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Most contracts of barrier and lookback options specify discrete monitoring 
policies. However, unlike their continuous counterparts, discrete barrier and 
lookback options essentially have no analytical solution. For a broad class of 
models, including the classical Brownian model and jump-diffusion models, 
we show that the Laplace transforms of discrete barrier and lookback options 
can be obtained via a recursion involving only analytical formulae of stand-
ard European call and put options, thanks to Spitzer’s formula. The Laplace 
transforms can be numerically inverted to get option prices fast and accurately. 
Furthermore, the same method can be used to compute the hedging parameters 
(the greeks) of these products.

1 Introduction

Among the most popular path-dependent options are lookback and barrier options, 
the payoff of which depend on the extrema of the underlying stochastic process. 
One important feature of these options is that the values of the options are quite 
sensitive to whether the extrema are monitored discretely or continuously; see, for 
example, Broadie, Glasserman, and Kou (1997, 1999).

In the continuously monitored case, the analytical solutions for lookback and 
barrier options are available under the classical Brownian model; see, for exam-
ple, Gatto, Goldman and Sosin (1979), Goldman, Sosin and Shepp (1979), and 
Conze and Viswanathan (1991) for lookback options; and see, for example, Merton 
(1973), Heynen and Kat (1994a, 1994b), Rubinstein and Reiner (1991), Chance 
(1998) for barrier options. Recently, Boyle and Tian (1999) and Davydov and 
Linetsky (2001) have priced continuously monitored barrier and lookback options 
under the CEV model using lattice and Laplace transform methods, respectively.

In practice most of the lookback and barrier options are discretely monitored; 
for some (regulatory and practical) reasons of this, see Broadie, Glasserman, and 
Kou (1997). However, unlike the continuous monitoring case, there is essentially 
no analytical solution for discrete barrier and lookback options, except by using 
the m-dimensional multivariate normal distribution (m being the number of moni-
toring points), which is hardly computable if m > 5; see, for example, Heynan and 
Kat (1995).
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Because of this, various numerical methods have been proposed for discrete 
barrier and lookback options under the classical Brownian model, including, for 
example, lattice methods (Babbs, 1992; Boyle and Lau, 1994; Cheuk and Vorst, 
1997; Hull and White, 1993; Kat, 1995; and Ritchken, 1995) and numerical inte-
gration (AitSahlia and Lai, 1997; Sullivan, 2000; Tse et al, 2001).

Broadie, Glasserman and Kou (1997, 1999) propose an enhanced trinomial tree 
method and develop analytical approximations to relate the prices of continuous 
and discrete lookback and barrier options under the classical Brownian model. 
(Chuang, 1996, also independently suggested the approximation for barrier options 
in a heuristic way.) The derivation in Broadie et al (1997) for discrete barrier 
options is further simplified and extended in Hörfelt (2003) and Kou (2003). The 
approximations are very simple to use and give very good results when the number 
of monitoring points is large; however, they may not be sufficiently accurate when 
there is a limited number of monitoring points or the option is close to maturity. 
The enhanced trinomial trees may still be time-consuming. Furthermore, it is not 
clear how to generalize the results outside the classical Brownian setting.

In an interesting paper Ohgren (2001) shows how to compute the characteristic 
function of the discretely monitored maximum stock price, by using the celebrated 
Spitzer’s (1956) formula, and then uses the result to price discrete lookbacks at the 
inception of the contract and at monitoring points (but not at any generic point in 
time), if the previous achieved maximum (minimum) stock price can be ignored.

In this paper, building on the result in Ohgren (2001) and the Laplace transform 
(with respect to strike prices) introduced in Carr and Madan (1999), we develop a 
method based on Laplace transform that easily allows us to compute the price and 
hedeging parameters (the Greeks) of discretely monitored lookback and barrier 
options at any point in time, even if the previous achieved maximum (minimum) 
cannot be ignored. The proposed method has several distinctive features:

❑  It allows us to compute, via a simple recursion only involving the standard 
European call and put options, the Laplace transforms of the discrete barrier 
and lookback options; see Sections 3 and 4.

❑  The Laplace transforms can then be numerically inverted easily via a two-
sided Euler algorithm, and the inversion is fast and accurate; see Section 5 and 
Appendix B.

❑  The method can compute the prices of barrier and lookback options at any time 
point (not just at the monitoring points and at the inception of the contract). 
Because of this flexibility, we are also able to compute, at almost no additional 
computational cost, the main hedging parameters (the Greeks); see Sections 3 
and 4.

❑  It can be implemented not only under the classical Brownian model, but also 
under more general models (eg, jump-diffusion models) with stationary inde-
pendent increaments; see Section 5.

After the paper had been accepted by the journal, we found out that a similar 
method using Fourier transforms in the case of pricing discrete lookback options 



Volume 8/Number 1, Fall 2004 URL: www.thejournalofcomputationalfinance.com

Numerical pricing of discrete barrier and lookback options via Laplace transforms 3

at the monitoring points (but not at any time points, hence with no discussion of 
the hedging parameters) was independently suggested on pp. 893–4 in Borovkov 
and Novikov (2002). The method proposed here is more general, as it is applicable 
to the pricing of both discrete lookback and barrier options at any time points (and 
hence to the computing of the hedging parameters).

The rest of the paper is organized as follows. Section 2 introduces some 
notations. Laplace transforms are derived in Section 3. The main algorithm 
is summarized in Section 4. We then show in Section 5 how to implement the 
algorithm and provide some numerical results. Appendix A discusses possible 
extensions of our methodology to various products. Details on the Laplace inver-
sion algorithms are deferred to Appendix B.

The reader who is mainly interested in practical aspects of the method may 
want to go directly to the algorithm in Section 4 and then to the numerical exam-
ples in Section 5.

2 Notation

2.1 Lookback options

A standard (also called floating) lookback call (put) gives the option holder 
the right to buy (sell) an asset at its lowest (highest) price during the life of the 
option. In a discrete time setting the minimum (maximum) of the asset price will 
be determined at discrete monitoring instants. We assume that the monitoring 
instants are equally spaced in time. More precisely, consider the asset value S(t), 
monitored in the interval [0, T] at a sequence of equally spaced monitoring points, 
0 ≡ t(0) < t(1) < … < t(m) ≡ T. Let Xi : = log{S(t(i)) ⁄S(t(i –1))}, where Xi is the 
return between t(i –1) and t(i), and

(1)S S t k S S kk k
X X Xk k: ( ( )) , , , ,( )= = = = …−

+ +
1 0

1 0 1e e  mm

Introduce the maxima and minima of the asset price only at the monitoring 
points,

(2)M S l k m Mt l t k l j k j T( ), ( ) ,: max , ; : max= ≤ ≤ ≤ =
≤ ≤

0 0 0≤≤ ≤ ≤ ≤
=

k m k T k m kS m S, : min,0 0

At any time t, lying between the (l –1)th and l th monitoring points, ie,

(t(l – 1)) ≤ t < t(l)

standard finance theory gives the values of the standard (floating) lookback call 
and put option at any time t ∈ [0,T] as

LC t T S T m

L P t T

r T t
T t( , ) ( ) ,

( , )

( ) *
,= − 

=

− −e

e

E 0 F

−− − − r T t
T tM S T( ) *

, ( )E 0 F

respectively, where r is the risk-free interest rate and E* represents the expectation 
under the risk-neutral measure (the measure could be specified by arbitrage argu-
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ments for the Brownian model or by equilibrium arguments for general models). 
In the same way, at any time t ∈ [0,T], for the fixed strike put and call we have 
FP(t, T ) = e–r (T– t)E*[(K – m0,T)+|Ft] and FC(t, T ) = e–r (T– t)E*[(M0,T – K)+ | Ft]. 
Other types of lookback options include percentage lookbacks in which the 
extreme values are multiplied by a constant, and partial-lookback options in 
which the monitoring interval for the extremum is a subinterval of [0, T ]. We will 
not attempt to price such derivatives and refer the interested reader to Andreasen 
(1998) for a detailed description.

2.2 Barrier options

Barrier options can be classified according to whether the asset price needs 
to pass or to avoid a certain level to receive a payoff. In the first case they are 
called knock-in options, in the second knock-out. For example, the up-and-out 
call and put options (UOC and UOP from now on) with strike K, barrier H and 
maturity T, have payoffs (S(T) – K)+1{M0,T < H} and (K – S(T))+1{M0,T < H}, where 
1{·} is the indicator function of the event {·}. Similarly, up-and-in call and put 
options (UIC and UIP from now on) with the same parameters have payoffs 
(S(T) – K)+1{M0,T ≥ H} and (K – S(T))+1{M0,T ≥ H}. Down-and-in and down-and-
out options have a similar structure with M0,T substituted by m0,T. As seen for 
lookbacks, we can value barrier options by taking the discounted expected value 
of the payoff at maturity under the risk-neutral measure; for example, the price of 
an up-and-out put option is

(3)UOP t T K S Tr T t
M t

T H
( , ) ( ( ))( ) *

,
= −


− − +

{ }<
e E 1

0
F 

All other barrier options can be priced in the same way.

2.3 Some mathematical notation

Define the maxima of the return process between the monitoring points to be

 M X X X X Xl k l l l l k, : max , , ma, ,= + + +( ) =+ + + +…0 1 1 2 1 xx , , ,
l j k

ii l

j
X l k

≤ ≤ = +∑ =
1

0…

where we have used the convention that the sum is zero if the index set is empty. 
Throughout the paper, we shall assume that X1, X2,…, are independent identically 
distributed (iid) random variables. With Xs, t := log{S(t) ⁄ S(s)} being the return 
between time s and time t, t ≥ s, define

(4)A u t x YuY
l m

uXl m
t

t t l( ; ) : ,*
,

*, , ( )=   =  E Ee e ll m
t

t t l l mX M, , ( ) ,:= + 
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3 Laplace transforms for discrete lookback and barrier options

3.1 Characteristic function computation

The results in this subsection generalize the results in Ohgren (2001) by showing 
how to compute xl, k and x̂l, k(6) recursively via Spitzer’s formula for the sum of 
iid random variables.

LEMMA 1 Define for 0 ≤ l ≤ k,

(7)a al k
u B

l k
u v Bl k l k

,
*

,
* ( ): , ˆ :, ,=   = + ++E Ee e  +   − ∈− −

E* , , ,e v Bl k u v1 C

where B +
l, k and B –

l, k denote the positive and negative part of the Bl, k, respectively. 
Then for any given l, we have

(8)x
k l

a xl k l k j l l j

j

k l

, , ,+ + − +
=

−

=
− + ∑1 1

0

1

1

(9)ˆ ˆ ˆ, , ,x
k l

a xl k l k j l l j

j

k l

+ + − +
=

−

=
− + ∑1 1

0

1

1

PROOF Equation (8) is a slight generalization of the recursion given in Ohgren 
(2001), in which the case l = 0 is discussed. To show (9), first note that Spitzer 
(1956) also proves that, for s < 1 and u, v ∈ C, with Im (u) ≥ 0 and Im (v) ≥ 0:
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



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−

=

∞
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1

We can again extend (10) to any u, v ∈ C, by limiting s ≤ s′0 for some s′0 
small enough. In fact, the result will still hold for s ≤ s′0 = 1 ⁄c′, with c′ = 
max (E*[eL′ | X | ], 2cX), where L′ = 2 max( |u |, |v |) and

cX
L B L Bl k l k=    ( )′ ′+ −

max ,* *, ,E Ee e

Now (9) follows by using Leibniz’s formula at s = 0, as in Ohgren (2001).  

LEMMA 2 When u and v are real numbers, we have

E
E
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where C1(u, k) is the value of a European call option with strike K = 1 on the asset 
S̄t with S̄0 = 1 and return u · Xt(l), t(k) (ignoring the discount factor), and P1(u, k) 
is the value of a European put option with strike K = 1 on the asset S̄t with S̄0 = 1 
and return u · Xt(l), t(k) .

PROOF Note that
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When u ≥ 0, we have
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When u < 0, we have
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In addition,
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As before, if v ≥ 0 then
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while if v < 0 then
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and the proof is terminated. 

Lemma 2 indicates that whenever u and v are real numbers, we can easily compute 
al, k and âl, k via analytical solutions of the standard call/put options. Often, the 
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formulae for call/put options are analytic functions, which can then be extended 
to the complex plane via analytical extensions even when u and v are complex 
parameters. This is useful when we numerically invert Laplace transforms, as the 
inversion will be performed in the complex plane. 

3.2 Laplace transform for discrete lookback options

Under a given risk-neutral measure, the price of a lookback option is

(11)L P t T M S Tr T t
T t

r T t( , ) ( )( ) *
,

( )= −  =− − − −e eE E0 F **
, ( )M S tT t0 F  −

Therefore, we need to compute the value of E*[M0, T | Ft ]. Consider any time 
t ∈ [t(l – 1), t(l )), with m ≥ l ≥ 1. Since max(a, b) = a + max(b – a, 0), we can 
write:

(12)

E E
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*
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T t t l T t
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Noting that Mt(l), T = maxl ≤ j ≤ mSj = S(t)eXt,t(l) + M̃l, m = S(t)eYl,
t
m, we have

(13)E E*
( ),

*( ) ( ) ( ; ),M S t S t A tt l T t
Yl m

t

F  =   =e 1

using the notation in (4). Since A(1, t) can be computed via xl, m and (4), we only 
need to compute the second term in (12).

If t is a monitoring point t(l) and St(l) ≥ M0, t (l – 1), that is, whenever the previous 
maximum of the asset price is less than the value at the l th monitoring point and 
can, therefore, be ignored, then the second term in (12) is zero. This is exactly the 
case studied in Ohgren (2001). However, in general, when either t is not a moni-
toring point or t is a monitoring point t(l) but St(l) < M0, t (l – 1), it is necessary to 
compute the second term in (12). For this purpose, following a Laplace transform 
approach first introduced by Carr and Madan (1999), we now derive the Laplace 
transform of the second term in (12).

Theorem 1 Let ξ > 1 and assume that A(1 – ξ; t) < ∞. At any time t ∈ [t(l – 1), t(l)), 
m ≥ l ≥ 1, the Laplace transform of
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with respect to x is given by
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1

)
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using the notation in (4).

PROOF Letting the risk-neutral density of Yl,
t
m be ϕ(Yl,

t
m; y), we can rewrite (14) 
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as
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Applying Fubini’s Theorem, we can interchange the order of integration and 
obtain:
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from which the conclusion follows. 

COROLLARY 1 At any time t ∈ [t(l – 1), t(l)), with 1 ≤ l ≤ m, we have
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where L ξ
–1 means the Laplace inversion with respect to ξ, and σ is the volatility 

parameter.

PROOF (16) is a direct consequence of (15), (13), (12), and (11). All other results 
follow easily by interchanging derivatives and integrals, which is legitimate by 
using Theorem A. 12 on pp. 203–4 in Schiff (1999). 

COROLLARY 2 At any time t ∈ [t(l – 1), t(l)), l ≥ 1, the price of a fixed strike look-
back call option, FC(t, T), is given by

FC t T
L P t T S t K Mr T t

t l
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−e if 0 1 KK
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PROOF If M0, t(l – 1) ≥ K, then clearly M0, T ≥ K. Thus,

FC(t, T) = e–r (T– t)E*[M0, T | Ft] – Ke–r (T– t).

If M0, t(l – 1) < K, then

FC t T M K Kr T t
t l T t( , ) max ,( ) *

( ),= ( )  −{ }
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− −e E F
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and the conclusion follows via (13) and (14). 

The derivation of the greeks for fixed strike lookback options is similar to that in 
Corollary 1 and hence is omitted. Analogous results for lookback calls with both 
fixed and floating strikes are deferred to Appendix A.

3.3 Laplace transform for barrier options

In this subsection we derive a Laplace Transform for the up-and-out put option. In 
Appendix B we will also show how the same approach can be extended to price 
other barrier options via symmetry.

THEOREM 2 Let ξ > 1 and ζ > 0 and assume that C(– ζ, 1 – ξ; t) < ∞. At any time 
t ∈ [t(l – 1), t(l)), m ≥ l ≥ 1, the double Laplace transform of
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with the function C defined in (5).

PROOF Letting the risk-neutral density of (Xt, T, Yl,
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Consider the integral with respect to κ first. Applying Fubini’s Theorem, we can 
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Now consider the integral with respect to h and apply once again Fubini’s 
Theorem:
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from which the conclusion follows. 

By inverting (17) and its derivatives with respect to S(t) and the volatility σ, we 
can explicitly find the price of the up-and-out option and its Delta, Gamma and 
Vega values.

COROLLARY 3 At any time t ∈ [t(l – 1), t(l)), with 1 ≤ l ≤ m, we have:
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(18)

4 The main algorithm

The results in the previous section lead to an algorithm for computation of the 
prices and hedging parameters (the Greeks) for discrete lookback and barrier 
options under a quite general class of asset pricing models, essentially only 
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requiring that the return process is a Lévy process (with independent and station-
ary increments). To illustrate the algorithm, without loss of generality, we shall 
focus on computing the price and the Greeks for a floating lookback put (or an 
up-and-out put option).

The Algorithm
Input:  Analytical formulae of standard European call and put options.
Step 1  Use the European call and put formulae to calculate ai, k (âi, k), via (7) and 

Lemma 2.
Step 2  Use the recursion in equation (8) (eq. (9)) to compute xl, k (x̂l, k).
Step 3  Compute A(u; t) (C(u, v; t)) from equation (4) (eq. (5)).
Step 4  Numerically invert the Laplace transforms given in Corollary 1 

(Corollary 3).

For other lookback and barrier options, the only change is in Step 4; more pre-
cisely, one simply uses the results in Appendix A instead of Corollaries 1 and 3. 
In Step 4 the Laplace transforms are inverted by using two-sided Euler inversion 
algorithms (See Appendix B and Petrella, 2004), which are extensions of one-
sided Euler algorithms in Abate and Whitt (1992) and Choudhury, Lucantoni and 
Whitt (1994).

As will be demonstrated in our numerical examples, for a wide variety of 
parameters (including the cases where the barrier is very close to the initial asset 
price and there are many monitoring points), the algorithm is quite fast (typically 
only requires a few seconds), and is quite accurate (typically up to three decimal 
points). Furthermore, the algorithm essentially only requires to input the standard 
European call and put prices, thanks to Spitzer’s formula; the implication of this in 
terms of hedging discrete lookback and barrier options using standard European 
call and put options remains an interesting open problem.

The workload in the algorithm is quadratic in the number of monitoring points. 
Indeed, the computation of a0, j for j = 1,…, m is equivalent to computing m 
European call/put prices (2m for the computation of (âi, k)). Therefore, the recur-
sion in Step 2 requires m(m + 1) ⁄ 2 operations to compute either xm, k or x̂m, k. 
Thus, the total workload for both barrier and lookback options is of the order 
O(Nm2), where N is the number terms needed for Laplace inversion.

5 Examples and numerical implementation

5.1 Lookback options under the Brownian model

In the setting of Black and Scholes (1973), the underlying asset follows a geomet-
ric Brownian motion

(19)S t S s t s W t W s( ) ( )exp ( ) ( ) ( )= −( ) − + −( ){ }µ σ σ1

2
2

where µ and σ are constant and W(t) is a Wiener process with a zero mean and a 
variance of t. Under the risk-neutral measure µ* = r – q, where q is the continuous 
dividend rate.
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At any generic point in time t ∈ [t(l – 1), t(l)), we must compute A(1 – ξ; t) in 
(4) with ξ ∈ . Using (19), we can immediately derive

(20)E* ( ( ) ) ( ( ), ( )e e′ ′ − + ′ −  =ξ ξ µ σ ξX t l t t lt t l
1

2
2 2 tt )

where ξ′ = 1 – ξ. In order to implement the recursive equation (8) to compute 
E*[eξ′M̃l, m], we must first find the coefficients al, k as defined in (7).

For notation simplicity, without loss of generality we will let l = 0, and 
consider ak ≡ a0, k for k = 1, 2, … , (m – l). Since B0, k = X1 + X2 + … + Xk is 
N(µt(k), σ2t(k)) with t(k) = k∆T, we can simply compute via Lemma 2
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where Φ(·) is the CDF of the standard normal distribution. Since the function is 
analytic, it can be extended to the complex domain as
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where Erfc(·) is the complex complementary error function.
Many algorithms and built-in software functions have been developed 

to accurately compute the complex complementary error function. In our 
implementation we compute it via the Faddeeva Function W(z), defined by 
W(z) = exp(– z2)Erfc(– iz), using an algorithm by Poppe and Wijers (1990), which 
ensures an accuracy of 13 digits in almost the entire complex plane.

We now proceed to compare the prices from the Laplace transform method 
(LT, from now on) with results obtained by Broadie et al (1999) (BGK, from now 
on) using enhanced trinomial trees, and to compare the Greeks with the estimates 
from Monte Carlo simulation (MC, from now on). In our implementation of the 
MC simulation, we follow the methodology suggested by Broadie and Glasserman 
(1996) and estimate the delta via their pathwise MC method, while the gamma 
is estimated via re-simulation. The numerical results for a floating lookback put, 
reported in Table 1, indicate that the accuracy of the LT method is high. We have 
found the algorithm to be extremely robust for various levels of volatility and 
maturity. Furthermore, our implementation of the Euler algorithm allows us to 
price lookback options with high accuracy even when the stock price at time t is 
close to the previous maximum M0, t (l – 1).

5.2 Lookback options under Merton’s and double exponential jump-
diffusion models

Under jump diffusion models (JD from now on), the asset price is assumed to have 
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the following dynamics:

(22)S t S s t s W t W s Vi( ) ( )exp ( ) ( ) ( ) ,= −( ) − + −( ){ }µ σ σ1

2
2

( ) ( )

t s
i

N t N s

≥
=

−

∏
1

where W(t) is a standard Brownian motion, N(t) a Poisson process with rate λ, 
and {Vi} a sequence of iid non-negative random variables. The random variables 
Vi represents the price jump that occurs following the ith Poisson event. The prob-
ability of n jumps occurring in the time interval [t1, t2] is given by

TABLE 1 Floating lookback put under the Brownian model.

Points Price Price Price MC : LT : MC : LT : MC Time
(m)  LT BGK (Std err)  (Std err)  (Std err.) (sec)

Previous max. M = 110
  5 13.300 13.300 13.294 –0.3568 –0.3565 0.0287 0.0285 0.02
   (0.0039)  (0.0001)  (0.0002) 
 10 14.123 14.123 14.120 –0.3034 –0.3031 0.0309 0.0309 0.03
   (0.0038)  (0.0001)  (0.0002) 
 20 14.806 14.806 14.802 –0.2633 –0.2634 0.0319 0.0321 0.06
   (0.0037)  (0.0001)  (0.0002) 
 40 15.345 15.345 15.342 –0.2333 –0.2332 0.0324 0.0324 0.19
   (0.0037)  (0.0001)  (0.0002) 
 80 15.754 15.755 15.760 –0.2112 –0.2111 0.0327 0.0325 0.64
   (0.0037)  (0.0001)  (0.0002) 
160 16.059 16.059 16.061 –0.1952 –0.1952 0.0329 0.0328 2.34
   (0.0036)  (0.0001)  (0.0002)

Previous max. M = 120
  5 18.837 18.837 18.827 –0.5924 –0.5921 0.0244 0.0244 0.01
   (0.0047)  (0.0001)  (0.0002) 
 10 19.323 19.323 19.316 –0.5547 –0.5543 0.0260 0.0264 0.02
   (0.0046)  (0.0001)  (0.0002) 
 20 19.743 19.743 19.740 –0.5238 –0.5240 0.0273 0.0273 0.07
   (0.0045)  (0.0002)  (0.0002) 
 40 20.083 20.083 20.081 –0.4999 –0.5001 0.0281 0.0282 0.19
   (0.0045)  (0.0002)  (0.0002) 
 80 20.346 20.346 20.353 –0.4819 –0.4822 0.0287 0.0289 0.64
   (0.0044)  (0.0002)  (0.0002) 
160 20.544 20.544 20.548 –0.4687 –0.4689 0.0291 0.0293 2.35
   (0.0044)  (0.0002)  (0.0002)

LT, BGK, and MC stand for the proposed Laplace transform method, the lattice method in Broadie, 
Glasserman, and Kou (1999), and the Monte Carlo method (based on 10 million simulation runs), 
respectively. The parameters are S = 100, σ = 0.3, r = 0.1, T = 0.5. The reported time is the CPU 
time on a Pentium 1.8 Ghz to compute both the price and the Greeks (delta and gamma) via the LT 
method. As a comparison, the MC method takes several minutes on the same machine, and the BGK 
method takes more than one hour CPU time on a Pentium 133 for m ≥ 40.
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In Merton’s (1976) model (MJD, from now on), J = log(V) has a normal distribu-
tion with mean µJ and variance σJ

2. On the other hand, in the double exponential 
jump diffusion model (Kou, 2002), denoted by DEJD from now on, Y = log(V) has 
an asymmetric double exponential distribution with the density

fY (y) = p · η1e
– η1y1{y ≥ 0} + q · η2eη2y1{y < 0}, η1 > 1, η2 > 0

where p, q ≥ 0, p + q = 1, represent the probabilities of upward and downward 
jumps. Under the risk-neutral measure the drift becomes µ* = r – q – λζ, with 
ζ = E*(V) – 1. In MJD E*(V) = E*(eJ ) = eµJ + σ

J
2 ⁄ 2, while in DEJD

E*(V) = (q(η2) ⁄ (η2 + 1)) + (p(η1) ⁄ (η1 – 1)), η1 > 1, η2 > 0.

As for the previous case, at any point t ∈ [t(l – 1), t (l )) we need to compute 
E*[eξ′Yl,

t
m] in (4). Conditioning on the number of jumps occurring in [t, t (l)], we 

can easily find
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 (pη1 ⁄ (η1 – ξ′)) in DEJD. We can also find the values of the coefficients ak, 
conditioning on the number of jumps occurring in [t(l), t(k)]. In MJD, defining 
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using the notation in (23). In practice, when computing the coeffi-
cients above, we will consider a truncated series up to the n*th term, with 
P(N(t(k)) – N(t(l)) > n*) < 10 – 6. For DEJD, the computation of the coefficients ak 
follows the same line of derivations and is omitted for brevity. We only point out 
that for the integrals Ik(λ, α, β, δ) (using the notation in Kou 2002) the recursive 
relation In = – (eαλ ⁄α)Hhn(βλ – δ) + (β ⁄α)In – 1 still holds for complex α substitut-
ing the normal cdf with the complex error function.

We now compare the LT method with MC, to verify the accuracy of the results. 
In Tables 2 and 3 we consider a floating lookback put option under the two 
jump-diffusion models, assuming two different values of the previous recorded 
maximum for various monitoring frequencies. In both models we set the total 
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volatility to be 0.3. For MJD we set µJ = – 0.01 and find the value of σJ such that 
E(V) = 1. Then, we choose the value of the jump rate λ and the diffusion volatil-
ity σD, by fixing the fraction of the total variance explained by jumps to be 0.5. 
For DEJD we follow the same approach, by setting the values of η1 = 10 and then 
finding η2 and p, so that E(V) ≈ 1 and the jump volatility is approximately equal 
to σJ of MJD. The jump rate and diffusion volatility are once again determined 
by assigning half of the total variance to the jump component. We follow this 
approach in choosing the parameters throughout the paper for all the experiments 
regarding jump-diffusion models. For a detailed analysis of the calibration of 
jump-diffusion models, we refer the interest reader to Cont and Tankov (2004).

TABLE 2 Floating lookback put under Merton’s model: comparison of the LT and 
MC methods. 

Points Price Price MC : LT : MC : LT : MC Time
(m)  LT (Std err)  (Std err)  (Std err.) (sec)

M = 110
  5 12.683 12.682 –0.3919 –0.3920 0.0312 0.0313 0.08
  (0.0039)  (0.0001)  (0.0002) 
 10 13.311 13.308 –0.3488 –0.3489 0.0331 0.0331 0.18
  (0.0039)  (0.0001)  (0.0002) 
 20 13.812 13.813 –0.3163 –0.3166 0.0341 0.0345 0.35
  (0.0038)  (0.0001)  (0.0002) 
 40 14.193 14.195 –0.2924 –0.2926 0.0348 0.0350 0.81
  (0.0038)  (0.0001)  (0.0002) 
 80 14.476 14.478 –0.2752 –0.2753 0.0353 0.0353 2.00
  (0.0038)  (0.0001)  (0.0002) 
160 14.681 14.681 –0.2629 –0.2627 0.0356 0.0357 5.55
  (0.0038)  (0.0001)  (0.0002)

M = 120
  5 18.528 18.528 –0.6320 –0.6321 0.0233 0.0233 0.09
  (0.0047)  (0.0001)  (0.0002) 
 10 18.886 18.882 –0.6031 –0.6033 0.0249 0.0252 0.17
  (0.0046)  (0.0001)  (0.0002) 
 20 19.180 19.181 –0.5805 –0.5805 0.0261 0.0262 0.35
  (0.0046)  (0.0001)  (0.0002) 
 40 19.408 19.410 –0.5634 –0.5633 0.0269 0.0269 0.82
  (0.0045)  (0.0002)  (0.0002) 
 80 19.580 19.583 –0.5508 –0.5508 0.0275 0.0277 2.07
  (0.0045)  (0.0002)  (0.0002) 
 160 19.706 19.704 –0.5417 –0.5415 0.0279 0.0278 5.69
  (0.0045)  (0.0002)  (0.0002)

MC is based on 10 million simulation runs. The parameters are S = 100, r = 0.1, σ = 0.212% , λ = 2.24, 
µJ = –0.01, σJ = 0.141, T = 0.5. The reported time is the time to compute both the price and sensitivity 
parameters using the LT method.
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5.3 Barrier options under the Brownian model

To obtain the Laplace transform for the up-and-out put barrier option presented 
in the previous section we need to compute C(– ζ, 1 – ξ; t) in (5) and Corollary 3. 
Assuming the stock price follows equation (19), the first factor of the product in 
(5) is given by (20). The second factor in (5) can be computed using the recursive 
formula (9) from Theorem 1. We therefore need to find the coefficients âk, which 
require the computation of E*[e(ξ′ + ζ′)B+

0, k] and E*[e–ξ′B –
0, k], with ξ′ = – (ξ – 1) and 

ζ′ = – ζ. The first term is obtained following the same approach as in (21). The 
second term is given by

TABLE 3 Floating lookback put under the DE model: comparison of the LT and 
MC methods. 

Points Price Price MC : LT : MC : LT : MC Time
(m)  LT (Std err)  (Std err)  (Std err.) (sec)

M = 110
  5 13.634 13.626 –0.3722 –0.3724 0.0307 0.0311 0.11
  (0.0051)  (0.0002)  (0.0002) 
 10 14.285 14.279 –0.3293 –0.3296 0.0326 0.0326 0.19
  (0.0052)  (0.0002)  (0.0002) 
 20 14.802 14.791 –0.2972 –0.2975 0.0335 0.0334 0.35
  (0.0053)  (0.0002)  (0.0002) 
 40 15.194 15.188 –0.2735 –0.2738 0.0342 0.0344 0.70
  (0.0054)  (0.0002)  (0.0002) 
 80 15.482 15.476 –0.2565 –0.2567 0.0347 0.0351 1.41
  (0.0054)  (0.0002)  (0.0002) 
160 15.693 15.690 –0.2443 –0.2445 0.0350 0.0355 2.81
  (0.0055)  (0.0002)  (0.0002)

M = 120
  5 19.370 19.364 –0.6092 –0.6094 0.0231 0.0231 0.11
  (0.0042)  (0.0002)  (0.0002) 
 10 19.755 19.751 –0.5804 –0.5806 0.0247 0.0246 0.19
  (0.0044)  (0.0002)  (0.0002) 
 20 20.067 20.060 –0.5578 –0.5580 0.0258 0.0261 0.36
  (0.0045)  (0.0002)  (0.0002) 
 40 20.309 20.305 –0.5407 –0.5409 0.0266 0.0265 0.71
  (0.0046)  (0.0002)  (0.0002) 
 80 20.488 20.484 –0.5282 –0.5285 0.0272 0.0270 1.41
  (0.0046)  (0.0002)  (0.0002) 
160 20.621 20.620 –0.5192 –0.5193 0.0276 0.0275 2.98
  (0.0047)  (0.0002)  (0.0002)

MC is based on 10 million simulation runs. The parameters are S = 100, r = 0.1, σ = 0.212, λ = 2.29, 
η1 = 10.0, η2 = 5.71, p = 0.6, T = 0.5. The reported time is the CPU time to compute both the price 
and sensitivity parameters using the LT method.
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We can therefore easily compute the coefficients âk, using the Error Function (or 
Faddeeva Function) as for the lookback option, thus leading to a Laplace trans-
form for barrier options.

In Table 4, we compare the LT method with MC. For the gamma values we can-
not use the MC results, given the high standard deviation of such estimates in this 
case. Instead, the gamma is computed using a finite difference approach. More 
precisely, Γ = (P(S + δ) + P(S – δ) – 2 × P(S)) ⁄ δ2, where P(S) is the option value 
for an initial asset value of S obtained using the LT method. In our examples we 
set δ = 0.05. Of course the same approach can be used to check the value of delta 

TABLE 4 Up-and-out put under the Brownian model.

Points Price Price MC : LT : MC : LT : Finite Time
(m)  LT (Std err)  (Std err)  difference (sec)

Barrier level H = 110
  5 6.010 6.004 –0.4541 –0.4514 0.0213 0.0212 1.01
  (0.0038)  (0.0026)
 10 4.682 4.677 –0.4890 –0.4887 0.0289 0.0292 2.01
  (0.0035)  (0.0031)
 20 3.611 3.605 –0.5202 –0.5251 0.0391 0.0392 4.25
  (0.0032)  (0.0035)
 40 2.789 2.786 –0.5497 –0.5553 0.0522 0.0520 9.98
  (0.0029)  (0.0038)
 80 2.180 2.182 –0.5798 –0.5811 0.0677 0.0676 25.24
  (0.0026)  (0.0040)
160 1.738 1.741 –0.6120 –0.6111 0.0832 0.0828 73.89
  (0.0023)  (0.0042)

Barrier level H = 105
  5 6.985 6.978 –0.4598 –0.4608 0.0172 0.0172 1.02
  (0.0040)  (0.0023)
 10 6.008 6.001 –0.5084 –0.5096 0.0198 0.0204 2.00
  (0.0038)  (0.0029)
 20 5.231 5.226 –0.5555 –0.5620 0.0208 0.0204 4.25
  (0.0036)  (0.0033)
 40 4.657 4.653 –0.5957 –0.5985 0.0180 0.0180 9.82
  (0.0035)  (0.0036)
 80 4.249 4.248 –0.6227 –0.6177 0.0112 0.0112 25.36
  (0.0034)  (0.0037)
160 3.957 3.956 –0.6349 –0.6410 0.0063 0.0068 74.18
  (0.0033)  (0.0039)

The parameters are S = 100, K = 100, σ = 0.3, r = 0.05, T = 1.0.
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by estimating ∆ = (P(S + δ) + P(δ)) ⁄ δ, although it is not used here. In Tables 5 
and 6, we further compare the prices and deltas with those reported in Broadie et 
al (1997). The results seem to be consistent. Additional comparison with results 
in Broadie and Yamamoto (2003) in Section 5.5 further confirms the accuracy of 
our method.

TABLE 5 Down-and-out call under the Brownian model: comparison of the LT and 
BGK method for computing the prices and delta at different barrier levels.

H Price LT Price BGK Delta: LT Delta BGK

85 6.322 6.322 0.591 0.591
86 6.306 6.306 0.594 0.594
87 6.281 6.281 0.600 0.600
88 6.242 6.242 0.607 0.607
89 6.184 6.184 0.618 0.618
90 6.098 6.098 0.633 0.633
91 5.977 5.977 0.653 0.653
92 5.810 5.810 0.678 0.678
93 5.584 5.584 0.710 0.711
94 5.288 5.288 0.750 0.750
95 4.907 4.907 0.798 0.798
96 4.427 4.427 0.854 0.854
97 3.834 3.824 0.917 0.917
98 3.127 3.126 0.967 0.966
99 2.336 2.337 0.958 0.958

The parameters are S = 100, K = 100, σ = 0.3, r = 0.1, m = 50, T = 0.2. For the 50 monitoring points it 
always takes less than 15 seconds on a Pentium IV 1.8 Ghz to compute the price and delta using the 
LT method.

TABLE 6 Down-and-out call under the Brownian model: comparison of the LT 
and BGK method for computing the prices across different strikes, maturities, and 
volatilities. 

 K=100, =0.6, T=0.2 K=100, =0.3, T=2.0 K=110, =0.3, T=0.2
Barrier Price LT Price BGK Price LT Price BGK Price LT Price BGK

85 10.505 10.505 20.819 20.819 2.496 2.496
87 10.019 10.02 19.571 19.571 2.491 2.491
89 9.383 9.383 18.114 18.114 2.475 2.475
91 8.572 8.572 16.435 16.436 2.433 2.433
93 7.563 7.563 14.537 14.537 2.336 2.336
95 6.344 6.344 12.451 12.451 2.135 2.135
97 4.942 4.941 10.254 10.254 1.756 1.756
99 3.475 3.475 8.063 8.061 1.136 1.136

The parameters are S = 100, r = 0.10, m = 50.
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To check whether the LT algorithm works well in some extreme cases, we also 
report in Table 7 the results for very high/low volatility, and when the asset price 
is very close the barrier. The results show that the LT algorithm performs well 
even in these extreme cases.

5.4 Barrier option under Merton’s and double exponential jump-
diffusion models

Assuming the stock price follows the process described in (22), we can easily 
compute the coefficients âk, using the approach in Section 5.2, where the quanti-
ties E*[eξ′Xt, t(l)] and E*[e(ξ′ + ζ′)B+

0, k] have already been derived. Therefore, we just 
need to compute E*[e–ξ′B–

0, k]. For MJD, at any time t ∈ [t(l – 1), t(l)), condition-
ing on the number of jump in [t(l), t(k)), we have:
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For DEJD, E*[e–ξ′B–
0, k] can be easily computed following the same methodology in 

Kou (2002) for the pricing of call/put; the results are omitted for brevity. In sum-
mary, we can easily find the coefficients âk, and, therefore, the Laplace transform 
for the barrier option under both MJD and DEJD. In Tables 8–11 we compare 
prices and sensitivities for an up-and-out put option under the two models. Again, 
the algorithm provides consistent results even for values of the barrier very close 
to the original asset price.

TABLE 7 Up-and-out put under the Brownian model: extreme case comparison of 
the LT method vs. MC using 50 million simulation runs.

Additional n = 5 n = 25 n = 50
parameters Price LT Price MC Price LT Price MC Price LT Price MC

H = 100.05, σ = 30% 4.44271 4.44260 2.26220 2.26184 1.65087 1.65038
(very close to barrier)  (0.0013)  (0.0010)  (0.0009)
H = 105.0, σ = 5% 0.49237 0.49259 0.49204 0.49223 0.49188 0.49209
(very low volatility)  (0.00017)  (0.00017)  (0.000010)
H = 105.0, σ = 100% 17.98788 17.98710 11.01063 11.01450 9.05224 9.05428
(very high volatility)  (0.0038)  (0.0033)  (0.0030)

The parameters are S = 100, K = 100, T = 0.5, r = 0.05. MC standard errors are reported in paren-
theses.
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5.5 Comparison with Broadie–Yamamoto algorithm

Recently, Broadie and Yamamoto (2003) have proposed a very efficient algo-
rithm based on the fast Gauss transform to price various discrete path-dependent 
options, including lookback and barrier options. If the objective is to compute the 
option prices when the return distribution is Gaussian or a mixture of independent 
Gaussian random variables, then the Broadie–Yamamoto algorithm is preferable, 
since it is extremely fast. On the other hand, our Laplace transform method aims 
at a more general setting; more precisely, we can compute the prices for a broader 
class of return processes, including non-Gaussian distributions (eg, the double 

TABLE 8 Up-and-out put under Merton’s model: accuracy test of the LT method 
with different monitoring frequencies under Merton’s model. 

Points Price Price MC : LT : MC : LT : Finite Time
(m)  LT (Std err)  (Std err)  difference (sec)

H = 101

  5 5.801 5.802 –0.4776 –0.4882 0.0244 0.0244 5.56

  (0.0038)  (0.0039)

 10 4.507 4.506 –0.5350 –0.5346 0.0349 0.0349 10.58

  (0.0035)  (0.0047)

 20 3.489 3.490 –0.5931 –0.5913 0.0492 0.0492 20.43

  (0.0031)  (0.0054)

 40 2.727 2.729 –0.6509 –0.6533 0.0666 0.0666 41.02

  (0.0028)  (0.0059)

 80 2.175 2.172 –0.7088 –0.7194 0.0842 0.0842 84.30

  (0.0026)  (0.0064)

160 1.784 1.786 –0.7660 –0.7714 0.0945 0.0945 179.41

  (0.0023)  (0.0067)

H = 105

  5 6.861 6.863 –0.4817 –0.4814 0.0172 0.0172 5.55

  (0.0039)  (0.0034)

 10 5.993 5.993 –0.5479 –0.5475 0.0169 0.0169 10.55

  (0.0038)  (0.0043)

 20 5.349 5.351 –0.6081 –0.6128 0.0115 0.0115 20.61

  (0.0037)  (0.0049)

 40 4.898 4.904 –0.6507 –0.6407 0.0011 0.0011 41.34

  (0.0036)  (0.0052)

 80 4.579 4.581 –0.6725 –0.6649 –0.0066 –0.0066 84.96

  (0.0035)  (0.0054)

160 4.348 4.348 –0.6849 –0.6864 –0.0071 –0.0071 183.82

  (0.0034)  (0.0056)

The parameters are S = 100, K = 100, µJ = –0.01 , σJ = 0.141, σTOT = 0.3, r = 0.05, T = 1.0.
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TABLE 9 Up-and-out put under Merton’s model: accuracy test of the LT method 
with different barrier levels under Merton’s model. 

 Price Price MC : LT : MC : LT : Finite
Barrier  LT (Std err)  (Std err)  difference

σD = 0.212, λ = 2.24, (σTOT = 0.3)

101 1.664 1.666 –0.8331 –0.8451 0.0960 0.0960

  (0.0016)  (0.0048)

103 2.874 2.877 –0.7296 –0.7327 –0.0080 –0.0080

  (0.0020)  (0.0038)

105 3.620 3.625 –0.6125 –0.6122 0.0064 0.0064

  (0.0021)  (0.0029)

107 4.043 4.048 –0.5376 –0.5410 0.0167 0.0167

  (0.0022)  (0.0021)

109 4.271 4.277 –0.4928 –0.4952 0.0238 0.0239

  (0.0022)  (0.0016)

111 4.391 4.396 –0.4684 –0.4690 0.0286 0.0286

  (0.0022)  (0.0011)

113 4.454 4.459 –0.4552 –0.4565 0.0313 0.0313

  (0.0022)  (0.0008)

115 4.487 4.492 –0.4483 –0.4493 0.0328 0.0328

  (0.0022)  (0.0006)

σD = 0.353, λ = 6.22, (σTOT = 0.5)

101 2.528 2.529 –0.8547 –0.8601 0.0960 0.0960

  (0.0025)  (0.0062)

103 3.973 3.975 –0.8453 –0.8521 –0.0020 –0.0020

  (0.0030)  (0.0058)

105 5.130 5.135 –0.7457 –0.7385 –0.0116 –0.0116

  (0.0032)  (0.0048)

107 5.984 5.991 –0.6623 –0.6615 –0.0033 –0.0033

  (0.0034)  (0.0041)

109 6.604 6.611 –0.6004 –0.5979 0.0025 0.0025

  (0.0034)  (0.0034)

111 7.050 7.056 –0.5545 –0.5553 0.0068 0.0069

  (0.0035)  (0.0029)

113 7.368 7.375 –0.5210 –0.5232 0.0102 0.0102

  (0.0035)  (0.0024) 

115 7.594 7.599 –0.4969 –0.4960 0.0127 0.0127

  (0.0035)  (0.0020) 

The parameters are S = 100, K = 100, r = 0.05, σ = 0.212, µJ = –0.01, σJ = 0.141, T = 0.2, m = 50. The 
CPU times on a Pentium IV 1.8 Ghz for the LP method, with 50 monitoring points, are approximately 
35 and 46 seconds for total volatility levels σTOT = 0.3 and σTOT = 0.5, respectively.
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exponential jump-diffusion model), which may not be easily written as a mixture 
of independent Gaussian random variables. Furthermore, it is very easy to com-
pute, almost at no additional computational cost, hedging parameters (the Greeks) 
using the proposed Laplace transform method.

In the cases of the Brownian model and Merton’s model, both the Laplace 
transform method and Broadie–Yamamoto method are applicable to compute 
option prices. Tables 12 and 13 confirm that both methods lead to almost identical 
numerical results for the prices.

TABLE 10 Up-and-out put under the DE model: accuracy test of the LT method 
with different monitoring frequencies under the DE model.

Points Price Price MC : LT : MC : LT : Finite Time
(m)  LT (Std err)  (Std err)  difference (sec)

H = 101

  5 6.476 6.485 –0.4961 –0.4950 0.0246 0.0246 12.93

  (0.0044)  (0.0045)

 10 4.984 4.986 –0.5659 –0.5799 0.0356 0.0356 25.61

  (0.0040)  (0.0055)

 20 3.837 3.835 –0.6341 –0.6347 0.0506 0.0506 49.60

  (0.0036)  (0.0061)

 40 2.989 2.989 –0.7004 –0.7002 0.0689 0.0689 98.25

  (0.0032)  (0.0066)

 80 2.380 2.383 –0.7656 –0.7648 0.0873 0.0873 197.03

  (0.0029)  (0.0072)

160 1.951 1.954 –0.8296 –0.8354 0.0978 0.0978 396.31

  (0.0026)  (0.0076)

H = 105

  5 7.659 7.673 –0.5019 –0.5010 0.0163 0.0163 13.07

  (0.0046)  (0.0041)

 10 6.633 6.640 –0.5802 –0.5801 0.0155 0.0155 25.48

  (0.0044)  (0.0050)

 20 5.892 5.890 –0.6490 –0.6481 0.0090 0.0090 50.41

  (0.0042)  (0.0056)

 40 5.381 5.382 –0.6969 –0.7110 –0.0028 –0.0028 99.85

  (0.0041)  (0.0062)

 80 5.022 5.027 –0.7211 –0.7206 –0.0114 –0.0167 199.89

  (0.0039)  (0.0063)

160 4.763 4.770 –0.7350 –0.7480 –0.0120 –0.0120 402.75

  (0.0039)  (0.0065)

The parameters are S = 100, K = 100, η1 = 10.0 , η2 = 5.712, σTOT = 0.3, r = 0.05, T = 1.0.
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TABLE 11 Up-and-out put under the DE model: accuracy test of the LT method 
with different barrier levels under the DE model. 

 Price Price MC : LT : MC : LT : Finite
Barrier  LT (Std err)  (Std err)  difference

σD = 0.212, λ = 2.29, (σTOT = 0.3)

101 1.755 1.757 –0.8705 –0.8729 0.0945 0.0946

  (0.0018)  (0.0055)

103 3.037 3.039 –0.7578 –0.7577 –0.0142 –0.0142

  (0.0023)  (0.0045)

105 3.839 3.844 –0.6316 –0.6339 0.0018 0.0018

  (0.0025)  (0.0035)

107 4.305 4.312 –0.5498 –0.5480 0.0131 0.0131

  (0.0026)  (0.0026)

109 4.566 4.572 –0.4999 –0.4974 0.0211 0.0211

  (0.0026)  (0.0020)

111 4.712 4.718 –0.4708 –0.4737 0.0263 0.0263

  (0.0027)  (0.0017)

113 4.794 4.800 –0.4542 –0.4529 0.0295 0.0295

  (0.0027)  (0.0012)

115 4.841 4.847 –0.4447 –0.4474 0.0314 0.0314

  (0.0027)  (0.0011)

σD = 0.353, λ = 6.37, (σTOT = 0.5)

101 2.704 2.708 –0.9039 –0.9153 0.0974 0.0974

  (0.0028)  (0.0070)

103 4.256 4.259 –0.8913 –0.8818 –0.0072 –0.0071

  (0.0034)  (0.0064) 

105 5.510 5.511 –0.7830 –0.7722 –0.0168 –0.0168

  (0.0037)  (0.0056)

107 6.447 6.450 –0.6920 –0.6878 –0.0078 –0.0078

  (0.0039)  (0.0048)

109 7.140 7.142 –0.6238 –0.6247 –0.0014 –0.0014

  (0.0040)  (0.0041)

111 7.650 7.653 –0.5723 –0.5770 0.0033 0.0033

  (0.0041)  (0.0036)

113 8.023 8.026 –0.5338 –0.5294 0.0070 0.0070

  (0.0041)  (0.0030)

115 8.295 8.299 –0.5053 –0.5042 0.0098 0.0098

  (0.0041)  (0.0026)

The parameters are S = 100, K = 100, r = 0.05, η1 = 10, η2 = 5.712, p = 0.6, T = 0.2, m = 50. The CPU 
times on a Pentium IV 1.8 Ghz for the LP method, with 50 monitoring points, are approximately 80 
and 110 seconds for total volatility levels σTOT = 0.3 and σTOT = 0.5, respectively.
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6 Conclusion

In this paper, we proposed a new methodology based on Laplace transforms to 
compute the price and hedging parameters of discretely monitored lookback and 
barrier options. The proposed approach is appealing because it is valid in a quite 
general framework, including both the classical Brownian model and jump dif-
fusion models. It is also easily implementable given the availability of standard 
routines for the inversion of Laplace transforms. Our numerical analysis demon-
strates that the method is accurate and fast.

One limitation of the method is that the European call and put prices have to be 
computed accurately and fast, preferably by using analytical formulae to reduce 
errors and to increase the speed in computing the recursions. However, analytical 
formulae may not be available for general Lévy-process models.

The method could also be extended to price other derivatives, whose values are 
a function of the joint distribution of the terminal asset value and its discretely 
monitored maximum (or minimum) throughout the lifetime of the option, such as 
partial lookback options.

TABLE 12 Down-and-out call under the Brownian model: accuracy comparison of 
the prices given by the Laplace transform (LT) method and Broadie and Yamamoto 
(BY) method under the Brownian model.

 n = 5 n = 25 n = 50
Barrier Price LT Price BY Price LT Price BY Price LT Price BY

91 6.18729 6.18729 6.03202 6.03203 5.97705 5.97707
93 5.99968 5.99976 5.68752 5.68753 5.58434 5.58434
95 5.67129 5.67111 5.08147 5.08142 4.90681 4.90679
97 5.16694 5.16725 4.11573 4.11582 3.83393 3.83398
99 4.48965 4.48917 2.81255 2.81244 2.33645 2.33639

The parameters are S = 100, K = 100, σ = 0.2, T = 0.2, r = 0.1.

TABLE 13 Down-and-out call under Merton’s model: accuracy comparison of the 
prices given by the Laplace transform (LT) method and Broadie and Yamamoto 
(BY) method under Merton’s model.

 n = 5 n = 25 n = 50
Barrier Price LT Price BY Price LT Price BY Price LT Price BY

91 8.63048 8.63049 8.28428 8.28430 8.17962 8.17963
93 8.28833 8.28838 7.71612 7.71613 7.54699 7.54700
95 7.77087 7.77072 6.82050 6.82045 6.56072 6.56070
97 7.05569 7.05593 5.48764 5.48771 5.09158 5.09162
99 6.16435 6.16397 3.76274 3.76265 3.10787 3.10782

The parameters are S = 100, K = 100, σ = 0.2, λ = 2.0, µJ = 0.045, σJ = 0.3, T = 0.2, r = 0.1.
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Appendix A – Extension of the results

A1 Extension of the results to fixed and floating strike lookback calls

Let
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Then Â(u, t) can be computed via the recursion in Lemma 1 by changing Xi to 
–Xi.

We can express the value of a floating strike lookback call, at a generic time 
t ∈[t(l – 1), t(l)), with 1 ≤ l ≤ m, as:
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Since E*[(mt(l), T | Ft] = S(t)Â(1; t), only the second term in the parenthesis needs 
to be computed.

THEOREM A1 At any time t ∈ [t(l – 1), t(l)), m ≥ l ≥ 1, the Laplace transform with 
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The Laplace transform is then given by
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which proves the theorem. 
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PROOF Equation (27) is an immediate consequence of (24) and (26). All other 
results follow from the interchange of derivative and integral, justified by Theorem 
A. 12 on pp. 203-204 in Schiff (1999). 

COROLLARY A2 At any time t ∈ [t(l – 1), t(l)), l ≥ 1, the price of a fixed strike 
lookback put is given by
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from which the conclusion follows. 

We omit for brevity the results for the greeks, which are of immediate 
derivation.

A2 Extension of the results to other barrier options

There are eight types of barrier options, four “up” types (e.g. up-and-in call) 
and four “down” types (e.g. down-and-in call). In this section we will extend the 
results of Section 3.3 to all other types of barrier options.

(a) “Up” type barrier options
First we will find the two-dimensional Laplace transform for an up-and-out call 
option, following the approach for up-and-in put option in Subsection 3.3.
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Knowledge of the up-and-out put and call prices and greeks allows us to easily 
compute the value and hedging parameters of down-and-out and up-and-in put 
options, because

UIC(t, T) = BSC(t, T) – UOC(t, T), UIP(t, T) = BSP(t, T) – UOP(t, T)

where BSC(t, T) and BSP(t, T) are the value of a standard call and put options 
with the same strike K of the two barrier options, respectively.

(b) “Down” type barrier options
By symmetry (see, among others, Haug 1999), “down” type barrier options can 
be deduced from the “up” type barrier options. More precisely, consider first the 
case of down-and-out call
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where Z(T) = e–r (T– t)S(T) ⁄S(t) is a martingale under P*. It is fairly easy to find the 
dynamics of the stochastic process S̄ (T ) = 1⁄S(T) under the probability measure 
P̃, such that dP̃ ⁄dP* = Z(T), in a Brownian or a jump-diffusion framework 
(Schroder 1999). Therefore, defining M̄0, T = max0 ≤ j ≤ T⁄∆T S̄j = 1⁄m0, T, we can 
rewrite:
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Hence, we have reduced the problem to pricing an up-and-out put for the asset S̄T, 
with strike 1⁄K and barrier 1⁄H.

In particular, for the Brownian case, at any time t < T, we have
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Therefore, the two options can be priced directly using the Laplace transforms 
previously described. Under the MJD model, we have at any t < T:
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For the DEJD, instead, we have
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The other two remaining barrier call option values, DIP and DIC, can be easily 
derived via the parities:

DIP(t, T) = BSP(t, T) – DOP(t, T), DIC(t, T) = BSC(t, T) – DOC(t, T)

Appendix B – Laplace transform inversion via the two-sided Euler 
algorithm

As mentioned above, we invert the Laplace transforms previously derived using 
the two-sided extension of the Euler algorithm as described in Petrella (2004). 
The (one-sided) Euler algorithm has gained a lot of popularity in queueing and 
network analysis due to its simplicity of implementation, speed and high accu-
racy. In finance, Fu, Madan and Wang (1997) use it to price continuous Asian 
options by inverting the Geman and Yor (1993) Laplace transform, and Davydov 
and Linetsky (2001) implement the algorithm to price continuous double-barrier 
step options and lookback options under the CEV model. For a survey of different 
Laplace inversion algorithms and their performances in pricing derivatives we 
refer the reader to Craddock, Heath and Platen (2000).

In this appendix we will verify the technical conditions given in Petrella (2004) 
to bound the inversion errors (on both sides of the real line) and specify our choice 
of parameters in the inversion algorithm.

B1 The Euler inversion for lookback options

(a) Floating lookback put
In this case we need to invert the Laplace transform of
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Although the choice of C is somewhat arbitrary, the purpose of introducing C is to 
make sure that the Laplace inversion will not be conducted at extreme points for 
a wide range of model parameters.

When t is a monitoring point, we can set C = min(S(t), 0.99M0, t (l –1)). Thus, 
the function f (M ′; S(t)) is confined on the positive real line, because M ′: = 
log(M0, t (l –1) ⁄C) ≥ 0. We can therefore refer to the one-sided version of the Euler 
algorithm. We find that using N1 = N2 = 40 iterations (by symmetry, on both sides 
of the real line) to compute the partial sums ensures extremely accurate results.



URL: thejournalofcomputationalfinance.com Journal of Computational Finance

Giovanni Petrella and Steven Kou32

If t is not a monitoring point, with t(l – 1) ≤ t < t (l), since Y t
l, m ≥ Xt, t (l ) and 

log(S(t) ⁄C) ≥ 0, we have f (M0, t (l –1) ; S(t)) ≤ CeM′P(Xt, t (l ) ≤ M′), with M′ = 
log(M0, t (l –1) ⁄C). We can then apply the results in Petrella (2004) for a plain 
vanilla put option. Accordingly, following the notation in Petrella (2004), we 
choose M′ = αA with

α σ= −( )min ( ) ,t l t 1

4

and A = 18.4, if the resulting C satisfies C ≤ S(t), which holds in all our numerical 
cases. In the DEJD model we also need to make sure the characteristic function 
of Xt, t (l ) has no discontinuities. To this end, we fix

α σ
η

= −( )( )max ,min ( ) ,1 1

42
t l t

In all cases we set the number of iterations to N1 = N2 = 150, to guarantee high 
accuracy in the inversion.

(b) Floating lookback call
In this case we need to invert the Laplace transform of

g m S t m mt l t l T t l m( ; ( )), ( ) ( ), , ( ) ,0 1 0 1 0− −= −( )E* 1
tt l t l Tm t
( ) ( ),− ≤{ } 1

F

Following Petrella (2004), rescaling by a constant C, we can write

g m S t

C
CS t Cm

t l

Y
t l

l m
t

( ; ( ))

( )

, ( )

ˆ
, (

,

0 1

0
1

−

−= −E* e 11
0 1

) ˆ log log ( ), , ( )
( )

 ≥ ( ) − ( ){ }−
1 Y m S t t

l m
t

t l
F 



When t is a monitoring point, we can set C = min(1 ⁄S(t), 0.99⁄m0, t (l –1) ) and 
m′ = –log(C · m0, t (l –1) ) ≥ 0. Again, the function g(m′; S(t)) will only be defined 
on the positive real line. We can therefore refer to the one-sided version of the 
Euler algorithm. We use N1 = N2 = 40 iterations (again, by symmetry).

When not at a monitoring point, defining m′ = –ln(C · m0, t (l –1) ), we can 
write

g m S t S t X m
X m

t t l

t t l
( ; ( )) ( ) , ( )

, ( )
′ ≤ −( )− ′

− ′E* e e 1{{ }
 

because Ŷ t
l, m < Xt, t (l ). We are then in the framework described in Petrella (2004) 

for the pricing of plain vanilla call options and choose the inversion parameters 
accordingly. Specifically, we set m′ =  αA, with

α σ= −( )min ( ) ,t l t 1

4

and A = 18.4. In the DEJD implementation, we fix
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α σ
η

= −( )( )−
max , min ( ) ,

( )

1

2

1

41
t l t

to avoid discontinuities of the characteristic function of Xt, t (l ). As before, we set 
N1 = N2 = 150 for all cases.

B2 The Euler inversion for barrier options

(a) Up-and-out put
By introducing two rescaling parameters C1 and C2, the up-and-out put price can 
be expressed as

f K H S t C
K

C

S T

C
M T

C

H

C

( , ; ( ))
( )

,= −








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+

<1
1 1

0

2

E* 1
22

{ }












Ft

When t is a monitoring point, we can choose C2 = S(t) so that the option price is 
only defined for positive values of the variable h′ = ln(H ⁄S(t)). Hence we only 
need to study the discretization error on the negative real axis for the random 
variable k ′ = ln(K ⁄C1). But since

f K H S t C
K

C

S T

C
t( , ; ( ))

( )
≤ −























+

1
1 1

E* F

we can use the results in Petrella (2004) for a plain vanilla put option. Hence, we 
set k ′ = α1A1, with

α σ1
1

4
= −( )min ,T t

and A1 = 40. Further we choose A2 = 18.4 and number of iterations N11 = N12 = 200, 
N21 = N22 = 50 for the pure-diffusion case and N11 = N12 = 100, N21 = N22 = 30 in 
the jump-diffusion cases.

If t is not a monitoring point, we must carefully choose C2 as well. We can 
easily find exponential bounds in k ′ and h′ for the price of an up-and-out put:

(30)
f k h S t

k h

X k

k

k
t T

( , ; ( ))

,

,′ ′ ≤

′ ≥ ′ ≥

≤ ′( )
′

′

e if

e

0 0

P iif

if

,

,, ( )

′ ≤ ′ ≥

< ′( ) ′ ≥ ′ <

k h

X h k h

X

t t l

t

0 0

0 0P

P ,, , ( ), ,T t t lk X h k h< ′ < ′( ) ′ < ′ <












 if 0 0

In fact, for any ϑ > 0 and k ′ < 0, we have P(Xt, T < k ′) = P(e–ϑXt,T > e–ϑk ′) < 
eϑk ′E(e–ϑXt,T), by Markov’s inequality. In the same way, P(Xt, t,l < h′) < 
eϑh′E(e–ϑXt, t,l) for ϑ > 0, h′ < 0. Also, for k ′ < 0, h′ < 0,
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E e e− − − −( ) ≥ϑ ζ ϑ ζX X X X
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

≥

−∞
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−∞

′

−

∫∫ d d

e ϑϑ ζ′− ′ < ′ < ′( )k h
t T t t lX k X hP , , ( ),

with ϑ, ζ > 0. We can therefore bound all the probabilities in (30). As outlined 
in Petrella (2004), by using appropriate parameters, we can obtain exponen-
tial bounds on the discretization errors as well. In our implementation we have 
chosen

′ = = = −( )
′

k A A T tσ α σ1 1 1 1
1

4
40 min ,with and

and hh A t l t A= = −( ) =σ α σ2 2 2
1

4 2 18 4min ( ) , .with and

In the DEJD case, we set

α σ

α

η

η

1
1 1

4

2
1

2

2

2
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


to avoid discontinuities of the characteristic function of Xt, t(l). We also fix N11 = 
N12 = 200, N21 = N22 = 100 for all models.

(b) Up-and-out call
Using two rescaling parameters C1 and C2, we express the up-and-out call price 
as

f K H S t
C

S T C KC M T
C

H

C

( , ; ( )) ( ) ,= −( )+

<{ }
1

1
1 1 0

2 2

E* 1 FFt










with C1 < min(1 ⁄S(t), 1⁄K).
If t is a monitoring point, we can choose C2 = S(t) so that the option price is 

only defined for positive values of the variable h′ = ln(H ⁄S(t)). Hence we only 
need to worry about the discretization error on the negative real axis for the ran-
dom variable k̃ ′ = ln(1 ⁄ (KC1)). But since

f K H S t
C

S T C KC t( , ; ( )) ( )≤ −( )





+1

1
1 1E* F

we can use the results in Petrella (2004) for a plain vanilla call option. Hence, we 
set k̃ ′ = α1A1, with

α σ= −( )min ( ) ,t l t 1

4

and A1 = 40. Further we choose A2 = 18.4 and number of iterations N11 = N12 = 200, 
N21 = N22 = 50 for the pure-diffusion case and N11 = N12 = 100, N21 = N22 = 30 in 
the jump-diffusion cases.

If t is not a monitoring point, we must carefully choose C2, as well. Exponential 
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bounds in k̃  and h′, can also be derived for an up-and-out call. In fact,

f k h S t

S t k h
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


0 0, h

where P̄ is the probability measure under which the discounted asset price 
S(T)e–rT is the numeraire. Further, using Markov’s inequality, for any ϑ > 0 and 
k̃ ′ < 0, we have P̄(Xt,T > – k̃ ′) = P̄eϑXt,T > e–ϑk̃ ′) < eϑk̃ ′Ē (e–ϑXt,T), with Ē  represent-
ing the expectation under P̄. In the same way, P̄(Xt, t(l) < h′) < eϑh′Ē (e–ϑXt, t(l)) for 
ϑ > 0, h′ < 0. We also have, for k̃ ′ < 0, h′ < 0,

E e eϑ ζ ϑ ζX X X X
t T t
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
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with ϑ, ζ > 0. Following Petrella (2004), we can then find exponential bounds for 
the discretization errors as well. In our implementation we have chosen

′ = = = −( )k A A T tσ α σ1 1 1 1
1

4
40 min ,with and

and ′′ = = −( ) =h A t l t Aσ α σ2 2 2
1

4 2 18min ( ) , .with and 44

In the DEJD case, we set
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1 1
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2
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to avoid discontinuities of the characteristic function of Xt, t(l). We also fix 
N11 = N12 = 200, N21 = N22 = 100 for all models.
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