θ − xi)dξdθ −
x∗∫
−∞

Φ
(
x∗−θ
P

)
−θ∫

−∞

π(θ + ξ)ϕ(ξ)p(θ)fP (θ − xi)dξdθ.

(48)

We denote as ∆π′, π′, ∆f ′, f ′ the derivatives of ∆π, π, ∆f , f with respect to xi. It

follows, that the derivative of (44) is equal to:

(∆π′ + π′)(∆f + f)− (∆π + π)(∆f ′ + f ′)

(∆f + f)2
. (49)
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Straightforward derivations demonstrate that

|∆f | ≤ const1 ·
+∞∫
−∞

|fP (θ)− fI(θ)|dθ, (50)

|∆f ′| ≤ const2 ·
+∞∫
−∞

|f ′P (θ)− f ′I(θ)|dθ, (51)

|∆π| ≤ const3 ·
+∞∫
−∞

|fP (θ)− fI(θ)|dθ, (52)

|∆π′| ≤ const4 ·
+∞∫
−∞

|f ′P (θ)− f ′I(θ)|dθ. (53)

Here const1–const4 are positive constants that do not depend on xi or x∗. Note that π,

π′, f , f ′ are bounded from above by constants that do not depend on xi or x∗.

By Step 2, π′f − πf ′ is negative. Moreover, it is continuous in both xi and x∗.

Consequently, there exists ε > 0 such that the derivative of (43), π′f − πf ′, is less than

−ε for all x∗ and xi such that |xi| < x̂ and |x∗| < x̂. This argument together with (49-53)

implies that the derivative of (44) is negative for I close enough to P .

Proof of Proposition 2

Proof. Proposition 2 follows from Lemma 7. Assumption A3, required by Lemma 7,

holds under assumptions of Proposition 2 by the result established on Step 1 in the

proof of Lemma 2.

Proof of Lemma 2

Proof. Let P > 0 and choose any P̃ ∈ (P,
√
σ2
prior + P 2).

Step 1. There exists x̂ ∈ R such that for xi > x̂ an agent does not attack for

any government’s policy σ(·) : R → [P, P̃ ] even if all other agents attack. Moreover,

we can choose x̂ so that for xi < −x̂ an agent attacks for any government’s policy

σ(·) : R→ [P, P̃ ] even if no other agents attack.
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Proof. To save on notation denote µ ≡ µprior and s ≡ σprior. Recall that the error

function is defined as follows erf(x) ≡ 2√
π

∫ x
0
e−t

2
dt. Pick a positive constant M > P̃ .50

Then for xi high enough we can bound the expectation of agent’s profit as follows:

1∫
−∞

π(θ)p(θ)fσ(θ)(xi − θ)dθ∫
R
p(θ)fσ(θ)(xi − θ)dθ

≤ C

1∫
−∞

p(θ)fσ(θ)(xi − θ)dθ∫
R
p(θ)fσ(θ)(xi − θ)dθ

(54)

≤C

1∫
−∞

p(θ)fP̃ (xi − (θ +M))dθ

xi∫
−∞

p(θ)fP (xi − (θ −M))dθ +
+∞∫
xi

p(θ)fP (xi − (θ +M))dθ

=C

√
P 2 + s2

P̃ 2 + s2

e
− (M+µ−xi)

2

2(P̃2+s2)

(
1− erf

(
P̃ 2(µ−1)+s2(−M+xi−1)

√
2P̃ s
√
P̃ 2+s2

))
e
− (M−µ+xi)2

2(P2+s2)

(
1 + erf

(
−Ms2−µP 2+P 2xi√

2Ps
√
P 2+s2

))
+ e

− (M+µ−xi)2

2(P2+s2)

(
1− erf

(
Ms2−µP 2+P 2xi√

2Ps
√
P 2+s2

))
We can bound 1− erf(·) in the numerator of last expression in (54) by the following

expression:

√
2P̃ s

√
P̃ 2 + s2

P̃ 2(µ− 1) + s2(−M + xi − 1)
· e
−
(
P̃2(µ−1)+s2(−M+xi−1)

√
2P̃ s
√
P̃2+s2

)2

, (55)

which behaves asymptotically as e
− s2x2i

2P̃2(P̃2+s2) . The asymptotic properties of the denomi-

nator of (54) are the same as the asymptotic properties of e
− x2i

2(P2+s2) . Thus it follows that

the expected profit of an agent is bounded from above by a function that asymptotically

behaves as:

e
− x2i

2(P̃2+s2) · e−
s2x2i

2P̃2(P̃2+s2) · e
x2i

2(P2+s2) . (56)

The function in (56) converges to 0 when xi converges to +∞ if P̃ 2 < s2 + P 2.

It follows that we can choose x̂ high enough so that an agent that receives a signal xi >

x̂ does not attack for any σ(·) ∈ S and Θ∗ = [1,+∞). A similar argument establishes

50We will be a little more general in the proof than necessary to make the proof applicable
under more general assumptions we use later in the paper.
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that we can also choose x̂ so that agents that receive signals xi < −x̂, attack for any

σ(·) ∈ S and Θ∗ = [0,+∞).

Step 2. Suppose that the government uses σ(·) ≡ P . Then the derivative of agent’s

expected payoff with respect to xi is less than −ε for ε > 0 for all xi : |xi| < x̂ and all

θ∗ ∈ [0, 1].

Proof. If the government uses the constant precision of P , then the expected payoff of

an agent with signal xi is:

E[agent’s payoff|xi, θ∗, σ(·) ≡ P ] =

θ∗∫
−∞

π(θ)p(θ)fP (θ − xi)dθ

+∞∫
−∞

p(θ)fP (θ − xi)dθ
.

Note that the expectation is continuously differentiable in xi and its derivative is contin-

uous in θ∗. Moreover the expectation is strictly decreasing in xi, which can be established

with an argument similar to an argument on Step 2 in the proof of Lemma 1. It follows

that there exists ε > 0 such that the derivative of agent’s payoff with respect to xi is

less than −ε for any xi such that |xi| < x̂ and any θ∗ ∈ [0, 1].

Step 3. For I close enough to P the derivative of E[agent’s payoff|xi, θ∗, σ(·)] with

respect to xi is negative for any σ(·) : R → [P, I], any θ∗ ∈ [0, 1] and any xi such that

|xi| < x̂.

Proof.

E[agent’s payoff|xi, θ∗, σ(·)] = (57)

=

θ∗∫
−∞

π(θ)p(θ)fσ(θ)(θ − xi)dθ

+∞∫
−∞

p(θ)fσ(θ)(θ − xi)dθ

=
∆π + π

∆f + f
,
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where:

f =

+∞∫
−∞

p(θ)fP (θ − xi)dθ, (58)

π =

θ∗∫
−∞

π(θ)p(θ)fP (θ − xi)dθ, (59)

∆f =

+∞∫
−∞

p(θ)fσ(θ)(θ − xi)dθ −
+∞∫
−∞

p(θ)fP (θ − xi)dθ, (60)

∆π =

θ∗∫
−∞

π(θ)p(θ)fσ(θ)(θ − xi)dθ −
θ∗∫

−∞

π(θ)p(θ)fP (θ − xi)dθ. (61)

We denote as ∆π′, π′, ∆f ′, f ′ derivatives of ∆π, π, ∆f , f with respect to xi. It

follows, that the derivative of (57) is equal to:

(∆π′ + π′)(∆f + f)− (∆π + π)(∆f ′ + f ′)

(∆f + f)2
. (62)

Straightforward derivations demonstrate that

|∆f | ≤ const1 ·
+∞∫
−∞

max
σ∈[P,I]

|fP (θ)− fσ(θ)|dθ, (63)

|∆f ′| ≤ const2 ·
+∞∫
−∞

max
σ∈[P,I]

|f ′P (θ)− f ′σ(θ)|dθ, (64)

|∆π| ≤ const3 ·
+∞∫
−∞

max
σ∈[P,I]

|fP (θ)− fσ(θ)|dθ, (65)

|∆π′| ≤ const4 ·
+∞∫
−∞

max
σ∈[P,I]

|f ′P (θ)− f ′σ(θ)|dθ. (66)

Here const1–const4 are positive constants that do not depend on xi or θ∗. Note that π,

π′, f , f ′ are bounded from above by constants that do not depend on xi or θ∗.

As we argued before, π′f−πf ′ is negative and less than −ε for all θ∗ and xi such that
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|xi| < x̂ and θ∗ ∈ [0, 1]. This argument together with (62-66) implies that the derivative

of (57) is negative for I close enough to P .

Proof of Lemma 3

Proof. Step 6 in the proof of Lemma 6 shows that the governments saves all the regimes

that can be saved given the agents’ strategy X∗.

Let us find the weakest regime θ∗ that can be saved. Given x∗, the government can

save its regime for the following fundamentals:

{θ : Φ

(
x∗ − θ
σ

)
≤ θ for some σ ∈ [P, I]}. (67)

Note that Φ
(
x∗−θ∗
σ

)
= θ∗ for some σ ∈ [P, I] since Φ

(
x∗−θ∗
σ

)
< θ∗ would imply that

regimes slightly weaker than θ∗ can be saved. Moreover, σ must minimize Φ
(
x∗−θ∗
σ

)
because that expression is equal to θ∗. Particularly, for x∗ − θ∗ < 0 precision σ = P

minimizes the attack size and thus θ∗. For x∗ − θ∗ > 0 precision σ = I minimizes the

attack size and thus θ∗. It follows that the precision policy for θ = θ∗ is as follows:

σ∗(θ∗) =


P if x∗ < 0.5,

Σ if x∗ = 0.5,

I if x∗ > 0.5.

(68)

We can combine (67) and (68) to find θ∗ as a function of x∗:Φ
(
x∗−θ∗
P

)
= θ∗ if x∗ ≤ 0.5,

Φ
(
x∗−θ∗
I

)
= θ∗ if x∗ > 0.5.

(69)
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Proof of Proposition 3

Proof. Consider a threshold outcome (σ0(·), x0, θ0) conditional on σ0(·) and let Θ0 ≡
[θ0,+∞). If σ0(·) does not satisfy (26-28) on a set of positive measure, then there exist

an outcome with a larger regime survival region.

Let σd(·) ∈ S be the policy constructed according to (26-28) given thresholds x0 and

θ0. Let us show that agent x0 does not attack given Θ0 and σd(·):

c = E[agent’s payoff|xi = x0, θ0, σ0(·)] (70)

=

θ0∫
−∞

π(θ)p(θ)fσ0(θ)(x0 − θ)dθ +
∫

Θ0

fσ0(θ)(x0 − θ)dθ

θ0∫
−∞

p(θ)fσ0(θ)(x0 − θ)dθ +
+∞∫
θ0

p(θ)fσ0(θ)(x0 − θ)dθ

>

θ0∫
−∞

π(θ)p(θ)fσd(θ)(x0 − θ)dθ +
∫

Θ0

fσd(θ)(x0 − θ)dθ

θ0∫
−∞

p(θ)fσd(θ)(x0 − θ)dθ +
+∞∫
θ0

p(θ)fσd(θ)(x0 − θ)dθ

= E[agent’s payoff|xi = x0, θ0, σd(·)]

By Lemma 2, X(Θ0, σd) = (−∞, xd] for some xd ∈ R. The argument in (70) implies

that xd < x0. It follows that Θ0 ⊂ Θ (X0, σd(·)) ⊂ Θ (X (Θ0, σd(·)) , σd(·)). By Lemma 5

there exists an outcome conditional on σd(·) such that the corresponding regime survival

region includes Θ0.

We are done if the regime survival region in the outcome conditional on σd(·) is strictly

larger than Θ0. Otherwise, we can construct an outcome with a strictly larger regime

survival region. Since Fσ(θ0)(x0 − θ0) = θ0, we have that Fσ(θ0)(xd − θ0) < θ0. Thus the

government can save some regimes in a left neighborhood of θ0 given X(Θ0, σd(·)). For

that purpose it is enough for the government to use strategy σ(θ0) in a left neighborhood

of θ0. Then Step 6 in the proof of Proposition 6 implies that there exists an outcome

with a regime survival region that is strictly larger than Θ0.
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Proof of Lemma 4

Proof. Let t(σ, s) be the unique positive solution to fσ(t) = fs(t). Direct computation

shows that t(σ, s) =
√

2log(σ/s)
σ2−s2 σs. Then direct computations demonstrate that:

σL(θ) =


P θ ≤ x∗ − t(P, I),

I x∗ − t(P, I) < θ < x∗ + t(P, I),

P θ ≥ x∗ + t(P, I).

(71)

σH(θ) =



I θ ≤ x∗ − I,

x∗ − θ x∗ − I ≤ θ ≤ x∗ − P,

P x∗ − P ≤ θ ≤ x∗ + P,

θ − x∗ x∗ + P ≤ θ ≤ x∗ + I,

I θ ≥ x∗ + I.

(72)

It is easy to see that the result of Lemma 4 follows.

Proof of Corollary 1

Proof. Recall from Proposition 2 that σ∗(θ) = P for θ ≤ θ, and σ∗(θ) = I for θ ≥ θ. We

will consider three cases.

Case 1. x∗ < θ∗. By (22) σ∗(θ∗) = P . By (26) σ∗(x∗) = I.

Case 2. θ∗ < x∗. By (22) σ∗(θ∗) = I. By (27-28) σ∗(x∗) = P .

Case 3. θ∗ = x∗. By (26) σ∗(θ) = I in a left neighborhood of θ∗. By (27-28) σ∗(x∗) = P

in a right neighborhood of θ∗.

Proof of Lemma 5

Proof. The proof essentially repeats a standard proof of the Tarski fixed point theorem

(see, e.g., Chapter 5 in Ok, 2010) with modifications necessary for the problem that we

have51.

51Unfortunately, we cannot directly apply the Tarski fixed point theorem. The reason is
as follows. We want to prove the existence of the largest fixed point for a function between
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Define ΘX(Θα) ≡ Θ (X (Θα, σ(·)) , σ(·)). While ΘX(·) depends on σ(·), we omit it

from the arguments to lighten notation. Importantly, operator ΘX(·) is monotone, that

is for any measurable subsets of the real line A and B such that A ⊂ B, it follows that

ΘX(A) ⊂ ΘX(B). Let D = {Θα : Θα ⊂ ΘX(Θα)}. Let Θ1 ≡ [1,+∞) and note that

Θ1 ∈ D.

Let us now construct a sequence {Θn} as follows. Given Θn, define dn =

supΘα∈D p(Θα \ Θn), where \ is the difference operator. Then pick any ΘA
n ∈ D such

that µ(ΘA
n \ Θn) > dn/2 and let Θn+1 ≡ Θn ∪ ΘA

n . Note that the sequence constructed

above converges to a measurable set Θ∗0 ≡ ∪n∈NΘn. Moreover, p(Θα \ Θ∗0) = 0 for all

Θα ∈ D52.

Let Θ∗ = ΘX(Θ∗0). Our goal is to show that Θ∗ is the largest fixed point of ΘX(·),
that is Θ∗ is a fixed point and it contains all fixed points of ΘX(·). First, let us show

that Θ∗ ⊂ ΘX(Θ∗). Indeed, we have that

Θ∗0 = ∪n∈NΘn ⊂ ∪n∈NΘX(Θn) ⊂ ΘX (∪n∈NΘn) = ΘX (Θ∗0) . (73)

Here the first and the last equalities follow from the definition of Θ∗0. The first inclusion

follows from the fact that Θn is a finite union of elements of D, and thus Θn ∈ D53. The

second inclusion follows from monotonicity of ΘX (·). By applying ΘX (·) to (73), we

get that ΘX(Θ∗0) ⊂ ΘX(ΘX(Θ∗0)), thus Θ∗ ⊂ ΘX(Θ∗).

Second, let us show that Θ∗ ⊃ ΘX(Θ∗). It is enough to prove that ΘX(Θ∗) ∈ D and

Θ∗ contains all elements of D. Monotonicity of ΘX (·) and the result that Θ∗ ⊂ ΘX(Θ∗)

together imply that ΘX (Θ∗) ⊂ ΘX (ΘX(Θ∗)), and thus ΘX(Θ∗) ∈ D. To prove that

Θ∗ contains all elements of D, let us take any Θα ∈ D. Then

Θ∗ = ΘX (Θ∗0) = ΘX (Θ∗0 ∪Θα) ⊃ ΘX (Θα) ⊃ Θα. (74)

measurable subsets of the real line, but the set of all measurable subsets of the real line is not a
complete lattice. Fortunately, an argument very similar to the Tarski theorem still establishes
the existence of the largest fixed point in our case.

52Indeed, note that for any n ∈ N, [1,+∞) ⊂ Θn ⊂ [0,+∞) and µ(Θn+1 \ Θn) ≥ dn/2.
Thus dn → 0. Now assume µ(Θα \Θ∗0) = ε > 0 for some Θα ∈ D, and let m ∈ N be such that
dn/2 < ε for all n > m. This implies, that Θα has been added to Θn for some n < m, and thus
Θα ⊂ Θ∗0 and µ(Θα \Θ∗0) = 0 which contradicts µ(Θα \Θ∗0) = ε > 0.

53Indeed, If A ⊂ ΘX(A) and B ⊂ ΘX(B), then A ⊂ ΘX(A ∪ B) and B ⊂ ΘX(A ∪ B) by
monotonicity of ΘX(·). It follows that A ∪B ⊂ ΘX(A ∪B).
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The first equality follows from the definition of Θ∗. The second equality follows from

the fact that by construction of Θ∗0, p(Θ∗0 \Θα) = 0. The first inclusion follows from the

monotonicity of ΘX (·) and the second inclusion follows from the definition of D. We

have established that Θ∗ ⊃ ΘX(Θ∗).

The results of the previous two paragraphs imply that Θ∗ = ΘX(Θ∗), and thus Θ∗

is a fixed point of ΘX(·). Moreover, since any fixed point of ΘX(·) is an element of D,

and Θ∗ contains all elements of D, it must be the largest fixed point of ΘX(·).
To finish the proof let us define X∗ ≡ X (Θ∗, σ(·)). Then Θ(X∗, σ(·)) =

Θ (X (Θ∗, σ(·)) , σ(·)) = Θ∗. Thus (Θ∗, X∗) is a fixed point of the pair of operators

Θ(·, σ(·)) and X(·, σ(·)). Finally note that X∗ = X(Θ∗, σ(·)) ⊂ X(Θα, σ(·)) for each

Θα ∈ D by monotonicity of X(·, σ(·)).

Proof of Lemma 6

Proof. To simplify notation I assume that the government can commit to abandon a

regime even if it can be saved. I will show the existence of the outcome under this

assumption. To finish the proof of the result formulated in the main text I will show

that the government never chooses to voluntarily abandon a regime that can be saved.

The proof proceeds in 6 steps. On Steps 1-2 I establish that we can choose a sequence

of outcomes such that the lower bounds of the corresponding regime survival regions

converge to the infimum of all the regimes that can potentially be saved. Moreover,

the corresponding regime survival regions can be chosen to be threshold. On Steps 3

I establish that the corresponding agents’ attack regions also converge. On Step 4 this

allows me to construct a converging sequence of government policies, which preserves all

the properties of the regime survival and agents’ attack regions stated above. On Step

5 I show that the policy constructed on Step 4 is the policy that gives the government

the largest possible regime survival region. On Step 6 I argue that the government never

chooses to voluntarily abandon regimes that can be saved, which finishes the proof.

Step 1. Consider an outcome (σ0(·), X0,Θ0) conditional on σ0(·). If Θ0 does not have

a threshold form, then there exists σd(·) ∈ S and a corresponding outcome (σd(·), Xd,Θd)

such that (inf{Θ0},+∞) ⊂ Θd, Xd ⊂ X0. Moreover Θd has a threshold form.
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Proof. Let θ ≡ inf{Θ0}. If θ ∈ Θ0, then define σ ≡ σ0(θ) and Θd ≡ [θ,+∞). If θ 6∈ Θ0,

define σ ≡ lim infθ→θ σC(θ), where σC : Θ0 → R and σC(Θ0) = σ0(Θ0). Define Θd ≡
(θ,+∞). Note that in both cases Θd ⊃ Θ0. Define σd(·):

σd(θ) =

σ if θ ∈ Θd \Θ0,

σ0(θ) otherwise.
(75)

Let us show that Xd ≡ X(Θd, σd(·)) ⊂ X0. The idea behind this result is simple—

relative to the initial outcome, signals from Θd\Θ0 now correspond to the regime survival

(and signal from outside of Θd \Θ0 are the same). Thus agents become less inclined to

attack. The formal proof is as follows. Take xi ∈ Xd, then:

c ≤ E[agent’s payoff|xi,Θd, σd(·)] (76)

=

∫
R\Θd

π(θ)p(θ)fσd(θ)(xi − θ)dθ
∫

Θd\Θ0

π(θ)p(θ)fσ(θ)(xi − θ)∫
R\(Θd\Θ0)

p(θ)fσd(θ)(xi − θ)dθ +
∫

Θd\Θ0

p(θ)fσd(θ)(xi − θ)dθ

≤

∫
R\Θd

π(θ)p(θ)fσd(θ)(xi − θ)dθ
∫

Θd\Θ0

π(θ)p(θ)fσ(θ)(xi − θ)∫
R\(Θd\Θ0)

p(θ)fσd(θ)(xi − θ)dθ+
∫

Θd\Θ0

p(θ)fσd(θ)(xi − θ)dθ

=

∫
R\Θd

π(θ)p(θ)fσ0(θ)(xi − θ)dθ
∫

Θd\Θ0

π(θ)p(θ)fσ(θ)(xi − θ)∫
R\(Θd\Θ0)

p(θ)fσ0(θ)(xi − θ)dθ+
∫

Θd\Θ0

p(θ)fσ0(θ)(xi − θ)dθ

Then:

E[agent’s payoff|xi,Θ0, σ0(·)] (77)

=

∫
R\Θd

π(θ)p(θ)fσ0(θ)(xi − θ)dθ +
∫

Θd\Θ0

π(θ)p(θ)fσ0(θ)(xi − θ)dθ∫
R\(Θd\Θ0)

p(θ)fσ0(θ)(xi − θ)dθ +
∫

Θd\Θ0

p(θ)fσ0(θ)(xi − θ)dθ

≥c, (78)

because π(θ) ≥ c for θ ∈ Θd \Θ0. Hence xi ∈ X0.

Let us prove, that Θd ⊂ Θ(Xd, σd(·)). Obviously Θ0 = Θ(X0, σ0(·)) ⊂ Θ(Xd, σd(·))
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because Xd ⊂ X0 and σ0(Θ0) = σd(Θ0). It is left to prove, that Θd \Θ0 ⊂ Θ(Xd, σd(·)).
Note that Lemma 2 implies Xd = (−∞, xd] for some xd ∈ R. Now pick any θ ∈ Θd \Θ0,

recall that σd(θ) = σ. By construction there is a point at Θ0 strictly to the left of θ

such that the government uses precision arbitrarily close to σ and the regime survives.

Thus the regime survives at θ if the government uses precision σ. Let the government

commit to abandon all the regimes outside Θd. In that case (σd(·), Xd,Θd) is an outcome

conditional on σd(·) with Θd having a threshold form and (inf{Θ0},+∞) ⊂ Θd.

Step 2. Let θ∗ be the infimum of all the regimes that can be saved in all outcomes.

Then there exists a sequence (σ1
n(·)) such that the corresponding regime survival regions

have threshold form (θ1
n,+∞) and their infimumfs converge to θ∗.

Proof. Let Θ̃ ≡ {inf{Θ} : Θ is a regime survival region given σ(·), σ(·) ∈ S}. Let θ∗ ≡
inf{Θ̃}. We can pick a sequence σ0

n(·) ∈ S such that inf{Θ0
n} → θ∗, where Θ0

n is a regime

survival region that corresponds to σ0
n(·) ∈ S.

By the result of Step 1, for each n we can use outcome (σ0
n(·), X0

n,Θ
0
n) to construct

σ1
n(·) ∈ S such that in the corresponding conditional outcome (σ1

n(·), X1
n,Θ

1
n) the regime

survival region Θ1
n has a threshold form for threshold θ1

n ≡ inf{Θ0
n}. Moreover, by Lemma

2 the corresponding agents’ attack regions are also threshold: X1
n = (−∞, x1

n] for some

x1
n ∈ R.

Step 3. θ1
n → θ∗ and there exists x∗ ∈ R such that x1

n → x∗.

Proof. The first results follows from the construction of θ1
n, so it is left to verify that for

some x∗, x1
n → x∗. Consider the case of θ∗ > 0.5 (the case of θ∗ ≤ 0.5 can be analyzed

similarly). Then θ1
n > 0.5. Note that the corresponding x1

n > 0.5, because x1
n ≤ 0.5

would have implied that all regimes θ ≥ 0.5 survive in the corresponding outcome. For

each x1
n > 0.5 infimum of regimes that can be saved is θ′n : Φ

(
x1n−θ′n
I

)
= θ′n

54. Note that

θ∗ ≤ θ′n ≤ θ1
n, and thus θ′n → θ∗. It follows, that x1

n → x∗ ≡ θ∗ + IΦ−1(θ∗).

54Indeed, conditional on x1
n regime θ can be saved as long as there exists σ ∈ Σ such that

Φ
(
x1n−θ
σ

)
≤ θ. For the smallest regime that can be saved Φ

(
x1n−θ
σ

)
= θ, since a strict inequality

would imply that weaker regimes can be saved. In the last equality σ must minimize Φ
(
x1n−θ
σ

)
because it is equal to θ. In the case of x1

n > 0.5, we necessarily have that the solution to this
equation must have x1

n > θ > 0.5. Thus σ that allows to get the smallest surviving regime is I.

61



Step 4. Given {σ1
n(·), X1

n,Θ
1
n} we can construct {σ2

n(·), X2
n,Θ

2
n} such that Θ2

n = Θ1
n,

X2
n = (−∞, x2

n] ⊂ X1
n for some x2

n, and σ2
n pointwise converges to some σ∗(·) ∈ S.

Proof. Given (x1
n, θ

1
n) let us construct σ2

n(·) as follows:

1. If θ < θ1
n, then σ2

n(θ) solves

min
σ∈Σ

fσ(x1
n − θ). (79)

2. If θ ≥ θ1
n, then σ2

n(θ) solves

max
σ∈Σ

fσ(x1
n − θ) (80)

s.t. Φ

(
x1
n − θ
σ

)
≤ θ. (81)

By construction

E[agent’s payoff|xi = x1
n, θ

1
n, σ

2
n(·))] =

θ1n∫
−∞

π(θ)p(θ)fσ2
n(θ)(x

1
n − θ)dθ

θ1n∫
−∞

p(θ)fσ2
n(θ)(x1

n − θ)dθ +
+∞∫
θ1n

p(θ)fσ2
n(θ)(x1

n − θ)dθ

(82)

≤

θ1n∫
−∞

π(θ)p(θ)fσ1
n(θ)(x

1
n − θ)dθ

θ1n∫
−∞

p(θ)fσ1
n(θ)(x1

n − θ)dθ +
+∞∫
θ1n

p(θ)fσ1
n(θ)(x1

n − θ)dθ
= E[agent’s payoff|xi = x1

n, θ
1
n, σ

1
n(·))] = c.

By Lemma 2, X2
n ≡ X(Θ1

n, σ
2
n(·)) = (−∞, x2

n] for some x2
n ∈ R. Hence (82) implies

x2
n ≤ x1

n and X2
n ⊂ X1

n. It follows that Θ(X2
n, σ

2
n(·)) ⊃ Θ1

n. Let Θ2
n = Θ1

n and let the

government commit to voluntarily abandon the regime for fundamentals outside of Θ2
n.

Then (σ2
n(·), X2

n,Θ
2
n) is an outcome conditional on σ2

n(·).
Given (x∗, θ∗), define σ∗(·) according to (79-81). Since x1

n → x∗ and θ1
n → θ∗, it follows

that σ2
n(θ) → σ∗(θ) almost everywhere. See Lemma 4 and its proof for the analytical

expressions for a strategy defined by (79-81).
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Step 5. Let σ∗(·) be defined by (79-81) given (x∗, θ∗). Let X∗ ≡ (−∞, x∗], Θ∗ ≡
[θ∗,+∞). Then {σ∗(·), x∗, θ∗} is the outcome under commitment.

Proof. It is enough to show that X(Θ∗, σ∗(·)) = X∗ and Θ(X∗, σ∗(·)) = Θ∗. Note that

by construction Θ∗ = ∪
n∈N

Θ2
n ∪ θ∗, X∗ = ∩

n∈N
X2
n.

Let us first prove that X(Θ∗, σ∗(·)) = X∗. By the construction of X∗ and the defini-

tion of X(·, ·):

xi ∈ X∗ ⇐⇒ ∀n ∈ N :

θ2n∫
−∞

π(θ)p(θ)fσ2
n(θ)(xi − θ)dθ∫

R
p(θ)fσ2

n(θ)(xi − θ)dθ
≥ c, (83)

xi ∈ X(Θ∗, σ∗(·))⇐⇒

θ∗∫
−∞

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ∫
R
p(θ)fσ∗(θ)(xi − θ)dθ

≥ c. (84)

We can use Lebesgue’s Dominated Convergence Theorem to show that

θ2n∫
−∞

π(θ)p(θ)fσ2
n(θ)(xi − θ)dθ∫

R
p(θ)fσ2

n(θ)(xi − θ)dθ
−→

θ∗∫
−∞

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ∫
R
p(θ)fσ∗(θ)(xi − θ)dθ

. (85)

Therefore X∗ ⊂ X(Θ∗, σ∗(·)).
Note that X(Θ∗, σ∗(·)) = (−∞, x∗∗] for some x∗∗ ∈ R. For any xi < x∗∗ inequality

in (84) is strict (by Lemma 2), thus xi ∈ X∗. Moreover x∗∗ ∈ X∗ because X∗ is a closed

set.

Now let us establish, that Θ(X∗, σ∗(·)) = Θ∗. By the definitions of Θ∗ and Θ(·, ·)

θ ∈ Θ∗ ⇐⇒ ∃N ∈ N such that ∀n > N :

x2n∫
−∞

fσ2
n(θ)(xi − θ)dxi ≤ θ, (86)

θ ∈ Θ(X∗, σ(·))⇐⇒
x∗∫
−∞

fσ∗(θ)(xi − θ)dxi ≤ θ. (87)
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We can use Lebesgue’s Dominated Convergence Theorem to show that

x2n∫
−∞

fσ2
n(θ)(xi − θ)dxi −→

x∗∫
−∞

fσ∗(θ)(xi − θ)dxi. (88)

Therefore Θ∗ ⊂ Θ(X∗, σ∗(·)). Moreover, it follows that Θ∗ ⊂ Θ(X(Θ∗, σ∗(·)), σ∗(·)).
Thus, by Lemma 5 there exist an outcome conditional on σ∗(·) such that the corre-

sponding regime survival region is larger than Θ∗. However, Θ∗ is the largest possible

regime survival region by its construction.

Step 6. The government gets strictly lower utility if it abandons its regime volun-

tarily for some realization of fundamentals. It follows that {σ∗(·), X∗,Θ∗} from Step

5 is the outcome under commitment even if the government cannot abandon regimes

voluntarily.

Proof. Consider any outcome (σ∗(·), X∗,Θ∗). Assume that the government abandons

regimes even though they can be saved given agents’ policy X∗. That is

A ≡ {θ ∈ R \Θ∗ :

∫
X∗
fσd(xi − θ)dxi ≤ θ for some σd ∈ Σ} (89)

is not empty. Consider a policy σd(·) that is similar to σ∗(·) except that it saves the

regime for fundamentals inside A. That is

σd(θ) =

σ∗(θ) if θ 6∈ A,

σθ ∈ Σ : σθ saves the regime given X∗ if θ ∈ A.
(90)

After this deviation fever agents attack the regime. For any xi ∈ X(Θ∗ ∪ A, σd(·)):

c ≤E[agent’s payoff|xi,Θ∗ ∪ A, σd(·)] (91)

=

∫
(R\Θ∗)\A

π(θ)p(θ)fσd(θ)(xi − θ)dθ∫
R
p(θ)fσd(θ)(xi − θ)dθ
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=

∫
(R\Θ∗)\A

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ+
∫
A

fσd(θ)(xi − θ)dθ∫
R\A

p(θ)fσ∗(θ)(xi − θ)dθ +
∫
A

p(θ)fσd(θ)(xi − θ)dθ

≤

∫
(R\Θ∗)\A

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ+
∫
A

fσ∗(θ)(xi − θ)dθ∫
R\A

p(θ)fσ∗(θ)(xi − θ)dθ+
∫
A

p(θ)fσd(θ)(xi − θ)dθ
.

It follows that

E[agent’s payoff|xi,Θ∗, σ∗(·)] (92)

=

∫
(R\Θ∗)\A

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ +
∫
A

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ∫
R\A

p(θ)fσ∗(θ)(xi − θ)dθ +
∫
A

p(θ)fσ∗(θ)(xi − θ)dθ

≥ c, (93)

and thus xi ∈ X∗. Thus we have proved that X(Θ∗ ∪ A, σd(·)) ⊂ X∗.

Notice that Θ∗ ∪ A = Θ(X∗, σd(·)) ⊂ Θ (X (Θ∗ ∪ A, σd(·)) , σd(·)). It follows from

Lemma 5 that there exists an outcome conditional on σd(·) such that the corresponding

regime survival region includes Θ∗ ∪A. It follows, that the government never chooses to

abandon a regime if it can be saved given agents’ strategy.

Proof of Corollary 2

Proof. Given x∗ and σNC(·), the regime survival threshold θ∗ is the value of fundamentals

which is equal to the attack size at that value of fundamentals:

Φ

(
x∗ − θ∗

σNC(θ∗)

)
= θ∗. (94)
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Given θ∗ and σNC(·), we can find the position of agent x∗ that is indifferent whether to

attack the regime as follows:

θ∗∫
−∞

fσ(θ)(x
∗ − θ)dθ∫

R
fσ(θ)(x∗ − θ)dθ

= c. (95)

The government’s policy σNC(·) conditional on x∗ is described by (10). Combining (94),

(95), and (10) we get the result of Corollary 2. To check that agents use threshold

strategies, it is enough to differentiate the expected payoff of an agent with respect to

xi and verify that the derivative is negative.

Proof of Proposition 4

Proof. Provided in the main text by means of a numerical example.

Proof of Lemma 7

Let me introduce some notation. Recall that xi ∈ RK and xi = (xi,1, xi,2, . . . , xi,K). 1 is a

vector of ones of lengthK. To simplify notation I also define fσ(xi−θ) ≡
∏K

k=1 fσ(xi,k−θ).
Define τ ≡ t(I, I).

Proof. Proof of the result for a committed government.

Proof. Let us consider an outcome (σ∗(·),Θ∗, X∗) and assume that σ∗(·) does not satisfy

conditions of Lemma 7. We will construct policy σd(·) such that the corresponding regime

survival region is larger than Θ∗.

Given θ ∈ R define a set of signals XNA(θ) such that all xi ∈ XNA(θ) are in a τ

neighborhood of [θ,+∞) · 1. That is

XNA(θ) ≡ {xi ∈ RK : d2(xi, θ · 1) ≤ τ for some θ ≥ θ}. (96)

Pick θ high enough so that it satisfies two conditions. First, for any policy σ(·) ∈ S,

agents with xi ∈ XNA(θ) do not attack in any corresponding conditional outcome.

Second, regime survives in any outcome for any θ ≥ θ. The existence of such θ is

guaranteed by Assumption A3.
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For θ ∈ R define XA(θ) as a set of signals which are in a τ neighborhood of (−∞, θ].
We can pick θ ∈ R low enough so that it satisfies two conditions. First, for any policy

σ(·) ∈ S, agents with xi ∈ XA(θ) attack in any corresponding conditional outcome.

Second, regime falls in any outcome for any θ ≤ θ. The existence of such θ is guaranteed

by Assumption A3.

Assume that σ∗((−∞, θ)) 6= P and σ∗((θ,+∞) 6= I on a set of positive measure.

Then define

σd(θ) =


P θ < θ,

σ∗(θ) θ < θ < θ,

I θ > θ.

(97)

If the government uses policy σd(·), agents becomes less aggressive and attack less.

Indeed, for xi ∈ X(Θ∗, σd(·)) \XA(θ):

c ≤E[agent’s payoff|xi,Θ∗, σd(·)] =

∫
R\Θ∗

π(θ)p(θ)fσd(θ)(xi − θ)dθ∫
R
p(θ)fσd(θ)(xi − θ)dθ

(98)

=

∫
(−∞,θ)

π(θ)p(θ)fσd(θ)(xi − θ)dθ +
∫

[θ,θ]\Θ∗
π(θ)p(θ)fσd(θ)(xi − θ)dθ∫

(−∞,θ)
p(θ)fσd(θ)(xi − θ)dθ +

∫
[θ,θ]

p(θ)fσd(θ)(xi − θ)dθ +
∫

(θ,+∞)

p(θ)fσd(θ)(xi − θ)dθ
.

Then

E[agent’s payoff|xi,Θ∗, σ∗(·)] =

∫
R\Θ∗

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ∫
R
p(θ)fσ∗(θ)(x− θ)dθ

(99)

=

∫
(−∞,θ)

π(θ)p(θ)fσ∗(θ)(xi − θ)dθ +
∫

[θ,θ]\Θ∗
π(θ)p(θ)fσ∗(θ)(xi − θ)dθ∫

(−∞,θ)
p(θ)fσ∗(θ)(xi − θ)dθ +

∫
[θ,θ]

p(θ)fσ∗(θ)(xi − θ)dθ +
∫

(θ,+∞)

p(θ)fσ∗(θ)(xi − θ)dθ

≥c.

It follows that after the government starts to use strategy σd(·) agents attack for

a smaller set of signals: X(Θ∗, σd(·)) ⊂ X∗. Moreover, the agents attack for a strictly
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smaller set of signals because equality in (99) implies strict inequality in (98). Thus the

government can save its regime for a strictly larger set of fundamentals. We can use an

argument which is essentially identical to the one of Lemma 5 to show that there exists

a conditional outcome (σd(·), Xd,Θd) such that Θd is strictly larger than Θ∗.

Proof of the result for an uncommitted government.

Proof. For any θ > θ the attack size given action σ ∈ [P, I] is equal to∫
X∗

fσ(xi − θ)dxi

=

∫
X∗

K∏
k=1

fσ(xi,k − θ)dxi,1dxi,2 . . . dxi,K

=

∫
X∗\XNA(θ)

K∏
k=1

fσ(xi,k − θ)dxi,1dxi,2 . . . dxi,K . (100)

The goal of an uncommitted government is to choose σ ∈ [P, I] to minimize (100).

Note that for θ ≥ θ and xi ∈ X∗ \ XNA(θ) we have d2(θ · 1, xi) > τ . Hence we have

fP (xi − θ) < fσ(xi − θ) for σ > P . It follows that an uncommitted government chooses

σ([θ,+∞)) = P . A similar argument establishes that an uncommitted government

chooses σ((−∞, θ]) = I.

Proof of Lemma 8

Proof. Note that the result of Lemma 5 holds even with the bias. The boundedness of

bias b(·) allows us to apply the proof of Step 1 in the proof of Lemma 2 and thus establish

that Assumption A3 holds (constant M in the proof of Lemma 2 should be chosen to

bound the bias function chosen by the government). This, in turn, allows us to define

XNA(θ) and XA(θ) in the same way as in the proof of Lemma 7. The rest of the proof

is similar to the proof of Lemma 7.
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