
J.R. Birge and V. Linetsky (Eds.), Handbooks in OR & MS, Vol. 15
Copyright © 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S0927-0507(07)15002-7

Chapter 2

Jump-Diffusion Models for Asset Pricing in
Financial Engineering

S.G. Kou
Department of Industrial Engineering and Operations Research, Columbia University
E-mail: sk75@columbia.edu

Abstract

In this survey we shall focus on the following issues related to jump-diffusion mod-
els for asset pricing in financial engineering. (1) The controversy over tailweight of
distributions. (2) Identifying a risk-neutral pricing measure by using the rational ex-
pectations equilibrium. (3) Using Laplace transforms to pricing options, including
European call/put options, path-dependent options, such as barrier and lookback op-
tions. (4) Difficulties associated with the partial integro-differential equations related
to barrier-crossing problems. (5) Analytical approximations for finite-horizon Amer-
ican options with jump risk. (6) Multivariate jump-diffusion models.

1 Introduction

There is a large literature on jump-diffusion models in finance, including
several excellent books, e.g. the books by Cont and Tankov (2004), Kijima
(2002). So a natural question is why another survey article is needed. What we
attempt to achieve in this survey chapter is to emphasis some points that have
not been well addressed in previous surveys. More precisely we shall focus on
the following issues.

(1) The controversy over tailweight of distributions. An empirical motiva-
tion for using jump-diffusion models comes from the fact that asset
return distributions tend to have heavier tails than those of normal dis-
tribution. However, it is not clear how heavy the tail distributions are,
as some people favor power-type distributions, others exponential-type
distributions. We will stress that, quite surprisingly, it is very difficult
to distinguish power-type tails from exponential-type tails from empir-
ical data unless one has extremely large sample size perhaps in the
order of tens of thousands or even hundreds of thousands. Therefore,
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whether one prefers to use power-type distributions or exponential-type
distributions is a subjective issue, which cannot be easily justified empir-
ically. Furthermore, this has significant implications in terms of defining
proper risk measures, as it indicates that robust risk measures, such
as VaR, are desirable for external risk management; see Heyde et al.
(2006).

(2) Identifying a risk-neutral pricing measure by using the rational expec-
tations equilibrium. Since jump-diffusion models lead to incomplete
markets, there are many ways to choose the pricing measure; popular
methods include mean–variance hedging, local mean–variance hedging,
entropy methods, indifference pricing, etc. Here we will use the ratio-
nal expectations equilibrium, which leads to a simple transform from
the original physical probability to a risk-neutral probability so that we
can pricing many assets, including zero-coupon bonds, stocks, and deriv-
atives on stocks, simultaneously all in one framework.

(3) Using Laplace transforms to pricing options, including European call
and put options, path-dependent options, such as barrier options and
lookback options. We shall point out that even in the case of European
call and put options, Laplace transforms lead to simpler expressions
and even faster computations, as direct computations may involve some
complicated special functions which may take some time to compute
while Laplace transforms do not.

(4) Difficulties associated with the partial integro-differential equations re-
lated to barrier-crossing problems. For example: (i) Due to nonsmooth-
ness, it is difficult to apply Itô formula and Feymann–Kac formula di-
rectly. (ii) It is generally difficult to solve the partial integro-differential
equations unless the jump sizes have an exponential-type distribution.
(iii) Even renewal-type arguments may not lead to a unique solution.
However martingale arguments may be helpful in solving the problems.

(5) Two analytical approximations for finite-horizon American options,
which can be computed efficiently and with reasonable accuracy.

(6) Multivariate jump-diffusion models.

In a survey article, inevitably I will skip some important topics which are be-
yond the expertise of the author. For example, I will omit numerical solutions
for jump-diffusion models; see Cont and Tankov (2004), Cont and Voltchkova
(2005) and d’Halluin et al. (2003) on numerical methods for solving partial
integro-differential equations, and Feng and Linetsky (2005) and Feng et al.
(2004) on how to price path-dependent options numerically via variational
methods and extrapolation. Two additional topics omitted are hedging (for a
survey, see the book by Cont and Tankov, 2004) and statistical inference and
econometric analysis for jump-diffusion models (for a survey, see the book by
Singleton, 2006). Due to the page limit, I will also skip various applications of
the jump-diffusion models; see the references in Glasserman and Kou (2003)
for applications of jump-diffusion models in fixed income derivatives and term
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structure models, and Chen and Kou (2005) for applications in credit risk and
credit derivatives.

2 Empirical stylized facts

2.1 Are returns normally distributed

Consider the daily closing prices of S&P 500 index (SPX) from Jan 2, 1980
to Dec 31, 2005. We can compute the daily returns of SPX, either using the
simple returns or continuously compounded returns. The (one-period) simple
return is defined to be Rt = {S(t)− S(t − 1)}/S(t − 1) at time t, where S(t) is
the asset price. For mathematical convenience, the continuously compounded
return (also called log return) at time t, rt = ln S(t)

S(t−1) , is very often also used,
especially in theoretical modeling. The difference between simple and log re-
turns for daily data is quite small, although it could be substantial for monthly
and yearly data. The normalized daily simple returns are plotted in Fig. 1, so
that the daily simple returns will have mean zero and standard deviation one.

We see big spikes in 1987. In fact the max and min (which all occurred during
1987) are about 7.9967 and −21�1550 standard deviation. The continuously
compounded returns show similar features. Note that for a standard normal

Fig. 1. The normalized daily simple returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005. The
returns have been normalized to have mean zero and standard deviation one.
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Fig. 2. Comparison of the histogram of the normalized daily returns of S&P 500 index (from Jan 2,
1980 to Dec 31, 2005) and the density of N(0� 1). The feature of a high peak and two heavy tails (i.e.

the leptokurtic feature) is quite evident.

random variable Z, P(Z < −21�1550) ≈ 1�4 × 10−107; as a comparison, note
that the whole universe is believed to have existed for 15 billion years or 5 ×
1017 seconds.

Next we plot the histogram of the daily returns of SPX. Figure 2 displays the
histogram along with the standard normal density function, which is essentially
confined within (−3, 3).

2.1.1 Leptokurtic distributions
Clearly the histogram of SPX displays a high peak and asymmetric heavy

tails. This is not only true for SPX, but also for almost all financial asset prices,
e.g. US and world wide stock indices, individual stocks, foreign exchange rates,
interest rates. In fact it is so evident that a name “leptokurtic distribution” is
given, which means the kurtosis of the distribution is large. More precisely, the
kurtosis and skewness are defined as K = E

( (X−μ)4
σ4

)
, S = E

( (X−μ)3
σ3

)
; for the

standard normal density K = 3. If K > 3 then the distribution will be called
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leptokurtic and the distribution will have a higher peak and two heavier tails
than those of the normal distribution. Examples of leptokurtic distributions
include: (1) double exponential distribution with the density given by

f (x) = p · η1e
−xη11{x>0} + (1 − p) · η2e

xη21{x<0}�
(2) t-distribution, etc.

To estimate skewness and kurtosis, we shall use

Ŝ = 1
(n− 1)σ̂3

n∑
i=1

(Xi − X̄)3� K̂ = 1
(n− 1)σ̂4

n∑
i=1

(Xi − X̄)4

as sample skewness and sample kurtosis, where σ̂ is the sample standard devi-
ation. For the daily returns of the SPX data, the sample kurtosis is about 42.23.
The skewness is about −1�73; the negative skewness means the return has a
heavier left tail than the right tail.

The leptokurtic feature has been observed since 1950’s. However classical
finance models simply ignore this feature. For example, in the Black–Scholes
Brownian motion model, the stock price is modeling as a geometric Brownian
motion, S(t) = S(0)eμt+σW (t), where the Brownian motion W (t) has a nor-
mal distribution with mean 0 and variance t. Here μ is called the drift, which
measures the average return, and σ is called the volatility which measures the
standard deviation of the return distribution. In this model, the continuous
compounded return, ln(S(t)/S(0)), has a normal distribution, which it is not
consistent with leptokurtic feature. Many alternative models, e.g. models with
jumps and/or stochastic volatility, have been proposed to incorporate the fea-
ture, as we will discuss some of them shortly.

2.1.2 Power tails and exponential tails
It is clear that the returns of stocks have two tail distributions heavier than

those of normal distribution. However, how heavy the stock tail distributions
are is a debatable question. Two main classes proposed in the literature are
power-type tails and exponential-type tails. For example, we say that the right
tail of a random variable X has a power-type tail if P(X > x) ≈ c

xα , x > 0, as
x → ∞, and the left tail ofX has a power-type tail if P(X < −x) ≈ c

xα , x > 0,
as x → ∞. Similarly, we say that X has a right exponential-type tail if P(X >
x) ≈ ce−αx, x > 0, and a left exponential-type tail if P(X < −x) ≈ ce−αx,
x < 0, as x → ∞.

As pointed out by Kou (2002, p. 1090), one problem with using power-type
right tails in modeling return distributions is that the power-type right tails can-
not be used in models with continuous compounding. More precisely, suppose
that, at time 0, the daily return distributionX has a power-type right tail. Then
in models with continuous compounding, the asset price tomorrow A(�t) is
given by A(�t) = A(0)eX . Since X has a power-type right tail, it is clear that
E(eX) = ∞. Consequently,

E
(
A(�t)

) = E
(
A(0)eX

) = A(0)E
(
eX
) = ∞�
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In other words, the asset price tomorrow has an infinite expectation! The price
of call option may also be infinite, if under the risk-neutral probability the re-
turn has a power-type right distribution. This is because

E∗[(S(T)−K
)+] � E∗[S(T)]−K = ∞�

In particular, these paradoxes hold for any t-distribution with any degrees
of freedom which has power tails, as long as one considers financial mod-
els with continuous compounding. Therefore, the only relevant models with
t-distributed returns outside these paradoxes are models with discretely com-
pounded simple returns. However, in models with discrete compounding ana-
lytical solutions are in general impossible.

2.1.3 Difficulties in statistically distinguish power-type tails from
exponential-type tails

Another interesting fact is that, for a sample size of 5000 (corresponding to
about 20 years of daily data), it may be very difficult to distinguish empirically
the exponential-type tails from power-type tails, although it is quite easy to de-
tect the differences between them and the tails of normal density; see Heyde
and Kou (2004). A good intuition may be obtained by simply looking at the
quantile tables for both standardized Laplace and standardized t-distributions
with mean zero and variance one. Recall that a Laplace distribution has a sym-
metric density f (x) = 1

2e
−xI[x>0] + 1

2e
xI[x<0]. The right quantiles for the

Laplace and normalized t densities with degrees of freedom from 3 to 7 are
given in Table 1.

Table 1 shows that the Laplace distribution may have higher tail proba-
bilities than those of t-distributions with low degrees of freedom, even if as-
ymptotically the Laplace distribution should have lighter tails than those of
t-distributions. For example, the 99�9% percentile of the Laplace distribution
is actually bigger than that of t-distribution with d.f. 6 and 7! Thus, regardless
of the sample size, the Laplace distribution may appear to be heavier tailed
than a t-distribution with d.f. 6 or 7, up to the 99�9% percentile. In order to
distinguish the distributions it is necessary to use quantiles with very low p
values and correspondingly large samples.

If the true quantiles have to be estimated from data, then the problem is
even more serious, as confidence intervals need to be considered, resulting

Table 1.
Percentiles of Laplace and t-distributions

Prob. Laplace t7 t6 t5 t4 t3

1% 2�77 2�53 2�57 2�61 2�65 2�62
0.1% 4�39 4�04 4�25 4�57 5�07 5�90
0.01% 6�02 5�97 6�55 7�50 9�22 12�82
0.001% 7�65 8�54 9�82 12�04 16�50 27�67
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in sample sizes typically in the tens of thousands or even hundreds of thou-
sands necessary to distinguish power-type tails from exponential-type tails; see
Heyde and Kou (2004).

2.1.4 Practical implications for risk measures
The difficulties in distinguishing tail distributions also have implications in

risk management. For example, a controversy in axiomatic approaches to risk
measures is whether one use should Value-at-Risk (or VaR), which is a mea-
sure based on quantiles, or the tail conditional expectation. Unlike the tail con-
ditional expectation, VaR does not in general satisfy an axiom of subadditivity
(Artzner et al., 1999). However, VaR is more robust against model assump-
tions and misspecifications, thus making the VaR more suitable to be used for
external risk regulations, because VaR can produce more consistent results
which are essential for external law enforcement (see Heyde et al., 2006). Fur-
thermore, VaR at a higher quantile (e.g. 97.5%) can also be represented as
tail conditional median (e.g. at 95%), thus taking into consideration of the loss
beyond the threshold just as the tail conditional mean does. Indeed, VaR is
widely used in practice, e.g. in the recent Basel (II) governmental regulation.

It can be shown that VaR also satisfies a different set of axioms based on
commonotonic subadditivity (Heyde et al., 2006), which is consistent with both
prospect theory in behavior finance and robustness requirement for external
law enforcement. Furthermore, the intuition behind subadditivity (which is the
theoretical basis for “coherent risk measures” such as tail conditional expecta-
tions) that merger reduces risk is not true in general, in particular in presence
of the limited liability law. For details, see Heyde et al. (2006).

In short, although one may use various risk measures for internal risk man-
agement, robust risk measures, such as VaR, are needed for external risk
regulations. In addition, VaR, though simple, is not irrational because it also
satisfies a different set of axioms.

2.2 Are stock returns predictable: introduction to the dependent structure of
stock returns

To study the question on whether future stock returns can be predicted from
the current returns, we can formulate this question mathematically by asking
whether returns are correlated in some ways, so that the current returns will
provide some information about future returns. For a weakly stationary dis-
crete time series {rt}, where the index t ∈ (−∞�∞) can only take integer
values (i.e. we have � � � � r−2� r−1� r0� r1� r2� � � �), we can define the lag-k auto-
covariance γk = Cov(rt� rt−k) = Cov(rt� rt+k); the two covariances are equal
due to the definition of the weak stationarity. Similarly, we can define lag-k
autocorrelation ρk:
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ρk = Cor r(rt� rt−k) = Cor r(rt� rt+k) = Cov(rt� rt−k)√
Var(rt)Var(rt−k)

= γk√
γ0γ0

= γk
γ0
�

We can estimate ρk by

ρ̂k =
∑T
t=k+1(rt − r̄)(rt−k − r̄)∑T

t=1(rt − r̄)2
�

A plot of ρ̂k, for k � 1, is called autocorrelation function (or ACF) plot. An au-
tocorrelation plot of the simple daily returs of SPX, normalized to have mean 0
and variance 1, in given in Fig. 3.

Note that the two dotted lines in Fig. 3 indicate the 95% significant levels
for autocorrelation. More precisely, if rt = μ + at , where at is a sequence of
i.i.d. random variables with finite mean and variance, then as the total time
period T → ∞, it can be shown that ρ̂k is asymptotic normal with mean 0 and
variance 1/T . This is what is plotted in Fig. 3 as the two dotted lines, which are
±1�96/

√
T , as a 95% c.i. for the autocorrelation functions in the above ACF

plot.

Fig. 3. The ACF plot of the returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005.
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Graphically we can see from the plot that, although the first few autocor-
relations significantly exceed the 95% confidence interval, the magnitude of
autocorrelations is quite small, only about −0�05 to 0.05 among daily returns;
it is even smaller for weekly and monthly returns.

Because of this, many finance models simply ignore the dependent struc-
ture, and assume that the stock returns have zero autocorrelations. This is, for
example, in the case of Black–Scholes option pricing model, and in the capi-
tal asset pricing model, etc. Indeed, most of the classical models assume that
the stock prices satisfy “a random walk hypothesis” with independent asset
returns. However, starting in 1980’s, researches reveal some fascinating de-
pendent structures among asset returns.

In Figs. 4 and 5 we see the autocorrelations for the absolute values and the
squared values of the SPX daily returns are quite large. This suggests that re-
turns distributions are dependent in an interesting way that the volatility of
returns (which are related to the squared returns) are correlated, but asset re-
turns themselves have almost no autocorrelation. In the literature this is called
“volatility clustering effect.”

This in particular implies that any model for stock returns with independent
increments (such as Lévy processes) cannot incorporate the volatility cluster-
ing effect. Since jump-diffusion models are special cases of Lévy processes,

Fig. 4. The ACF plot of the absolute returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005.
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Fig. 5. The ACF plot of the squared returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005.

they cannot incorporate the volatility clustering effect directly. However, one
can combine jump-diffusion processes with other processes (e.g. stochastic
volatility) or consider time-changed Lévy processes to incorporate the volatility
clustering effect.

2.3 Implied volatility smile

Because in the Black–Scholes formula the call and put option prices are
monotone increasing functions of the volatility, we can define an inverse func-
tion that maps from a given option price to the volatility parameter, assuming
that we know the other parameters in the formula. More precisely, the im-
plied volatility σ(T�K) is a parameter associated with a particular strike K
and a particular maturity T such that if we use it as the volatility parameter in
the Black–Scholes formula for European call and put options, then we should
obtain a price that exactly matches the market price of a particular call/put op-
tion. In other words σ(T�K) is the inverse function of the market option price
in terms of volatility.

One immediate question is that whether the above definition is self-
consistent. In particular, suppose that one person computes σ(T�K) from a
call option with maturity T and strike K, and another computes σ(T�K) from



Ch. 2. Jump-Diffusion Models for Asset Pricing in Financial Engineering 83

a put option with the same maturity T and strikeK, will the two people get the
same answer? The answer is yes due to the put–call parity, at least in theory.
The put–call parity says that no arbitrage implies that the stock price S(0), call
price C(S�K), the price P(S�K), and the zero coupon bond price B(T) must
satisfy

S(0) = C(S�K)− P(S�K)+K · B(T)�
The relationship is model-free; in other words, no matter what model we use
the above put–call parity must hold to prevent arbitrage.

Let CBS(S�K) and PBS(S�K) denote the call and put prices given by the
Black–Scholes formula based on the same input variable σ . Then S(0) =
CBS(S�K)−PBS(S�K)+K ·B(T). Similarly, S(0) = CM(S�K)−PM(S�K)+
K · B(T), where CM(S�K) and PM(S�K) denote the market prices of the call
and put. Taking the difference between the two equations, we get

(1)CBS(S�K)− CM(S�K) = PBS(S�K)− PM(S�K)�

Now suppose we get the implied volatility σc(T�K) from the market call
option and the implied volatility σp(T�K) from the market put option. By
the definition of implied volatility, if we use σc(T�K) then we must have
CBS(S�K)−CM(S�K) = 0, if σ = σc(T�K). By (1), we must have PBS(S�K)−
PM(S�K) = 0, if σ = σc(T�K). Since σp(T�K) is the unique volatility such
that PBS(S�K) − PM(S�K) = 0, we must have σp(T�K) = σc(T�K). This
shows that the implied volatilities from otherwise identical call and put op-
tions must be the same. Of course, in practice, we do have bid–ask spreads for
options. So the implied volatility will be different depending whether you use
a bid price, an ask price or the average of the bid–ask prices. Therefore, the
implied volatilities from otherwise identical call and put options may also be
somewhat different.

When one uses the implied volatilities from call and put options to price
other options not traded in exchanges, effectively we want to do extrapola-
tion from prices of liquidated options to get prices of less liquidated options.
Many practitioners think that implied volatilities are better than the historical
volatilities for the purpose of option pricing, as historical volatilities may not
reflect the current situation. For example, suppose an extreme event happens
to the Wall Street, e.g. a financial crisis, a terrorist attack, etc., then it is hard to
find similar events in the historical database, thus making historical volatilities
unsuitable.

We can calculate implied volatilities from the market prices of options with
different strike prices and maturities. If the geometric Brownian motion as-
sumption is correct, then the implied volatilities should be the same for all
the options on the same underlying asset. However, empirically options on the
same underlying asset but with different strike prices or maturities tend to have
different implied volatilities.

In particular, it is widely recognized that if we plot implied volatilities
against strike prices, then the implied volatility curve resembles a “smile,”
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meaning the implied volatility is a convex curve of the strike price. In ad-
dition, the “smile” curve changes for different maturities. While mispricing
exists and statistically significant, the implied volatility smile was not economi-
cally significant in early tests before the 1987 market crash (e.g. MacBeth and
Merville, 1979; Rubinstein, 1985). However, after the 1987 crash, the implied
volatility smile becomes economically significant and the performance of the
Black–Scholes model deteriorated.

It is worth mentioning that the leptokurtic features under a risk-neutral
measure lead to the “volatility smiles” in option prices; and the volatility clus-
tering effect may lead to implied volatility smile across maturities, especially
for long maturity options.

3 Motivation for jump-diffusion models

3.1 Alternative models to the Black–Scholes

Many studies have been conducted to modify the Black–Scholes model to
explain the above three empirical stylized facts, namely the leptokurtic feature,
volatility clustering effect, and implied volatility smile. Below is a list of some
of them.

(a) Chaos theory and fractal Brownian motions. In these models, one typ-
ically replaces the Brownian motion by a fractal Brownian motion which has
dependent increments (rather than independent increments); see, for exam-
ple, Mandelbrot (1963). However, as Rogers (1997) pointed out these models
may lead to arbitrage opportunities.

(b) Generalized hyperbolic models, including log t model and log hyperbolic
model, and stable processes. These models replace the normal distribution as-
sumption by some other distributions; see, for example, Barndorff-Nielsen and
Shephard (2001), Samorodnitsky and Taqqu (1994), Blattberg and Gonedes
(1974).

(c) Models based on Lévy processes; see, for example, Cont and Tankov
(2004) and reference therein.

(d) Stochastic volatility and GARCH models; see, for example, Hull and
White (1987), Engle (1995), Fouque et al. (2000), Heston (1993). These models
are mainly designed to capture the volatility clustering effect. A typical exam-
ple of these models is

dS(t)
S(t)

= μ dt + σ(t) dW1(t)�

dσ(t) = −α(σ(t)− β
)

dt + γ
√
σ(t) dW2(t)�

where W1(t) and W2(t) are two correlated Brownian motions.
(e) Constant elasticity of variance (CEV) model; see, for example, Cox and

Ross (1976) and Davydov and Linetsky (2001). In this model

dS(t) = μS(t) dt + σ(t)Sα(t) dW1(t)� 0 < α � 1�
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(f) Jump-diffusion models proposed by Merton (1976) and Kou (2002).

S(t) = S(0)e(μ− 1
2σ

2)t+σW (t)
N(t)∏
i=1

eYi�

where N(t) is a Poisson process. In Merton (1976) model, Y has a normal
distribution, and in Kou (2002) it has a double exponential distribution. The
double exponential distribution enables us to get analytical solutions for many
path-dependent options, including barrier and lookback options, and analytical
approximations for American options, as we will see later.

(g) A numerical procedure called “implied binomial trees”; see, for exam-
ple, Derman and Kani (1994) and Dupire (1994).

There are models combining several features, such as stochastic volatility,
jumps, and time changes. Below are two examples of them.

(h) Time changed Brownian motions and time changed Lévy processes. In
these models, the asset price S(t) is modeled as

S(t) = G
(
M(t)

)
�

as G is a either geometric Brownian motion or a Lévy process, and M(t) is a
nondecreasing stochastic process modeling the stochastic activity time in the
market. The activity process M(t) may link to trading volumes. See, for ex-
ample, Clark (1973), Madan and Seneta (1990), Madan et al. (1998), Heyde
(2000), Carr et al. (2003).

(i) Affine stochastic-volatility and affine jump-diffusion models; see, for ex-
ample, Duffie et al. (2000), which combines both stochastic volatilities and
jump-diffusions.

3.2 Jump-diffusion models

In jump-diffusion models under the physical probability measure P the asset
price, S(t), is modeled as

(2)
dS(t)
S(t−) = μ dt + σ dW (t)+ d

(
N(t)∑
i=1

(Vi − 1)

)
�

where W (t) is a standard Brownian motion, N(t) is a Poisson process with
rate λ, and {Vi} is a sequence of independent identically distributed (i.i.d.)
nonnegative random variables. In the model, all sources of randomness, N(t),
W (t), and Y ’s, are assumed to be independent. Solving the stochastic differ-
ential equation (2) gives the dynamics of the asset price:

(3)S(t) = S(0) exp
{(
μ− 1

2
σ2
)
t + σW (t)

}N(t)∏
i=1

Vi�
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In Merton (1976) model, Y = log(V ) has a normal distribution. In Kou
(2002) Y = log(V ) has an asymmetric double exponential distribution with
the density

fY (y) = p · η1e
−η1y1{y�0} + q · η2e

η2y1{y<0}� η1 > 1� η2 > 0�

wherep� q � 0,p+q = 1, represent the probabilities of upward and downward
jumps. The requirement η1 > 1 is needed to ensure that E(V ) < ∞ and
E(S(t)) < ∞; it essentially means that the average upward jump cannot exceed
100%, which is quite reasonable. For notational simplicity and in order to get
analytical solutions for various option pricing problems, the drift μ and the
volatility σ are assumed to be constants, and the Brownian motion and jumps
are assumed to be one-dimensional. Ramezani and Zeng (2002) independently
propose the double exponential jump-diffusion model from an econometric
viewpoint as a way of improving the empirical fit of Merton’s normal jump-
diffusion model to stock price data.

There are two interesting properties of the double exponential distribution
that are crucial for the model. First, it has the leptokurtic feature; see Johnson
et al. (1995). The leptokurtic feature of the jump size distribution is inherited
by the return distribution. Secondly, a unique feature, also inherited from the
exponential distribution, of the double exponential distribution is the memo-
ryless property. This special property explains why the closed-form solutions
(or approximations) for various option pricing problems, including barrier,
lookback, and perpetual American options, are feasible under the double ex-
ponential jump-diffusion model, while it seems difficult for many other models,
including the normal jump-diffusion model.

3.3 Why jump-diffusion models

Since essentially all models are “wrong” and rough approximations of real-
ity, instead of arguing the “correctness” of a particular model we shall evaluate
jump-diffusion models by four criteria.

(1) A model must be internally self-consistent. In the finance context, it
means that a model must be arbitrage-free and can be embedded in an
equilibrium setting. Note that some of the alternative models may have
arbitrage opportunities, and thus are not self-consistent (e.g. the arbi-
trage opportunities for fractal Brownian motions as shown by Rogers,
1997). In this regard, both the Merton’s normal jump-diffusion model
and the double exponential jump-diffusion model can be embedded in
a rational expectations equilibrium setting.

(2) A model should be able to capture some important empirical phenom-
ena. However, we should emphasize that empirical tests should not be
used as the only criterion to judge a model good or bad. Empirical
tests tend to favor models with more parameters. However, models with
many parameters tend to make calibration more difficult (the calibra-
tion may involve high-dimensional numerical optimization with many
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local optima), and tend to have less tractability. This is a part of the
reason why practitioners still like the simplicity of the Black–Scholes
model. Jump-diffusion models are able to reproduce the leptokurtic
feature of the return distribution, and the “volatility smile” observed
in option prices (see Kou, 2002). The empirical tests performed in
Ramezani and Zeng (2002) suggest that the double exponential jump-
diffusion model fits stock data better than the normal jump-diffusion
model, and both of them fit the data better than the classical geometric
Brownian motion model.

(3) A model must be simple enough to be amenable to computation. Like
the Black–Scholes model, the double exponential jump-diffusion model
not only yields closed-form solutions for standard call and put options,
but also leads to a variety of closed form solutions for path-dependent
options, such as barrier options, lookback options, perpetual American
options (see Kou and Wang, 2003, 2004; Kou et al., 2005), as well as
interest rate derivatives (see Glasserman and Kou, 2003).

(4) A model must have some (economical, physical, psychological, etc.) in-
terpretation. One motivation for the double exponential jump-diffusion
model comes from behavioral finance. It has been suggested from ex-
tensive empirical studies that markets tend to have both overreaction
and underreaction to various good news or bad news (see, for example,
Fama, 1998 and Barberis et al., 1998, and references therein). One may
interpret the jump part of the model as the market response to outside
news. More precisely, in the absence of outside news the asset price
simply follows a geometric Brownian motion. Good or bad news arrive
according to a Poisson process, and the asset price changes in response
according to the jump size distribution. Because the double exponen-
tial distribution has both a high peak and heavy tails, it can be used to
model both the overreaction (attributed to the heavy tails) and under-
reaction (attributed to the high peak) to outside news. Therefore, the
double exponential jump-diffusion model can be interpreted as an at-
tempt to build a simple model, within the traditional random walk and
efficient market framework, to incorporate investors’ sentiment. Inter-
estingly enough, the double exponential distribution has been widely
used in mathematical psychology literature, particularly in vision cogni-
tive studies; see, for example, papers by David Mumford and his authors
at the computer vision group, Brown University.

Incidentally, as a by product, the model also suggests that the fact of markets
having both overreaction and underreaction to outside news can lead to the
leptokurtic feature of asset return distribution.

There are many alternative models that can satisfy at least some of the
four criteria listed above. A main attraction of the double exponential jump-
diffusion model is its simplicity, particularly its analytical tractability for path-
dependent options and interest rate derivatives. Unlike the original Black–
Scholes model, many alternative models can only compute prices for standard
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call and put options, and analytical solutions for other equity derivatives (such
as path-dependent options) are unlikely. Even numerical methods for interest
rate derivatives and path-dependent options are not easy, as the convergence
rates of binomial trees and Monte Carlo simulation for path-dependent op-
tions are typically much slower than those for call and put options (for a survey,
see Boyle et al., 1997). This makes it harder to persuade practitioners to switch
from the Black–Scholes model to more realistic alternative models. The double
exponential jump-diffusion model attempts to improve the empirical implica-
tions of the Black–Scholes model, while still retaining its analytical tractability.

3.4 Shortcoming of jump-diffusion models

The main problem with jump-diffusion models is that they cannot capture
the volatility clustering effects, which can be captured by other models such as
stochastic volatility models. Jump-diffusion models and the stochastic volatility
model complement each other: the stochastic volatility model can incorpo-
rate dependent structures better, while the double exponential jump-diffusion
model has better analytical tractability, especially for path-dependent options
and complex interest rate derivatives. For example, one empirical phenom-
enon worth mentioning is that the daily return distribution tends to have more
kurtosis than the distribution of monthly returns. As Das and Foresi (1996)
point out, this is consistent with models with jumps, but inconsistent with sto-
chastic volatility models. More precisely, in stochastic volatility models (or
essentially any models in a pure diffusion setting) the kurtosis decreases as the
sampling frequency increases; while in jump models the instantaneous jumps
are independent of the sampling frequency. This, in particular, suggests that
jump-diffusion models may capture short-term behavior better, while stochas-
tic volatility may be more useful to model long term behavior.

More general models combine jump-diffusions with stochastic volatilities
resulting in “affine jump-diffusion models,” as in Duffie et al. (2000) which can
incorporate jumps, stochastic volatility, and jumps in volatility. Both normal
and double exponential jump diffusion models can be viewed as special cases
of their model. However, because of the special features of the exponential
distribution, the double exponential jump-diffusion model leads to analyti-
cal solutions for path-dependent options, which are difficult for other affine
jump-diffusion models (even numerical methods are not easy). Furthermore,
jump-diffusion models are simpler than general affine jump-diffusion models;
in particular jump-diffusion model have fewer parameters that makes cali-
bration easier. Therefore, jump-diffusion models attempt to strike a balance
between reality and tractability, especially for short maturity options and short
term behavior of asset pricing.

In summary, many alternative models may give some analytical formulae for
standard European call and put options, but analytical solutions for interest
rate derivatives and path-dependent options, such as perpetual American op-
tions, barrier and lookback options, are difficult, if not impossible. In the dou-
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ble exponential jump-diffusion model analytical solution for path-dependent
options are possible. However, the jump-diffusion models cannot capture the
volatility clustering effect. Therefore, jump-diffusion models are more suitable
for pricing short maturity options in which the impact of the volatility cluster-
ing effect is less pronounced. In addition jump-diffusion models can provide a
useful benchmark for more complicated models (for which one perhaps has to
resort to simulation and other numerical procedures).

4 Equilibrium for general jump-diffusion models

4.1 Basic setting of equilibrium

Consider a typical rational expectations economy (Lucas, 1978) in which a
representative investor tries to solve a utility maximization problem
maxc E[∫∞

0 U(c(t)� t) dt], where U(c(t)� t) is the utility function of the con-
sumption process c(t). There is an exogenous endowment process, denoted by
δ(t), available to the investor. Also given to the investor is an opportunity to
invest in a security (with a finite liquidation date T0, although T0 can be very
large) which pays no dividends. If δ(t) is Markovian, it can be shown (see, for
example, Stokey and Lucas, 1989, pp. 484–485) that, under mild conditions,
the rational expectations equilibrium price (also called the “shadow” price) of
the security, p(t), must satisfy the Euler equation

(4)p(t) = E(Uc(δ(T)� T)p(T) | Ft)
Uc(δ(t)� t)

� ∀T ∈ [t� T0]�
where Uc is the partial derivative of U with respect to c. At this price p(t), the
investor will never change his/her current holdings to invest in (either long or
short) the security, even though he/she is given the opportunity to do so. In-
stead, in equilibrium the investor find it optimal to just consume the exogenous
endowment, i.e. c(t) = δ(t) for all t � 0.

In this section we shall derive explicitly the implications of the Euler equa-
tion (4) when the endowment process δ(t) follows a general jump-diffusion
process under the physical measure P:

(5)
dδ(t)
δ(t−) = μ1 dt + σ1 dW1(t)+ d

[
N(t)∑
i=1

(Ṽi − 1)

]
�

where the Ṽi � 0 are any independent identically distributed, nonnegative
random variables. In addition, all three sources of randomness, the Poisson
process N(t), the standard Brownian motion W1(t), and the jump sizes Ṽ , are
assumed to be independent.

Although it is intuitively clear that, generally speaking, the asset price p(t)
should follow a similar jump-diffusion process as that of the dividend process
δ(t), a careful study of the connection between the two is needed. This is
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because p(t) and δ(t) may not have similar jump dynamics; see (15). Fur-
thermore, deriving explicitly the change of parameters from δ(t) to p(t) also
provides some valuable information about the risk premiums embedded in
jump diffusion models.

Naik and Lee (1990) consider the special case that Ṽi has a lognormal dis-
tribution is investigated. In addition, Naik and Lee (1990) also require that the
asset pays continuous dividends, and there is no outside endowment process;
while here the asset pays no dividends and there is an outside endowment
process. Consequently, the pricing formulae here are different even in the case
of lognormal jumps.

For simplicity, we shall only consider the utility function of the special forms
U(c� t) = e−θt cαα if α < 1, and U(c� t) = e−θt log(c) if α = 0, where θ > 0
(although most of the results below hold for more general utility functions),
where θ is the discount rate in utility functions. Under these types of utility
functions, the rational expectations equilibrium price of (4) becomes

(6)p(t) = E(e−θT (δ(T))α−1p(T) | Ft)
e−θt(δ(t))α−1 �

4.2 Choosing a risk-neutral measure

We shall assume that the discount rate θ should be large enough so that

θ > −(1 − α)μ1 + 1
2
σ2

1 (1 − α)(2 − α)+ λζ(α−1)
1 �

where the notation ζ(a)1 means

ζ(a)1 := E
[
(Ṽ )a − 1

]
�

This assumption guarantees that in equilibrium the term structure of interest
rates is positive.

Suppose ζ(α−1)
1 < ∞. The following result in Kou (2002) justifies risk-

neutral pricing by choosing a particular risk-neutral measure for option pric-
ing:

(1) Letting B(t� T) be the price of a zero coupon bond with maturity T , the
yield r := − 1

T−t log(B(t� T )) is a constant independent of T ,

(7)r = θ+ (1 − α)μ1 − 1
2
σ2

1 (1 − α)(2 − α)− λζ(α−1)
1 > 0�
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(2) Let Z(t) := ertUc(δ(t)� t) = e(r−θ)t(δ(t))α−1. Then Z(t) is a martin-
gale under P,

(8)

dZ(t)
Z(t−) = −λζ(α−1)

1 dt + σ1(α− 1) dW1(t)

+ d

[
N(t)∑
i=1

(
Ṽ α−1
i − 1

)]
�

Using Z(t), one can define a new probability measure P∗: dP∗
dP :=

Z(t)/Z(0). The Euler equation (6) holds if and only if the asset price
satisfies

(9)S(t) = e−r(T−t)E∗(S(T) | Ft
)
� ∀T ∈ [t� T0]�

Furthermore, the rational expectations equilibrium price of a (possibly
path-dependent) European option, with the payoff ψS(T) at the matu-
rity T , is given by

(10)ψS(t) = e−r(T−t)E∗(ψS(T) | Ft
)
� ∀t ∈ [0� T ]�

4.3 The dynamic under the risk-neutral measure

Given the endowment process δ(t), it must be decided what stochastic
processes are suitable for the asset price S(t) to satisfy the equilibrium re-
quirement (6) or (9). Now consider a special jump-diffusion form for S(t),

(11)

dS(t)
S(t−) = μ dt + σ

{
ρ dW1(t)+

√
1 − ρ2 dW2(t)

}+ d

(
N(t)∑
i=1

(Vi − 1)

)
�

Vi = Ṽ
β
i �

where W2(t) is a Brownian motion independent of W1(t). In other words, the
same Poisson process affects both the endowment δ(t) and the asset price S(t),
and the jump sizes are related through a power function, where the power
β ∈ (−∞�∞) is an arbitrary constant. The diffusion coefficients and the
Brownian motion part of δ(t) and S(t), though, are totally different. It re-
mains to determine what constraints should be imposed on this model, so that
the jump-diffusion model can be embedded in the rational expectations equi-
librium requirement (6) or (9).

Suppose ζ(α+β−1)
1 < ∞ and ζ(α−1)

1 < ∞. It can be shown (Kou, 2002) that
the model (11) satisfies the equilibrium requirement (9) if and only if

μ = r + σ1σρ(1 − α)− λ
(
ζ
(α+β−1)
1 − ζ(α−1)

1

)
(12)= θ+ (1 − α)

{
μ1 − 1

2
σ2

1 (2 − α)+ σ1σρ

}
− λζ

(α+β−1)
1 �
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If (12) is satisfied, then under P∗

(13)

dS(t)
S(t−) = r dt − λ∗E∗(Ṽ βi − 1

)
dt + σ dW ∗(t)+ d

[
N(t)∑
i=1

(
Ṽ
β
i − 1

)]
�

Here, under P∗, W ∗(t) is a new Brownian motion, N(t) is a new Poisson
process with jump rate λ∗ = λE(Ṽ α−1

i ) = λ(ζ(α−1)
1 +1), and {Ṽi} are indepen-

dent identically distributed random variables with a new density under P∗:

(14)f ∗
Ṽ
(x) = 1

ζ(α−1)
1 + 1

xα−1fṼ (x)�

A natural question is under what conditions all three dynamics, δ(t) and
S(t) under P and S(t) under P∗, have the same jump-diffusion form, which is
very convenient for analytical calculation. Suppose the family V of distributions
of the jump size Ṽ for the endowment process δ(t) satisfies that, for any real
number a,

(15)if Ṽ a ∈ V then const · xafṼ (x) ∈ V�

where the normalizing constant, const, is {ζ(a−1)
1 +1}−1 (provided that ζ(a−1)

1 <
∞). Then the jump sizes for the asset price S(t) under P and the jump sizes for
S(t) under the rational expectations risk-neutral measure P∗ all belong to the
same family V . The result follows immediately from (5), (11), and (14).

The condition (15) essentially requires that the jump size distribution be-
longs to the exponential family. It is satisfied if log(V ) has a normal distribution
or a double exponential distribution. However, the log power-type distribu-
tions, such as log t-distribution, do not satisfy (15).

5 Basic setting for option pricing

In the rest of the chapter, we shall focus on option pricing under jump-
diffusion models. To do this we shall fix some notations. For a jump-diffusion
process, the log-return X(t) = ln(S(t)/S(0)) will be a process such that

(16)X(t) = μ̃t + σW (t)+
Nt∑
i=1

Yi� X0 ≡ 0�

Here {Wt; t � 0} is a standard Brownian motion with W0 = 0, {Nt; t � 0} is a
Poisson process with rate λ, constants μ̃ and σ > 0 are the drift and volatility
of the diffusion part, respectively, and the jump sizes {Y1� Y2� � � �} are indepen-
dent identically distributed random variables. We also assume that the random
processes {Wt; t � 0}, {Nt; t � 0}, and random variables {Y1� Y2� � � �} are inde-
pendent representing Yi = log(Vi).
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The infinitesimal generator of the jump-diffusion process (16) is given by

(17)

Lu(x) = 1
2
σ2u′′(x)+ μ̃u′(x)+ λ

∞∫
−∞

[
u(x+ y)− u(x)

]
fY (y) dy�

for all twice continuously differentiable functions u(x). In addition, suppose
θ ∈ (−η2� η1). The moment generating function of X(t) can be obtained as

(18)E
[
eθX(t)

] = exp
{
G(θ)t

}
�

where

G(x) := xμ̃+ 1
2
x2σ2 + λ

(
E
[
exY

]− 1
)
�

In the case of Merton’s normal jump-diffusion model, Y has a normal den-
sity

fY (y) ∼ 1

σ ′√2π
exp
{
−(y − μ′)2

2σ ′

}
�

where μ′ and σ ′ are the mean and standard deviation for Y . Thus,

G(x) = xμ̃+ 1
2
x2σ2 + λ

{
μ′x+ (σ ′)2x2

2
− 1
}
�

In the case of double exponential jump-diffusion model

fY (y) ∼ p · η1e
−η1y1{y�0} + q · η2e

η2y1{y<0}� η1 > 1� η2 > 0�

and the function G(x) is

(19)G(x) = xμ̃+ 1
2
x2σ2 + λ

(
pη1

η1 − x
+ qη2

η2 + x
− 1
)
�

Kou and Wang (2003) show that for α > 0 in the case of double expo-
nential jump-diffusion model the equation G(x) = α has exactly four roots
β1�α� β2�α�−β3�α�−β4�α, where

(20)0 < β1�α < η1 < β2�α < ∞� 0 < β3�α < η2 < β4�α < ∞�

The analytical formulae for the four roots of the equation G(x) = α, which
is essentially a quartic equation, are given in Kou et al. (2005). The explicit
formulae of β’s are useful for the Euler algorithm in Laplace inversion.

Under the risk-neutral probability P∗ in (13), we have

μ̃ = r − 1
2
σ2 − λζ�

where ζ := E∗[eY ] − 1. Similarly, if the underlying asset pays continuous divi-
dend at the rate δ, then under P∗

μ̃ = r − δ− 1
2
σ2 − λζ�
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In the Merton’s model

ζ = E∗[eY ]− 1 = μ′ + (σ ′)2

2
− 1�

and in the double exponential jump-diffusion model

ζ = E∗[eY ]− 1 = pη1/(η1 − 1)+ qη2/(η2 + 1)− 1�

6 Pricing call and put option via Laplace transforms

Laplace transforms have been widely used in valuing financial derivatives.
For example, Carr and Madan (1999) propose Fourier transforms with respect
to log-strike prices; Geman and Yor (1993), Fu et al. (1999) use Laplace trans-
forms to price Asian options in the Black–Scholes setting; Laplace transforms
for double-barrier and lookback options under the CEV model are given in
Davydov and Linetsky (2001); Petrella and Kou (2004) use a recursion and
Laplace transforms to price discretely monitored barrier and lookback op-
tions. For a survey of Laplace transforms in option pricing, see Craddock et
al. (2000).

Kou et al. (2005) adapted the method in Carr and Madan (1999), which
is based on a change of the order of integration, to price European call and
put option via Laplace transforms. In principle, the Laplace transforms for the
prices of European call and European put options can also be obtained by
using standard results from Fourier transforms for general Lévy processes (see
Cont and Tankov, 2004, pp. 361–362).

To fix the notation, the price of a European call with maturity T and strikeK,
is given by

(21)

CT (k) = e−rTE∗[(S(T)−K
)+]

= e−rTE∗[(S(0)eX(T) − e−k
)+]
�

where k = − log(K), and the price of a European put is

PT (k
′) = e−rTE∗[(K − S(T)

)+] = e−rTE∗[(ek′ − S(0)eX(T)
)+]
�

where k′ = log(K). The Laplace transform with respect to k of CT (k) in (21)
is given by

(22)

f̂C(ξ) :=
∞∫

−∞
e−ξkCT (k) dk

= e−rT S(0)
ξ+1

ξ(ξ + 1)
exp
(
G(ξ + 1)T

)
� ξ > 0�
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and the Laplace transform with respect to k′ for the put option PT (k′) is

(23)

f̂P(ξ) :=
∞∫

−∞
e−ξk′

PT (k
′) dk′

= e−rT S(0)
−(ξ−1)

ξ(ξ − 1)
exp
(
G
(−(ξ − 1)T

))
� ξ > 1�

in the notation of (18).
To show this, note that by (21) the Laplace transform for the call options is

f̂C(ξ) = e−rT
∞∫

−∞
e−ξkE∗[(S(0)eX(T) − e−k

)+] dk�

Applying the Fubini theorem yields for every ξ > 0,

f̂C(ξ) = e−rTE∗
[ ∞∫

−∞
e−ξk

(
S(0)eX(T) − e−k

)+ dk

]

= e−rTE∗
[ ∞∫

−X(T)−log S(0)

e−ξk
(
S(0)eX(T) − e−k

)
dk

]

= e−rTE∗
[
S(0)eX(T)eξ(X(T)+log S(0)) 1

ξ

− e(ξ+1)(X(T)+log S(0)) 1
ξ + 1

]

= e−rT S(0)
ξ+1

ξ(ξ + 1)
E∗[e(ξ+1)X(T)]�

from which (22) follows readily from (18). The proof of (23) is similar.
The Laplace transforms can be inverted numerically in the complex plane,

using the two-sided extension of the Euler algorithm as described and imple-
mented in Petrella (2004). To check the accuracy of the inversion, Kou et al.
(2005) compare the inversion results with the prices of call and put options un-
der the double exponential jump-diffusion model obtained by using the closed-
form formulae using Hh function as in Kou (2002). They found that the results
from the Laplace inversion method agree to the fifth decimal with the analyt-
ical solutions for European call and put options. Because of the difficulty in
precise calculation of the normal distribution function and the Hh(x) function
for very positive and negative x, it is possible that for very large values of the
return variance σ2T and for very high jump rate λ (though perhaps not within
the typical parameter ranges seen in finance applications) the closed-form for-
mulae may not give accurate results. In such cases, the inversion method still
performs remarkably well.
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It is also possible to compute the sensitivities of the option, such as Delta,
Gamma, Theta, Vega, etc., by inverting the derivatives of the option’s Laplace
transform in (22). For example, the delta is given by

�
(
CT (k)

) = ∂

∂S(0)
CT (k)

= L−1
ξ

(
e−rT S(0)

ξ

ξ
exp
(
G(ξ + 1)T

))∣∣∣∣
k=− logK

�

where L−1
ξ means the Laplace inversion with respect to ξ.

7 First passage times

To price perpetual American options, barrier options, and lookback options
for general jump-diffusion processes, it is crucial to study the first passage time
of a jump-diffusion process X(t) to a flat boundary:

τb := inf
{
t � 0; X(t) � b

}
� b > 0�

where X(τb) := lim supt→∞X(t), on the set {τb = ∞}.

7.1 The overshoot problem

Without the jump part, the processX(t) simply becomes a Brownian motion
with drift μ̃. The distributions of the first passage times can be obtained either
by a combination of a change of measure (Girsanov theorem) and the reflec-
tion principle, or by calculating the Laplace transforms via some appropriate
martingales and the optional sampling theorem. Details of both methods can
be found in many classical textbooks on stochastic analysis, e.g. Karlin and Tay-
lor (1975), Karatzas and Shreve (1991). With the jump part, however, it is very
difficult to study the first passage times for general jump-diffusion processes.
When a jump-diffusion process crosses boundary level b, sometimes it hits the
boundary exactly and sometimes it incurs an “overshoot,” X(τb)− b, over the
boundary. See Fig. 6 for an illustration.

The overshoot presents several problems for option pricing. First, one needs
to get the exact distribution of the overshoot. It is well known from stochastic
renewal theory that this is in general difficult unless the jump size Y has an
exponential-type distribution, thanks to the special memoryless property of the
exponential distribution. Second, one needs to know the dependent structure
between the overshoot and the first passage time. The two random variables
are conditionally independent, given that the overshoot is bigger than 0, if the
jump size Y has an exponential-type distribution, thanks to the memoryless
property. This conditionally independent structure seems to be very special to
the exponential-type distribution, and does not hold for other distributions,



Ch. 2. Jump-Diffusion Models for Asset Pricing in Financial Engineering 97

Fig. 6. A simulated sample path with the overshoot problem.

such as the normal distribution. Third, if one wants to use the reflection prin-
ciple to study the first passage times, the dependent structure between the
overshoot and the terminal value Xt is also needed. This is not known to the
best of our knowledge, even for the double exponential jump-diffusion process.

Consequently, we can derive closed form solutions for the Laplace trans-
forms of the first passage times for the double exponential jump-diffusion
process, yet cannot give more explicit calculations beyond that, as the corre-
lation betweenX(t) andX(τb)− b is not available. However, for other jump-
diffusion processes, even analytical forms of the Laplace transforms seem to
be quite difficult. See Asmussen et al. (2004), Boyarchenko and Levendorskĭı
(2002), and Kyprianou and Pistorius (2003) for some representations (though
not explicit calculations) based on the Wiener–Hopf factorization related to
the overshoot problems for general Lévy processes; and see also Avram et al.
(2004) and Rogers (2000) for first passage times with one-sided jumps.

7.2 Conditional independence

The following result shows that the memoryless property of the random walk
of exponential random variables leads to the conditional memoryless property
of the jump-diffusion process. For any x > 0,

(24)P
(
τb � t�X(τb)− b � x

) = e−η1xP
(
τb � t�X(τb)− b > 0

)
�

(25)P
(
X(τb)− b � x | X(τb)− b > 0

) = e−η1x�

Furthermore, conditional on Xτb − b > 0, the stopping time τb and the over-
shoot Xτb − b are independent; more precisely, for any x > 0,

P
(
τb � t�X(τb)− b � x | X(τb)− b > 0

)
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(26)
= P

(
τb � t | X(τb)− b > 0

)
P
(
X
(
τb
)− b � x | X(τb)− b > 0

)
�

It should be pointed out that τb and the overshoot X(τb) − b are dependent
even in the case of double exponential jump diffusion, although they are con-
ditionally independent.

7.3 Distribution of the first passage times

For any α ∈ (0�∞), let β1�α and β2�α be the only two positive roots for the
equation α = G(β), where 0 < β1�α < η1 < β2�α < ∞. Then Kou and Wang
(2003) give the following results regarding the Laplace transform of τb

E
[
e−ατb

] = η1 − β1�α

η1
· β2�α

β2�α − β1�α
e−bβ1�α + β2�α − η1

η1

· β1�α

β2�α − β1�α
e−bβ2�α�

E∗[e−ατb1{X(τb)>b}
] = (η1 − β1�α)(β2�α − η1)

η1(β2�α − β1�α)

[
e−bβ1�α − e−bβ2�α

]
�

(27)E∗[e−ατb1{X(τb)=b}
] = η1 − β1�α

β2�α − β1�α
e−bβ1�α + β2�α − η1

β2�α − β1�α
e−bβ2�α �

The results for the down-crossing barrier problem, i.e. b < 0, will involve the
other two roots, β3�α and β4�α.

For simplicity, we will focus on (27). It is easy to give a heuristic argument
for (27). Let u(x) = Ex[e−ατb], b > 0, we expect from a heuristic application
of the Feymann–Kac formula that u satisfies the integro-differential equation

(28)−αu(x)+ Lu(x) = 0� ∀x < b�
and u(x) = 1 if x � b. This equation can be explicitly solved at least heuristi-
cally. Indeed, consider a solution taking form

(29)u(x) =
{

1� x � b�
A1e

−β1(b−x) + B1e
−β2(b−x)� x < b�

where constants A1 and B1 are yet to be determined. Plug in to obtain, after
some algebra, that (−αu+ Lu)(x) for all x < b is equal to

A1e
−(b−x)β1f (β1)+ B1e

−(b−x)β2f (β2)

(30)−λpe−η1(b−x)
(
A2η1

η1 − β1
+ B2η1

η1 − β2
− e−η1y

)
�

where f (β) = G(β)− α.
To set (−αu + Lu)(x) = 0 for all x < b, we can first have f (β1) =

f (β2) = 0, which means that we shall choose β1 and β2 to be two roots of
G(β) = α, although it is not clear which two roots among the four are needed.



Ch. 2. Jump-Diffusion Models for Asset Pricing in Financial Engineering 99

Afterward it is enough to set the third term in (30) to be zero by choosing A1
and B1 so that

A1
η1

η1 − β1
+ B1

η1

η1 − β2
= e−η1y �

Furthermore, the continuity of u at x = b implies that

A1 + B1 = 1�

Solve the equations to obtain A1 and B1 (A1 = 1 − B1), which are exactly
the coefficients in (27). However, the above heuristic argument has several
difficulties.

7.4 Difficulties

7.4.1 Nonsmoothness
Because the function u(x) in (29) is continuous, but not C1 at x = b, we

cannot apply the Itô formula and the Feymann–Kac formula directly to the
process e−αtu(Xt); t � 0. Furthermore, even if we can use the Feymann–Kac
formula, it is not clear whether the solution to the integro-differential equa-
tion (28) is well defined and unique. Therefore, Kou and Wang (2003) have
to use some approximation of u(x) so that Itô formula can be used, and then
they used a martingale method to solve the integro-differential equation (28)
directly. In addition, the martingale method also helps to identify which two
roots are needed in the formulae. Note that a heuristic argument based on the
Feymann–Kac formula for double barrier options (with both upper and lower
barriers) is given in Sepp (2004) by extending (28) and (29), and ignoring the
nonsmoothness issue.

7.4.2 Explicit calculation
It should be mentioned that the special form of double exponential density

function enables us to explicitly solve the integro-differential equation (28) as-
sociated with the Laplace transforms using martingale methods, thanks to the
explicit calculation in (30). This is made possible as the exponential function
has some good properties such as the product of two exponential functions
is still an exponential function, and the integral of an exponential function is
again an exponential function. For general jump-diffusion processes, however,
such explicit solution will be very difficult to obtain.

7.4.3 Nonuniqueness in renewal integral equations
We have used martingale and differential equations to derive closed form

solutions of the Laplace transforms for the first-passage-time probabilities.
Another possible and popular approach to solving the problems is to set up
some integral equations by using renewal arguments. For simplicity, we shall
only consider the case of overall drift being nonnegative, i.e. ū � 0, in which
τb < ∞ almost surely. For any x > 0, define P(x) as the probability that
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no overshoot occurs for the first passage time τx with X(0) ≡ 0, that is
P(x) = P(X(τx) = x). It is easy to see that P(x) satisfies the following
renewal-type integral equation:

P(x+ y) = P(y)P(x)+ (1 − P(x)
) y∫

0

P(y − z) · η1e
−η1z dz�

However, the solution to this renewal equation is not unique. Indeed, for every
ξ � 0, the function

Pξ(x) = η1

η1 + ξ
+ ξ

η1 + ξ
e−(η1+ξ)x

satisfies the integral equation with the boundary condition Pξ(0) = 1.
This shows that, in the presence of two-sided jumps, the renewal-type in-

tegral equations may not have unique solutions, mainly because of the diffi-
culty of determining enough boundary conditions based on renewal arguments
alone. It is easy to see that ξ = −P ′

ξ(0). Indeed, it is possible to use the infin-
itesimal generator and martingale methods to determine ξ. The point here is,
however, that the renewal-type integral equations cannot do the job by them-
selves.

8 Barrier and lookback options

Barrier and lookback options are among the most popular path-dependent
derivatives traded in exchanges and over-the-counter markets worldwide. The
payoffs of these options depend on the extrema of the underlying asset. For a
complete description of these and other related contracts we refer the reader
to Hull (2005). In the standard Black–Scholes setting, closed-form solutions for
barrier and lookback options have been derived by Merton (1973) and Gatto
et al. (1979).

8.1 Pricing barrier options

We will focus on the pricing of an up-and-in call option (UIC, from now on);
other types of barrier options can be priced similarly and using the symmetries
described in the Appendix of Petrella and Kou (2004) and Haug (1999). The
price of an UIC is given by

(31)UIC(k� T) = E∗[e−rT (S(T)− e−k
)+1{τb<T }

]
�

where H > S(0) is the barrier level, k = − log(K) the transformed strike
and b = log(H/S(0)). Using a change of numéraire argument, Kou and Wang
(2004) show that under another probability, defined as P̃,X(T) still has a dou-
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ble exponential distribution with drift r − δ+ 1
2σ

2 − λζ and jump parameters

λ̃ = λ(ζ + 1)� p̃ = pη1

(ζ + 1)(η1 − 1)
�

η̃1 = η1 − 1� η̃2 = η2 + 1�

The moment generating function of X(t) under the alternative probability
measure P̃ is given by Ẽ[eθX(t)] = exp(G̃(θ)t), with

G̃(x) := x

(
r − δ+ 1

2
σ2 − λ̃ζ̃

)

+ 1
2
x2σ2 + λ̃

(
p̃η̃1

η̃1 − x
+ q̃η̃2

η̃2 + x
− 1
)
�

Kou and Wang (2004) further show that

(32)UIC(k� T) = S(0)Ψ̃UI(k� T)−Ke−rTΨUI(k� T)�

where

ΨUI(k� T) = P∗(S(T) � e−k�M0�T > H
)
�

(33)Ψ̃UI(k� T) = P̃
(
S(T) � e−k�M0�T > H

)
�

and show how to price an UIC option by inverting the one-dimensional
Laplace transforms for the joint distributions in (32) as in Kou and Wang
(2003).

Kou et al. (2005) present an alternative approach that relies on a two-
dimensional Laplace transform for both the option price in (31) and the prob-
abilities in (32). The formulae after doing two-dimensional transforms become
much simpler than the one-dimensional formulae in Kou and Wang (2003),
which involve many special functions.

In particular Kou et al. (2005) show that for ξ and α such that 0 < ξ < η1−1
and α > max(G(ξ+ 1)− r� 0) (such a choice of ξ and α is possible for all small
enough ξ asG(1)− r = −δ < 0), the Laplace transform with respect to k and
T of UIC(k� T) is given by

f̂UIC(ξ� α) =
∞∫

0

∞∫
−∞

e−ξk−αTUIC(k� T) dk dT

= Hξ+1

ξ(ξ + 1)
1

r + α−G(ξ + 1)

(34)×
(
A(r + α)

η1

η1 − (ξ + 1)
+ B(r + α)

)
�
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where

(35)

A(h) := E∗[e−hτb1{X(τb)>b}
]

= (η1 − β1�h)(β2�h − η1)

η1(β2�h − β1�h)

[
e−bβ1�h − e−bβ2�h

]
�

(36)

B(h) := E∗[e−hτb1{X(τb)=b}
]

= η1 − β1�h

β2�h − β1�h
e−bβ1�h + β2�h − η1

β2�h − β1�h
e−bβ2�h�

with b = log(H/S(0)). If 0 < ξ < η1 and α > max(G(ξ)� 0) (again this choice
of ξ and α is possible for all ξ small enough as G(0) = 0), then the Laplace
transform with respect to k and T of ΨUI(k� T) in (33) is

(37)

f̂ΨUI(ξ� α) =
∞∫

−∞

( ∞∫
0

e−ξk−αTΨUI(k� T) dT

)
dk

= Hξ

ξ

1
α−G(ξ)

(
A(α)

η1

η1 − ξ
+ B(α)

)
�

The Laplace transforms with respect to k and T of Ψ̃UI(k� T) is given similarly
with G̃ replacing G and the functions Ã and B̃ defined similarly.

Kou et al. (2005) price up-and-in calls using the two-dimensional Laplace
transform (using the two-dimensional Euler algorithm developed by Choud-
hury et al., 1994 and Petrella, 2004) and compare the results with the one-
dimensional transform in Kou and Wang (2003) (based on the Gaver–Stehfest
algorithm). The two-dimensional Laplace inversion matches to the fourth digit
the ones obtained by the one-dimensional Gaver–Stehfest algorithm, and are
all within the 95% confidence interval obtained via Monte Carlo simulation.

The two-dimensional Laplace inversion algorithms have three advantages
compared to the one-dimensional algorithm: (1) The formulae for the two-
dimensional transforms Euler are much easier to compute, simplifying the im-
plementation of the methods. (2) Although we are inverting two-dimensional
transforms, the Laplace transform methods are significantly faster, mainly be-
cause of the simplicity in the Laplace transform formulae. (3) High-precision
calculation (with about 80 digit accuracy) as required by the Gaver–Stehfest
inversion is no longer needed in the Euler inversion, which is made possible
mainly because of the simplicity of the two-dimensional inversion formulae as
no special functions are involved and all the roots of G(x) are given in analyt-
ical forms.

8.2 Pricing lookback options via Euler inversion

For simplicity, we shall focus on a standard lookback put option, while the
derivation for a standard lookback call is similar. The price of a standard look-
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back put is given by

LP(T) = E∗[e−rT{max
{
M� max

0�t�T
S(t)

}
− S(t)

}]
= E∗[e−rT max

{
M� max

0�t�T
S(t)

}]
− S(0)�

whereM � S(0) is the prefixed maximum at time 0. For any ξ > 0, the Laplace
transform of the lookback put with respect to the time to maturity T is given
by (see Kou and Wang, 2004)

(38)

∞∫
0

e−αTLP(T) dT = S(0)Aα
Cα

(
S(0)
M

)β1�α+r−1

+ S(0)Bα
Cα

(
S(0)
M

)β2�α+r−1
+ M

α+ r
− S(0)

α
�

where

Aα = (η1 − β1�α+r)β2�α+r
β1�α+r − 1

� Bα = (β2�α+r − η1)β1�α+r
β2�α+r − 1

�

Cα = (α+ r)η1(β2�α+r − β1�α+r)�

and β1�α+r , β2�α+r are the two positive roots of the equation G(x) = α+ r, as
in (20).

The transform in (38) can be inverted in the complex domain by using the
one-dimensional Euler inversion (EUL) algorithm developed by Abate and
Whitt (1992), rather than in the real domain by the Gaver–Stehfest (GS) al-
gorithm as in Kou and Wang (2004). The main reason for this is that the EUL
inversion (which is carried out in the complex-domain) does not require the
high numerical precision of the GS algorithm: a precision of 12 digits will suf-
fice for the EUL, compared with the 80 digits accuracy required by the GS. The
EUL algorithm is made possible partly due to an explicit formula for the roots
of G(x) given. Kou et al. (2005) show that the difference between the EUL
and GS results are small. Ultimately, the EUL implementation is preferable,
since it is simple to implement, and it converges fast without requiring high
numerical precision as in the GS.

9 Analytical approximations for American options

Most of call and put options traded in the exchanges in both US and Eu-
rope are American-type options. Therefore, it is of great interest to calculate
the prices of American options accurately and quickly. The price of a finite-
horizon American option is the solution of a finite horizon free boundary
problem. Even within the classical geometric Brownian motion model, except
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in the case of the American call option with no dividend, there is no analyti-
cal solution available. To price American options under general jump-diffusion
models, one may consider numerically solving the free boundary problems via
lattice or differential equation methods; see, e.g., Amin (1993), d’Halluin et al.
(2003), Feng and Linetsky (2005), Feng et al. (2004), and the book by Cont and
Tankov (2004).

9.1 Quadratic approximation

Extending the Barone-Adesi and Whaley (1987) approximation for the clas-
sical geometric Brownian motion model, Kou and Wang (2004) considered an
alternative approach that takes into consideration of the special structure of
the double exponential jump-diffusions. One motivation for such an extension
is its simplicity, as it yields an analytic approximation that only involves the
price of a European option. The numerical results in Kou and Wang (2004)
suggest that the approximation error is typically less than 2%, which is less
than the typical bid–ask spread (about 5% to 10%) for American options in ex-
changes. Therefore, the approximation can serve as an easy way to get a quick
estimate that is perhaps accurate enough for many practical situations. The ex-
tension of Barone-Adesi and Whaley’s quadratic approximation method works
nicely for double exponential jump-diffusion models mainly because explicit
solutions are available to a class of relevant integro-differential free boundary
problems.

To simplify notation, we shall focus only on the finite horizon American put
option without dividends, as the methodology is also valid for the finite horizon
American call option with dividends. Also, we shall only consider finite-time
horizon American put options. Related American calls can be priced by ex-
ploiting the symmetric relationship in Schröder (1999).

The analytic approximation involves two quantities, EuP(v� t) which de-
notes the price of the European put option with initial stock price v and
maturity t, and Pv[S(t) � K] which is the probability that the stock price at t
is below K with initial stock price v. Both EuP(v� t) and Pv[S(t) � K] can be
computed fast by using either the closed form solutions in Kou (2002) or the
Laplace transforms in Kou et al. (2005).

We need some notations. Let z = 1 − e−rt , β3 ≡ β3� rz
, β4 ≡ β4� rz

, Cβ =
β3β4(1 + η2), Dβ = η2(1 + β3)(1 + β4), in the notation of Eq. (20). Define
v0 ≡ v0(t) ∈ (0�K) as the unique solution to the equation

CβK −Dβ
[
v0 + EuP(v0� t)

]
(39)= (Cβ −Dβ)Ke

−rt · Pv0
[
S(t) � K

]
�

Note that the left-hand side of (39) is a strictly decreasing function of v0 (be-
cause v0 + EuP(v0� t) = e−rtE∗[max(S(t)�K) | S(0) = v0]), and the right
hand side of (39) is a strictly increasing function of v0 [because Cβ − Dβ =
β3β4 − η2(1 + β3 + β4) < 0]. Therefore, v0 can be obtained easily by using,
for example, the bisection method.
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Approximation. The price of a finite horizon American put option with ma-
turity t and strike K can be approximated by ψ(S(0)� t), where the value
function ψ is given by

(40)ψ(v� t) =
{

EuP(v� t)+Av−β3 + Bv−β4� if v � v0�
K − v� if v � v0�

with v0 being the unique root of Eq. (39) and the two constants A and B given
by

(41)

A = v
β3
0

β4 − β3

{
β4K − (1 + β4)

[
v0 + EuP(v0� t)

]
+Ke−rtPv0

[
S(t) � K

]}
> 0�

(42)

B = v
β4
0

β3 − β4

{
β3K − (1 + β3)

[
v0 + EuP(v0� t)

]
+Ke−rtPv0

[
S(t) � K

]}
> 0�

In the numerical examples showed by Kou and Wang (2004) the maximum
relative error is only about 2.6%, while in most cases the relative errors are be-
low 1%. The approximation runs very fast, taking only about 0.04 s to compute
one price on a Pentium 1500 PC, irrespective to the parameter ranges; while
the lattice method in Amin (1993) works much slower, taking about over one
hour to compute one price.

9.2 Piecewise exponential approximation

A more accurate approximation can be obtained by extending the piecewise
exponential approximation in Ju (1998). Extending previous work by Carr et
al. (1992), Gukhal (2001) and Pham (1997) show that under jump-diffusion
models the value at time t of an American put option with maturity T > t on
an asset with value St at time t (PA(St� t� T ) from now on) is given by

PA(St� t� T ) = PE(St� t� T )+
T∫
t

e−r(s−t)rKE∗[1{Ss�S∗
s } | St] ds

− δ

T∫
t

e−r(s−t)E∗[Ss1{Ss�S∗
s } | St] ds

− λ

T∫
t

e−r(s−t)E∗[{PA(V Ss−� s� T )− (K − V Ss−)
}
(43)× 1{Ss−�S∗

s−}1{V Ss−>S∗
s−} | St

]
ds�
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where PE(St� t� T ) is the value of the corresponding European put option,
log(V ) = Y with an independent double exponential distribution, and S∗

s is
the early exercise boundary at time s, such that if the stocks price Ss goes be-
low S∗

s at time s, then it is optimal to exercise immediately. Gukhal (2001)
provides an interpretation of the four terms in (43): the value of an American
put is given by the corresponding European put option value PE(X� t� T ) to
which we add the present value of interest accrued on the strike price in the
exercise region (IA, from now), subtract the present value of dividends lost in
the exercise region (DL, from now on), and subtract the last term in (43), to
be denoted by RCJ(t� T ), which represents the rebalancing costs due to jumps
from the early exercise region to the continuation region and is absent in the
case of pure-diffusion.

The term RCJ(t� T ) takes into account of the possibility of an upward jump
that will move the asset price from the early exercise to the continuation re-
gion. Consequently, this term diminishes when the upward jump rate λp is
small. Furthermore, intuitively this term should also be very small whenever
a jump from the early exercise to the continuation region only causes mini-
mal changes in the American option value, which in particular requires that
the overshoot over the exercise boundary is not too large. This happens if the
overshoot jump size has small mean, which in the double exponential case is
1/η1; in most practical cases η1 > 10. In other words, the term RCJ(t� T )
should be negligible for either small λp or large η1. Indeed, Kou et al. (2005)
show that for T > t, under the double exponential jump-diffusion model,

RCJ(t� T ) � λp
η1

η1 − 1
K ·U(t� T)�

U(t� T ) =
T∫
t

E∗
[(
S∗
s−
Ss−

)−(η1−1)

1{Ss−�S∗
s−}
∣∣∣∣St
]

ds�

Thus, we can conclude that the term RCJ(t� T )may be neglected when we have
small upside jump rate λp or when the parameter η1 is large [in which case the
integrand inside U(t� T) will be small], and we can ignore the term RCJ(t� T )
in Eq. (43) for practical usage.

Observing that at the optimal exercise boundary S∗
t , PA(S∗

t � t� T ) = K− S∗
t ,

we obtain an integral equation for S∗
t

K − S∗
t = PE(S

∗
t � t� T )+

T∫
t

e−r(s−t)rKE∗[1{Ss�S∗
s } | St = S∗

t ] ds

−
T∫
t

e−r(s−t)δE∗[Ss1{Ss�S∗
s } | St = S∗

t ] ds�
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ignoring the term RCJ(t� T ). To solve this integral equation, we shall use a
piecewise exponential function representation for the early exercise boundary
as in Ju (1998).

More precisely, with n intervals of size �T = T/n we approximate the
optimal boundary S∗

t by an n-piece exponential function S̃t = exp(s∗i + αit)
for t ∈ [(i − 1)�T� i�T) with i = 1� � � � � n. In our numerical experiments,
even n = 3 or 5 will give sufficient accuracy in most cases. To determine
the value of the constants s∗i and αi in each interval, we make use of the
“value-matching” and “smoothing-pasting” conditions (requiring the slope at
the contacting point to be −1 to make the curve smooth). Thus, starting from
i = n going backwards to i = 1 we solve recursively at ti = (i − 1)�T the
two unknowns s∗i and αi in terms of the system of two equations, i.e., the value
matching equation

(44)K − S̃i = PE(S̃i� ti� T )+
n∑
j=i

IAj(S̃i� tj)−
n∑
j=i

DLj(S̃i� tj)�

and the smoothing pasting equation

(45)−1 = ∂

∂S̃i
PE(S̃i� ti� T )+

n∑
j=i

∂

∂S̃i
IAj(S̃i� tj)−

n∑
j=i

∂

∂S̃i
DLj(S̃i� tj)�

where S̃i ≡ S̃ti = exp{s∗i + αiti},

IAj(St� u) = rK

tj+1∫
u

e−r(s−t)E∗[1{Ss�S̃s} | St] ds�

t � u� u ∈ [tj� tj+1)�

DLj(St� u) = δ

tj+1∫
u

e−r(s−t)E∗[Ss1{Ss�S̃s} | St] ds�

t � u� u ∈ [tj� tj+1)�

This system of equations can be solved numerically via an iterative procedure
to be specified shortly, if the right-hand sides of (44) and (45) can be computed.
To this end, Kou et al. (2005) derive the Laplace transforms with respect to s∗i
of IAj and DLj , and the Laplace transforms of ∂

∂St
IAj and ∂

∂St
DLj .

In summary, we have the following algorithm.

The Algorithm.

1. Compute the approximation exercise boundary S̃ by letting i going back-
wards from n to 1 while, at each time point ti one solves the system of two
equations in (44) and (45) to get s∗i and αi, with the right-hand side of (44)
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and (45) being obtained by inverting their Laplace transforms. The system
of two equations can be solved, for example, by using the multi-dimensional
secant method by Broydn (as implemented in Press et al., 1993).

2. After the boundary S̃ is obtained, at any time t ∈ [ti� ti+1), the value of the
American put option is given by

PE(St� t� T )+ IAi(St� t)+
n∑

j=i+1

IAj(St� tj)−DLi(St� t)

−
n∑

j=i+1

DLj(St� tj)�

In the numerical implementation, one can use the two-sided Euler algo-
rithm in Petrella (2004) to do inversion in Step 1. The initial values for the
secant method is obtained by setting αi = 0 and using the critical value in the
approximation given by Kou and Wang (2004) as an initial value of S∗

i .
Kou et al. (2005) report the prices using a 3- and 5-piece exponential ap-

proximation of the boundary (3EXP and 5EXP, respectively), and compare the
results with (i) the “true” values computed using the tree method as in Amin
(1993), and (ii) the prices obtained by the analytic approximation in Kou and
Wang (2004). The running time of the new algorithm is less than 2 s for 3EXP
and 4 s for 5EXP, compared to more than an hour required by the Amin’s tree
method. In most cases 3EXP provides an estimate of the option price more
accurate than the quadratic approximation in Kou and Wang (2004), and, as
we would expect, 5EXP has even better accuracy.

In summary, the quadratic approximation is easier in terms of programming
effort, as it is an analytical approximation, and is faster in terms of computation
time. However, the piecewise exponential approximation is more accurate.

10 Extension of the jump-diffusion models to multivariate cases

Many options traded in exchanges and in over-the-counter markets, such as
two-dimensional barrier options and exchange options, have payoffs depend-
ing on more than one assets. An exchange option gives the holder the right to
exchange one asset to another asset. More precisely, the payoff of an exchange
option is (S1(T) − e−kS2(T))

+, where e−k is the ratio of the shares to be ex-
changed. A two-dimensional barrier option has a regular call or put payoff
from one asset while the barrier crossing is determined by another asset. For
example, in late 1993 Bankers Trust issued a call option on a basket of Belgian
stocks which would be knocked out if the Belgian franc appreciated by more
than 30% (Zhang, 1998); in this case we have a up-and-out call option. There
are eight types of two-dimensional barrier options: up (down)-and-in (out) call
(put) options. Mathematically, the payoff of a two-dimensional up-an-in put
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barrier option is (K − S1(T))
+1{max0�t�T S2(t)�H}, where Si(t), i = 1� 2, are

prices of two assets, K > 0 is the strike price of the put option and H is the
barrier level. To price this option, it is crucial to compute the joint distribution
of the first passage time

P
(
X(1)
T � a� max

0�s�T
X(2)
s � b

)
= P

(
X(1)
T � a� τb � T

)
�

where the first passage time τb is defined to be τb ≡ τ(2)b := inf {t � 0:
X
(2)
t � b}, b > 0. Here X(i)

T = log(Si(T )/Si(0)) is the return process for the
ith asset, i = 1� 2.

Analytical solutions for these options are available under the classical
Brownian models; see, e.g., the books by Hull (2005) and Zhang (1998). How-
ever, it becomes difficult to retain analytical tractability after jumps being
introduced, partly because of the “overshoot” problem due to the possibil-
ity of jumping over the barrier. For example, it is difficult to get analytical
solutions for two-dimensional barrier options under Merton’s normal jump-
diffusion model.

Huang and Kou (2006) extends the previous one-dimensional double ex-
ponential jump-diffusion models by providing a multivariate jump-diffusion
model with both correlated common jumps and individual jumps is proposed.
The jump sizes have a multivariate asymmetric Laplace distribution (which
is related but not equal to the double exponential distribution). The model
not only provides a flexible framework to study correlated jumps but also is
amenable for computation, especially for barrier options. Analytical solutions
for the first passage time problem in two dimension are given, and analytical
solutions for barrier and exchange options and other related options are also
given. Compared to the one-dimensional case the two-dimensional problem
poses some technical challenges. First, with both common jumps and individual
jumps, the generator of the two-dimensional process becomes more involved.
Second, because the joint density of the asymmetric Laplace distribution has
no analytical expression, the calculation related to the joint density and gener-
ator becomes complicated. Third, one has to use several uniform integrability
arguments to substantiate a martingale argument, as Itô’s formula cannot be
applied directly due to discontinuity.

10.1 Asymmetric Laplace distribution

The common jumps in the multivariate jump-diffusion model to be in-
troduced next will have a multivariate asymmetric Laplace distribution. An
n-dimensional asymmetric Laplace random vector Y , denoted by Y ∼
ALn(m� J), is defined via its characteristic function

(46)ΨY(θ) = E
[
eiθ

′Y ] = 1

1 + 1
2θ

′Jθ− im′θ
�
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wherem ∈ Rn and J is an n×n positive definite symmetric matrix. The require-
ment of the matrix J being positive definite is postulated to guarantee that the
n-dimensional distribution is nondegenerate; otherwise, the dimension of the
distribution may be less than n. The vector m is the mean E[Y ] = m and the
matrix J plays a role similar to that of the variance and covariance matrix.

In the case of the univariate Laplace distribution, the characteristic function
in (46) becomes

(47)ΨY(θ) = 1

1 + 1
2v

2θ2 − im θ
�

where v2 is the equivalence of J in (46). For further information about the
asymmetric Laplace distribution, see Kotz et al. (2001).

The asymmetric Laplace distribution has many properties similar to those
of the multivariate normal distribution. This can be easily seen from the fact
that

(48)Y
d= mB + B1/2Z�

where Z ∼ Nn(0� J) is a multivariate normal distribution with mean 0 and
covariance matrix J, and B is a one-dimensional exponential random variable
with mean 1, independent of Z. For example, for the kth component of Y we

have Y(k) d= mkB + B1/2Zk with B ∼ exp(1) and Zk ∼ N(0� Jkk), which
implies that the marginal distribution of Y(k) has a univariate asymmetric
Laplace distribution. Furthermore, the difference between any two compo-
nents,

(49)Y(k) − Y(j)
d= (mk −mj)B + B

1
2 (Zk − Zj)� 1 � k� j � n�

is again a univariate Laplace distribution. However, it is worth mentioning
Y + a does not have the asymmetric Laplace distribution, for a �= 0.

The univariate asymmetric Laplace distribution defined by its characteristic
function in (47) is a special case of the double exponential distribution, because
the univariate asymmetric Laplace distribution has the density function

fY (y) = p · η1e
−η1y1{y�0} + q · η2e

η2y1{y<0}�
p > 0� q > 0� p+ q = 1�

but with pη1 = qη2 and the parameters given by

η1 = 2√
m2 + 2v2 +m

� η2 = 2√
m2 + 2v2 −m

�

(50)p =
√
m2 + 2v2 +m

2
√
m2 + 2v2

�

Asymmetric Laplace distribution can also be viewed as a special case of the
generalized hyperbolic distribution introduced by Barndorff-Nielsen (1977). In
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fact, a generalized hyperbolic random variable X is defined as X d= μ+mζ +
ζ1/2Z, where Z is a multivariate normal distribution, ζ is a generalized inverse
Gaussian distribution. Since the exponential random variable belongs to gen-
eralized inverse Gaussian distribution, the asymmetric Laplace distribution is
a special case of the generalized hyperbolic distribution. For more details on
applications of the generalized hyperbolic distribution in finance, see Eberlein
and Prause (2002).

10.2 A multivariate jump-diffusion model

We propose a multivariate jump-diffusion model in which the asset prices
S(t) have two parts, a continuous part driven by a multivariate geometric
Brownian motion, and a jump part with jump events modeled by a Poisson
process. In the model, there are both common jumps and individual jumps.
More precisely, if a Poisson event corresponds to a common jump, then all the
asset prices will jump according to the multivariate asymmetric Laplace distri-
bution; otherwise, if a Poisson event corresponds to an individual jump of the
jth asset, then only the jth asset will jump. In other words, the model attempts
to capture various ways of correlated jumps in asset prices.

Mathematically, under the physical measure P the following stochastic dif-
ferential equation is proposed to model the asset prices S(t):

(51)
dS(t)
S(t−) = μ dt + σ dW (t)+ d

(
N(t)∑
i=1

(Vi − 1)

)
�

whereW (t) is an n-dimensional standard Brownian motion, σ ∈ Rn×n with the
covariance matrix Σ = σσT . The rate of the Poisson process N(t) process is
λ = λc+∑n

k=1 λk; in other words, there are two types of jumps, common jumps
for all assets with jump rate λc and individual jumps with rate λk, 1 � k � n,
only for the kth asset.

The logarithms of the common jumps have an m-dimensional asymmetric
Laplace distribution ALn(mc� Jc), where mc = (m1�c� � � � �mn�c)

′ ∈ Rn and
Jc ∈ Rn×n is positive definite. For the individual jumps of the kth asset, the
logarithms of the jump sizes follow a one-dimensional asymmetric Laplace dis-
tribution, AL1(mk� v

2
k). In summary

Y = log (V ) ∼

⎧⎪⎪⎨
⎪⎪⎩
ALn(mc� Jc)� with prob. λc/λ�
(0� � � � � 0︸ ︷︷ ︸

k−1

�AL1(mk� v
2
k)� 0� � � � � 0︸ ︷︷ ︸

n−k
)′�

with prob. λk/λ� 1 � k � n�

The sources of randomness, N(t), W (t) are assumed to be independent of
the jump sizes Vis. Jumps at different times are assumed to be independent.
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Note that in the univariate case the above model degenerates to the double
exponential jump-diffusion model (Kou, 2002) but with pη1 = qη2.

Solving the stochastic differential equation in (51) gives the dynamic of the
asset prices:

(52)S(t) = S(0) exp
[(
μ− 1

2
Σdiag

)
t + σW (t)

]N(t)∏
i=1

Vi�

where Σdiag denotes the diagonal vector of Σ. Note that ∀1 � k � n,

(53)E
(
V (k)

) = E
(
eY

(k)) = λc/λ

1 −mk�c − Jc�kk/2
+ λk/λ

1 −mk − v2
k/2

�

The requirementsmk�c+Jc�kk/2 < 1 andmk+v2
k/2 < 1 are needed to ensure

E(V (k)) < ∞ and E(Sk(t)) < ∞, i.e. the stock price has finite expectation.
In the special case of two-dimension, the asset prices can be written as

S1(t) = S1(0) exp

[
μ1t + σ1W1(t)+

N(t)∑
i=1

Y(1)i

]
�

(54)

S2(t) = S2(0) exp

[
μ2t + σ2

[
ρW1(t)+

√
1 − ρ2W2(t)

]+
N(t)∑
i=1

Y(2)i

]
�

Here all the parameters are risk-neutral parameters, W1(t) and W2(t) are two
independent standard Brownian motions, and N(t) is a Poisson process with
rate λ = λc +λ1 +λ2. The distribution of the logarithm of the jump sizes Yi is
given by

(55)Yi = (Y(1)i � Y (2)i
)′ ∼

⎧⎨
⎩
AL2(mc� Jc)� with prob. λc/λ�
(AL1(m1� v

2
1)� 0)′� with prob. λ1/λ�

(0�AL1(m2� v
2
2))

′� with prob. λ2/λ�

where the parameters for the common jumps are

mc =
(
m1�c
m2�c

)
� Jc =

(
v2

1�c cv1�cv2�c

cv1�cv2�c v2
2�c

)
�

Since S(t) is a Markov process, an alternative characterization of S(t) is
to use the generator of X(t) = log S(t)/S(0). The two-dimensional jump-
diffusion return process (X1(t)�X2(t)) in (54) is given by

X1(t) = μ1t + σ1W1(t)+
N(t)∑
i=1

Y(1)i �

X2(t) = μ2t + σ2
[
ρW1(t)+

√
1 − ρ2W2(t)

]+ N(t)∑
i=1

Y(2)i �
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with the infinitesimal generator

Lu = μ1
∂u

∂x1
+ μ2

∂u

∂x2
+ 1

2
σ2

1
∂2u

∂x2
1

+ 1
2
σ2

2
∂2u

∂x2
2

+ ρσ1σ2
∂2u

∂x1∂x2

+ λc

∞∫
y2=−∞

∞∫
y1=−∞

[
u(x1 + y1� x2 + y2)− u(x1� x2)

]
× f c

(Y(1)�Y (2))
(y1� y2) dy1 dy2

+ λ1

∞∫
y1=−∞

[
u(x1 + y1� x2)− u(x1� x2)

]
fY(1)(y1) dy1

(56)+ λ2

∞∫
y2=−∞

[
u(x1� x2 + y2)− u(x1� x2)

]
fY(2)(y2) dy2�

for all continuously twice differentiable function u(x1� x2), where
f c
(Y(1)�Y (2))

(y1� y2) is the joint density of correlated common jumpsAL2(mc� Jc),
and fY(i)(yi) is the individual jump density of AL1(mi� Ji), i = 1� 2.

One difficulty in studying the generator is that the joint density of the asym-
metric Laplace distribution has no analytical expression. Therefore, the cal-
culation related to the joint density and generator becomes complicated. See
Huang and Kou (2006) for change of measures from a physical measure to a
risk-neutral measure, analytical solutions for the first passage times, and pric-
ing formulae for barrier options and exchange options.
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