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In this on-line supplement to the paper “Revenue Management of Callable Products”, we shall

provide proofs of Lemma 1, Lemma 2, Lemma 3, Lemma 4, and Proposition 6 as well as Equation

11 rewritten for fast compuation.

Proof of Lemma 1.

On the set {DL ≤ a}, SL(a + 1) = SL(a) = DL, which means that VL(a + 1) and VL(a) have

the same distribution. Thus, E[R(a + 1)−R(a)|DL ≤ a] = 0, from which we have

∆r(a, p) = E[R(a + 1, p)−R(a, p)|DL ≥ a + 1]P (DL > a). (1)

On the set {DL ≥ a + 1}, SL(a + 1) = a + 1 and SL(a) = a. Since E(X − Y ) only depends on

the marginal distribution of X and Y , and does not depend on the dependent structure of X and

Y , we have

E[{min(DH , c− V̄L(a + 1))−min(DH , c− V̄L(a))}|DL ≥ a + 1]

= E[{min(DH , c−
a+1∑

i=1

ξ̄i)−min(DH , c−
a∑

i=1

ξ̄i)}|DL ≥ a + 1]

= E[min(DH , c−
a+1∑

i=1

ξ̄i)−min(DH , c−
a∑

i=1

ξ̄i)],

via the independence of DL and DH , where ξ̄i, i ≥ 1, are independent Bernoulli random variables

with a success probability q̄. Since DH is also an integer valued random variable and the values of
∗ 331 Mudd Building, Department of Industrial Engineering and Operations Research, Columbia University, New

York, NY 10027

1



c−∑a+1
i=1 ξ̄i and c−∑a

i=1 ξ̄i can only differ by at most 1, we have

min(DH , c−
a+1∑

i=1

ξ̄i)−min(DH , c−
a∑

i=1

ξ̄i) = {c−
a+1∑

i=1

ξ̄i − (c−
a∑

i=1

ξ̄i)}1{DH≥c−∑a
i=1 ξ̄i}

= −ξ̄a+11{DH≥c−∑a
i=1 ξ̄i}.

Therefore,

E[{min(DH , c− V̄L(a+1))−min(DH , c− V̄L(a))}|DL ≥ a+1] = −q̄P

{
DH ≥ c−

a∑

i=1

ξ̄i

}
. (2)

Similarly,

E[min((SL(a + 1) + DH − c)+, VL(a + 1))−min((SL(a) + DH − c)+, VL(a))|DL ≥ a + 1]

= E[{min((a + 1 + DH − c)+,
a+1∑

i=1

ξi)−min((a + DH − c)+,
a∑

i=1

ξi)}]

= P

{
ξa+1 = 0, (a + 1 + DH − c)+ > (a + DH − c)+,

a∑

i=1

ξi > (a + DH − c)+
}

+P

{
ξa+1 = 1, (a + 1 + DH − c)+ = (a + DH − c)+, (a + 1 + DH − c)+ ≥

a+1∑

i=1

ξi

}

+P
{
ξa+1 = 1, (a + 1 + DH − c)+ = (a + DH − c)+ + 1

}

= q̄P

{
a∑

i=1

ξi > a + DH − c ≥ 0

}
+ qP {DH ≥ c− a}

= q̄

{
P

{
a∑

i=1

ξi > a + DH − c ≥ 0

}
− P {a + DH − c ≥ 0}

}
+ P {DH ≥ c− a}

= −q̄P

{
a∑

i=1

ξi ≤ a + DH − c

}
+ P {DH ≥ c− a} .

In other words,

E[min((SL(a + 1) + DH − c)+, VL(a + 1))−min((SL(a) + DH − c)+, VL(a))|DL ≥ a + 1]

= −q̄P {c− bino(a, q̄) ≤ DH}+ P {DH ≥ c− a} . (3)

Combining (1), (2), and (3) yields

r(a + 1, p)− r(a, p)

= pL − q̄pHP {DH ≥ c− bino(a, q̄)}+ pq̄P {c− bino(a, q̄) ≤ DH} − pP {DH ≥ c− a} ,
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which completes the proof.

Proof of Lemma 2.

Proof. We will first show that a∗T ≤ a(p). It is enough to prove that ψ(a, p) ≤ pHP{DH ≥ c−a}.
But this is equivalent to (pH − p)q̄P{DH ≥ c− bino(a, q̄)} ≤ (pH − p)P{DH ≥ c− a}, which holds

because q̄ = 1 − g(p) ≤ 1 and P{DH ≥ c − bino(a, q̄)} ≤ P{DH ≥ c − a}. Intuitively, we do not

need to protect more than b units of capacity for high fare customers and therefore at least (c− b)+

units of capacity should be made available for sale at the low fare. To make this intuition more

formal we observe that if b < c, then at a = c− b we have pHP{DH ≥ c−a} = pHP{DH ≥ b} = 0.

Thus, by the definition of a∗T , we have a∗T ≥ c− b, completing the proof. ¤

Proof of Lemma 3.

We first note the following properties of the incomplete beta function:

Iq(a, n− a + 1) =
n∑

j=a

(
n

j

)
qj(1− q)n−j , 0 ≤ a ≤ n + 1; Ix(a, b) = 1− I1−x(b, a);

d

dq
Iq(a, b) =

qa−1(1− q)b−1

B(a, b)
, B(a + 1, b) =

a

a + b
B(a, b), a, b > 0. (4)

We shall only study the case when n ≥ 2 and 1 ≤ y ≤ n − 1, as the other two cases hold

automatically. In this case, when y ≥ 1,

E[min(X, y)] =
y∑

i=1

i

(
n

i

)
qi(1− q)n−i + yP{X ≥ y + 1)

= nq

y∑

i=1

(
n− 1
i− 1

)
qi−1(1− q)n−i + yP{X ≥ y + 1)

= nq

y−1∑

j=0

(
n− 1

j

)
qj(1− q)n−1−j + yP{X ≥ y + 1)

= nq{1− Iq(y, n− y)}+ yIq(y + 1, n− y).

We also have

d

dq
E[min(X, y)] = n{1− Iq(y, n− y)}+ nq{−qy−1(1− q)n−y−1

B(y, n− y)
}+ y

qy(1− q)n−y−1

B(y + 1, n− y)

= n{1− Iq(y, n− y)}+ nq{−qy−1(1− q)n−y−1

B(y, n− y)
}+ n

qy(1− q)n−y−1

B(y, n− y)

= n{1− Iq(y, n− y)},
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via (4). Finally, when y ≥ x, x ∈ [0, n], and n ≥ 1, we have

P{min(X, y) > x) = P{X > x} =
n∑

j=bxc+1

(
n

j

)
qj(1− q)n−j = Iq(bxc+ 1, n− bxc),

which completes the proof. ¤

Proof of Lemma 4.

Proof. By Assumption 2, it is sufficient to show that d
dqE[min(G(a), VL(a))] is positive and

strictly decreasing in q, q ∈ [0, q̄H ], because then E[min(G(a), VL(a))] must be strictly increasing

in q. To do this, note that by Lemma 3

d

dq
E[min(G(a), VL(a))] = E[SL(a){1− Iq(G(a), SL(a)−G(a))}; SL(a) + DH > c, DH ≤ c− 1]

+E[SL(a); DH ≥ c, SL(a) ≥ 1].

On the set {SL(a) + DH > c, DH ≤ c − 1}, by the definition of G(a), we must have G(a) > 0,

SL(a) < G(a). Thus, 0 < Iq(G(a), SL(a) − G(a)) < 1, and Iq(G(a), SL(a) − G(a)) is strictly

increasing in q, for 0 < q < 1, by (10). Since E[X] > 0 for any random variable X ≥ 0 with

P{X > 0} > 0, Assumption 1 implies that d
dqE[min(G(a), VL(a))] must be positive and strictly

decreasing in q, q ∈ [0, q̄H ]. To check for uniqueness, notice that the left side of (9) is a strictly

increasing function of q, the right side is a strictly decreasing function of q, and when q = 0 (at

the recall price pL) the left hand side is zero (because VL(a) = 0). If at q = q̄H the right side of

(9) is not greater than the left side, then there must be a unique root within [0, q̄H ]; otherwise,

d
dqr(a, p) > 0 for all p ∈ [pL, q̄H ], and q̄H must be optimal. ¤

Proof of Proposition 6.

Consider the case of a risk-neutral first-period customer with maximum willingness-to-pay of

RL who is faced with the choice between purchasing a low-fare standard product for pL or a

pure callable with a price of pC and a call price of p̂. He will purchase the standard product if

RL−pL ≥ max[(1−q)(RL−pc)+q(p−pc), 0] and the callable product if (1−q)(RL−pc)+q(p−pc) >

max[RL − pL, 0], where q > 0 is his ex ante probability that the airline will exercise the call for his

product. Assume that, instead of offering callables at a price of pC and a strike price of p along

with the standard low-price products, the airline offers both callables and standard products at the
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price pL with a free callable option at p̂. Then, a customer with valuation RL would purchase the

call option in both cases if

(1− q)(RL − pC) + q(p− pC) = (1− q)(RL − pL) + q(p̂− pL)

or p̂ = p+(pL−pc)/q. Note that p̂ is independent of RL. This means that offering both standard and

callable products at pL with a strike price of p̂ will result in the same demand for any distribution

of RL as offering standard products at pL and callable products at pC with a strike price of p

assuming only that customers are risk neutral and share a common ex ante probability q.

We now need to show that the provider will achieve the same expected revenue in both cases.

Let R(α) be revenue in the case when callables cost pC and the exercise price is p and R̂(α) be the

case when callables cost pL and the exercise price is p̂ = p + (pL− pC)/q. Then, using the notation

of Equation (1):

R(α) = pCVL(α) + pL[SL(α)− VL(α)] + pH min(DH , c− V̄L(α)]− p min[(SL(α) + DH − c)+, VL(α)]

R̂(α) = pLSL(α) + pH min[DH , c− V̄L(α)]− pmin[(SL(α) + DH − c)+, VL(α)],

so that

R(α)− R̂(α) = pCVL(α) + pL(SL(α)− VL(α))− pLSL(α) + (p̂− p)min[SL(α) + DH − c), VL(α)]

= (pC − pL)VL(α) + (p̂− p)min[SL(α) + DH − c, VL(α)],

= (pC − pL)VL(α) +
pL − pC

q
min[SL(α) + DH − c, VL(α)].

If each customer correctly anticipates the fraction of products that will be called, then

q =
min[SL(α) + DH − c, VL(α)]

VL(α)

and R(α) − R̂(α) = 0.

Rewriting the Terms in Equation 11 for Programming Purposes.

E[SL(a)Iq̄(SL(a)−G(a), G(a));SL(a) + DH > c,DH ≤ c− 1]

=
a∑

i=2

c−1∑

j=0

P{DL = i,DH = j}iIq̄(c− j, i + j − c)1{i+j≥c+1}

+
c−1∑

j=0

P{DL ≥ a + 1, DH = j}aIq̄(c− j, a + j − c)1{a+j≥c+1},
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E[G(a)Iq(G(a) + 1, SL(a)−G(a));SL(a) + DH > c,DH ≤ c− 1]

=
a∑

i=2

c−1∑

j=0

P{DL = i,DH = j}(i + j − c)Iq((i + j − c + 1, c− j)1{i+j≥c+1}

+
c−1∑

j=0

P{DL ≥ a + 1, DH = j}(a + j − c)Iq(a + j − c + 1, c− j)1{a+j≥c+1},

E[SL(a);DH ≥ c, SL(a) ≥ 1] =
a∑

i=0

P{DL = i,DH ≥ c}i + a
∞∑

i=a+1

P{DL = i,DH ≥ c}.

Also, for traditional revenue management, we have

r(a) = pLE[SL(a)] + pHE[min(c− SL(a), DH)]

= pL

{
a∑

i=0

P{DL = i)i + aP{DL ≥ a + 1}
}

+pH





a∑

i=0

c−i∑

j=0

P{DL = i,DH = j}j +
a∑

i=0

(c− i)P{DL = i,DH ≥ c− i + 1}

+ P{DL ≥ a + 1}



c−a∑

j=0

P{DH = j}j + (c− a)P{DH ≥ c− a + 1}





 .
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