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Chapter 8
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S.G. Kou
Department of Industrial Engineering and Operations Research, Columbia University
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Abstract

Discrete barrier and lookback options are among the most popular path-dependent
options in markets. However, due to the discrete monitoring policy almost no ana-
lytical solutions are available for them. We shall focus on the following methods for
discrete barrier and lookback option prices: (1) Broadie–Yamamoto method based on
fast Gaussian transforms. (2) Feng–Linetsky method based on Hilbert transforms. (3)
A continuity correction approximation. (4) Howison–Steinberg approximation based
on the perturbation method. (5) A Laplace inversion method based on Spitzer’s iden-
tity. This survey also contains a new (more direct) derivation of a constant related to
the continuity correction approximation.

1 Introduction

Discrete path-dependent options are the options whose payoffs are deter-
mined by underlying prices at a finite set of times, whereas the payoff of a
continuous path-dependent option depends on the underlying price through-
out the life of the option. Due to regulatory and practical issues, most of
path-dependent options traded in markets are discrete path-dependent op-
tions.

Among the most popular discrete path-dependent options are discrete
Asian options or average options, discrete American options or Bermuda op-
tions, discrete lookback options and discrete barrier options. The payoff of a
discrete Asian option depends on a discrete average of the asset price. For
example, a standard discrete (arithmetic European) Asian call option has a
payoff ( 1

n

∑n
i=1 S(ti) − K)+ at maturity T = tn, where t1, t2� � � � � tn are mon-

itoring points, K is the strike price of the call option, and S(t) is the asset
price at time t; see Zhang (1998), Hull (2005). A discrete American option
is an American option with exercise dates being restricted to a discrete set of
monitoring points; see Glasserman (2004).
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In this survey we shall focus on discrete barrier and lookback options, be-
cause very often they can be studied in similar ways, as their payoffs all depend
on the extrema of the underlying stochastic processes. The study of discrete
Asian options is of separate interest, and requires totally different techniques.
Discrete American options are closely related to numerical pricing of Ameri-
can options; there is a separate survey in this handbook on them. Due to the
similarity between discrete barrier options and discrete lookback options, we
shall focus on discrete barrier options, although most of the techniques dis-
cussed here can be easily adapted to study discrete lookback options.

1.1 Barrier and lookback options

A standard (also called floating) lookback call (put) gives the option holder
the right to buy (sell) an asset at its lowest (highest) price during the life of
the option. In other words, the payoffs of the floating lookback call and put
options are S(T)−m0�T and M0�T − S(T), respectively, where m0�T and M0�T
are minimum and maximum of the asset price between 0 and T . In a discrete
time setting the minimum (maximum) of the asset price will be determined at
discrete monitoring instants. In the same way, the payoffs of the fixed strike put
and call are (K−m0�T )

+ and (M0�T −K)+. Other types of lookback options in-
clude percentage lookback options in which the extreme values are multiplied
by a constant, and partial lookback options in which the monitoring interval
for the extremum is a subinterval of [0� T ]. We shall refer the interested reader
to Andreasen (1998) for a detailed description.

A barrier option is a financial derivative contract that is activated (knocked
in) or extinguished (knocked out) when the price of the underlying asset (which
could be a stock, an index, an exchange rate, an interest rate, etc.) crosses a cer-
tain level (called a barrier). For example, an up-and-out call option gives the
option holder the payoff of a European call option if the price of the underly-
ing asset does not reach a higher barrier level before the expiration date. More
complicated barrier options may have two barriers (double barrier options),
and may have the final payoff determined by one asset and the barrier level de-
termined by another asset (two-dimensional barrier options); see Zhang (1998)
and Hull (2005).

Taken together, discrete lookback and barrier options are among the most
popular path-dependent options traded in exchanges worldwide and also in
over-the-counter markets. Lookback and barrier options are also useful out-
side the context of literal options. For example, Longstaff (1995) approximates
the values of marketability of a security over a fixed horizon with a type of
continuous-time lookback option and gives a closed-form expression for the
value; the discrete version of lookback options will be relevant in his setting.
Merton (1974), Black and Cox (1976), and more recently Leland and Toft
(1996), Rich (1996), and Chen and Kou (2005) among others, have used bar-
rier models for study credit risk and pricing contingent claims with endogenous
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default. For tractability, this line of work typically assumes continuous moni-
toring of a reorganization boundary. But to the extent that the default can be
modeled as a barrier crossing, it is arguably one that can be triggered only at
the specific dates – e.g. coupon payment dates.

An important issue of pricing barrier options is whether the barrier cross-
ing is monitored in continuous time or in discrete time. Most models assume
the continuous time version mainly because this leads to analytical solutions;
see, for example, Gatto et al. (1979), Goldman et al. (1979), and Conze and
Viswanathan (1991), Heynen and Kat (1995) for continuous lookback op-
tions; and see, for example, Merton (1973), Heynen and Kat (1994a, 1994b),
Rubinstein and Reiner (1991), Chance (1994), and Kunitomo and Ikeda (1992)
for various formulae for continuously monitored barrier options under the
classical Brownian motion framework. Recently, Boyle and Tian (1999) and
Davydov and Linetsky (2001) have priced continuously monitored barrier and
lookback options under the CEV model using lattice and Laplace transform
methods, respectively; see Kou and Wang (2003, 2004) for continuously moni-
tored barrier options under a jump-diffusion framework.

However in practice most, if not all, barrier options traded in markets are
discretely monitored. In other words, they specify fixed times for monitor-
ing of the barrier (typically daily closings). Besides practical implementation
issues, there are some legal and financial reasons why discretely monitored
barrier options are preferred to continuously monitored barrier options. For
example, some discussions in trader’s literature (“Derivatives Week”, May 29th,
1995) voice concern that, when the monitoring is continuous, extraneous bar-
rier breach may occur in less liquid markets while the major western markets
are closed, and may lead to certain arbitrage opportunities.

Although discretely monitored barrier and lookback options are popular
and important, pricing them is not as easy as that of their continuous counter-
parts for several reasons:

(1) There are essentially no closed solutions, except using m-dimensional
normal distribution functions (m is the number of monitoring points),
which cannot be computed easily if, for example, m > 5; see Section 3.

(2) Direct Monte Carlo simulation or standard binomial trees may be diffi-
cult, and can take hours to produce accurate results; see Broadie et al.
(1999).

(3) Although the central limit theorem asserts that as m → ∞ the differ-
ence between the discretely and continuously monitored barrier options
should be small, it is well known that the numerical differences can be
surprisingly large, even for large m; see, e.g., the table in Section 4.

Because of these difficulties, many numerical methods have been proposed
for pricing discrete barrier and lookback options.
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1.2 Overview of different methods

First of all, by using the change of numeraire argument the pricing of bar-
rier and lookback options can be reduced to studying either the marginal
distribution of the first passage time, or the joint probability of the first pas-
sage time and the terminal value of a discrete random walk; see Section 2.
Although there are many representations available for these two classical prob-
lems, there is little literature on how to compute the joint probability explicitly
before the recent interest in discrete barrier and lookback options. Many nu-
merical methods have been developed in the last decade for discrete barrier
and lookback options. Popular ones are:

(1) Methods based on convolution, e.g. the fast Gaussian transform method
developed in Broadie and Yamamoto (2003) and the Hilbert transform method
in Feng and Linetsky (2005). This is basically due to the fact that the joint
probability of the first passage time and the terminal value of a discrete ran-
dom walk can be written as m-dimensional probability distribution (hence a
m-dimensional integral or convolution.) We will review these results in Sec-
tion 3.

(2) Methods based on the asymptotic expansion of discrete barrier options
in terms of continuous barrier options, assuming m → ∞. Of course, as we
mentioned, the straightforward result from the central limit theorem, which
has error o(1), does not give a good approximation. An approximation based
on the results from sequential analysis (see, e.g., Siegmund, 1985 with the error
order o(1/

√
m) is given in Broadie et al. (1999), whose proof is simplified in

Kou (2003) and Hörfelt (2003). We will review these results in Section 4.
(3) Methods based on the perturbation analysis of differential equations,

leading to a higher order expansion with the error order o(1/m). This is inves-
tigated in Howison and Steinberg (2005) and Howison (2005). We will review
these results in Section 5.

(4) Methods based on transforms. Petrella and Kou (2004) use Laplace
transforms to numerically invert the Spitzer’s identity associated with the first
passage times. We will review these transform-based methods in Section 6.

Besides these specialized methods, there are also many “general methods,”
such as lattice methods, Monte Carlo simulation, etc. We call them general
methods because in principle these methods can be applied to broader con-
texts, e.g. American options and other path-dependent options, not just for
discrete barrier and lookback options. Broadly speaking, general methods will
be less efficient than the methods which take advantage of the special struc-
tures of discrete barrier and lookback options. However, general methods are
attractive if one wants to develop a unified numerical framework to price dif-
ferent types of options, not just discrete barrier and lookback options. Because
of their generality, many methods could potentially belong to this category,
and it is very difficult to give a comprehensive review for them. Below is only a
short list of some of general methods.
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(a) Lattice methods are among the most popular methods in option pric-
ing. It is well known that the straightforward binomial tree is not efficient
in pricing discrete and lookback barrier options, due to the inefficiencies
in computing discrete extreme values of the sample paths involved in the
payoffs. Broadie et al. (1999) proposed an enhanced trinomial tree method
which explicitly uses the continuity correction in Broadie et al. (1997) and
a shift node. A Dirichlet lattice method based on the conditional distribu-
tion via Brownian bridge is given in Kuan and Webber (2003). Duan et al.
(2003) proposed a method based on Markov chain, in combination of lat-
tice, simulation, and the quadrature method. Other lattice methods include
adjusting the position of nodes (Ritchken, 1995; Cheuk and Vorst, 1997;
Tian, 1999) and refining branching near the barrier (Figlewski and Gao, 1999;
Ahn et al., 1999). See also Babbs (1992), Boyle and Lau (1994), Hull and White
(1993), Kat (1995).

(b) Another popular general method is Monte Carlo simulation. Because
the barrier options may involve events (e.g. barrier crossing) with very small
probabilities, the straightforward simulation may have large variances. Vari-
ance reduction techniques, notably importance sampling and conditional sam-
pling methods using Brownian bridge, can be used to achieve significant vari-
ance reduction. Instead of giving a long list of related papers, we refer the
reader to an excellent book by Glasserman (2004).

(c) Since the price of a discrete barrier option can be formulated as a so-
lution of partial differential equation, one can use various finite difference
methods; see Boyle and Tian (1998) and Zvan et al. (2000).

(d) Because the prices of a discrete barrier price can be written in terms
of m-dimensional integrals, one can also use numerical integration meth-
ods. See Ait-Sahalia and Lai (1997, 1998), Sullivan (2000), Tse et al. (2001),
Andricopoulos et al. (2003), and Fusai and Recchioni (2003).

1.3 Outline of the survey

Due to the page limit, this survey focuses on methods that takes into account
of special structures of the discrete barrier and lookback options, resulting in
more efficient algorithms but with narrower scopes. In particular, we shall sur-
vey the following methods

(1) Broadie–Yamamoto method based on the fast Gaussian transform; see
Section 3.

(2) Feng–Linetsky method based on Hilbert transform; see Section 3.
(3) A continuity correction approximation; see Section 4.
(4) Howison–Steinberg approximation based on the perturbation method;

see Section 5.
(5) A Laplace inversion method based on Spitzer’s identity; see Section 6.
This survey also contains a new (more direct) derivation of the constant

related to the continuity correction; see Appendix B.
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Because this is a survey article we shall focus on giving intuition and compar-
ing different methods, rather than giving detailed proofs which can be found
in individual papers. For example, when we discuss the continuity correction
we use a picture to illustrate the idea, rather than giving a proof. When we
present the Howison–Steinberg approximation we spend considerable time on
the basic background of the perturbation method (so that people with only
probabilistic background can understand the intuition behind the idea), rather
than giving the mathematical details, which involve both the Spitzer function
for Wiener–Hopf equations and can be found in the original paper by Howison
and Steinberg (2005).

2 A representation of barrier options via the change of numeraire argument

We assume the price of the underlying asset S(t), t � 0, satisfies S(t) =
S(0) exp{μt + σB(t)}, where under the risk-neutral probability P∗, the drift is
μ = r − σ2/2, r is the risk-free interest rate and B(t) is a standard Brown-
ian motion under P∗. In the continuously monitored case, the standard finance
theory implies that the price of a barrier option will be the expectation, taken
with respect to the risk-neutral measure P∗, of the discounted (with the dis-
count factor being e−rT with T the expiration date of the option) payoff of the
option. For example, the price of a continuous up-and-out call option is given
by

V (H) = E∗(e−rT
(
S(T) − K

)+
I
(
τ(H� S) > T

))
�

where K � 0 is the strike price, H > S(0) is the barrier and, for any process
Y(t), the notation τ(x�Y) means that τ(x�Y) := inf{t � 0: Y(t) � x}. The
other seven types of the barrier options can be priced similarly. In the Brown-
ian motion framework, all eight types of the barrier options can be priced in
closed forms; see Merton (1973).

In the discretely monitoring case, under the risk neutral measure P∗, at the
nth monitoring point, n�t, with �t = T/m, the asset price is given by

Sn = S(0) exp

{
μn�t + σ

√
�t

n∑
i=1

Zi

}
= S(0) exp

(
Wnσ

√
�t

)
�

n = 1� 2� � � � �m�

where the random walk Wn is defined by

Wn :=
n∑

i=1

(
Zi + μ

σ

√
�t

)
�

the drift is given by μ = r − σ2/2, and the Zi’s are independent standard
normal random variables. By analogy, the price of the discrete up-and-out-call



Ch. 8. Discrete Barrier and Lookback Options 349

option is given by

Vm(H) = E∗(e−rT (Sm − K)+I
(
τ′(H� S) > m

))
= E∗{e−rT (Sm − K)+I

{
τ′(a/(

σ
√
T

)
�W

)
> m

}}
�

where a := log(H/S(0)) > 0, τ′(H� S) = inf{n � 1: Sn � H}, τ′(x�W ) =
inf{n � 1: Wn � x

√
m }.

For any probability measure P , let P̂ be defined by

dP̂
dP

= exp

{
m∑
i=1

aiZi − 1
2

m∑
i=1

a2
i

}
�

where the ai, i = 1� � � � � n, are arbitrary constants, and the Zi’s are standard
normal random variables under the probability measure P. Then a discrete
Girsanov theorem (Karatzas and Shreve, 1991, p. 190) implies that under the
probability measure P̂, for every 1 � i � m, Ẑi := Zi −ai is a standard normal
random variable.

By using the discrete Girsanov theorem, we can represent the price of a
discrete barrier options as a difference of two probabilities under different
measures. This is called the change of numeraire argument; for a survey, see
Schroder (1999). It is applied to the case of discrete barrier options by Kou
(2003) and Hörfelt (2003) independently. However, the methods in Kou (2003)
and Hörfelt (2003) lead to slightly different barrier correction formulae. To il-
lustrate the change of numeraire argument for the discrete barrier options. Let
us consider the case of the discrete up-and-out call option, as the other seven
options can be treated similarly; see e.g. Haug (1999).

First note that

E∗(e−rT (Sm − K)+I
(
τ′(H� S) > m

))
= E∗(e−rT (Sm − K)I

(
Sm � K� τ′(H� S) > m

))
= E∗(e−rT SmI

(
Sm � K� τ′(H� S) > m

))
− Ke−rT P∗(Sm � K� τ′(H� S) > m

)
�

Using the discrete Girsanov theorem with ai = σ
√
�t, we have that the first

term in the above equation is given by

E∗
[
e−rT S(0) exp

{
μm�t + σ

√
�t

m∑
i=1

Zi

}
I
(
Sm � K� τ′(H� S) > m

)]

= S(0)E∗
[

exp

{
−1

2
σ2T + σ

√
�t

m∑
i=1

Zi

}
I
(
Sm � K� τ′(H� S) > m

)]
= S(0)Ê

(
I
(
Sm � K� τ′(H� S) > m

))
= S(0)P̂

(
Sm � K� τ′(H� S) > m

)
�
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Under P̂ , log Sm has a mean μm�t + σ
√
�t · mσ

√
�t = (μ + σ2)T instead of

μT under the measure P∗. Therefore, the price of a discrete up-and-out-call
option is given by

Vm(H) = S(0)P̂
(
Wm � log(K/S(0))

σ
√
�t

� τ′(a/(
σ

√
T

)
�W

)
> m

)
− Ke−rT P∗

(
Wm � log(K/S(0))

σ
√
�t

� τ′(a/(
σ

√
T

)
�W

)
> m

)
�

where

under P̂� Wm =
m∑
i=1

(
Ẑi + {(

μ + σ2)/σ}√T

m

)

=
m∑
i=1

(
Ẑi +

{(
r + 1

2
σ2

)/
σ

}√
T

m

)
and

under P∗� Wm =
m∑
i=1

(
Zi + (μ/σ)

√
T

m

)

=
m∑
i=1

(
Zi +

{(
r − 1

2
σ2

)/
σ

}√
T

m

)
with Ẑi and Zi being standard normal random variables under P̂ and P∗, re-
spectively.

Therefore, the problem of pricing discrete barrier options is reduced to
studying the joint probability of the first passage time (τ′) and the terminal
values (Wm) of a discrete random walk. Note that we have a first passage prob-
lem for the random walk Wn with a small drift (μσ

√
�t → 0, as m → ∞) to

cross a high boundary (a
√
m/(σ

√
T) → ∞, as m → ∞).

3 Convolution, Broadie–Yamamoto method via the fast Gaussian
transform, and Feng–Linetsky method via Hilbert transform

As we have seen in the last section, under the geometric Brownian motion
model the prices of discrete barrier options can be represented as probabilities
of random walk with increments having normal distributions. Thus, in principle
analytical solutions of discrete barrier options can be derived using multivari-
ate normal distributions; see, e.g., Heynan and Kat (1995) and Reiner (2000).

To give an illustration of the idea, consider a discrete up-and-in call option
with two monitoring points, t1 = T/3, t2 = 2T/3, and H < K. Note that the
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maturity T is not a monitoring point. We have

V3(H) = S(0)N2
(
â1�H�−� âK;√

t1/T
)

− Ke−rTN2
(
a∗

1�H�−� a
∗
K;√

t1/T
)

+ S(0)N3
(
â1�H�+� â2�H�−� âK;−√

t1/t2�−
√
t1/T �

√
t2/T

)
(1)

− Ke−rTN3
(
a∗

1�H�+� a
∗
2�H�−� a

∗
K;−√

t1/t2�−
√
t1/T �

√
t2/T

)
�

where the constants are

â1�H�± ≡ ± log(H/S(0)) − {(r + 1
2σ

2)}t1
σ

√
t1

�

a∗
1�H�± ≡ ± log(H/S(0)) − {(r − 1

2σ
2)}t1

σ
√
t1

â2�H�± ≡ ± log(H/S(0)) − {(r + 1
2σ

2)}t2
σ

√
t2

�

a∗
2�H�± ≡ ± log(H/S(0)) − {(r − 1

2σ
2)}t2

σ
√
t2

�

âK ≡ − log(K/S(0)) − {(r + 1
2σ

2)}T
σ

√
T

�

a∗
K ≡ − log(K/S(0)) − {(r − 1

2σ
2)}T

σ
√
T

�

The proof of (1) is given ir Appendix A. Here N2 and N3 denote the standard
bivariate and trivariate normal distributions:

N2(z1� z2;�) = P(Z1 � z1� Z2 � z2)�

where Z1 and Z2 are standard bivariate normal random variables with corre-
lation �, and

N3(z1� z2� z3;�12� �13� �23) = P(Z1 � z1� Z2 � z2� Z3 � z3)�

with correlations �12� �13� �23. The pricing formula in (1) can be easily gen-
eralized to the case of m (not necessarily equally spaced) monitoring points,
so that the price of a discrete barrier option with m monitoring points can be
written involving the sum of multivariate normal distribution functions, with
the highest dimension in the multivariate normal distributions being m.

However, m-dimensional normal distribution functions can hardly be com-
puted easily if, for example, m > 5. Reiner (2000) proposed to use the fast
Fourier transform to compute the convolution in the multivariate normal dis-
tribution. Recently there are two powerful ways to evaluate the convolution.
One is the fast Gaussian transform in Broadie and Yamamoto (2003) in which
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the convolution is computed very fast under the Gaussian assumption. The
second method is the Hilbert transform method in Feng and Linetsky (2005),
in which they recognize an interesting linking between Fourier transform of
indicator functions and Hilbert transform. Feng and Linetsky method is more
general, as it works as long as the asset returns follow a Lévy process. Below
we give a brief summary of the two methods.

3.1 Broadie–Yamamoto method via the fast Gaussian transform

One of the key idea of Broadie–Yamamoto method is to recognize that one
can compute integrals in convolution very fast if the integrals only involves
normal density. For example, consider the discrete sum of Gaussian densities.

A(xm) =
N∑
n=1

wn exp
{
−(xm − yn)

2

δ

}
� i = 1� � � � �M�

The direct computation of the above sums will need O(NM) operations. How-
ever, by using the Hermite functions to approximate the Gaussian densities,
one can perform the above sum in O(N) + O(1) + O(M) = O(max(N�M))
operations.

More precisely, the Hermite expansion yields

exp
{
−(xm − yn)

2

δ

}
=

∞∑
i=1

∞∑
j=1

1
i!j!

(
yn − y0√

δ

)j(xm − x0√
δ

)i

× Hi+j

(
x0 − y0√

δ

)
�

where Hi+j(·) is the Hermite function. The expansion converges quite fast,
typically eight terms may be enough. In other words, we have an approximation

exp
{
−(xm − yn)

2

δ

}
≈

αmax∑
i=1

αmax∑
j=1

1
i!j!

(
yn − y0√

δ

)j(xm − x0√
δ

)i

× Hi+j

(
x0 − y0√

δ

)
�

where αmax is a small number, say no more than 8. Using this approximation,
we have the Gaussian sum is given by

A(xm) ≈
N∑
n=1

wn

αmax∑
i=1

αmax∑
j=1

1
i!j!

(
yn − y0√

δ

)j(xm − x0√
δ

)i

Hi+j

(
x0 − y0√

δ

)

=
αmax∑
i=1

1
i!

[
αmax∑
j=1

1
j!

{
N∑
n=1

wn

(
yn − y0√

δ

)j
}
Hi+j

(
x0 − y0√

δ

)]
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×
(
xm − x0√

δ

)i

�

Now the algorithm becomes
1. Compute Bj = ∑N

n=1 wn(
yn−y0√

δ
)j for j = 1� � � � � αmax.

2. Compute Ci = ∑αmax
j=1

1
j!BjHi+j(

x0−y0√
δ

) for i = 1� � � � � αmax.

3. Approximate A(xm) as
∑αmax

i=1
1
i!Ci(

xm−x0√
δ

)i for m = 1� � � � �M .

When αmax is fixed, the total number of operations is therefore O(N) +
O(1) + O(M) = O(max(N�M)). Broadie and Yamamoto (2003) show that
the above fast Gaussian transform is very fast. In fact, it is perhaps the fastest
algorithm we can get so far under the Gaussian assumption. Of course, the
algorithm relies on the special structure of the Gaussian distribution. For other
distributions, similar algorithms might be available if some fast and accurate
expansions of the density functions are available.

3.2 Feng–Linetsky method via Hilbert transform

Feng and Linetsky (2005) proposed a novel method to compute the convo-
lution related to discrete barrier options via Hilbert transform. The key idea
is that multiplying a function with the indicator function in the state space
corresponds to Hilbert transform in the Fourier space. The method computes
a sequence of Hilbert transforms at the discrete monitoring points, and then
conducts one final Fourier inversion to get the option price. Feng–Linetsky
method is quite general, as it works in principle for any Lévy process and for
both single and double barrier options. The method also works very fast, as the
number of operations is O(MN log2 N), where M is the number of monitoring
points and N is the number of sample points needed to compute the Hilbert
transform.

To get an intuition of the idea, we shall illustrate a basic version of the
method in terms of computing the probability p(x) for a standard Brownian
motion B(t)

p(x) = P
(
min{B��B2�� � � � � BM�} > 0 | B0 = x

)
= E

{
M∏
i=1

I[Bi� > 0] ∣∣ B0 = x

}
�

We can compute p(x) by the backward induction

vM(x) = I(x > 0)�

vM−1(x) = I(x > 0) · E
{
I(B� > 0) | B0 = x

}
= I(x > 0) · E

{
vM(B�) | B0 = x

}
�
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vM−2(x) = I(x > 0) · E
{
I(B� > 0)I(B2� > 0) | B0 = x

}
= I(x > 0) · E

{
vM−1(B�) | B0 = x

}
�

· · ·
p(x) = E

{
v1(B�) | B0 = x

}
�

To take a Fourier transform we introduce a rescaling factor eαx,

v
j
α(x) = eαxvj(x)� α < 0�

because the indicator function I(x > 0) is not a L1 function. This is equivalent
to perform a Laplace transform. The backward induction becomes

vMα (x) = eαxI(x > 0)�

vM−1
α (x) = eαx · I(x > 0) · E

{
I(B� > 0) | B0 = x

}
= I(x > 0) · E

{
e−α(B�−x)eαB�I(B� > 0) | B0 = x

}
= I(x > 0) · E

{
e−α(B�−x)vMα (B�) | B0 = x

}
= e�α

2/2 · I(x > 0) · E
{
e−�α2/2e−α(B�−x)vMα (B�) | B0 = x

}
= e�α

2/2 · I(x > 0) · E−α
{
vMα (B�) | B0 = x

}
�

where E−α means Brownian motion with drift −α and the last equality follows
from Girsanov theorem. Similarly,

vM−2
α (x) = eαx · I(x > 0) · E

{
I(B� > 0)I(B2� > 0) | B0 = x

}
= I(x > 0) · E

{
e−α(B�−x)I(B� > 0)

· E
{
e−α(B2�−B�)vM(B2�) | B�

} | B0 = x
}

= I(x > 0) · E
{
e−α(B�−x)vM−1(B�) | B0 = x

}
= e�α

2/2I(x > 0) · E
{
e−�α2/2e−α(B�−x)vM−1(B�) | B0 = x

}
= e�α

2/2I(x > 0) · E−α
{
vM−1
α (B�) | B0 = x

}
�

In general, we have a backward induction

vMα (x) = eαxI(x > 0)�

v
j−1
α (x) = e�α

2/2I(x > 0) · E−α
{
vj(B�) | B0 = x

}
� j = M� � � � � 2�

p(x) = e−αxe�α
2/2 · E−α

{
v1(B�) | B0 = x

}
�

Denote v̂
j
α(x) to be the Fourier transform of v

j
α(x), which is possible as

eαxI(x > 0) is a L1 function. Now the Fourier transform in the backward
induction will involve Fourier transform of product of the indicator function
and another function. The key observation in Feng and Linetsky (2005) is that
Fourier transform of the product of the indicator function and a function can
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be written in terms of Hilbert transform. More precisely,

F(I(0�∞) · f )(ξ) = 1
2
(Ff )(ξ) + i

2
(Hf )(ξ)�

where F denotes Fourier transform and H denotes Hilbert transform defined
by the Cauchy principle value integral, i.e.

(Hf )(ξ) = 1
π
P�V �

∞∫
−∞

f (η)

ξ − η
dη�

To compute p(x) one needs to compute M − 1 Hilbert transforms and then
conducts one final Fourier inversion. As shown in Feng and Linetsky (2005),
a Hilbert transform can be computed efficiently by using approximation theory
in Hardy spaces which leads to a simple trapezoidal-like quadrature sum.

In general Feng–Linetsky method is slower than Broadie–Yamamoto meth-
od, if the underlying model is Gaussian (e.g. under Black–Scholes model or
Merton (1976) normal jump diffusion model). For example, as it is pointed out
in Feng and Linetsky (2005) it may take 0.01 seconds for Broadie–Yamamoto
to achieve accuracy of 10−12 under the Black–Scholes model, while it may
take 0.04 seconds for Feng–Linetsky method to achieve accuracy of 10−8. The
beauty of Feng–Linetsky method is that it works for general Lévy processes
with very reasonable computational time.

4 Continuity corrections

4.1 The approximation

Broadie et al. (1997) proposed a continuity correction for the discretely
monitored barrier option, and justified the correction both theoretically and
numerically (Chuang, 1996 independently suggested the approximation in a
heuristic way). The resulting approximation, which only relies on a simple
correction to the Merton (1973) formula (thus trivial to implement), is nev-
ertheless quite accurate and has been used in practice; see, for example, the
textbook by Hull (2005).

More precisely, let V (H) be the price of a continuous barrier option, and
Vm(H) be the price of an otherwise identical barrier option with m monitoring
points. Then for any of the eight discrete monitored regular barrier options the
approximation is

(2)Vm(H) = V
(
He±βσ

√
T/m

) + o(1/
√
m)�

with + for an up option and − for a down option, where the constant β =
−ζ(1/2)√

2π
≈ 0�5826, ζ the Riemann zeta function. The approximation (2) was
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Table 1.
Up-and-Out-Call Option Price Results, m = 50 (daily monitoring).

Barrier Continuous
barrier

Corrected
barrier,
Eq. (2)

True Relative error
of Eq. (2)
(in percent)

155 12�775 12�905 12�894 0�1
150 12�240 12�448 12�431 0�1
145 11�395 11�707 11�684 0�2
140 10�144 10�581 10�551 0�3
135 8�433 8�994 8�959 0�4
130 6�314 6�959 6�922 0�5
125 4�012 4�649 4�616 0�7
120 1�938 2�442 2�418 1�0
115 0�545 0�819 0�807 1�5

This table is taken from Broadie et al. (1997, Table 2.6). The option parameters are S(0) = 110, K =
100, σ = 0�30 per year, r = 0�1, and T = 0�2 year, which represents roughly 50 trading days.

proposed in Broadie et al. (1997), where it is proved for four cases: down-
and-in call, down-and-out call, up-and-in put, and up-and-out put. Kou (2003)
covered all eight cases with a simpler proof (see also Hörfelt, 2003). The con-
tinuity corrections for discrete lookback options are given in Broadie et al.
(1999).

To get a feel of the accuracy of the approximation, Table 1 is taken from
Broadie et al. (1997). The numerical results suggest that, even for daily mon-
itored discrete barrier options, there can still be big differences between the
discrete prices and the continuous prices. The improvement from using the
approximation, which shifts the barrier from H to He±βσ

√
T/m in the contin-

uous time formulae, is significant.
Cao and Kou (2007) derived some barrier correction formulae for two-

dimensional barrier options and partial barrier options, which have some com-
plications. For example, for a partial barrier option one cannot simply shifts the
barrier up or down uniformly by a fixed constant, and one has to study care-
fully the different roles that the barrier plays in a partial barrier option; more
precisely, the same barrier can sometimes be a terminal value, sometimes as a
upcrossing barrier, and sometimes as a downcrossing barrier, all depending on
what happens along the sample paths.

4.2 Continuity correction for random walk

The idea of continuity correction goes back to a classical technique in “se-
quential analysis,” in which corrections to normal approximation are made
to adjust for the “overshoot” effects when a discrete random walk crosses a
barrier; see, for example, Chernoff (1965), Siegmund (1985), and Woodroofe
(1982).
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For a standard Brownian motion B(t) under any probability space P , define
the stopping times for discrete random walk and for continuous-time Brownian
motion as

τ′(b�U) := inf
{
n � 1: Un � b

√
m

}
�

τ̃′(b�U) := inf
{
n � 1: Un � b

√
m

}
�

τ(b�U) := inf
{
t � 0: U(T) � b

}
�

τ̃(b�U) := inf
{
t � 0: U(T) � b

}
�

Here U(t) := vt+B(t) and Un is a random walk with a small drift (as m → ∞),
Un := ∑n

i=1(Zi + v√
m
), where the Zi’s are independent standard normal ran-

dom variables under P . Note that for general Lévy processes, we have the
discrete random increments Zi’s are independent standard random variables,
not necessarily normally distributed under P . In the case of Brownian mo-
tion, the approximation comes from a celebrated result in sequential analysis
(Siegmund and Yuh, 1982; Siegmund, 1985, pp. 220–224): For any constants
b � y and b > 0, as m → ∞,

(3)

P
(
Um < y

√
m� τ′(b�U) � m

)
= P

(
U(1) � y� τ(b + β/

√
m�U) � 1

) + o
(
1/

√
m

)
�

Here the constant β is the limiting expectation of the overshoot,

β = E(A2
N)

2E(AN)
�

where the mean zero random walk An is defined as An := ∑n
i=1 Zi, and N

is the first ladder height associated with An, N = min{n � 1: An > 0}. For
general Lévy processes, there will be some extra terms in addition to the con-
stant β.

4.2.1 An intuition via the reflection principle
To get an intuition of (3), we consider the reflection principle for the stan-

dard Brownian motions when the drift v = 0. The general case with a nonzero
drift can be handled by using the likelihood ratio method. The reflection prin-
ciple (see, e.g., Karatzas and Shreve, 1991) for the standard Brownian motion
yields that

P
(
U(1) � y� τ(b�U) � 1

) = P
(
U(1) � 2b − y

)
�

Intuitively, due to the random overshoot Rm := Uτ′ − b
√
m, the reflection

principle for random walk should be

P
(
Um < y

√
m� τ′(b�U) � m

) = P
(
Um � 2(b

√
m + Rm) − y

√
m

)
�

See Fig. 1 for an illustration.
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Fig. 1. An Illustration of the Heuristic Reflection Principle.

Replacing the random variable Rm by its is expectation E(Rm) and using
the fact from the renewal theory that

(4)E(Rm) → E(A2
N)

2E(AN)
= β�

we have

P
(
Um < y

√
m� τ′(b�U) � m

)
≈ P

(
Um �

{
2
(
b + β√

m

)}√
m − y

√
m

)
≈ P

(
U(1) � 2

(
b + β√

m

)
− y

)
= P

(
U(1) � y� τ

(
b + β/

√
m�U

)
� 1

)
�

thus providing an intuition for (3).

4.2.2 Calculating the constant β
For any independent identically distributed random variables Zi with mean

zero and variance one there are two ways to compute β, one by infinite series
and the other a one-dimensional integral.

In the first approach, we have the following result from Spitzer (1960) about
E(AN):

E(AN) = 1√
2
eω0�
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and from Lai (1976) about E(A2
N):

E(A2
N) =

{
ω2 + E(Z3

1)

3
√

2
− √

2ω1

}
eω0�

where

ω0 =
∞∑
n=1

1
n

(
P{An � 0} − 1

2

)
�

ω2 = 1 − 1√
π

∞∑
n=1

{
1√
n

− √
π

(−1
2
n

)
(−1)n

}
�(

x

n

)
= x(x − 1) · · · (x − n + 1)/n!�

ω1 =
∞∑
n=1

1√
n

(
E

[(
An/

√
n

)−] − 1√
2π

)
�

In the special of normal random variables, an explicit calculation of β is
available. Indeed in this case we have ω0 = 0, ω1 = 0, E(Z3

1) = 0, whence

β = E(A2
N)

2E(AN)
=

{
ω2 + E(Z3

1)

3
√

2
− √

2ω1
}
eω0

2 1√
2
eω0

= ω2√
2
�

In Appendix B, we shall prove in the case of normal random variables, i.e. the
Brownian model,

(5)β = E(A2
N)

2E(AN)
= ω2√

2
= −ζ(1/2)√

2π
with ζ being Riemann zeta function. Comparing to the existing proofs, the
proof in Appendix B appears to be more direct and is new.

The link between β and the Riemann zeta function as in (5) has been
noted by Chernoff (1965) in an optimal stopping problem via Wiener–Hopf
integral equations. The links between Wiener–Hopf integral equations and
the Riemann zeta function are advanced further by Howison and Steinberg
(2005), who provide a very elegant second order expansion via the perturba-
tion method and the Spitzer function. The proof that the constant calculated in
Chernoff (1965) from Wiener–Hopf equations and the constant in Siegmund
(1979) for the continuity correction are the same is given in Hogan (1986).
Later Chang and Peres (1997) who give a much more general result regarding
connections between ladder heights and Riemann zeta function in the case of
normal random variables, which covers (5) as a special case. See also a related
expansion in Blanchet and Glynn (2006), Asmussen et al. (1995). In Appen-
dix B we shall prove (5) in the case of normal random variables directly without
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using the general results in Chang and Peres (1997) or appealing to the argu-
ment in Hogan (1986).

There is also another integral representation (Siegmund, 1985, p. 225) for β,
if Z1 is a continuous random variable:

(6)β = E(Z3
1)

6
− 1

π

∞∫
0

1
λ2 Re

{
log

(
2(1 − E(exp{iλZ1}))

λ2

)}
dλ�

In the case of normal random variables we have E(exp{iλZ1}) = e−λ2/2, and

β = − 1
π

∞∫
0

1
λ2 log

(
1 − e−λ2/2

λ2/2

)
dλ

= − 1

π
√

2

∞∫
0

1
x2 log

(
1 − e−x2

x2

)
dx�

It is shown by Comtet and Majumdar (2005) that

1
π

∞∫
0

1
x2 log

(
1 − e−xα

xα

)
dx = ζ(1/α)

(2π)1/α sin( π
2α)

� 1 < α � 2�

In particular, letting α = 2 yields

1
π

∞∫
0

1
x2 log

(
1 − e−x2

x2

)
dx = − ζ(1/2)

(2π)1/2 sin(π4 )
= ζ(1/2)

(π)1/2 �

and

β = − 1

π
√

2

∞∫
0

1
x2 log

(
1 − e−x2

x2

)
dx = −ζ(1/2)√

2π
�

Comtet and Majumdar (2005) also evaluated (6) for other symmetric distribu-
tions, such as symmetric Laplace and uniform distributions.

4.2.3 A difficulty in generalization
The above theory of continuity correction depends crucially on the idea of

asymptotic analysis of a random walk (in our case
∑n

i=1 Zi) indexed by a single
exponential family of random variables. In our case the exponential family has
a base of N(0� 1) related to Zi and the members in the family being Zi+v/

√
m

with a distribution N(v/
√
m� 1). In the general case, such as jump diffusion

models, it is not clear how to write down a formula for the continuity correc-
tion for an exponential family of distribution indexed by a single parameter,
because there could be several sources of randomness (Brownian parts, jump
parts, etc.) and several parameters involved.
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5 Perturbation method

Since the price of a discrete barrier option can be written as a solution to a
partial differential equation (PDE) with piecewise linear boundary conditions,
numerical techniques from PDEs are also useful. One particular numerical
technique is the perturbation method, which formally matches various asymp-
totic expansions to get approximations. This has been used by Howison and
Steinberg (2005), Howison (2005) to get very accurate approximation for dis-
crete barrier and American options.

5.1 Basic concept of the perturbation method

The perturbation method first identifies a parameter to be small so that
approximations can be made around the zero value of the parameter. In fact
the perturbation method will identify two solutions, inner and outer solutions,
to match boundary conditions. The final approximation is a sum of both solu-
tions minus a matching constant. To illustrate the basic idea of the perturbation
method, let us consider an ordinary differential equation

εy ′′ + y ′ = t� 0 < t < 1; y(0) = y(1) = 1�

where the parameter ε is a small number. If we let ε = 0, then we get a solution
y = t2/2 + C. However this solution cannot satisfy both boundary conditions
y(0) = y(1) = 1. To get around with this difficulty, we shall have two solutions,
one near 0 (inner solution) and one near 1 (outer solution) so that the final
approximation can properly combine the two (called “matching”).

The outer solution is given by setting ε = 0 and matching the value at the
right boundary,

y1(t) = t2

2
+ 1

2
� y1(1) = 1�

For the inner solution we can rescale the time, as we are more interested in
what happen around t = 0. Using s = t/ε and A(s) = y(t), we have a rescaled
equation

ε

ε2
d2A

ds2 + 1
ε

dA
ds

= εs� or
d2A

ds2 + dA
ds

= ε2s�

Letting ε = 0 yields a linear ordinary differential equation,

d2A

ds2 + dA
ds

= 0�

which has a solution A(s) = a+ be−s. Changing it back to t we have the inner
solution y2(t) = a + be−t/ε. Matching the boundary at 0, we have

y2(t) = (1 − b) + be−t/ε� y2(0) = 1�
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Next we need to choose b to match the inner and outer solution at some
immediate region after t = 0. To do this we try u = t/

√
ε. Then

y1
(
u
√
ε

) = u2ε

2
+ 1

2
→ 1

2
�

y2
(
u
√
ε

) = (1 − b) + be−u
√
ε/ε → 1 − b�

yielding that 1−b = 1/2 or b = 1/2. In summary the outer and inner solutions
are

y1(t) = t2

2
+ 1

2
� y2(t) = 1

2
+ 1

2
e−t/ε�

Finally the perturbation approximation is given by the sum of the (matched)
inner and outer solutions minus the common limiting value around time 0:

y1(t) + y2(t) − lim
ε→0

y1
(
u
√
ε

) =
(
t2

2
+ 1

2

)
+

(
1
2

+ 1
2
e−t/ε

)
− 1

2

= t2

2
+ 1

2
+ 1

2
e−t/ε�

5.2 Howison–Steinberg approximation

Howison and Steinberg (2005) and Howison (2005) use both inner and outer
solutions to get very accurate approximation for discrete barrier options and
Bermudan (discrete American) options. Indeed, the approximation not only
gives the first order correction as in Broadie et al. (1997), it also leads to a
second order correction.

The outer expansion is carried out assuming that the underlying asset price
is away from the barrier; in this case a barrier option price can be approximated
by the price for the corresponding standard call and put options. The inner
solution corresponds to the case when the asset price is close to the barrier.

Since the barrier crossing is only monitored at some discrete time points,
the resulting inner solution will be a periodic heat equation. Howison and
Steinberg (2005) present an elegant asymptotic analysis of the periodic heat
equation by using the result of the Spitzer function (Spitzer, 1957, 1960) for
the Wiener–Hopf equation. Afterwards, they matched the inner and outer so-
lutions to get expansions. We shall not give the mathematical details here, and
ask the interested reader to read the inspiring papers by Howison and Stein-
berg (2005) and Howison (2005).

In fact the approximation in Howison and Steinberg (2005) is so good that
it can formally give the second order approximation with the order o(1/m) for
discrete barrier options, which is more accurate than the order o(1/

√
m) in

the continuity correction in Broadie et al. (1997). The only drawback seems to
be that perturbation methods generally lack rigorous proofs.
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6 A Laplace transform method via Spitzer’s identity

Building on the result in Ohgren (2001) and the Laplace transform (with re-
spect to log-strike prices) introduced in Carr and Madan (1999), Petrella and
Kou (2004) developed a method based on Laplace transform that easily allows
us to compute the price and hedging parameters (the Greeks) of discretely
monitored lookback and barrier options at any point in time, even if the previ-
ous achieved maximum (minimum) cannot be ignored. The method in Petrella
and Kou (2004) can be implemented not only under the classical Brownian
model, but also under more general models (e.g. jump-diffusion models) with
stationary independent increments. A similar method using Fourier transforms
in the case of pricing discrete lookback options at the monitoring points (but
not at any time points hence with no discussion of the hedging parameters)
was independently suggested in Borovkov and Novikov (2002, pp. 893–894).
The method proposed in Petrella and Kou (2004) is more general, as it is ap-
plicable to price both discrete lookback and barrier options at any time points
(hence to compute the hedging parameters).

6.1 Spitzer’s identity and a related recursion

Consider the asset value S(t), monitored in the interval [0� T ] at a sequence
of equally spaced monitoring points, 0 ≡ t(0) < t(1) < · · · < t(m) ≡ T .
Let Xi := log{S(t(i))/S(t(i − 1))}, where Xi is the return between t(i − 1)
and t(i). Denote t(l) to be a monitoring point such that time t is between
the (l − 1)th and lth monitoring points, i.e., t(l − 1) � t < t(l). Define the
maxima of the return process between the monitoring points to be M̃l�k :=
maxl�j�k

∑j
i=l+1 Xi, l = 0� � � � � k, where we have used the convention that the

sum is zero if the index set is empty. Assume that X1, X2, . . . , are independent
identically distributed (i.i.d.) random variables. With Xs�t := log{S(t)/S(s)}
being the return between time s and time t, t � s, define

(7)C(u� v; t) := E∗[euXt�t(l)
]
E∗[euM̃l�m+vXt�T

] = x̂l�mE∗[e(u+v)Xt�t(l)
]
�

where

(8)x̂l�k := E∗[euM̃l�k+vBl�k
]
� l � k; Bl�k :=

k∑
i=l+1

Xi�

Define for 0 � l � k,

(9)âl�k := E∗[e(u+v)B+
l�k

] + E∗[e−vB−
l�k

] − 1� u� v ∈ C�

Spitzer (1956) proved that, for s < 1 and u� v ∈ C, with Im(u) � 0 and
Im(v) � 0:

(10)
∞∑
k=0

skx̂l�k = exp

( ∞∑
k=1

sk

k
âl�k

)
�
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where B+
l�k and B−

l�k denote the positive and negative part of the Bl�k, respec-
tively. We can easily extend (10) to any u� v ∈ C, by limiting s � s′0 for some s′0
small enough.

To get x̂l�k from âl�k we can invert the Spitzer’s identity by using Leibniz’s
formula at s = 0, as in Ohgren (2001). In fact, Petrella and Kou (2004) show
that for any given l, we have

(11)x̂l�k+1 = 1
k − l + 1

k−l∑
j=0

âl�k+1−jx̂l�l+j�

To compute âl�k, when u and v are real numbers, Petrella and Kou (2004) also
show that

(12)E∗[euB+
l�k] =

⎧⎪⎪⎨⎪⎪⎩
1 + E∗[(euBl�k − 1)1{uBl�k>0}

] = 1 + C1(u� k)�
if u � 0�

1 − E∗[(1 − euBl�k)1{uBl�k<0}
] = 1 − P1(u� k)�

if u < 0�

(13)E∗[e−vB−
l�k

] =

⎧⎪⎪⎨⎪⎪⎩
1 + E∗[(e−vBl�k − 1)1{vBl�k<0}

] = 1 + C1(−v� k)�
if v � 0�

1 − E∗[(1 − e−vBl�k)1{vBl�k>0}
] = 1 − P1(−v� k)�

if v < 0�

where C1(u� k) is the value of a European call option with strike K = 1 on the
asset St with S0 = 1 and return u ·Xt(l)�t(k) (ignoring the discount factor), and
P1(u� k) is the value of a European put option with strike K = 1 on the asset
St with S0 = 1 and return u · Xt(l)�t(k). In other words, we can easily compute
âl�k via analytical solutions of the standard call and put options.

6.2 Laplace transform for discrete barrier options

To save the space, we shall only discuss the case of barrier options, as the
case of lookback options can be treated similarly; see Petrella and Kou (2004).
Let ξ > 1 and ζ > 0 and assume that C(−ζ� 1 − ξ; t) < ∞. At any time
t ∈ [t(l − 1)� t(l)), m � l � 1, Petrellla and Kou (2004) show that the double
Laplace transform of f (κ� h; S(t)) = E∗[(eκ − S(T))+1{M0�T<eh} | Ft] is given
by

f̂ (ξ� ζ) :=
∞∫

−∞

∞∫
−∞

e−ξκ−ζhf
(
κ� h; S(t)) dκ dh

(14)= (
S(t)

)−(ξ+ζ−1) · C(−ζ� 1 − ξ; t)
ξ(ξ − 1)ζ

�
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with the function C defined in (7). The Greeks can also be computed similarly.
For example, at any time t ∈ [t(l − 1)� t(l)), with 1 � l � m, we have:

∂

∂S(t)
UOP(t� T )

= −e−r(T−t)L−1
ξ�ζ

(
(ξ + ζ − 1)(S(t))−(ξ+ζ)

ξ(ξ − 1)ζ

× C(−ζ� 1 − ξ; t)
)∣∣∣∣

log(K)�log(H)

�

To illustrate the algorithm, without loss of generality, we shall focus on com-
puting the price and the hedging parameters (the Greeks) for an up-and-out
put option.

The Algorithm:
Input: Analytical formulae of standard European call and put options.
Step 1: Use the European call and put formulae to calculate âi�k, via (9),

(12) and (13).
Step 2: Use the recursion in Eq. (11) to compute x̂l�k.
Step 3: Compute C(u� v; t) from Eq. (7).
Step 4: Numerically invert the Laplace transforms given in Eq. (14).

In Step 4 the Laplace transforms are inverted by using two-sided Euler in-
version algorithms in Petrella (2004), which are extensions of one-sided Euler
algorithms in Abate and Whitt (1992) and Choudhury et al. (1994).

The algorithm essentially only requires to input the standard European call
and put prices, thanks to Spitzer’s identity. The algorithm can also be extended
to price other derivatives, whose values are a function of the joint distribution
of the terminal asset value and its discretely monitored maximum (or mini-
mum) throughout the lifetime of the option, such as partial lookback options.
As demonstrated in the numerical examples in Petrella and Kou (2004), for a
wide variety of parameters (including the cases where the barrier is very close
to the initial asset price and there are many monitoring points), the algorithm is
quite fast (typically only requires a few seconds), and is quite accurate (typically
up to three decimal points). The total workload for both barrier and lookback
options is of the order O(NM2), where N is the number terms needed for
Laplace inversion, and M is the total number of monitoring points.

7 Which method to use

So far we have introduced four recent methods tailored to discrete barrier
and lookback options. A natural question is which method is suitable for your
particular needs. The answer really depends on four considerations: speed, ac-
curacy, generality (e.g. whether a method is applicable to models beyond the
standard Brownian model), and programming effort.
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The consideration of programming effort is often ignored in the literature,
although we think it is important. For example, the popularity of binomial trees
and Monte Carlo methods in computational finance is a testimony that simple
algorithms with little programming effort are better than faster but more com-
plicated methods. This is also because the CPU time improves every year with
increasing computer technology. Therefore, an algorithm not only compete
with other algorithms but also with ever faster microprocessors. A tenfold in-
crease in the computation speed of an algorithm is less important five years
from now, but the simplicity of the algorithm will remain throughout time.

In terms of speed and programming effort, the fastest and easiest ones are
the approximation methods, such as the continuity correction and Howison
and Steinberg method, as they have analytical solutions. However, approxima-
tions will not yield exact results. More precisely, if you can tolerate about 5
to 10% pricing error (which is common in practice, as the bid–ask spreads for
standard call/put options are in the range of 5 to 10% and the bid–ask spreads
for barrier and lookback options are even more), then you should choose the
approximation methods. A drawback for the approximation methods is that it
is not clear how to generalize the approximations outside the classical Brown-
ian model.

If accuracy is of great concern, e.g. when you need to set up some nu-
merical benchmarks, then the “exact” methods will be needed. For example,
if you use the standard Brownian model or models that only involves nor-
mal random variables (such as Merton’s normal jump diffusion model), then
Broadie–Yamamoto method via the fast Gaussian transform is perhaps the
best choice, as it is very fast and accurate, and it is quite easy to implement.

However, if you want to price options under more general Levy processes
for a broader class of return processes, including non-Gaussian distributions
(e.g. the double exponential jump-diffusion model), which may not be easily
written as a mixture of independent Gaussian random variables, then Feng–
Linetsky or the Laplace transform via Spitzer’s identity may be appropriate.
Feng–Linetsky method is a powerful method that can produce very accurate
answers in a fast way, and is faster than the Laplace method via Spitzer’s iden-
tity; but it perhaps requires more programming effort (related to computing
Hilbert transforms) than the Laplace transform method. Furthermore, it is
very easy to compute, almost at no additional computational cost, the hedg-
ing parameters (the Greeks) using the Laplace transform method via Spitzer’s
identity.

Appendix A. Proof of (1)

By considering the events {τ′(a/(σ
√
T )�W ) = 1} and {τ′(a/(σ

√
T )�

W ) = 2}, we have
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V3(H) = S(0)
2∑

i=1
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√
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Observe the correlations

�(W1�W2) = �(Z1� Z1 + Z2) = √
1/2 = √

t1/t2�

�(W1�−W3) = �(Z1�−Z1 − Z2 − Z3) = −√
t1/T �

�(W2�−W3) = �(Z1 + Z2�−Z1 − Z2 − Z3) = −√
t2/T �

and

Var(Wk) = k� Ê(Wk) = k
r + 1

2σ
2
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√
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2σ
2

σ

√
�t� k = 1� 2� 3�

Note some identities for calculation related to P̂

± log(H/S(0))

σ
√
�t

−
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2
σ2

)/
σ

}√
�t
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≡ â1�H�±�

1√
2

(
± log(H/S(0))

σ
√
�t

− 2
{(

r + 1
2
σ2

)/
σ

}√
�t

)
= ± log(H/S(0)) − {(r + 1

2σ
2)}t2

σ
√
t2
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from which the conclusion follows.

Appendix B. Calculation of the constant β

First of all, we show that the series in (5)

(15)
∞∑
n=1

{
1√
n

− √
π

(−1/2
n

)
(−1)n

}
converges absolutely. Using Stirling’s formula (e.g. Chow and Teicher, 1997)

n! = nne−n
√

2πn · εn� e 1
12n+1 < εn < e

1
12n �
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we have
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Since ε2n
εnεn

= 1 + O(1/n), we have the terms inside the series (15):
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from which we know that the series (15) converges absolutely.
Next, in the case of the standard normal density we have

β = E(A2
N)
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It was shown in Hardy (1905) that

lim
x↑1

∞∑
n=1

(
xn
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{
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(
1
x
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Taking s = 1/2 and using the fact that Γ (1/2) = √
π, we have
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Furthermore, letting x = 1 − ε yields
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= O(ε2)

O(
√
ε )O(

√
ε ){O(

√
ε ) + O(

√
ε )} = O(

√
ε ) → 0�

as x ↑ 1. Therefore, we have
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This is interesting, as the both terms 1/
√

1 − x and {log( 1
x)}−1/2 go to infinity

as x ↑ 1 but the difference goes to zero.
The above limit, in conjunction with (16), yields
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In other words,
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because the series (15) converges absolutely so that we can interchange the
limit and summation.

In summary we have
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