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This paper characterizes the arbitrage-free dynamics of interest rates, in the presence
of both jumps and diffusion, when the term structure is modeled through simple for-
ward rates (i.e., through discretely compounded forward rates evolving continuously in
time) or forward swap rates. Whereas instantaneous continuously compounded rates
form the basis of most traditional interest rate models, simply compounded rates and
their parameters are more directly observable in practice and are the basis of recent re-
search on “market models.” We consider very general types of jump processes, modeled
through marked point processes, allowing randomness in jump sizes and dependence
between jump sizes, jump times, and interest rates. We make explicit how jump and
diffusion risk premia enter into the dynamics of simple forward rates. We also for-
mulate reasonably tractable subclasses of models and provide pricing formulas for
some derivative securities, including interest rate caps and options on swaps. Through
these formulas, we illustrate the effect of jumps on implied volatilities in interest rate
derivatives.
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1. INTRODUCTION

This paper characterizes the arbitrage-free dynamics of interest rates, in the presence of
both jumps and diffusion, when the term structure is modeled through simple forward
rates—that is, through discretely compounded forward rates evolving continuously in
time—or through forward swap rates. We consider very general types of jump processes
(allowing randomness in jump sizes and dependence between jump sizes, jump times, and
interest rates) and identify how jump and diffusion risk premia enter into the dynamics
of simple forward rates. We also formulate a reasonably tractable subclass of models and
provide pricing formulas for some term structure derivatives.

Our investigation builds on several strands of research, in particular on the dy-
namics of instantaneous continuously compounded rates (as in Heath, Jarrow, and
Morton 1992), option pricing with jumps (as in Merton 1976), LIBOR and swap rate
market models (including Brace, Gatarek, and Musiela 1997; Jamshidian 1997; Miltersen,
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Sandmann, and Sondermann 1997; Musiela and Rutkowski 1997a), and especially the
marked point process framework of Björk, Kabanov, and Runggaldier (1997). The moti-
vation for models based on simple forwards (in contrast to the instantaneous rates tradi-
tionally treated in continuous-time models) lies in building a model based on observable
quantities. Most market rates are indeed based on simple compounding, so instantaneous
continuously compounded rates often represent an idealized approximation to market
data. This point is relevant whether one tries to infer model parameters from time-series
data or from prices of derivative securities because most derivatives contracts are tied to
simple rates.

Motivation for including jumps comes from both time-series properties and derivative
prices. Specific sources of jumps in interest rates, including economic news and moves
by central banks, are put forward in Babbs and Webber (1997), Das (1999b), El-Jahel,
Lindberg, and Perraudin (1997), and Johannes (2003). These studies find compelling
empirical evidence for jumps. Das (1999b) and Johannes argue that the kurtosis in short-
term interest rates is incompatible with a pure-diffusion model. Jumps in interest rates can
also be used to try to reproduce the patterns in implied volatilities derived from market
prices of interest rate derivatives. The pricing of interest rate derivatives in the presence
of jumps is considered in Björk et al. (1997), Burnetas and Ritchken (1997), Das (1999a),
Das and Foresi (1996), Duffie and Kan (1996), Duffie, Pan, and Singleton (2000), Jarrow
and Madan (1995, 1999) and Shirakawa (1991). The possibility of default (as modeled in
Duffie and Singleton 1999 and Jarrow and Turnbull 1995) provides further motivation
for including jumps, though we do not consider credit risk here.

Implied volatilities extracted from interest rate caps are putative parameters of simple
forward rates, which again motivates adopting simple forwards as the building blocks of
a model. (Similarly, implied volatilities extracted from options on interest rate swaps are
putative parameters of forward swap rates.) In special cases of the general framework
we develop, interest rate caps or swaptions can be priced explicitly, making it possible to
investigate what types of patterns in implied volatility can be produced through jumps.
The general framework is necessary for the formulation of tractable special cases: it turns
out that for caps to be priced using a Poisson-based formula, the actual process of jumps
must be substantially more complex than a Poisson process. The additional complexity
needed follows from general considerations on precluding arbitrage; in particular, the
Poisson property is not in general preserved by the necessary changes of measure.

The rest of this paper is organized as follows. Section 2 develops further motivation
and background on modeling simple forward rates and on representing jump processes.
Section 3 presents our main results: a general formulation of the arbitrage-free dynamics
of simple forwards subject to jumps, and reduction to a tractable subclass. Section 4
presents some pricing formulas and numerical results on implied volatilities. Section 5
undertakes a similar analysis based on swap rates rather than forward rates: we present the
arbitrage-free dynamics of the term structure of swap rates with both jumps and diffusion
and then provide pricing formulas for options on swaps. All proofs are collected in the
Appendixes.

2. MOTIVATION AND BACKGROUND

2.1. Simple Forwards

As in Brace et al. (1997), Jamshidian (1997), and Miltersen et al. (1997), we consider
models of the term structure based on simple forward rates with a fixed accrual period
δ, expressed as a fraction of a year (e.g., to model 3-month rates we would take δ = 1/4).
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With δ fixed, we denote by L(t, T) the forward rate for the interval from T to T + δ as of
time t ≤ T. Thus, a party entering into a contract at time t to borrow $1 over the interval
[T, T + δ] will receive $1 at time T and will return to the lender $(1 + δL(t, T)) at time
T + δ. Denoting by B(t, τ ) the time-t price of a zero-coupon bond maturing at τ , the
forward rate satisfies

L(t, T) = 1
δ

(
B(t, T )

B(t, T + δ)
− 1

)
.(2.1)

Conversely, for any k = 1, 2, . . . ,

B(t, t + kδ) =
k−1∏
i=0

1
1 + δL(t, t + iδ)

.(2.2)

Simple compounding of this type is characteristic of 3-month or 6-month LIBOR. We
will, however, treat the forward rates and associated bonds as default-free, though in
practice LIBOR reflect some credit risk.1

These simple forward rates should be contrasted with the instantaneous, continuously
compounded short rate of classical models and also with the instantaneous forward rates
modeled in the framework of Heath et al. (1992). The instantaneous forwards f (t, T) of
the Heath-Jarrow-Morton framework satisfy

L(t, T) = 1
δ

(
exp

{∫ T+δ

T
f (t, s) ds

}
− 1

)
,(2.3)

but this relation cannot in general be inverted, so the distinction is not simply one of
choice of variables. Arbitrage-free models based on simple forwards have been advanced
by Brace et al. (1997), Jamshidian (1997), and Miltersen et al. (1997), and this work has
given rise to a rapidly expanding related literature. Among other attractive features, these
models are based on quantities that are more directly observable in the market than are
the instantaneous rates of much of the earlier literature.

Working with simple forward rates often facilitates calibration to derivatives prices,
in particular caps and floors. The information about the underlying forward rates in
the market prices of caps and floors is commonly summarized through an implied
volatility derived from the (so-called) Black (1976) formula (see our equation (4.1) in
Section 4). These implied volatilities are frequently used as inputs to models for pric-
ing other derivatives. In more detail, a caplet for the period [T, T + δ] struck at K pays
δ(L(T, T) − K)+ at T + δ. The Black formula may be viewed as evaluating the discounted
expected payoff

B(0, T + δ)E[δ(L(T, T) − K)+],(2.4)

under the assumption that L(T, T) is lognormally distributed with mean L(0, T) and
log L(T, T) having variance σ 2

TT. The implied volatility is the value of σT that equates
(2.4) to the market price.

A simple way to introduce dynamics that yield a lognormal distribution for L(t, T)
specifies

dL(t, T)
L(t, T)

= σT dW t,(2.5)

1 Miltersen et al. note that, through results of Duffie and Singleton (1999), their model can be used to
represent defaultable interest rates under appropriate assumptions and with some redefinition of terms. A
similar reinterpretation should be possible in our setting as well. See also Duffie et al. (2000).
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with Wt a standard Brownian motion. The absence of a drift in this specification further
implies that the conditional expectation of L(T, T ) at time t is L(t, T), as is implicit in
the Black formula. It turns out, however, that a model specifying (2.5) for all T fails to be
arbitrage free. More precisely, there is no probability measure under which forward rates
for all maturities simultaneously evolve according to (2.5) in an arbitrage-free model.

Despite this apparent inconsistency, Brace et al. (1997), Jamshidian (1997), Miltersen
et al. (1997), and Musiela, and Rutkowski (1997a) were nevertheless able to construct
arbitrage-free models of the term structure in which cap prices indeed conform to the
Black formula. The models are, in effect, kept arbitrage free through inclusion of an
appropriate stochastic drift in (2.5) for each maturity T. The forward rates are thus not
simultaneously lognormal, but each becomes lognormal under a maturity-specific change
of measure. Each such change of measure is associated with a change of numeraire which
further serves to justify discounting by a zero-coupon bond. These ideas are discussed in
greater detail in Section 3 and Appendix B.

On one hand, these models provide a theoretical basis for the market convention of
quoting or interpreting cap prices through the Black formula; on the other hand, they
also make evident an incompatibility between market prices and the models intended to
explain them. For in these models the same implied volatility should apply to all caps and
floors of a given maturity, regardless of strike price, whereas volatilities implied by market
prices vary systematically with strike. This volatility skew is particularly pronounced in
the Japanese market, but is also present in the US dollar market.

There are various means by which one might try to incorporate an implied volatility
skew. These include adding a stochastic volatility, changing from a lognormal to constant
elasticity of variance (CEV) form of volatility (as in Andersen and Andreasen 2000), or
allowing for jumps. Empirical evidence in equity markets (Bakshi, Cao, and Chen 1997;
Bates 2000; Das and Sundaram 1999) suggests that both jumps and stochastic volatility
play an important role in the implied volatility skew observed there. It is therefore natural
to investigate how jumps can be incorporated in a model of simple forwards.

A naive extension of the naive “Black model” in (2.5) specifies

dL(t, T) = −λmL(t, T) dt + σT L(t, T) dWt + L(t−, T)d

(
Nt∑

i=1

(Yi − 1)

)
,(2.6)

where Nt is a Poisson process with arrival rate λ and the Yi are i.i.d. lognormal random
variables with mean 1 + m. (By writing L(t−, T) we specify the value of L(·, T) just
before a possible jump at t.) This is a jump-diffusion of the type considered by Merton
(1976) as a model of a stock price, with the drift modified to make L(t, T) a martingale.
The marginal distributions of L(t, T) under (2.6) are Poisson mixtures of lognormal
distributions. “Pricing” a caplet according to (2.4) therefore results in a “Merton-Black
formula,”

∞∑
k=0

e−λT (λT)k

k!
BCk,(2.7)

where each BCk is an evaluation of the Black formula but with arguments depending on
k; this will be made explicit in Corollary 4.1. This pricing formula is nearly as tractable
as the Black formula. Moreover, if caplets are priced according to (2.7), their Black-
implied volatilities will vary with strike. Indeed, by varying the parameters of (2.6) it is
possible to reproduce a variety of patterns in implied volatilities as functions of strike; see
Section 4.1.
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This simple example serves to motivate the questions we investigate: Is (2.6) con-
sistent with an arbitrage-free model of the term structure? Can the naive pricing for-
mula (2.7) be reconciled with a genuine pricing model? More generally, when is a jump-
diffusion model of the term structure of simple forward rates arbitrage-free? We provide
answers to these questions (and their analogs for forward swap rates) in subsequent
sections.

2.2. Modeling Jumps

Addressing these questions requires an investigation of the dynamics of the term struc-
ture with respect to different choices of numeraire asset and under the associated proba-
bility measures. This in turn requires consideration of jump processes more general than
the compound Poisson process appearing in (2.6). The marked point process framework
developed by Björk et al. (1997) provides a convenient framework.

A marked point process (MPP) is characterized by a sequence {(τn, Xn), n = 1, 2, . . .}.
The τn take values in (0, ∞) and satisfy τ1 < τ2 < · · · < τn < τn+1 < · · · , supn τn = ∞;
interpret these as the times of potential jumps. The marks Xn may in general take values
in an abstract space; we will use them to determine the sizes of the jumps at the points
τn , though they are not themselves the jump sizes. Forward rates of different maturities
may respond to the marks with jumps of different magnitudes. For our purposes, it will
suffice to consider marks taking values in [0, ∞).

To construct a jump process, first let Nt be the number of points in [0, t]: Nt = sup{n ≥
0 : τn ≤ t}. Let h be a real-valued function of the marks (and possibly also of the points)
and consider the jump process J(t) = ∑Nt

n=1 h(Xn, τn). The function h transforms the
abstract mark Xn into a jump magnitude. In (2.6), it takes the form h(x, τ ) ≡ h(x) = x − 1.

We construct our models on a probability space (
,F, {Ft, t ≥ 0}, P) on which
are defined a multidimensional Brownian motion W and r marked point process
{(τ (i )

n , X (i )
n ), n = 1, 2, . . .}, i = 1, 2, . . . , r , not necessarily independent of each other or

the Brownian motion. With each forward rate we associate jump-size functions Hi , i =
1, . . . , r , and define

J(t) =
r∑

i=1

N (i )
t∑

n=1

Hi
(
X (i )

n , τ (i )
n

)
,(2.8)

with N (i )
t the counting process associated with the ith marked point process. The dynamics

of a forward rate L(t, T) take the form

dL(t, T ) = α(t)L(t, T ) dt + γ (t)L(t, T ) dW(t) + L(t−, T) d J(t),(2.9)

for adapted processes α and γ satisfying regularity conditions. The r marked point
processes in (2.8) can be dependent on each other but we require that the jump times
τ

(i )
n , n ≥ 1, 1 ≤ i ≤ r , be distinct (this is needed for a generalization of the Girsanov

theorem).
We assume that each marked point process {(τn, Xn)} has an intensity λ(dx, t). Intu-

itively, λ(dx, t) is the arrival rate of points with marks in dx. More precisely, the intensity
has the property that, for all suitably integrable h,

Nt∑
n=1

h(Xn, τn) −
∫ t

0

∫ ∞

0
h(x, s)λ(dx, s) dts(2.10)
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is a martingale in t, the inner integral being over the mark space. (The key assumption
here is that the arrival rate is absolutely continuous in time; otherwise, in addition to the
dt term in (2.9) we would need a λ(dx, dt) term.) For a marked point process in which
the points follow a Poisson process and the marks are i.i.d. random variables (as would
be the case in the Merton model (2.6)) the intensity takes the form

λ(dx, t) = λ · f (x) dx,

where λ is the Poisson arrival rate and f is the common density of the marks.
A valuable feature of modeling jumps through marked point processes and their intensi-

ties arises in considering term structure dynamics under different probability measures. In
a pure-diffusion setting, changing probability measures typically corresponds to adding
a drift to a Brownian motion. In a model with jumps, changing probability measures can
involve changing the jump intensity as well. We will see that even if we want the jumps in
a forward rate to follow a Poisson process under one measure, we have no choice but to
suppose that they follow a more general marked point process under other measures.

3. MODEL CONSTRUCTION

We now proceed to investigate conditions under which a term structure model of the
general form (2.9) is consistent with the absence of arbitrage. The main task lies in
identifying the appropriate form of the risk premium determining the drift in (2.9), once
the other parameters have been specified.

A prerequisite to this investigation is a precise notion of what it means for a model
to be arbitrage free in the presence of jumps, which further entails defining a class of
admissible trading strategies. Our objective is the construction of models formulated
purely in terms of simple forwards and their parameters; one could in principle specify
a class of admissible trading strategies and develop the associated theory in this setting.
Rather than make such a digression here, we choose a more efficient and only slightly less
general route: We define a model of the term structure of simple forwards L(t, T ) to be
arbitrage free if it can be embedded in an arbitrage-free model of instantaneous forwards
f (t, T) via (2.3). The necessary theory for instantaneous forwards has been developed by
Björk et al. (1997), so we may invoke their results. We stress, however, that the models we
construct are purely models of simple forwards and make no reference to hypothetical
instantaneous forwards. Indeed, the instantaneous forwards appear nowhere in the rest of
this section. Jamshidian (1999) has recently developed a model of simple forwards driven
by very general discontinuous semimartingales; his framework does not use underlying
instantaneous rates but rather works with simple rates throughout.

To simplify both the analysis and notation, we formulate our results in a discrete-tenor
setting in which the maturity T is restricted to a finite set of dates 0 = T0 < T1 < · · · <

TM < TM+1. (In Appendix A we prove an intermediate result that does hold simultane-
ously for all maturities T and from which we prove Theorem 3.1.) We will further assume
that the intervals Ti+1 − Ti are equally spaced with a common spacing of δ (e.g., a quarter
year or a half year). Let Ln(t) = L(t, Tn) so that Ln is the forward rate for the accrual
period [Tn, Tn+1]. Similarly, let Bn(t) = B(t, Tn) denote the price of a zero coupon bond
maturing at Tn . Let η(t) = inf{k ≥ 0 : Tk ≥ t} so that η(t) is the index of the next maturity
as of time t.

The results of this section are proved in Appendixes A and B under regularity condi-
tions. Ideally, all conditions would be made explicit in the statements of the results. As it
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does not seem possible to do this succinctly, we leave a discussion of the implicit technical
conditions to Appendix A.

3.1. General Case

We are now ready to formulate our first main result. As in Section 2.2, our build-
ing blocks are a d-dimensional Brownian motion W(t) and r marked point processes
{(τ (i )

j , X (i )
j ), j = 1, 2, . . .}, i = 1, . . . , r , with intensities λ(i ).

THEOREM 3.1. For each n = 1, . . . , M let γn(·) be a bounded, adapted, Rd -valued pro-
cess and let Hni , i = 1, . . . , r , be deterministic functions from [0, ∞) to [−1, ∞). The model

d Ln(t)
Ln(t−)

= αn(t) dt + γn(t) dW(t) + d Jn(t), 0 ≤ t ≤ Tn, n = 1, . . . , M,(3.1)

with

Jn(t) =
r∑

i=1

N (i )
t∑

j=1

Hni
(
X (i )

j

)
(3.2)

is arbitrage-free if

αn(t) = γn(t)ϕ0(t) + γn(t)
n∑

k=η(t)

δγk(t)Lk(t)
1 + δLk(t)

(3.3)

−
∫ ∞

0

r∑
i=1

Hni (x)
n∏

k=η(t)

1 + δLk(t−)
1 + δLk(t−)(1 + Hki (x))

ϕi (x, t)λ(i )(dx, t)(3.4)

for some Rd -valued process ϕ0 and strictly positive scalar processes ϕi (x, ·), x ∈ (0, ∞), i =
1, . . . , r , satisfying

∫ t
0 ‖ϕ0(s)‖2 ds < ∞,

∫ t
0

∫ ∞
0 ϕi (s, x)λ(i )(dx, s) ds < ∞, i = 1, . . . , r .

REMARKS.
(i) We have implicitly taken W(t) to be a column vector, γk(t) a row vector,

γk(t) its transpose, and ϕ0 a row vector.
(ii) The key feature of this result is that, although it is a continuous-time model, all

quantities in (3.1)–(3.4) refer exclusively to properties of the simple forwards Lk(t), in
particular to their volatilities γk(t) and jump-size functions Hki .

(iii) Each component of ϕ0 should be interpreted as the market price of risk associated
with the corresponding component of the Brownian motion. Similarly, each ϕi may be
interpreted as a market price of jump risk associated with the ith marked point process
(MPP): ϕi (x, t) is the risk premium associated with the arrival of mark x at time t from
the ith MPP. An economy of risk-neutral agents corresponds to ϕ0 ≡ 0 and ϕi ≡ 1, i =
1, . . . , r . This suggests that if (3.3)–(3.4) holds under the physical measure P, then under
a risk-neutral measure W(t) should have drift −ϕ0(t) and the ith marked point process
should have intensity ϕi (x, t)λ(i )(dx, t). We will see in Appendix A that this is indeed the
case.

(iv) The terms in (3.3) are essentially the drift identified by Brace et al. (1997),
Jamshidian (1997), and Miltersen et al. (1997), though they worked directly under the
risk-neutral measure and so implicitly have ϕ0 ≡ 0. The distinguishing feature of this re-
sult is therefore (3.4), the jump-process contribution to the drift. There is in fact a strong



390 PAUL GLASSERMAN AND S. G. KOU

analogy between the diffusion and jump contributions. Focusing on the risk-neutral case,
calculations based on (2.2) show that the term

γn(t)
n∑

k=η(t)

δγk(t)Lk(t)
1 + δLk(t)

is the product of the forward rate volatility γn(t) and the volatility of the bond price
Bn+1(t). Similarly, each term

Hni (x)
n∏

k=η(t)

1 + δLk(t−)
1 + δLk(t−) (1 + Hki (x))

is the product of a forward rate “jump volatility” Hni and a “jump volatility” of Bn+1(t),
where by “jump volatility” we mean percentage change at a point of the underlying
MPP.

3.2. Forward Measure

For pricing derivatives tied to just one forward rate (such as a caplet), it is often
convenient to choose as numeraire a zero coupon bond maturing at the end of the accrual
period associated with the forward rate. Thus, to price a claim contingent on Ln we take
as numeraire the bond Bn+1. Observe from (2.1) that

δLn(t) = Bn(t) − Bn+1(t)
Bn+1(t)

is the ratio of a portfolio of assets to Bn+1(t), so that under the measure associated with
Bn+1 as numeraire, Ln(t) is a martingale. This in fact is why this particular choice of
numeraire is convenient. The measure associated with this numeraire is usually called
the forward measure or terminal measure for maturity Tn+1; see Musiela and Rutkowski
(1997b) for background.

We now fix the ultimate maturity TM+1 and formulate the dynamics of L1(t), . . . , LM (t)
under the TM+1 forward measure PM+1. Through a generalization of the usual Girsanov
theorem (as in Bjork et al. 1997), changing measures corresponds to a change of drift for
the underlying Brownian motion and a change of intensity for the MPPs. For emphasis,
we let WM+1 denote a standard Brownian motion under PM+1 and we let λ

(i )
M+1 denote

the intensity of the ith MPP under PM+1.

THEOREM 3.2. Under the forward measure PM+1, if for each n = 1, . . . , M we have

dLn(t)
Ln(t−)

= αn(t) dt + γn(t) dW M+1(t) + dJn(t),(3.5)

with Jn(t) as in (3.2) and

αn(t) = −
M∑

k=n+1

δγn(t)γk(t)Lk(t)
1 + δLk(t)

(3.6)

−
∫ ∞

0

r∑
i=1

Hni (x)
M∏

k=n+1

1 + δLk(t−)(1 + Hki (x))
1 + δLk(t−)

λ
(i )
M+1(dx, t),

then the model is arbitrage-free. In particular, (3.6) implies



TERM STRUCTURE OF SIMPLE FORWARD RATES WITH JUMP RISK 391

dLM (t)
LM (t−)

= γM (t) dW M+1(t) + dJ M (t) −
∫ ∞

0

r∑
i=1

HMi(x)λ(i )
M+1(dx, t).(3.7)

We will see that only the comparatively simple case of (3.7) is needed to determine the
prices of caps and floors. (The integral in (3.7) compensates the jump process JM to make
LM a martingale.) The full dynamics in (3.6) would be needed to determine the prices of
more complex derivatives.

3.3. A Tractable Subclass of Models

We now illustrate the use of this framework by specializing to a class of tractable models
through choice of volatilities, jump-size functions, and intensities. The same strategy could
be applied to develop other instances of the framework. We choose the volatilities γn(t) to
be deterministic; this would make LM (t) lognormal under PM+1 in the absence of jumps.
If we can arrange to have

λ
(i )
M+1(dx, t) = λ(i ) · gi (x) dx,(3.8)

for some constant λ(i ) and density gi , then, under PM+1, each MPP is a compound
Poisson process with arrival rate λ(i ) and i.i.d. jumps distributed according to gi . More-
over, (3.7) becomes

dLM (t)
LM (t−)

= γM (t) dW M+1(t) + dJ M (t) −
r∑

i=1

λ(i )νi dt

with νi = ∫ ∞
0 HMi (x)gi (x) dx. This is slight generalization of the Merton jump-diffusion

in (2.6) and can be reduced to exactly the form in (2.6) by, for example, taking HM1(x) =
x − 1, HMi (x) ≡ 0, i �= 1, and taking g1 to be lognormal. Thus, through (3.8), the naive
model of a single forward rate in (2.6) can be reconciled with an arbitrage-free model of
the full term structure provided the dynamics in (2.6) are understood to apply under the
M + 1 forward measure.

From a modeling perspective (3.8) has the unappealing feature that it ties the specifi-
cation of the jump dynamics to a particular maturity. Moreover, the foregoing discussion
does not address the question of whether, in a single model, multiple forward rates can ad-
mit the dynamics in (2.6) under their respective forward measures. These considerations
lead us to specify the dynamics of all forward rates simultaneously under one measure
(we choose the risk-neutral measure Q, as given in Lemma A.1, which intuitively corre-
sponds to the choice of ϕi = 1, i = 1, . . . , r , and ϕ0 = 0) while keeping in mind the target
intensities under each forward measure.

With each Ln we associate a subset In of {1, . . . , r} and specify

Hni (x) =
{

x − 1, i ∈ In

0, otherwise.
.(3.9)

Thus, In is the subset of MPPs to which Ln is sensitive. Denote by λ
(i )
Q the risk-neutral

intensity of the ith MPP.

PROPOSITION 3.1. If the risk-neutral intensities λ
(i )
Q (dx, t) = λ

(i )
Q (x, t) dx satisfy

∑
i∈In

λ
(i )
Q (x, t) =

n∏
k=η(t)

1 + δxLk(t−)
1 + δLk(t−)

λ̂n fn(x)(3.10)
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for some constant λ̂n and some probability density fn on (0, ∞), then Ln satisfies

(3.11)

dLn(t)
Ln(t−)

= −λ̂nmn dt + γn(t) dW n+1(t) + d

(
Nt∑

j=1

(Yj − 1)

)
, n = 1, 2, . . . , M,

under its associated forward measure Pn+1, with Wn+1 a standard Brownian motion, Nt a
Poisson process with rate λ̂n , the Yj independent and distributed according to fn , and mn

the mean of (Yj − 1).

This result shows that, so long as (3.10) can be enforced, it is possible to construct
a model of the term structure of simple forward rates in which multiple forward rates
becomes Merton jump-diffusions under their respective forward measures. To show that
condition (3.10) is not vacuous, we give an explicit example.

Suppose r ≥ M and take In = {n, n + 1, . . . , M} so that (3.10) becomes

M∑
i=n

λ
(i )
Q (x, t) =

n∏
k=η(t)

1 + δxLk(t−)
1 + δLk(t−)

λ̂n fn(x).

To “solve” for the individual intensities subtract to get

λ
(n)
Q (x, t) =

n∏
k=η(t)

1 + δxLk(t−)
1 + δLk(t−)

{
λ̂n fn(x) − λ̂n+1 fn+1(x)

1 + δxLn+1(t−)
1 + δLn+1(t−)

}
.

We require nonnegativity of λ
(n)
Q . Since Ln+1 ≥ 0,

1 + δxLn+1

1 + δLn+1
≤ max(1, x),

so nonnegativity is assured provided that for all x ≥ 0

fn(x)
fn+1(x)

≥ λ̂n+1

λ̂n
max(1, x).(3.12)

In the lognormal case, with fn having the density of exp(N(an, s2
n )) and y = log(x),

log
(

fn(x)
fn+1(x)

)
= log

(
sn+1

sn

)
− 1

2
y2

(
1
s2

n
− 1

s2
n+1

)
+ y

(
an

sn
− an+1

sn+1

)
− 1

2

(
a2

n

s2
n

− a2
n+1

s2
n+1

)
.

If we have sn > sn+1, then it can be shown that (3.12) is satisfied if and only if

4b2
n

{
dn − log

(
λ̂n+1

λ̂n

)}
≥ max

(
c2

n, (cn − 1)2),(3.13)

where

bn = 1
2

(
1

s2
n+1

− 1
s2

n

)
, cn = an

sn
− an+1

sn+1
, dn = −1

2

(
a2

n

s2
n

− a2
n+1

s2
n+1

)
+ log

(
sn+1

sn

)
.

These conditions generally require that forward rates for more distant maturities jump
less frequently and have smaller jumps than forward rates for closer maturities. We stress,
however, that this is just one example satisfying (3.10) and other constructions are possible.

This example serves to illustrate another point about our general construction. In order
to have all M forward rates evolve according to processes of the form (3.11) under their
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respective forward measures, we need M marked point processes. Given r < M marked
point processes we can construct a model in which r of the forward rates evolve according
to (3.11) under their respective forward measures.

In addition to the normal distribution, it is interesting to consider other distributions
for the logarithm of the jump sizes. One attractive candidate is the (asymmetric) double
exponential (Laplace) distribution. Compared to a normal distribution with the same
mean and standard deviation, the double exponential distribution has a higher peak and
heavier tails—it is leptokurtic. This property of the jump distribution leads, in turn, to
leptokurtosis in the underlying returns.

For the logarithm of the jump sizes to have an asymmetric double exponential distri-
bution, we take the density of the jump sizes to be

fn(x) = 1
x

pnη1,ne−η1,n log(x)1{x≥1} + 1
x

qnη2,neη2,n log(x)1{0<x<1}, η1,n > 1, η2,n > 0,

where pn and qn = 1 − pn are probabilities of positive and negative jumps, and the positive
and negative jump means are 1/η1,n and 1/η2,n , respectively. Then

log
(

fn(x)
fn+1(x)

)
= log

(
pnη1,n x−η1,n

pn+1η1,n+1x−η1,n+1

)
1{x≥1} + log

(
qnη2,n x−η2,n

qn+1η2,n+1x−η2,n+1

)
1{0<x<1}.

In this case, (3.12) is satisfied if and only if

pnη1,n

pn+1η1,n+1
≥ λ̂n+1

λ̂n
,

qnη2,n

qn+1η2,n+1
≥ λ̂n+1

λ̂n
, η1,n+1 − η1,n ≥ 1, η2,n+1 − η2,n ≥ 0.

Closed-form prices for caplets can then be obtained from explicit formulas in Kou (2002)
for options on futures contracts under the double exponential jump model. In our setting,
these formulas provide a tractable alternative to the Merton-like formulas of the normal
jump model.

4. PRICING INTEREST RATE DERIVATIVES

In this section, we derive tractable expressions for the prices of some interest rate
derivatives in the models of the previous section. The formulas apply in the setting of
Proposition 3.1 with deterministic γn—that is, when the MPP intensities are chosen so
that the relevant forward rates are Merton jump-diffusions under their respective forward
measures.

4.1. Pricing Caps and Floors

An interest rate caplet for the period [Tn, Tn+1] and struck at K is a derivative security
paying δ(Ln(Tn) − K)+ at time Tn+1. We can explicitly find the time-t price Cn(t) of the nth
caplet if (3.10) holds with fn a lognormal density (or, e.g., log-Laplace). This condition,
and the requirement that all γk, k = 1, . . . , M, be deterministic will be in force throughout
this section. With Yn having distribution fn , let 1 + mn be the mean of Yn and let s2

n be
the variance of log(Yn).

Pricing under the risk-neutral measure Q leads to

Cn(t) = δEQ

[
e− ∫ Tn+1

t r (s) ds(Ln(Tn) − K)+
∣∣Ft

]
,
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t ≤ Tn+1, with r (s) the short rate as before. It is more convenient in the present context
to price under the forward measure for Tn+1. Noting that Cn(t)/Bn+1(t) is a martingale
under this measure (since it is the ratio of an asset price to the numeraire price) leads to

Cn(t) = δBn+1(t)ETn+1

[
Cn(Tn+1)
Bn(Tn+1)

∣∣∣∣Ft

]
= δBn+1(t)ETn+1

[
(Ln(Tn) − K)+

∣∣Ft
]
.

Absent jumps, Ln(Tn) would be lognormally distributed under Pn+1, and this price would
be given by the Black (1976) formula. In our context, the price is given by a “forward”
version of Merton (1976) jump-diffusion option pricing formula. This variant stands in
the same relation to Merton’s formula as the Black formula does to the Black-Scholes
formula. It can be derived by conditioning on the number of jumps of the Poisson process
in [0, Tn ].

Let

(4.1)

BC(F, T, K, σ 2, b) = b

[
F�

(
log(F/K) + 1

2σ 2T

σ
√

T

)
− K�

(
log(F/K) − 1

2σ 2T

σ
√

T

)]

denote the Black formula with initial price F, maturity T, strike K, volatility parameter
σ , and discount factor b. We now have the following corollary.

COROLLARY 4.1. If (3.10) holds and all γk are deterministic then the time-t price of the
nth caplet, t < Tn , is given by

Cn(t) = δ

∞∑
j=0

e−λ̂n (Tn−t) (λ̂n(Tn − t)) j

j !
BC

(
L ( j )

n (t), Tn − t, K, v j (t)2, Bn+1(t)
)
,(4.2)

where L ( j )
n (t) = Ln(t) · e−λ̂nmn (Tn−t) · (1 + mn) j and v j (t)2 = (ρ2(t) + j s2

n )/(Tn − t),
ρ2(t) = ∫ Tn

t ‖γn(u)‖2 du. For Tn ≤ t ≤ Tn+1, Cn(t) = δBn+1(t)(Ln(Tn) − K)+.

By summing the prices of individual caplets one can price a cap, which is simply a
portfolio of caplets with consecutive maturities. A floor can be priced by summing the
prices of single-period floors. A single-period floor paying (K − Ln(Tn))+ at Tn+1 has a
time-t price, t < Tn , of

δ

∞∑
j=0

e−λ̂n (Tn−t) (λ̂n(Tn − t)) j

j !
BP

(
L ( j )

n (t), Tn − t, K, v j (t)2, Bn+1(t)
)
,(4.3)

where

BP(F, T, K, σ 2, b) = b

[
K�

(
− log(F/K) − 1

2σ 2T

σ
√

T

)
− F�

(
− log(F/K) + 1

2σ 2T

σ
√

T

)]
;

and of course for Tn ≤ t ≤ Tn+1, the price is δBn+1(t)(K − Ln(Tn))+.

Although they involve infinite series, the expressions in (4.2) and (4.3) can be evaluated
numerically very quickly to a high degree of accuracy through truncation. The ability to
value these basic instruments quickly is important in fitting model parameters to market
data. Indeed, caps and floors are among the most liquid of all interest rate derivatives and
are therefore a natural source from which to extract the information in market prices.
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FIGURE 4.1. Implied volatility curves with T = 2, δ = 1/2, all forward rates at 6%,
γ = .05, and the following parameters. Case 1: λ̂ = 0.75, m = −0.25, s = 0.30. Case 2:
λ̂ = 1.5, m = −0.20, s = 0.15. Case 3: λ̂ = 0.5, m = 0, s = 0.45. Case 4: λ̂ = 1.5, m =
0.20, s = 0.20. Case 5: λ̂ = 1, m = 0.20, s = 0.25.

4.2. Numerical Illustrations

To illustrate the flexibility of this model in producing a variety of patterns of implied
volatilities, we consider two sets of numerical examples: one showing flexibility through
hypothetical parameters and one based on a cross section of implied volatilities in the
Japanese yen market on a fixed date.

Our first set of examples illustrates the variety of “skews” and “smiles” that can be
captured through the model. For this, we choose a set of model parameters, calculate
caplet prices at a range of strikes using Corollary 4.1, and then find the corresponding
implied volatilities based on the Black (1976) formula. More precisely, these implied
volatilities are the values of σT that equate the Black formula price to the price computed
using (4.2) with all other parameters held fixed.

We use a maturity of T = 2 years, an accrual period of δ = 1
2 year, a flat term struc-

ture with all forward rates at 6%, and a constant γ of 5%. We denote by m and s the
parameters of the lognormal jumps and by λ̂ the jump rate. Figure 4.1 shows that by
varying these parameters we obtain upward sloping, downward sloping, and U-shaped
implied volatilities. Although it is difficult to disentangle the effects of the parameters, the
shape of the implied volatility curve appears to be determined primarily by m, with m > 0
tending to produce an upward slope, m < 0 tending to produce a downward slope, and
m = 0 producing a U-shaped curve. See Das and Sundaram (1999) for an investigation
of implied volatility shapes in jump-diffusion and stochastic volatility models.

Our second illustration attempts to reproduce a specific set of implied volatilities.
Andersen and Andreasen (2000) graph implied volatilities for 2-year and 9-year caplets
in the Japanese LIBOR market as of late May 1998. Their implied volatilities based on
midmarket prices are reproduced in Figure 4.2. Corresponding 6-month forward rates for
the same period are 1.181% for the 2-year maturity and 2.913% for the 9-year maturity.2

2 We thank Leif Andersen of General Re Financial Products for providing these values and also the
midmarket implied volatilities in the figure.
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FIGURE 4.2. Midmarket and model-implied volatilities for Japanese LIBOR caplets in
May 1998. The parameters used for the model-implied volatilities are λ̂4 = 0.63, γ4 =
0.28, s4 = 0.65, m4 = −0.5 and λ̂18 = 0.16, γ18 = 0.10, s18 = 0.60, m18 = −0.3.

Figure 4.2 also shows implied volatility curves derived from (4.2) using the same forward
rates and the parameters in the caption. (With 6-month accrual intervals, the 2-year and
9-year caplets correspond to n = 4 and n = 18 in the notation of (4.2).) The figure suggests
the possibility of a very close fit even to a very sharp market skew. Because the parameters
used in (4.2) apply under a martingale measure rather than the objective measure, we can
interpret the parameters in Figure 4.2 as suggesting that the market attaches a large
risk premium to the possibility of a sharp downward movement in Japanese interest
rates.

4.3. Pricing Bond Options

As noted in, for example, Miltersen et al. (1997), from the prices of caps and floors it is
possible to derive prices of puts and calls on zero coupon bonds, provided the maturity
of the bond is one period later in the tenor structure than the expiration of the option.
For example, to price a put on Bn+1 expiring at Tn and struck at K < 1 is to evaluate

Putn+1(t) = Bn+1(t)ETn+1

[
(K − Bn+1(Tn))+

Bn+1(Tn)

∣∣∣∣Ft

]
,

again using the fact that Bn+1 is the numeraire associated with Pn+1. From (2.1) we find
that Bn+1(Tn) = 1/(1 + δLn(Tn)). Thus, simple algebra shows that

(K − Bn+1(Tn))+

Bn+1(Tn)
= δK

(
Ln(Tn) − 1 − K

δK

)+
,

so a put struck at K can be valued as a portfolio of K caplets struck at (1 − K)/(δK).
Through some algebraic simplification, this results in the following pricing formula (tak-
ing t = 0 for simplicity):

Putn+1 = KδBn+1(0)
∞∑
j=0

e−λ̂n Tn (λ̂nTn) j

j !

{
L ( j )

n �
( − d ( j )

−
) − 1 − K

Kδ
�

( − d ( j )
+

)}
,
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with

d ( j )
± = λ̂nmnTn − j log(1 + mn)

v j
√

Tn
+ 1

v j
√

Tn

{
log

(
(1 − K)Bn+1(0)

K{Bn(0) − Bn+1(0)}
)

± 1
2

v2
j Tn

}
.

In summary, we have the following result.

COROLLARY 4.2. The price of a put expiring at Tn on a zero coupon bond maturing at
Tn+1, with strike price K, is given by

∞∑
j=0

π ( j )
n

{
K(Bn(0) − Bn+1(0)) · e−λ̂nmn Tn (1 + mn) j�

(−d ( j )
−

) − (1 − K)Bn+1(0)�
(−d ( j )

+
)}

and the price of the corresponding call is given by

∞∑
j=0

π ( j )
n

{
(1 − K)Bn+1(0)�

(
d ( j )

+
) − K(Bn(0) − Bn+1(0)) · e−λ̂nmn Tn (1 + mn) j�

(
d ( j )

−
)}

,

where π
( j )

n = e−λ̂n Tn (λ̂nTn) j/( j !).

Pricing more complex derivatives is likely to entail simulation; see Glasserman and
Merener (2003) for accurate simulation methods for the models developed here. Nev-
ertheless, the availability of tractable expressions for simple instruments is valuable in
choosing model parameters (to be used in a simulation) consistent with market prices of
the simple instruments.

A computational procedure for pricing bond options in a Heath-Jarrow-Morton model
with jumps is developed in Das (1999a). Bond options are often tractable in affine jump-
diffusion models; see Das and Foresi (1996), and Duffie et al. (2000).

5. SWAP RATES AND SWAPTIONS

A framework similar to that in Sections 3 and 4 can be developed based on swap rates
rather than forward rates. This formulation leads to tractable expression for swaptions—
that is, options on swaps.

Consider an interest rate swap over [Tn, TM+1] in which two parties exchange fixed rate
and floating rate payments at dates Tn+1, . . . , TM+1. The floating rate payment at a date
Tj is δLj−1(Tj−1) times a notional principal; at a fixed rate of K, the fixed rate payment
at each date is the product of the notional principal and δK . Under a forward swap, the
parties commit at some time t < Tn to enter into a swap over [Tn, TM+1].

At a date t ≤ Tn , the forward swap rate Sn(t) is the fixed rate that gives the forward
swap over [Tn, TM+1] a value of 0. It is standard that forward swap rates can be expressed
in terms of zero coupon bond prices as

Sn(t) = Bn(t) − BM+1(t)

δ
∑M+1

j=n+1 Bj (t)
;(5.1)

see, for example, Musiela and Rutkowski (1997b, p. 389). From a set of forward swap
rates (S1, . . . , SM) (each Si applying to [Ti , TM+1]) one can determine the forward rates
(L1, . . . , LM) and vice versa, so the two sets of variables offer alternative ways of describing
the term structure.
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Jamshidian (1997) characterizes the arbitrage-free dynamics of forward swap rates in
a pure diffusion setting; we give a corresponding result for a model with jumps as well
as diffusion. We state the result under the forward measure PM+1. Through a change of
measure a similar result could be formulated under the risk-neutral measure or under the
physical measure. In this notation, Jamshidian’s characterization becomes

dSn(t)
Sn(t)

= αo
n(t) + θn(t) dW M+1(t)

with WM+1 a standard Brownian motion under PM+1 and

αo
n = −

M+1∑
l=n+1

δsn,lθnθ

l Sl

(1 + δSl )sn,n+1
, sn,l = δ

M+1∑
k=l

k∏
j=n+1

(1 + δSj ).(5.2)

As in previous sections we extend the framework to include r MPPs; let λ
(i )
M+1, i = 1, . . . , r ,

denote the intensity of the ith MPP under PM+1.

THEOREM 5.1. For each n = 1, . . . , M let θn(·) be a bounded, adapted, Rd -valued pro-
cess and let Gni , i = 1, . . . , r , be deterministic functions from [0, ∞) to [−1, ∞). The
model

(5.3)

dSn(t)
Sn(t−)

= αn(t) dt + θn(t) dW M+1(t) + d Jn(t), 0 ≤ t ≤ Tn, n = 1, . . . , M,

with Jn(t) = ∑r
i=1

∑N(i )
t

j=1 Gni (X (i )
j ) is arbitrage free if

(5.4)

αn(t) = αo
n(t) −

∫ ∞

0

r∑
i=1

Gni (x)

∑M+1
k=n+1

∏k
j=n+1(1 + δSj (t−)[1 + G ji (x)])∑M+1

k=n+1

∏k
j=n+1(1 + δSj (t−))

λ
(i )
M+1(dx, t).

The proof of this result is similar to that of Theorem 3.2. We omit the details but in
Appendix C we give some insight into the form of the result.

We now formulate a subclass of models leading to tractable expressions for swaptions.
Consider an option expiring at T ≤ Tn to enter into a swap over [Tn, TM+1] paying a fixed
rate K and receiving floating rate payments (a payer swaption). At expiry, the value of
the option is

δ

M+1∑
j=n+1

Bj (T )(Sn(T ) − K)+,(5.5)

so a swaption may be viewed as an option on a swap rate; see, for example, Musiela and
Rutkowski (1997b, p. 397). Tractable expressions for swaptions follow from appropriate
choices for the parameters in the dynamics of Sn . Let

λ
(i )
n,M(dx, t) =

∑M+1
k=n+1

∏k
j=n+1(1 + δSj (t−)(1 + G ji (x)))∑M+1

k=n+1

∏k
j=n+1(1 + δSj (t−))

λ
(i )
M+1(dx, t).(5.6)

We now have the following proposition.
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PROPOSITION 5.1. Suppose the θn are deterministic. If there are constants λ̂n and log-
normal densities fn for which

(5.7)
r∑

i=1

λ
(i )
n,M(dx, t) = λ̂n fn(x) dx, and

r∑
i=1

Gni (x)λ(i )
n,M(dx, t) = (x − 1)λ̂n fn(x) dx,

then the time-t value of a payer swaption expiring at T > t for a swap over [Tn, TM+1] is

(5.8)

Cn(t) =
∞∑
j=0

e−λ̂n (T−t) (λ̂n(T − t)) j

j !
BC

(
S( j )

n (t), T − t, K, v j (t)2, δ

M+1∑
k=n+1

Bk(t)

)
,

where S( j )
n (t) = Sn(t) · e−λ̂nmn (T−t) · (1 + mn) j , v j (t)2 = (ρ2(t) + j s2

n )/(T − t), ρ2(t) = ∫ T
t

‖θn(u)‖2 du, and fn is the lognormal density of exp(N(log(1 + mn) − 1
2 s2

n , s2
n )).

This result provides a “Merton-Black formula” for the price of a payer swaption. The
case of a receiver swaption, with (K − Sn)+ in (5.5) in place of (Sn − K)+, works anal-
ogously; see (4.3). The market convention is to quote implied volatilities for swaptions
based on a version of Black’s formula (i.e., assuming that the underlying forward swap
rate is a lognormal). Through (5.8), the range of patterns illustrated in Figure 4.1 is thus
available in fitting parameters to implied volatilities in the market prices of swaptions.
It should be noted, however, that Proposition 5.1 and Corollary 4.1 cannot hold simul-
taneously; for example, θn and γn cannot both be deterministic in a consistent model of
forward rates and swap rates, as discussed in Jamshidian (1997).

To verify that the hypothesis (5.7) is not vacuous, we show that it can be satisfied by
modifying the example that follows Proposition 3.1. We choose Gni according to the right
side of (3.9) with In = {n, n + 1, . . . , M}; (5.7) is satisfied if

M∑
i=n

λ
(i )
M+1(x, t)Rn(x, t) = λ̂n fn(x) with Rn(x, t) =

∑M+1
k=n+1

∏k
j=n+1(1 + δSj (t−)x)∑M+1

k=n+1

∏k
j=n+1(1 + δSj (t−))

.

By taking differences (as in the steps leading to (3.12)) we find that this is feasible if
Rn+1(x, t)λ̂n fn(x) ≥ Rn(x, t)λ̂n+1 fn+1(x) for all n < M. An induction argument estab-
lishes that

Rn(x, t)
Rn+1(x, t)

≤
{

(1 + M − n)/(M − n), x < 1,

x, x ≥ 1.
.

A sufficient condition for feasibility is thus

λ̂n fn(x)

λ̂n+1 fn+1(x)
≥ max

(
x,

1 + M − n
M − n

)
;

this restricts the parameters of the densities fn as in the steps following (3.12).

APPENDIX A: DERIVATION OF ARBITRAGE RESTRICTIONS

Here we prove Theorem 3.1 by showing that the class of models in the theorem can be
embedded in an arbitrage-free model of instantaneous forward rates. To do this, we first
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need some background on models of instantaneous forward with jumps, as developed in
Björk et al. (1997); see also Jarrow and Madan (1995, 1999).

Let f (t, T) denote the instantaneous forward rate for maturity T as of time t ≤ T; that
is,

B(t, T ) = exp
(

−
∫ T

t
f (t, u) du

)
.(A.1)

Consider a model of the dynamics of the forward curve of the form

(A.2)

df (t, T ) = α f (t, T ) dt + σ (t, T ) dW (t) + d


 r∑

i=1

N (i )
t∑

n=1

hi (t, X (i )
n , T )


, 0 ≤ t ≤ T ≤ T ∗,

with, as before, T ∗ arbitrary, W(t) a d-dimensional Brownian motion, and {(τ (i )
n , X(i )

n )}, i =
1, . . . , r , marked point processes.

The following result is an adaptation of part of Theorem 3.13 in Björk et al. (1997)
to our setting. Björk et al. treat in detail the questions of admissible trading strategies,
absence of arbitrage, and existence of risk-neutral measures in models of instantaneous
forward rates. It is in the sense of their Definition 3.6 that we use the term “arbitrage
free” in the following proposition.

PROPOSITION A.2. The model in (A.2) is arbitrage free if

α f (t, T ) = σ (t, T )[σ ∗(t, T ) + ϕ0(t)](A.3)

−
∫ ∞

0

r∑
i=1

hi (t, x, T ) exp
(

−
∫ T

t
hi (t, x, s) ds

)
ϕi (x, t)λ(i )(dx, t),

with

σ ∗(t, T ) =
∫ T

t
σ (t, u) du(A.4)

for some predictable d-dimensional process ϕ0 and strictly positive measurable ϕi satisfying

(A.5)∫ t

0
‖ϕ0(s)‖2 ds < ∞,

∫ t

0

∫ ∞

0
ϕi (s, x)λ(i )(dx, s) ds < ∞, i = 1, . . . , r, P-a.s.

Proof. Construct a single MPP with mark space E = (0, ∞) × {1, . . . , r} by assigning
to the new MPP a point with mark (X (i )

n , i ) at time τ
(i )
n , i = 1, . . . , r, n = 1, 2, . . . Replace

each hi (x, t, T ) with h((x, i ), t, T ) to combine the r functions hi into a single function
on the enlarged mark space. Replace the symbol

∫ ∞
0

∑r
i=1 with

∫
E. These substitutions

reduce the case of r MPPs to the case of a single MPP with an augmented mark space
and allow us to apply Theorem 3.13 of Björk et al. (1997). The conditions on α f in the
proposition are easily seen to imply the condition in equation (21) of Björk et al. from
which the result follows. �

Theorem 3.13 of Björk et al. (1997) would allow a slightly more general formulation
of the drift condition in this proposition and a statement of necessity of this condition as
well as sufficiency. The formulation above makes the extension of the condition of Heath
et al. (1992) more transparent and is adequate for our purposes.
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Inspection of (A.3) suggests that under a risk-neutral measure, W should have a drift
of −ϕ0 and the ith MPP should have an intensity of ϕi (x, t)λ(i )(dx, t). We now make this
precise.

LEMMA A.1. Suppose (A.5) holds and define a process Rt by

log Rt = −
∫ t

0
ϕ0(s) dW (s) − 1

2

∫ t

0
‖ϕ0(s)‖2 ds

+
r∑

i=1

N (i )
t∑

n=1

log ϕi
(
X (i )

n , τ (i )
n

) +
∫ t

0

∫ ∞

0

r∑
i=1

(1 − ϕi (x, s))λ(i )(dx, ds),

R0 = 1, and suppose EP[Rt] = 1 for all t. Then there exists a probability measure Q with
dQ = RtdP on Ft such that, under Q, W(t) + ϕ0(t) is a standard Brownian motion and
{(τ (i )

n , X (i )
n )} has intensity λ

(i )
Q (dx, t) = ϕi (x, t)λ(i )(dx, t).

Proof. As in the proof of Proposition A.2, construct a combined MPP from the
individual MPPs by enlarging the mark space to (0, ∞) × {1, . . . , r}. From Theorem 3.12
of Björk et al. (1997) we find that the combined MPP has a Q-intensity given by λQ(A×
I, t) = ∫

A

∑
i∈I ϕi (x, t)λ(i )(dx, t), for any measurable A ⊆ (0, ∞) and I ⊆ {1, . . . , r}. The

ith MPP is the subsequence of the combined MPP with marks in (0, ∞) × {i} and thus
has Q-intensity

λ
(i )
Q (A, t) = λQ(A× {i}, t) =

∫
A
ϕi (x, t)λ(i )(dx, t);

that is, λ(i )(dx, t) = ϕi (x, t)λ(i )(dx, t). The change of drift in W follows from Theorem 3.12
of Björk et al. (1997). �

Armed with these results, we can determine the dynamics of simple forward rates
implied by the arbitrage-free dynamics of instantaneous forward rates. To streamline
some proofs we introduce a piece of notation. A marked point process {(τn, Xn)} can be
described by a random measure µ on the product of the time axis and the mark space:
the measure µ simply assigns unit mass to each point (τn, Xn). This makes it possible to
write, for example,

Nt∑
n=1

h(Xn, τn) =
∫ t

0

∫ ∞

0
h(x, t)µ(dx, dt),

with Nt the counting process for the MPP. In the following we use µ(i ) to denote the
random measure assigning unit mass to each (τ (i )

n , X (i )
n ), n = 1, 2, . . . .

THEOREM A.2. If f (t, T ) satisfies (A.2) with α f as in (A.3), then L(t, T ) satisfies

(A.6)

δ

1 + δL(t−, T )
dL(t, T ) = [σ ∗(t, T + δ)−σ ∗(t, T )]· {dW (t) + ϕ0(t) dt + σ ∗(t, T + δ)dt}

+
r∑

i=1

∫ ∞

0
e− ∫ T

t hi (t,x,s) ds
(
e− ∫ T+δ

T hi (t,x,s) ds−1
)

ϕi (x, t)λ(i )(dx, t) dt

+
r∑

i=1

∫ ∞

0

(
e
∫ T+δ

T hi (t,x,u) du − 1
)

µ(i )(dx, dt),
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with t ≤ T ≤ T∗ and σ ∗ as in (A.4). The risk-neutral dynamics are given by

(A.7)

δ

1 + δL(t−, T )
d L(t, T ) = [σ ∗(t, T + δ) − σ ∗(t, T )] · {

dWQ(t) + σ ∗(t, T + δ) dt
}

+
r∑

i=1

∫ ∞

0
e− ∫ T

t hi (t,x,s) ds
(

e− ∫ T+δ

T hi (t,x,s) ds − 1
)

λ
(i )
Q (dx, t) dt

+
r∑

i=1

∫ ∞

0

(
e
∫ T+δ

T hi (t,x,u) du − 1
)

µ(i )(dx, dt),

where WQ is standard Brownian motion under Q and λ
(i )
Q is the intensity of the ith MPP

under Q.

Proof. We prove the risk-neutral case (A.7); this suffices because Lemma A.1 indicates
how to move between the two measures. Since we consider only the risk-neutral measure,
we write W (rather than WQ) for a Brownian motion under Q. For notational simplicity,
we will let

Z̃(t, T ) =
∫ T+δ

T
f (t, s) ds, h̃i (t, x, y) = exp

(
−

∫ y

t
hi (t, x, u) du

)
.

Recall that

L(t, T) = 1
δ

(
exp

{∫ T+δ

T
f (t, u) du

}
− 1

)
= 1

δ
(exp{Z̃(t, T )} − 1).(A.8)

Proposition A.1 gives the following dynamics for the forward rate:

d f (t, T ) = ∂

∂T

(
1
2
‖σ ∗(t, T )‖2

)
dt +

r∑
i=1

∫ ∞

0

∂ h̃i (t, x, T )
∂T

λ
(i )
Q (dx, t) dt(A.9)

+ σ (t, T ) dW (t) +
r∑

i=1

∫ ∞

0
hi (t, x, T )µ(i )(dx, dt).

By interchanging differentiation and integration and interchanging the order of integra-
tion (see Assumption 2.1 of Björk et al. 1997 and the surrounding discussion), we obtain
from (A.9) that

d Z̃(t, T ) =
∫ T+δ

T
d f (t, u) du

=
{∫ T+δ

T
σ (t, u) du

}
dW (t) +

r∑
i=1

∫ ∞

0

{∫ T+δ

T
hi (t, x, u) du

}
µ(i )(dx, dt)

+
{∫ T+δ

T

∂

∂u

(
1
2
‖σ ∗(t, u)‖2

)
du

}
dt

+
r∑

i=1

∫ ∞

0

{∫ T+δ

T

∂ h̃i (t, x, u)
∂u

du

}
λ

(i )
Q (dx, t) dt.
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Since ∫ T+δ

T

∂

∂u

(
1
2
‖σ ∗(t, u)‖2

)
du = 1

2
‖σ ∗(t, T + δ)‖2 − 1

2
‖σ ∗(t, T )‖2,

∫ T+δ

T

∂ h̃i (t, x, u)
∂u

du = h̃i (t, x, T + δ) − h̃i (t, x, T ),

∫ T+δ

T
σ (t, u) du = σ ∗(t, T + δ) − σ ∗(t, T ),

we further have

(A.10)

d Z̃(t, T ) =
{

1
2
‖σ ∗(t, T + δ)‖2 − 1

2
‖σ ∗(t, T )‖2

}
dt + (σ ∗(t, T + δ) − σ ∗(t, T )) dW(t)

+
r∑

i=1

∫ ∞

0
{h̃i (t, x, T + δ) − h̃i (t, x, T )}λ(i )

Q (dx, t) dt

+
r∑

i=1

∫ ∞

0

{∫ T+δ

T
hi (t, x, u) du

}
µ(i ) (dx, dt).

Therefore, applying Itô’s formula for jump processes (p. 140 of Elliott 1982) to L(t, T )
in (A.8) yields

d L(t, T ) = 1
δ

exp{Z̃(t, T )}{d Z̃(t, T )}c + 1
2δ

exp{Z̃(t, T )}{d Z̃(t, T )}c{d Z̃(t, T )}c

+
r∑

i=1

1
δ

∫ ∞

0

(
exp

{
Z̃(t−, T ) +

∫ T+δ

T
hi (t, x, u) du

}

− exp{Z̃(t−, T )}
)

µ(i )(dx, dt),

where {·}c denotes the continuous part of the process in braces. Combining this with
equations (A.10) and (A.8) leads to

d L(t, T ) = 1
δ

(1 + δL(t, T )) ·
({

1
2
‖σ ∗(t, T + δ)‖2 − 1

2
‖σ ∗(t, T )‖2

}
dt

+ [σ ∗(t, T + δ) − σ ∗(t, T )] dW (t)

+ 1
2
‖σ ∗(t, T + δ) − σ ∗(t, T )‖2 dt

+
r∑

i=1

∫ ∞

0
{h̃i (t, x, T + δ) − h̃i (t, x, T )}λ(i )

Q (dx, t) dt
)

+ 1
δ

(1 + δL(t−, T ))
r∑

i=1

∫ ∞

0

[
exp

(∫ T+δ

T
hi (t, x, u) du

)
− 1

]
µ(i )(dx, dt).

Noting that, for any row vectors a, b, ‖a‖2 − ‖b‖2 + ‖a − b‖2 = 2(a − b)a, we get
(A.7). �
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Proof of Theorem 3.1. To establish this result as a consequence of Theorem A.2, we
need to show that σ and the hi in (A.2) can be chosen so that the dynamics in Theorem A.2
(with T ∈ {T1, . . . , TM }) simplify to those in Theorem 3.1. This will show that it is indeed
possible to embed the simple forward rates in Theorem 3.1 in an arbitrage-free model of
instantaneous forwards.

For simplicity, we focus on the risk-neutral setting. Given γn and Hni , i = 1, . . . , r , we
reduce (A.7) to the dynamics in Theorem 3.1 (with ϕ0 ≡ 0 and ϕi ≡ 1) by finding σ and
hi , i = 1, . . . , r , satisfying

σ ∗(t, Tn+1) − σ ∗(t, Tn) = δγn(t)Ln(t)
1 + δLn(t)

(A.11)

and, for each i = 1, . . . , r ,∫ Tn+1

Tn

hi (t, x, s) ds = log
(

1 + δLn(t−)(1 + Hni (x))
1 + δLn(t−)

)
,(A.12)

for all n = 1, . . . , M. We can always enforce these conditions; we could, for example,
choose each σ (t, ·) and hi (t, x, ·) constant over intervals (Tk, Tk+1), but it is also possible
to choose these to be smooth functions of maturity.

Using (A.11), we can rewrite (A.7) evaluated at T = Tn as

(A.13)

dLn(t) = γn(t)Ln(t) dW (t) +
(

γn(t)Ln(t)σ ∗(t, Tn) + δ‖γn(t)‖2 L2
n(t)

1 + δLn(t)

)
dt

+ 1
δ

(1 + δLn(t))
r∑

i=1

∫ ∞

0
e− ∫ Tn

t hi (t,x,s) ds
(

e− ∫ Tn+1
Tn hi (t,x,s) ds − 1

)
λ

(i )
Q (dx, t) dt

+ 1
δ

(1 + δLn(t−))
r∑

i=1

∫ ∞

0

(
e
∫ Tn+1

Tn hi (t,x,u) du − 1
)

µ(i )(dx, dt).

If we choose σ (t, u) = 0 for t ≤ u < t + δ, repeated use of (A.11) shows that

γn(t)Ln(t)σ ∗(t, Tn) + δ‖γn(t)‖2 L2
n(t)

1 + δLn(t)
=

n∑
k=η(t)

δγn(t)γk(t)Lk(t)Ln(t)
1 + δLk(t)

.

Thus, the first dt term in (A.13) matches (3.3). The dW terms in (A.13) and (3.1) also
match. For the jump terms, notice that (A.12) is equivalent to

e
∫ Tn+1

Tn hi (t,x,s) ds = δHni (x)Ln(t−)
1 + δLn(t−)

+ 1 = 1 + δLn(t−)(1 + Hni (x))
1 + δLn(t−)

,

that is, to

1
δ

(1 + δLn(t−))
(

e
∫ Tn+1

Tn hi (t,x,s) ds − 1
)

= Hni (x)Ln(t−).(A.14)

If we choose hi (t, x, s) = 0, t ≤ s < t + δ, it follows that

1
δ

(1 + δLn(t))
r∑

i=1

∫ ∞

0
e− ∫ Tn

t hi (t,x,s) ds
(

e− ∫ Tn+1
Tn hi (t,x,s) ds − 1

)
λ

(i )
Q (dx, t) dt

= 1
δ

(1 + δLn(t))
r∑

i=1

∫ ∞

0
e− ∫ Tn+1

t hi (t,x,s) ds
(

1 − e
∫ Tn+1

Tn hi (t,x,s) ds
)

λ
(i )
Q (dx, t) dt
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= −
r∑

i=1

∫ ∞

0
Ln(t)Hni (x)

n∏
k=η(t)

1 + δLk(t−)
1 + δLk(t−)(1 + Hki (x))

λ
(i )
Q (dx, t) dt,

so (A.12) ensures that the intensity term in (A.13) matches (3.4). Finally, (A.14) shows
that

1
δ

(1 + δLn(t−))
r∑

i=1

∫ ∞

0

(
e
∫ Tn+1

Tn hi (t,x,u) du − 1
)

µ(i )(dx, dt) = Ln(t−)Jn(t)

with Jn(t) as in (3.1) and (3.2). �

Observe that Theorem A.2 applies simultaneously for all maturities 0 ≤ T ≤ T ∗. In
Theorem 3.1 we restrict T to a finite set {T1, . . . , TM } solely to ensure that we can choose
σ and hi to satisfy (A.11) and (A.12). Extending Theorem 3.1 to hold simultaneously for
all maturities would require finding suitable conditions ensuring solutions to (A.11) and
(A.12). A thorough investigation of this issue in the absence of jumps is undertaken in
Brace et al. (1997).

The assumption that the volatilities σ (t, ·) and jump-size functions hi (t, x, ·) are 0
for maturities shorter than δ is but one way to embed a model of simple forwards in
a model of instantaneous forwards. As emphasized by Jamshidian (1997) in the pure-
diffusion case, the prices of derivatives sensitive only to a discrete tenor of forward rates are
independent of the volatility assumed for maturities shorter than the basic accrual periods.
This becomes more transparent when one uses a numeraire asset tailored to the tenor
structure, rather than the money market account which is best suited to instantaneous
rates. We return to this point after establishing the necessary theoretical background on
changes of numeraire in Appendix B.

We conclude this appendix with comments on technical conditions that have not been
made explicit in the statements of our results. We established Theorem A.2 as a conse-
quence of Theorem 3.13 of Björk et al. (1997), which relies on their Assumptions 2.1 and
3.1. Thus, Theorem A.2 also relies on those assumptions. We established Theorem 3.1 as
a consequence of Theorem A.2; we must therefore require that Assumption 2.1 of Björk
et al. hold for the σ and hi constructed from the γn and Hni given in Theorem 3.1.

APPENDIX B: CHANGE OF NUMERAIRE

Our main objective here is to prove Theorem 3.2. Before proving the result, we need to
develop some preliminary material. Recall that B(t, T ) denotes the time-t price of a zero
coupon bond maturing at T.

LEMMA B.1. With f as in (A.2) and α f as in (A.3), B(t, T ) satisfies

(B.1)

dB(t, T )
B(t−, T )

= r (t) dt − σ ∗(t, T ) dWQ(t)

+
∫ ∞

0

r∑
i=1

(
exp

{
−

∫ T

t
hi (t, x, s) ds

}
− 1

) (
µ(i )(dx, dt) − λ

(i )
Q (dx, t) dt

)

with WQ a standard Brownian motion under Q and λ
(i )
Q the intensity of µ(i ) under Q.
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Proof. The proof follows from (A.1) and Proposition A.2, and essentially restates
Proposition 2.2(3) of Björk et al. (1997). �

To change numeraire from β(t) to a zero coupon bond, for any maturity T define

Z(t, T ) = B(t, T )
β(t)

= B(t, T )

exp
( ∫ t

0 r (s) ds
) .

Itô’s formula for jump processes applied to Z(t, T ) shows, via (B.1), that

d Z(t, T ) = 1
β(t)

(−r (t) dtB(t, T ) + dB(t, T ))

= −Z(t, T )σ ∗(t, T )dWQ(t)

+ Z(t−, T )
r∑

i=1

∫ ∞

0

(
exp

{
−

∫ T

t
hi (t, x, s) ds

}
− 1

)

× (
µ(i )(dx, dt) − λ

(i )
Q (dx, t) dt

)
.

Thus,

d Z(t, T + δ)
Z(t−, T + δ)

= −
(∫ T+δ

t
σ (t, s) ds

)
dWQ(t)

+
r∑

i=1

∫ ∞

0

(
e− ∫ T+δ

t hi (t,x,s) ds − 1
) (

µ(i )(dx, dt) − λ
(i )
Q (dx, t) dt

)
is a martingale. We can now define the measure PT+δ through the likelihood ratio(

dPT+δ

dQ

)
t
= Z(t, T + δ)

B(0, T + δ)
.

The next result follows from the version of Girsanov’s theorem (Thm. 3.13) in Björk
et al. (1997).

LEMMA B.2. Under PT+δ, the intensity of µ(i )(dx, dt) is given by

λ
(i )
T+δ(dx, t) = e− ∫ T+δ

t hi (t,x,s) dsλ
(i )
Q (dx, t),

and the process WT+δ(t), dWT+δ(t) = dWQ(t) + σ ∗(t, T + δ) dt, is a standard Brownian
motion.

Proof of Theorem 3.2. As in the proof of Theorem 3.1 we embed the model of sim-
ple forward rates in an arbitrage-free model of instantaneous forward rates; indeed, we
enforce the conditions (A.11) and (A.12) imposed for the previous embedding.

For any n = 1, . . . , M, we obtain the risk-neutral dynamics of Ln(t) from (A.7):

d Ln(t) = 1
δ

(1 + δLn(t))
[
σ ∗(t, Tn+1) − σ ∗(t, Tn)

]
Ln(t) · {

dWQ(t) + σ ∗(t, Tn+1) dt
}

+ 1
δ

(1 + δLn(t))
r∑

i=1

∫ ∞

0
e− ∫ Tn

t hi (t,x,s) ds
(

e− ∫ Tn+1
Tn hi (t,x,s) ds − 1

)
λ

(i )
Q (dx, t) dt

+ 1
δ

(1 + δLn(t−))
r∑

i=1

∫ ∞

0

(
e
∫ Tn+1

Tn hi (t,x,u) du − 1
)

µ(i )(dx, dt).
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Using (A.11) and Lemma B.2, we can rewrite this as

(B.1)

d Ln(t) = γn(t)Ln(t) · {
dWM+1(t) + [

σ ∗(t, Tn+1) − σ ∗(t, TM+1)
]

dt
}

+ 1
δ

(1 + δLn(t))
r∑

i=1

∫ ∞

0
e
∫ TM+1

Tn hi (t,x,s) ds
(

e− ∫ Tn+1
Tn hi (t,x,s) ds − 1

)
λ

(i )
M+1(dx, t) dt

+ 1
δ

(1 + δLn(t−))
r∑

i=1

∫ ∞

0

(
e
∫ Tn+1

Tn hi (t,x,u) du − 1
)

µ(i )(dx, dt).

Repeated application of (A.11) shows that

σ ∗(t, Tn+1) − σ ∗(t, TM+1) = −
M∑

j=n+1

γ j (t)δLj (t)
1 + δLj (t)

,

so the first dt term in (B.1) matches the term in (3.6). That the jump term in (B.1) matches
the term d J(t, T − kδ) in (3.5) follows directly from (A.14). Next we consider the intensity
terms. For each i = 1, . . . , r ,

1
δ

(1 + δLn(t))e
∫ TM+1

Tn hi (t,x,s) ds
(

e− ∫ Tn+1
Tn hi (t,x,s) ds − 1

)

= 1
δ

(1 + δLn(t))e
∫ TM+1

Tn+1
hi (t,x,s) ds

(
1 − e

∫ Tn+1
Tn hi (t,x,s) ds

)

= −Ln(t)Hn,i (x)e
∫ TM+1

Tn+1
hi (t,x,s) ds

= −Ln(t)Hn,i (x)
M∏

j=n+1

1 + δLj (t−)(1 + Hji (x))
1 + δLj (t−)

,

using (A.14) for the second equality and (A.12) for the third. Summing over i produces the
intensity term in (3.6). �

Close inspection of this proof reveals that it does not rely on the conditions σ (t, u) = 0
and hi (t, x, u) = 0, t < u < t + δ, used in the proof of Theorem 3.1; indeed, the values
of σ and hi in this range of arguments is immaterial to Theorem 3.2. This point merits
comment. We have worked primarily in the risk-neutral measure in order to be able to
apply the general framework of Björk et al. (1997). This is convenient but entails an
arbitrary choice of parameters for maturities shorter than δ. This shortcoming ensues
from the reliance of the risk-neutral measure on instantaneous rates through its numeraire.

An alternative approach parallels the type of construction in Jamshidian (1997) and
Musiela and Rutkowski (1997a), starting from a numeraire involving only simple rates.
For example, starting under the measure PM+1 and imposing the requirement that each
Bn(t)/BM+1(t) be a martingale produces the model in Theorem 3.2 without reference to
an underlying term structure of instantaneous rates. Similarly, starting from a discretely
compounded money market account (accruing simple interest at rate Ln(Tn) over the
interval [Tn, Tn+1]) produces the model in Theorem 3.1, again without reference to in-
stantaneous rates. A thorough development of this approach would involve extending
the general results in Jamshidian (1997) and Musiela and Rutkowski (1997a) to processes
with discontinuities. This has recently been undertaken in a very general semimartingale
setting by Jamshidian (1999).
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Proof of Proposition 3.1. The superposition of the MPPs in In has risk-neutral inten-
sity

∑
i∈In

λ
(i )
Q . By Lemma B.2 and equations (A.12) and (3.19), under the Tn+1-forward

measure the new intensity is
n∏

k=η(t)

1 + δLk(t−)
1 + xδLk(t−)

∑
i∈In

λ
(i )
Q (x, t) dx,

which reduces to λ̂n fn(x) dx, in light of (3.20). It follows from this intensity that under the
Tn+1-forward measure the superposition of the MPPs in In constitute a marked Poisson
process with constant arrival rate λ̂n and i.i.d. marks with density fn . Our choice of
functions hni now produces (3.11). �

APPENDIX C: SWAP RATE MODEL

The proof of Theorem 5.1 is similar to that of Theorem 3.2 so we omit the details and
instead provide some intuition for the form of the result. From (5.1) we see that Sn is
the ratio of one linear combination of asset prices to another. As in Jamshidian (1997)
analysis of the pure-diffusion case, this suggests that it is convenient to take as numeraire
asset the denominator Bn,M(t) ≡ ∑M+1

i=n+1 δBj (t). Let Pn,M denote the probability measure
associated with this numeraire, defined by

dPn,M

dPM+1

∣∣∣∣
t
= Bn,M (t)

BM+1(t)
· BM (0)

Bn,M (0)
.(C.1)

Under this measure, Sn must be a martingale because it is the ratio of Bn − BM+1 to the
numeraire asset price. This requires that Sn have the form

(C.2)

d Sn(t)
Sn(t−)

= −
r∑

i=1

∫ ∞

0
Gni (x)λ(i )

n,M(dx, t) + θn(t) dW n,M(t) + d


 r∑

i=1

N(i )
t∑

j=1

Gni
(
X (i )

j

) ,

with Wn,M a standard Brownian motion under Pn,M and λ
(i )
n,M the intensity of the ith MPP

under Pn,M.
This specifies the dynamics of each Sn under a measure Pn,M that depends on n.

However, we would like to specify the dynamics of all Sn simultaneously under a single
measure PM+1. For this we need to determine how the dynamics of Sn change when we
change measures from Pn,M to PM+1—that is, when we change numeraires from Bn,M to
BM+1. As in Jamshidian (1997), we have

Bn,M (t)
BM+1(t)

=
M+1∑

k=n+1

δ

k∏
j=n+1

(1 + δSj (t));(C.3)

from (C.1) we see that, up to a proportionality constant, this is dPn,M/dPM+1. We must
therefore apply the Girsanov theorem (see Lemma A.1) with this ratio for Rt to determine
the change of dynamics under this change of measure.

Applying Itô’s formula to the logarithm of (C.3) shows that the volatility of this ratio is

∑M+1
k=n+1 δ

∑k
l=n+1 δθl (t)Sl (t)

∏k
j=n+1, j �=l (1 + δSj (t))∑M+1

k=n+1 δ
∏k

j=n+1(1 + δSj (t))
.
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Premultiplying by θn(t) yields −αo
n(t) after interchanging the order of summation, so

θn(t) dW n,M(t) = αo
n(t) dt + θn(t) dW M+1(t),

with Wn,M and WM+1 standard Brownian motions under Pn,M and PM+1, respectively.
This explains the first contribution to the drift in (5.4). For the second term we need to
consider the jumps in (C.3). Given the arrival of a mark x in the ith MPP at time t, the
percentage jump in (C.3) is∑M+1

k=n+1 δ
∏k

j=n+1(1 + δSj (t−){1 + Gni (x)})∑M+1
k=n+1 δ

∏k
j=n+1(1 + δSj (t−))

− 1,

because Sj (t) = Sj (t−){1 + Gni (x)}. From the Girsanov theorem it follows that the in-
tensities λ

(i )
n,M and λ

(i )
M+1 under Pn,M and PM+1 are related as in (5.6). The integral in (5.4)

is thus just another way of writing the one in (C.2). We have therefore outlined the key
steps in going from (C.2) under Pn,M to (5.3) and (5.4) in Theorem 5.1.

Proof of Proposition 5.1. With ETM+1 denoting expectation under the PM+1 forward
measure (i.e., with numeraire asset BM+1), the swaption price is

Cn(t) = BM+1(t)ETM+1

[
δ

M∑
j=n

Bj (T )
(Sn(T ) − K)+

BM+1(T )

∣∣∣∣Ft

]
.(C.4)

As in Jamshidian (1997), changing numeraire from PM+1 to Pn,M, (C.4) becomes

Cn(t) = δ

M+1∑
j=n+1

Bj (t)En,M
[
(Sn(T ) − K)+

∣∣Ft
]
.

It follows from (5.1) that Sn is a martingale under Pn,M, since it is the ratio of a linear
combination of bond prices to the numeraire price. Moreover, as discussed above, the ith
MPP has intensity λ

(i )
n,M under Pn,M. With (5.7), we conclude that Sn has the dynamics of

a Merton jump-diffusion under Pn,M, with volatility ‖θn(t)‖, jump rate λ̂n , and jump size
density fn . The expectation above for Cn can now be evaluated and yields (5.8). �
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