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1. Introduction
The classic mark-up revenue management model
studies a finite capacity, two-period problem with two
exogenous fares under the assumption that low-fare
customers book in the first period and high-fare cus-
tomers book in the second period. This model was
developed after the passenger airline industry was
deregulated as an attempt to sell excess capacity to
price-sensitive travelers. Airlines did this by offer-
ing discounted fares to customers willing to book
early and willing to abide by traveling restriction
such as Saturday night stays. A major function of
airline revenue management systems is to calculate
and apply booking limits on low-fare bookings. Using
newsvendor-like logic to calculate profit-maximizing
booking limits is at the heart of classical revenue
management and has been credited with generating
hundreds of millions of dollars in additional revenue
for airlines and industries with similar characteristics
such as hotels and rental cars.
Setting a limit on low-fare bookings is, however, an

imperfect mechanism for hedging against uncertainty
in future high-fare demand. Despite heavy investment
in sophisticated revenue management systems, air-
lines lose millions of dollars a year in potential rev-
enue; both when low-fare bookings displace higher
than expected high-fare bookings (“cannibalization”)
and when airlines fly empty seats protected for high-
fare bookings that do not materialize (“spoilage”).
Airlines could avoid cannibalization and spoilage
if they could forecast future full-fare demand with

certainty or, failing that, could convince business pas-
sengers to book earlier and leisure passengers to book
later. Because neither of these is likely to occur, air-
lines are motivated to find other ways to better hedge
against full-fare demand uncertainty. Overviews of
the theory and application of revenue management
can be found in Phillips (2005), Smith et al. (1992),
and Talluri and van Ryzin (2004).
In this paper, we analyze the potential of “callable

products” as a way for an airline to increase rev-
enue when full-fare demand is uncertain. The concept
behind a callable product is quite simple. An airline
would offer both callable and standard (noncallable)
products at the same low-fare during the first period.
A customer purchasing the callable product would
grant the airline an option to recall his seat at some
future time before departure at a prespecified recall
price. Customers whose product is called would be
notified by the airline sometime before departure that
their seat had been called and the airline would pay
the recall price. The recall price will be above the
low-fare purchase price but below the full fare. The
airline would call the option only if it finds that full-
fare demand exceeds available capacity—that is, the
remaining seats after low-fare bookings. In that case,
the airline pays the recall price for a seat that it sells
at the (higher) full fare.
Callable products are appealing because actions

are voluntary on both sides: customers individually
determine whether they wish to purchase the stan-
dard product or the callable product. The airline
determines how many (if any) of the callable products
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it wishes to call. We show that offering callable
products can generate significant, riskless, additional
revenue.
Various forms of callable products have been used

to some degree in a number of different industries.
Some companies use a “callback” option by which
they can pay a predetermined amount to recall pre-
viously committed advertisement time.1 The callable
concept is also used in a business-to-business setting
to reduce inventory risk; see Sheffi (2005, pp. 229–
231).2 As a further example, Jay Walker (an early
investor in Priceline) and some of his colleagues at
Walker Digital were granted a U.S. patent in 1998
(Walker et al. 1998) on the concept of callable airline
tickets. However, the patent filing does not specify
how to determine booking limits or recall prices.
Biyalogorsky et al. (1999) discussed the concept

of overselling with opportunitistic cancellations in
an airline context. Biyalogorsky and Gerstner (2004,
p. 147) extended the idea to a more general set-
ting under the name of contingent pricing, which they
define as “� � �an arrangement to sell a product at a
low price if the seller does not succeed in obtaining
a higher price during a specified period.” They con-
sider the special case of a seller with a single unit
of inventory facing two types of customers—those
with low willingness-to-pay who purchase in an ini-
tial period and those with a high willingness-to-pay
who do not arrive until the second period. In a two-
period model with independent customer demands
and a single product for sale, they show that contin-
gent pricing “� � � (a) mitigates the expected losses from
price risks, (b) can be profitable regardless of buy-
ers’ risk attitudes even if buyers are more risk averse
than sellers are, (c) benefits buyers as well as sellers,
and (d) improves economic efficiency” (Biyalogorsky
and Gerstner 2004, p. 153). They also derive optimal
pricing policies for the seller under assumptions of
different risk preferences on the part of buyers.
Our paper differs from and extends Biyalogorsky

and Gerstner (2004) in several ways. First, we take
the point of view of a seller with multiple units
of capacity (or inventory) who wishes to maxi-
mize his expected revenue. For such a seller, as
we shall show, it can well be optimal to sell both
callable and standard (noncallable) products in the

1 We thank one of the referees for calling this example to our
attention.
2 Sheffi (2005, pp. 229–231) describes how Caterpillar sells its prod-
ucts to dealers who input in a database items in their inventory
they are willing to share with others. When a customer comes to a
dealer and the dealer finds himself without the required part, the
dealer checks the database and sees where such an item would be
available. Caterpillar then buys back the item from the dealer that
has the item at a 10% premium and ships it to the dealer/customer
who needs it.

first period. This extends the analysis in Biyalogorsky
and Gerstner (2004) which consider sales of only
a single unit. Second, we do not assume common
willingness-to-pay among buyers nor do we assume
that the willingness-to-pay of any specific buyer is
known to the seller as in Biyalogorsky and Gerstner
(2004). Rather, we assume that the seller faces uncer-
tain demand for callable products that depends on the
recall price. Third, our approach allows us to com-
pute the optimal recall price, and to develop bounds
on the number of both callable and standard prod-
ucts that it is optimal for the seller to offer under
various demand conditions. Our analysis also leads
to an optimization method to evaluate the magnitude
of the expected revenue gain from the introduction
of callable products. We believe that these quantita-
tive aspects are crucial to ascertain whether or not
the expected revenue gains justify the introduction of
callable products in practice.
Another contribution of this paper is to show the

magnitude of the riskless gain. Although it is certainly
good to have a “riskless” revenue gain, it is impor-
tant to understand the magnitude of the gain. If the
expected additional profit is small, the cost of imple-
menting callable products may be larger than the ben-
efit. We show that by choosing the units allocated to
the low-fare customers, a, and the recall price p in an
optimal way, the revenue gain can be indeed substan-
tial. Our numerical results in §5 show that the riskless
gain may be as high as 10%, especially when there is
high uncertainty of high-fare demand.
In §2, we describe the concept of callable products

and compare the callable product approach with other
mechanisms in the context of a two-period market in
which low-fare customers book before high-fare cus-
tomers. The effect of introducing callable products in
the basic two-period revenue management model is
analyzed in §3. We show under very mild conditions
that offering callable products can generate a risk-
less increase in revenue—that is, they never reduce
revenue and can increase it with positive probability.
We present first-order conditions for a globally opti-
mal low-fare booking limit and recall price and show
how these can be calculated in §4. Section 5 describes
numerical studies that illustrate the expected revenue
gains from offering callable products. In §6, we dis-
cuss extensions to multifare structures, network mod-
els, overbooking, and to other industries.

2. Callable Products
2.1. The Concept
When an airline offers callable products, the sequence
of events is as follows:
1. The airline publishes its fares for both periods,

pL and pH , and the recall price p.
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2. Based on anticipated demands, the airline
chooses a booking limit for low-fare customers.
3. First-period low-fare booking requests arrive.

Each low-fare booking request is offered the choice
of a standard low-fare product or a callable prod-
uct. Low-fare bookings are accepted until the book-
ing limit is reached or the end of the first period,
whichever comes first. Each low-fare booking pays a
fare pL whether choosing the standard or the callable
product.
4. At the end of the first period, the airline no

longer offers low-fare bookings. At this point it has
accepted SL total low-fare sales of which some (possi-
bly zero) are callable. Let VL be the number of callable
bookings and �VL = SL − VL the number of standard
(noncallable) bookings that the airline has taken.
5. During the second period, full-fare booking

requests arrive. The capacity available for full-fare
bookings is c − �VL, where c is the total capacity. The
airline accepts full-fare booking requests during the
second period until this limit is reached.
6. If the number of full-fare bookings exceeds c−SL,

then the airline will call some, or all, of the callable
products.
7. The airline collects pH from every high-fare cus-

tomer and pays p to every customer whose option
was called. Note that the net payment to a customer
whose booking gets called is p− pL ≥ 0.
We believe that airlines could easily implement

callable products via the Internet.3 Each time a low-
fare booking is made on an airline’s website, the cus-
tomer would be informed of the terms and conditions
of the callable product (including the recall price, p),
and asked if he would like his booking to be callable.
If he agrees, then the airline would notify him (e.g.,
24 hours prior to departure) via e-mail whether or not
his booking had been called. If the airline chooses to
exercise its call, the call price p could be credited to
the customer’s credit card. Of course, callable prod-
ucts could be offered via other channels as well.

2.2. Comparison to Alternatives
Callable products are a mechanism for suppliers to
hedge against uncertainty in future high-fare demand.
In addition to setting limits on discount bookings,
suppliers have used a number of other mechanisms
to hedge against high-fare demand uncertainty:
1. Stand-bys: A stand-by booking is one sold at a

deep discount that gives a customer access to capac-
ity only on a “space-available” basis. Customers with
stand-by tickets arrive at the airport and are told at

3 There is a sufficient volume of transactions for this to make sense
because 40% of all airline ticket sales in North America were made
online in 2003 with 27% of all bookings taking place on airline
websites (SITA 2003).

the gate whether or not they will be accommodated
on their flight. If they cannot be accommodated, the
airline books them on a future flight (possibly also on
a stand-by basis). This strategy helps reduce spoilage
but it may cannibalize demand from either the low or
the high fare.
2. Bumping: If the fares for late-booking passengers

are sufficiently high, an airline could pursue a bump-
ing strategy—that is, if unexpected high-fare demand
materializes, the airline would overbook with the idea
that it can deny boardings to low-fare bookings to
accommodate the high-fare passengers. For a bump-
ing strategy to make sense, the revenue gain from
the full-fare passenger must outweigh the loss from
bumping the low-fare booking, including all penalties
and “ill-will” cost. Historically, airlines were reluctant
to overbook with the conscious intent of bumping
low-fare passengers to accommodate high-fare pas-
sengers.4 However, with the average full fare now
equal to seven times or more the lowest discount fare
on many routes (Donofrio 2002), the bumping strat-
egy is beginning to make more and more economic
sense. For more details on the bumping strategy, the
reader is referred to Gallego and Lee (2004).
3. The replane concept: Under the replane idea, an

airline that sees higher than anticipated full-fare de-
mand will contact customers with discount-fare book-
ings (via the Internet or phone, for example) on the
same flight and offer them some level of compensa-
tion to give up their seats.
4. Flexible products: With flexible products, passen-

gers can purchase discount tickets that ensured a seat
on one of a set of flights to the same destination, with
the airline having the freedom to choose which flight
the customer will actually be booked on. Gallego and
Phillips (2004) show that offering flexible products
can increase revenue by both enabling better capacity
utilization and inducing additional demand.
5. Last-minute discounts: The price of airline tickets

generally increases as departure approaches because
airlines exploit the fact that later-booking customers
tend to be less price sensitive than early-booking
customers. However, increasingly airlines have been
using last-minute deep discounts to sell capacity that
would otherwise go unused.5

6. Auctions: An alternative mechanism to recover
previously sold capacity is to hold an auction toward
the end of the booking process. An auction would

4 Of course, airlines have long overbooked as a means of hedging
against cancellations and no-shows (Rothstein 1985).
5 For example, the company Last-Minute Travel (www.lastminutetravel.
com) specializes in selling deeply discounted capacity for flights
that are nearing departure. To limit cannibalization, many airlines,
hotels, and rental car companies only offer last-minute discounts
through disguised (“opaque”) channels such as Priceline (www.
priceline.com) or Hotwire (www.hotwire.com).
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allow customers to learn more about their valuation
before agreeing on a price to sell back their capac-
ity. While this information may enable the capacity
provider to extract more of the ex-post consumer sur-
plus, there are a number of complications. First, it is
difficult to conceive of a practical method that would
allow a large majority of the low-fare customers to
participate unless the auction was held at the air-
port very shortly before departure (this would be
even more difficult to implement in other industries
such as hotels and car rentals). In addition, the val-
uations may end up higher than predicted and the
capacity provider may need to pay more than antic-
ipated. Moreover, the capacity provider would have
to make full-fare overbooking decisions before hold-
ing the auction so there is no riskless profit. Finally,
there are low-fare customers that are willing to forfeit
their capacity if their travel plans change. Under an
auction, these customers would need to be paid.
None of these approaches is perfect. Management

of stand-bys and bumped passengers adds opera-
tional complexity and can create flight delays. Bump-
ing is unpopular with passengers. Replaning requires
searching for passengers who are willing to change
flights. Flexible products require customers that are
more or less indifferent to the actual flight on which
they travel. Last-minute discounts risk cannibalizing
high fares and can train customers to wait rather than
book early. Auctions are difficult to implement. By
and large, callable products avoid these shortcomings.
We also note that—unlike callable products—

stand-by bookings, replane, and flexible products
require accommodating all booked passengers. These
approaches are most effective when there is a wide
disparity in capacity utilization among flights serv-
ing the same market. They allow an airline to move
demand from highly utilized flights to less utilized
flights, thereby freeing up capacity. These approaches
are much less effective when all flights are highly
utilized. In this situation, we would anticipate that
callable products would be more effective because
they would allow the airline to free up capacity in
the market to sell to high-fare customers. All of these
approaches listed above have their place. There is no
reason why airlines cannot use any or all of them
in combinations with callable products to maximize
revenue for a particular flight. In particular, callable
products can be used in a network where instead of
paying the recall price p, the passenger is sent in an
alternative, prespecified route, and given a prespeci-
fied compensation.
Callable products can be abused if a speculator

buys a callable ticket and then makes phantom full-
fare bookings with the purpose of triggering the recall
of his ticket. For this strategy to work, the speculator
may need to book a large number of full-fare, fully

refundable, tickets without restrictions and then can-
cel them as soon as his low-fare ticket is called by the
airline. The uncertainty surrounding the number of
full-fare tickets needed to trigger a recall and the need
to cancel full-fare tickets in a very short time span
makes this strategy unattractive. In addition, airlines
can impose time-window restrictions on fully refund-
able fares or offer partially refundable fares to deter
speculators.

3. A Two-Period Model with
Callable Products

We analyze callable products in the context of a
two-period, two-fare model with low-fare customers
booking in the first period and high-fare customers
booking in the second period. The two fares are
exogenous and bookings are firm: that is, there are
no cancellations or no-shows. This is a classic rev-
enue management model, first studied by Littlewood
(1972) and extended to multiple periods and fare
classes by a number of others including Belobaba
(1987, 1989), Curry (1990), and Wollmer (1992). We
present our analysis in the context of an airline
although the results are general across industries with
similar characteristics (see §6).
An airline accepts bookings for a flight with fixed

capacity c during two periods. Each booking request
is for a single unit of capacity (e.g., a single seat).
Bookings occur during two periods. First-period and
second-period demands are integer-valued random
variables denoted by DL and DH , respectively. We do
not initially assume that DL and DH are independent.
First-period and second-period fares are denoted by
pL and pH , respectively, with pH > pL > 0.
When an airline offers callable products, low-fare

customers are given the opportunity at the time of
purchase to grant the capacity provider the option
of recalling their booking at a known recall price p ∈
�pL� pH
. There is no additional charge (or discount)
to customers for choosing this alternative. If p > pL,
then customers whose reservation price for a seat is
between pL and p may choose the callable product.
At the end of the second period, the provider has the
opportunity to meet some of the high-fare demand in
excess of residual capacity by recalling callable capac-
ity at p and selling it for pH . For the capacity provider,
the recall price p is a decision variable. For each cus-
tomer, the decision whether or not to purchase a
callable product is based on the recall price p and her
reservation price. We initially assume that total low-
fare demand (that is, callable demand plus standard
low-fare demand) is independent of the value of p. In
this case, the only effect of changing p is to change the
allocation of total low-fare demand between standard
and callable customers. We relax this assumption in
§5.3 to discuss the implication of demand induction.
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The seller’s decision variables are the recall price
p ∈ �pL� p̄H 
 and the low-fare booking limit a ∈
�0� � � � � c�. Sales at the low fare are denoted by SL�a�=
min�DL�a�. Of these, VL�a� are callable and �VL�a� =
SL�a�− VL�a� are not. The capacity available for sale
at the high fare is c− �VL�a�, the number of units sold
at the high fare is min�DH� c − �VL�a��, and the num-
ber of units called is min��SL�a� + DH − c�+�VL�a��.
This means that, for any choice of the decision vari-
ables a and p, expected revenue is given by r�a� p�=
E�R�a�p�
, where

R�a�p� = pLSL�a�+ pHmin�DH� c− �VL�a��

− pmin��SL�a�+DH − c�+�VL�a��� (1)

Let R�a� be the revenue corresponding to the tradi-
tional strategy without the callable product. Because
�VL�a� = SL�a� and VL�a� = 0, it follows that r�a� ≡
E�R�a�
, where R�a� = pLSL�a� + pH�min�DH� c −
SL�a��
.

Proposition 1. For any feasible values of a and p, the
revenue realized with callable products is at least as large as
the corresponding revenue without callable products with
probability one. More precisely, R�a�p�=R�a�+W�a�p��
where W�a�p� ≥ 0 denotes the additional revenue gained
from callable bookings and,

W�a�p�= �pH − p�min�G�a��VL�a��≥ 0�
G�a�= �SL�a�+DH − c�+�

(2)

that is, W�a�p� is the margin on called tickets times the
number of tickets called, and G�a� is the excess high-fare
demand.

Proof. From (1), we have

R�a�p� = pLSL�a�+ pH�min�DH� c− SL�a���

− pH�min�DH� c− SL�a���

+ pHmin�DH� c− �SL�a�−VL�a���

− pmin��SL�a�+DH − c�+�VL�a��

= R�a�+ pH

{
min�DH� c− �SL�a�−VL�a���

−min�c− SL�a��DH�
}

− pmin��SL�a�+DH − c�+�VL�a��

= R�a�+ �pH − p�min��SL�a�+DH − c�+�VL�a��

= R�a�+W�a�p�≥R�a��

where W�a�p� ≥ 0 follows from min�G�a��VL�a�� ≥ 0
and pH − p≥ 0. �

On the surface, Proposition 1 may seem to be
surprising because the revenue gain by adding the
callable feature is nonnegative with probability one
(“riskless”). However, this is a consequence of the fact

that the capacity provider will only exercise his option
when it is worthwhile to do so. He can always real-
ize the same revenue as the traditional model, with
a booking limit a, by simply not calling any of the
options.
Proposition 1 does not require any assumptions on

VL�a�. However, in what follows, we assume that low-
fare customers decide whether or not to purchase
the callable product independently with probability
q = g�p�. We further assume that q = g�p� is a contin-
uous increasing function of p.6

Let p̄= inf�p≥ pL� g�p�= 1� be the smallest call price
at which low-fare customers will purchase the callable
product with probability one and let p̄H =min�p̄� pH�.
Clearly, the capacity provider will limit his choice
of p to p ∈ �pL� p̄H 
 because it is clearly suboptimal
to use a recall price above p̄H . We assume that g is
strictly increasing over the interval �pL� p̄H 
. Denote its
inverse by p = h�q�, where h�q� is strictly increasing
and continuous. h�q� ≡ g−1�q� is defined for values
of q ∈ �qL� q̄H 
, where 0 ≤ qL = g�pL� < q̄H = g�p̄H� ≤ 1.
Because customers make the decision to grant the call
independently with the same probability q, the num-
ber of callable units, VL�a�, is conditionally binomial
with parameters SL�a� and q; i.e. VL�a�= bino�SL�a�� q�.
In this case, we can show that when there is a nonzero
chance that at least one low-fare booking is sold and
there is excess total demand for the flight, the proba-
bility of positive gain from offering callable products
is greater than zero.

Proposition 2. If customers make independent deci-
sions to grant the call with equal probability q > 0,
p < pH , and

P�SL�a�+DH > c�SL�a� > 0� > 0� (3)

then
P�W�a�p� > 0� > 0� (4)

Proof.

P�W�a�p� > 0�

≥ P�VL�a� > 0 and SL�a�+DH > c�

≥P�VL�a�>0 and SL�a�+DH >c �SL�a�>0�P�SL�a�>0�

≥ qP�SL�a�+DH > c � SL�a� > 0�P�SL�a� > 0�

= qP�SL�a�+DH > c�SL�a� > 0� > 0�

where the third inequality follows from the fact that
q = P�VL�a� > 0 � SL�a� = 1� and q ≤ P�VL�a� > 0 �
SL�a� > 1�, which implies that q ≤ P�VL�a� > 0 �
SL�a� > 0�. �

6 We will use the terms “increasing” and “decreasing” in the weak
sense unless stated otherwise.
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Note that (3) is not particularly restrictive: it speci-
fies that the joint probability that total bookings exceed
capacity and low-fare bookings is positive. Offering
the callable product results in a win-win-win situation
because the capacity provider increases his revenues,
low-fare customers increase their utility, and high-fare
customers have additional available capacity.7

The riskless revenue gain shown in Equation (4) is
similar to the concept of arbitrage in finance because
the revenue gainW�a�p� is always nonnegative and is
positive with nonzero probability. A common assump-
tion in financial analysis is that arbitrage opportuni-
ties cannot exist in standard well-behaved markets.
The reason that an arbitrage opportunity can exist
in our markets is due to asymmetric information
and operational advantage. First, the seller, unlike the
customers, is able to observe second-period full-fare
demand before calling fares. Second, airline tickets
are typically nontransferable; even if a low-fare cus-
tomer finds another customer willing to pay a higher
price, the low-fare customer cannot transfer the ticket.
We should point out, however, that airlines often sell
blocks of transferable capacity to consolidators at very
low fares leading to the possibility of riskless rev-
enue gain.

4. Optimization
4.1. First-Order Condition for a
We assume that DL and DH are independent from
now on and recall that r�a� p� is the expected gain
from offering products, that is, r�a� p�≡ E�R�a�p�
. To
derive the first-order conditions for a, we will use the
following result describing how R�a�p� changes as a
is incremented.

Lemma 1. For a ∈ �0� c− 1
,

�r�a�p� ≡ r�a+ 1� p�− r�a� p�

= P�DL > a��pL −��a�p�
� (5)

where, with q̄ = 1− q = 1− g�p�,

��a�p� = �pH − p�q̄P�DH ≥ c− bino�a� q̄��
+ pP�DH ≥ c− a�� (6)

7 Because buyers can decide whether or not they grant the provider
the callable option, their utility is at least as large as when the
callable option is not available. Therefore, there is no need to
reduce the low fare to induce customers to accept the callable prod-
uct; this conclusion would change if there was a secondary market
allowing customers to trade both low-fare tickets and callable tick-
ets. Because airline tickets are not transferable, it is unlikely that
such a market would ever develop in that industry. However, it
would be a consideration in sporting events or Broadway shows
where tickets are transferable.

Proof. See the online supplement (provided in the
e-companion).8 �

The expression pL−��a�p� inside the square brack-
ets in Equation (5) is decreasing in a. Therefore, Equa-
tion (5) admits at most one sign change in a for any
fixed p, and this must be from positive to negative.
Thus, r�a� p� is unimodal in a for fixed p and the
largest maximizer of r�a� p� is given by

a�p�≡min�a ∈ �0� c
� ��a�p� > pL�� (7)

where the minimization is over the set of integers,
with a�p�= c if the set is empty.9

The largest optimal booking limit for the traditional
revenue management problem without callable prod-
ucts is given by

a∗T ≡min�a ∈ �0� c
� pHP�DH ≥ c− a� > pL��

with a∗T = c if the set is empty.10 Let b be the essential
supremum of DH , i.e., the smallest integer such that
P�DH ≥ b�= 0. If DH is unbounded, then b=�.
We can now relate the optimal booking limit under

traditional revenue management to the optimal book-
ing limit with callable products.

Lemma 2. �c− b�+ ≤ a∗T ≤ a�p� for all p ∈ �pL� p̄H 
.

Proof. See the online supplement. �

It would be natural to conjecture that a�p� is mono-
tone increasing in p. However, this is not necessar-
ily true because the function ��a�p� is not necessarily
decreasing in p. To see this, consider the case where
qL = 0 and note that ��a�pL� = ��a�pH� = pHP�DH ≥
c − a� ≥ ��a�p�. As a result, we cannot say that
the function r�a� p� is submodular, and therefore
we cannot invoke Topkis’ Monotone Optimal Selec-
tion Theorem (Topkis 1998) to claim that a�p� is
monotone.11

8 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.
9 Note that if k is a positive integer such that ��a�p�− k�p� = pL,
then all the elements in the set �a�p�−k� � � � � a�p�� maximize r�a� p�.
10 This solution to the two-period revenue management problem
without callables was proposed by Littlewood (1972). Bhatia and
Parekh (1973) and Richter (1982) demonstrate the optimality of
Littlewood’s formula.
11 Intuitively, when p is close to pL, as p increases we can allow a
larger number of low-fare bookings, knowing that we can recall
them and get almost the full margin pH − pL on each recalled
unit. As p approaches pH , we increasingly cannibalize high-fare
sales. Thus, in most applications, we would expect a�p� to initially
increase and then decrease with p, but more complicated behavior
is also possible.
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4.2. First-Order Condition for q
The following assumptions will be needed for various
results in this subsection.

Assumption 1. P�c − SL�a� < DH ≤ c − 1� > 0. This
assumption is not restrictive: if P�DH ≤ c − 1� = 0, then
the airline could fill the plane with high-fare customers
with probability one. In this case, there is no reason for the
airline to offer any low-fare product. On the other hand,
if p�c − SL�a� < DH� = 0, then the airline is expecting to
have empty seats on the flight with probability one. In this
case, it would adjust a or possibly lower the fare of one
of the products to better utilize capacity. Note that this
assumption implies condition (3).

Assumption 2. h′�q� > 0 is an increasing function of q
for q ∈ �0� q̄H 
. In other words, h is increasing and convex
in q for q ∈ �0� q̄H 
. The implication of the assumption is
that it is increasingly more difficult to attract additional
customers to grant the call option.

Assumption 3. qL = 0. In other words, low-fare cus-
tomers will not participate in the program if the recall price
is p= pL.

Note that R�a�p�=R�a�+W�a�p�, where R�a� does
not involve q. By (2), we have

d

dq
r�a�p� = d

dq
E�W�a�p�


= −h′�q�E�min�G�a��VL�a��


+ �pH − p�
d

dq
E�min�G�a��VL�a��
� (8)

yielding the first-order condition

h′�q�E�min�G�a��VL�a��


= �pH − p�
d

dq
E�min�G�a��VL�a��
� (9)

To derive the first-order conditions for q, we make
use of the following lemma, which itself uses the reg-
ularized incomplete beta function (see Chapter 6 in
Abramowitz and Stegun 1972), which is defined for
0≤ x≤ 1 by

Ix�a� b� �=
Bx�a� b�

B�a� b�
�

Bx�a� b�=
∫ x

0
ta−1�1− t�b−1 dt if a� b > 0�

Ix�a� b�≡ 1 if a= 0� Ix�a� b�≡ 0 if b= 0�
where B�a� b�≡ B1�a� b� is the standard beta function.
In addition,

0<Ix�a�b�<1 and Ix�a�b� is strictly increasing in x

if 0< x < 1� a �= 0� b �= 0� (10)

Lemma 3. Suppose that X = bino�n� q�. Then, for any
integer y ≥ 0,

E�min�X�y�


=




0� n= 0 or y = 0�
nq� y ≥ n and n≥ 1�
nq�1− Iq�y�n− y��+ yIq�y+ 1�n− y��

1≤ y ≤ n− 1 and n≥ 2�

d

dq
E�min�X�y�


=




0� n= 0 or y = 0�
n� y ≥ n and n≥ 1�
n�1− Iq�y�n− y��� 1≤ y ≤ n− 1 and n≥ 2�

In particular, �d/dq�E�min�X�y�
 is a decreasing function
of q. For any y ≥ 0 and any x ∈ �0�n
�

P�min�X�y� > x�

=




0� n= 0 or y = 0�
Iq��x�+ 1�n−�x��� y ≥ x and n≥ 1�
0� y < x and n≥ 1�

where �x� is the integer part of x.
Proof. See the online supplement. �

Proposition 3. For any feasible value of a and p, the
expected revenue gain from offering callable products is

E�W�a�p�


= �pH − p�E�min�G�a��VL�a��


= �pH − p�qE
[
SL�a��1− Iq�G�a�� SL�a�−G�a���+

SL�a�+DH > c�DH ≤ c− 1]
+ �pH − p�E

[
G�a�Iq�G�a�+ 1� SL�a�−G�a��+

SL�a�+DH > c�DH ≤ c− 1]
+ �pH − p�qE�SL�a�+DH ≥ c� SL�a�≥ 1
�

and, for any x≥ 0�

P�W�a�p� > x� = P

{
min�G�a��VL�a�� >

x

pH − p

}

= E

[
Iq

(⌊
x

pH−p

⌋
+1�SL�a�−

⌊
x

pH−p

⌋)
+

G�a�≥ x

pH − p
�SL�a�≥ 1

]
�
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Proof. Because

�0<G�a�≤ SL�a�− 1� SL�a�≥ 2�
= �SL�a�+DH > c�DH ≤ c− 1� SL�a�≥ 2�
= �SL�a�+DH > c�DH ≤ c− 1��

applying Lemma 3 immediately yields the proposi-
tion. �

The following lemma gives a condition for the exis-
tence of the solution to the first-order condition (9).
It also discusses the concavity in q of the function
r�a�h�q��.

Lemma 4. Under Assumptions 1 and 2, E�W�a�h�q��

and r�a�h�q�� are strictly concave in q ∈ �0� q̄H 
. In addi-
tion, suppose that Assumptions 1, 2, and 3 hold. If

h′�q�E�min�G�a��VL�a��


≥ �pH − p�
d

dq
E�min�G�a��VL�a��
 at q = q̄H�

then (9) has a unique solution within �0� q̄H 
; otherwise,
q = q̄H is optimal and is defined to be the solution of (9).

Proof. See the online supplement. �

By Lemma 3, we can write the optimality Equa-
tion (9) for q as

h′�q�
{
qE�SL�a��1− Iq�G�a�� SL�a�−G�a���+

SL�a�+DH > c�DH ≤ c− 1

+E�G�a�Iq�G�a�+ 1�VL�a�−G�a��+

SL�a�+DH > c�DH ≤ c− 1

+ qE�SL�a�+DH ≥ c� SL�a�≥ 1


}
= �pH − p�

{
E�SL�a��1− Iq�G�a�� SL�a�−G�a���+

SL�a�+DH > c�DH ≤ c− 1

+E�SL�a�+DH ≥ c� SL�a�≥ 1


}
� (11)

For programming purposes, the terms in (11) can
all be computed easily as shown in the online
supplement.

4.3. Global Optimality
It is not immediately obvious that a value of �a� p�
that satisfies the first-order conditions is necessarily
a global optimum for three reasons: (1) The function
r�a� p� is not concave in a, although from Lemma 4 it
is concave in q. This can be seen easily because r�a�0�
is not concave in a. (2) There may be more than one
global optimal solution for r�a� p�, as can be seen from
the case of r�a�0�. (3) The two parameters a and p
are, respectively, discrete and continuous. However,
the following proposition sheds light on the issue of
global optimality.

Proposition 4. There must be at least one global max-
imizer for r�a� p�. Furthermore, if �a∗� p∗� is the global
maximizer with the largest a∗, then we must have a∗T ≤ a∗.
In other words, the largest optimal solution has a more
generous booking limit than any traditional solution. (Note
that Assumptions 1, 2, and 3 are not needed for this result.)

Proof. Because the domain a ∈ �0� c
 and p ∈
�pL� p̄H 
 is compact, r�a� p� must have at least one
global maximum. Next, we prove a∗T ≤ a∗ by con-
tradiction. Suppose that a∗T > a∗. Because a∗T is
optimal for the traditional revenue management
without callables, we have E�R�a∗T �
 ≥ E�R�a∗�
.
Because E�W�a�p�
 is increasing in a, it follows that
E�W�a∗T � p

∗�
≥ E�W�a∗� p∗�
. Therefore, we have

r�a∗T � p
∗� = E�R�a∗T �
+E�W�a∗T � p

∗�


≥ E�R�a∗�
+E�W�a∗� p∗�
= r�a∗� p∗��

which contradicts the fact that �a∗� p∗� is the global
optimizer with the largest booking limit. �

Proposition 5. Under Assumptions 1, 2, and 3, the
global maximizer �a∗� p∗� with the largest a∗ must sat-
isfy the first-order condition (9) with p∗ ∈ �pL� p̄H 
 and
a∗ = a�g�p∗��.

Proof. By Assumption 1 and Proposition 1, we
have that E�W�a�p�
 > 0 for p ∈ �pL� pH�, and, by
Assumption 3, E�W�a�p�
 = 0 at p = pL and p = pH ,
so it follows that any optimal solution must be in
the set �pL� pH�. Moreover, because the profit at p̄H is
at least as large as the profit in �p̄H� pH�, it follows
that any optimal solution must be in the set �pL� p̄H 
.
If p̄H is the global optimum, then the statement is
clearly true. Now let �a∗� p∗� be the global maxi-
mizer with the largest a∗, pL < p∗ < p̄H . Then, clearly
�a∗�g�p∗�� must satisfy the first-order condition in q
(Equation (9)); otherwise, if the derivative is nonzero,
one can always decrease (respectively, increase) p∗ if
the derivative is less than zero (respectively, greater
than zero) and achieve a higher value for the objec-
tive function because q∗ is in the interior. The rest of
the result follows easily from Lemma 2. �

Suppose that Assumptions 1, 2, and 3 hold. Then,
one approach to optimization would be to find the
unique p ∈ �pL� p̄H 
 satisfying (9) for every fixed a ∈
�a∗T � c
, and then find the best a through exhaustive
search.

5. Numerical Results
In this section, we present simulation results that
illustrate the effects of offering callable products
under different assumptions. We start by introducing
the models that we will use for choosing the demands
DH and DL and for the participation function g. We
then extend the analysis to the case in which offer-
ing a callable product may actually induce additional
demand.
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5.1. Modelling Demand
Our demand model is based on the assumption that
low- and high-fare customers are drawn from disjoint
populations and that all customers have a reservation
price for the flight being sold. A low-fare customer
will seek to book if and only if her reservation price
RL ≥ pL, and a high-fare customer will seek to book if
and only if her reservation price RH ≥ pH . Initially, we
assume that a low-fare customer’s decision to seek a
booking is based only on her reservation price RL and
the fare pL, but not on the recall price p. We relax this
assumption in §5.3.
We assume that low-fare and high-fare customers

arrive according to Poisson processes with rates ,L�0
and ,H�0, respectively. Then, DL is Poisson with mean
,L �= ,L�0P�RL ≥ pL�, and DH is Poisson with parame-
ter ,H �= ,H�0P�RH ≥ pH�.
We consider two possibilities. In the first case

(called the Poisson case), the parameters ,L�0 and ,H�0
are known with certainty (i.e., they are fixed con-
stants). In the second case, the parameters ,L�0 and
,H�0 are random. It is well known (see p. 204 in
Johnson et al. 1992) that if the parameter , of a
Poisson random variable has a gamma distribution
with density

f �,�= 1
./0�/�

,/−1e−,/.� , > 0� /> 0� .> 0�

then the resulting random variable is negative bino-
mial with

P�X = x� =
(
/+ x− 1
/− 1

)(
.

.+ 1
)x( 1

1+.

)/

�

x= 0�1�2� � � � �
This is the second case (called the negative binomial
case). The negative binomial case can also arise if cus-
tomers arrive according to Poisson processes, each
customer may purchase more than one ticket, and
the number of tickets purchased follows a logarithmic
distribution (see Johnson et al. 1992).

5.2. The Participation Function g
Each first-period (low-fare) customer decides whether
or not to purchase by comparing the low fare to his
reservation price. Once he has decided to purchase,
he then decides whether or not to grant the call option
by comparing his reservation price to the recall price.
Specifically, a first-period customer will purchase if
RL ≥ pL and will grant the call option if p >RL ≥ pL.12

In this case,

g�p�= P�RL < p �RL ≥ pL�= 1− P�RL ≥ p�/P�RL ≥ pL��

12 In general, the customer’s decision to grant the call option may
include a calculation for the potential cost related to giving back
the product. More precisely, the customer will buy the low-fare
ticket if RL ≥ pL, but will only grant the call option if p >RL + c for
some cost parameter c. However, if upon calling back the customer

We extend this simple consumer-choice model in §5.3
to the more realistic case in which potential low-fare
customers use both the low fare pL and the recall price
p to determine whether or not they will purchase.
We also note that, in practice, the participation func-
tion will most likely not be derived from a structural
model but estimated directly from historical data.
First, we consider the case when the reservation

price is uniformly distributed. For RL uniformly dis-
tributed in the interval �a� b
 with pL ∈ �a� b�, we have
g�p� = 1− �b− p�/�b− pL� for pL ≤ p ≤ b, resulting in
p = h�q� = b − �1 − q��b − pL� for 0 ≤ q ≤ 1, which is
linearly increasing and hence convex in q.
For all the examples, we set the capacity of the

plane c = 100. Suppose that RL is uniformly dis-
tributed in the interval �$0�$300
 and that pL = $150.
Then, h�q� = 300 − 150�1 − q� = 150 + 150q for 0 ≤
q ≤ 1, h′�q� = 150 and p = h�q� = 150 + 150q. In this
case, q̄H = 1, and the range of q is q ∈ �0�1
.
Table 1 shows the results with and without callable

products for various settings of pH�,H0, and ,L0 for
both the Poisson and negative binomial cases, where
RH is uniformly distributed in the interval �$0�$600

when pH ∈ �$400�$500�$550� and in the interval
�$1�000�$1�300
 when pH = $1�100. The expected rev-
enue increase from offering callable products ranges
from 0.25% to 2.81% with an average of 2.15% in
the Poisson case and from 2.85% to 10.12% with an
average of 6.98% in the negative binomial case. The
increase is especially pronounced when the difference
between low and high fares is significant, when high-
fare demand is uncertain (the negative binomial case),
and when expected demand exceeds capacity. In the
case of very high demand, the increase due to the
callable products dips because the optimal allocation
to low-fare bookings is small.
We want to ensure that the substantial gain from

callables in Table 1 is not due to the fact that pL and pH

were arbitrarily chosen. To reduce this risk, we use a
fluid limit heuristic to calculate pL and pH (see Gallego
and van Ryzin 1994):

max
pL�pH

,LpL +,HpH = ,L0P�RL ≥ pL�pL

+,H0P�RH ≥ pH�pH

subject to ,L0P�RL ≥ pL�+,H0P�RH ≥ pH�≤ c� (12)

Table 2 shows the results using pL and pH calcu-
lated according to (12) for both uniform and expo-
nential reservation prices. Note that this significantly

is given an alternative service (such as being rescheduled on an
alternative flight), the cost c may be quite small. Furthermore, the
impact of this additional cost c may be diminished in the case of
demand induction, where more customers participate in granting
the call option.
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Table 1 Comparison of Low-Fare Booking Limits and Expected Revenues With and Without Callable Products

Optimal
low-fare seats Expected revenue

Ex. rev.
pH ($) �H0 �L0 Case Base Call. p∗ q∗ Base Call. increase (%)

400 80 160 P 72 78 178�70 0�191 20�815�2 21�263�6 2�15
NB 71 83 210�72 0�405 18�915�8 19�982�4 5�64

100 200 P 65 71 182�58 0�217 22�452�1 23�027�9 2�57
NB 64 76 215�88 0�439 20�379�6 21�730�6 6�63

150 300 P 48 54 193�49 0�290 26�421�4 27�036�2 2�33
NB 46 59 229�81 0�532 23�872�5 25�169�2 5�43

500 80 160 P 85 90 171�81 0�145 18�273�2 18�424�9 0�83
NB 84 94 206�06 0�374 16�865�1 17�622�2 4�49

100 200 P 81 87 174�68 0�165 20�102�8 20�637�5 2�66
NB 79 91 208�56 0�390 18�314�3 19�736�1 7�76

150 300 P 73 79 179�85 0�199 22�864�8 23�506�6 2�81
NB 69 84 217�61 0�451 20�705�0 22�422�5 8�30

550 80 160 P 92 96 167�48 0�117 15�569�8 15�609�3 0�25
NB 92 99 199�81 0�332 14�754�8 15�175�7 2�85

100 200 P 90 95 169�70 0�131 17�710�0 18�078�4 2�08
NB 89 98 200�09 0�334 16�300�6 17�370�7 6�57

150 300 P 85 91 172�67 0�151 19�334�9 19�863�7 2�74
NB 84 95 205�40 0�369 17�702�0 19�276�1 8�89

1,100 50 200 P 60 70 191�77 0�278 45�236�8 46�315�8 2�39
NB 46 73 259�67 0�731 41�301�4 44�578�2 7�93

20 200 P 83 90 176�41 0�176 26�734�7 27�456�7 2�70
NB 74 93 224�35 0�496 24�080�2 26�516�9 10�12

10 200 P 90 96 170�66 0�138 20�570�7 21�034�5 2�26
NB 85 99 211�43 0�410 18�619�6 20�322�1 9�14

Notes. Reservation prices for the low fare are uniformly distributed U	$0�$300
 and pL = $150. “P” refers to the Poisson case and “NB” to the negative
binomial case. The negative binomial case has �= 2 and �= 10 for the low-fare and high-fare customers and �’s are chosen to match the mean of the Poisson
case. “Base” refers to results without callable products and “Call.” to results with. Total capacity c = 100. p∗ is the optimal recall price and q∗ = g�p∗� is the
corresponding participation probability. The high fare is U	$0�$600
 for pH ∈ �$400�$500�$550� and U	$1�000�$1�300
 when pH = $1�100. The last column
is the expected percentage revenue increase from offering callables.

improves revenue for all choices of ,L0 and ,H0. Nev-
ertheless, the expected revenue increase from offering
callable products remains high. For the exponen-
tial distribution, we assume that RL and RH have
means 150 and 300, respectively. Then, g�p� = 1 −
e�pL−p�/150 = q, and

p= h�q�= pL − 150 log�1− q�� h′�q�= pL +
150
1− q

�

0≤ q ≤ qmax�

where qmax = 1 − e�pL−pH �/150. Note also that ,L =
,L0e

−pL/150 and ,H = ,H0e
−pH /300. Note that the expected

revenue is lower when reservation prices are expo-
nentially distributed. This is due to the fact that
the exponential distribution results in more proba-
bility being associated with lower reservation prices
than the uniform distribution. However, the incre-
mental benefits from offering callable products are
still significant.
Our analysis so far has assumed that low-fare cus-

tomers make their decisions to book independently

of the existence of the callable product and its recall
price. That is, we have assumed that a low-fare cus-
tomer will seek to book if and only if his reserva-
tion price RL is greater than or equal to the low
fare, pL. However, the option to purchase the callable
product may also induce new customers who would
not seek to book if the callable product was not
available.
To see this, consider a low-fare customer who has

a subjective probability s that his unit will be called if
he purchases a callable product. His expected surplus
will be RL − pL if he purchases the standard prod-
uct and s�p − pL�+ �1− s��RL − pL� if he purchases a
callable product. This quantity is nonnegative as long
as RL ≥ pL − �p − pL�s/�1− s�. Assuming that all cus-
tomers are risk neutral, demand is induced from cus-
tomers with RL ∈ �pL − �p − pL�s/�1− s�� pL�, and the
probability that a buyer will agree to a call given that
he makes a purchase has to be adjusted accordingly.
Note that the induced customers will all purchase the
callable product. The model without demand induc-
tion corresponds to the pessimistic prior s = 0.
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Table 2 Comparison of Results With and Without Callable Products for Uniformly Distributed (Low Fare U	0�300
 and High Fare U	0�600
) and
Exponential Distributed Reservation Prices, When pL and pH Are Chosen According to (12)

Optimal
low-fare seats Expected revenue

Ex. rev.
Case Base Call. p∗ q∗ Base Call. increase (%)

Uniform distribution
pL = $150 �H0 = 60� �L0 = 120 P 70 74 $174�54 0�164 $17�798�7 $17�865�6 0�38
pH = $300 (�H = 30� �L = 60) NB 73 81 199�09 0�327 16�525�2 16�866�4 2�07
pL = 180 �H0 = 80� �L0 = 160 P 65 70 205�15 0�210 22�304�0 22�577�6 1�23
pH = 330 (�H = 36� �L = 64) NB 70 78 227�20 0�393 20�446�2 21�071�2 3�06
pL = 210 �H0 = 100� �L0 = 200 P 61 67 231�54 0�249 25�747�1 26�066�3 1�24
pH = 360 (�H = 40� �L = 60) NB 67 77 253�49 0�483 23�617�3 24�360�6 3�15
pL = 250 �H0 = 150� �L0 = 300 P 52 59 267�32 0�346 31�026�5 31�424�6 1�28
pH = 400 (�H = 50� �L = 50) NB 60 74 286�89 0�738 28�406�6 29�373�7 3�40

Exponential distribution
pL = $150 �H0 = 60� �L0 = 120 P 78 81 $164�95 0�095 $13�243�63 $13�243�64 0�00
pH = 300 (�H = 22� �L = 44) NB 81 84 185�69 0�212 13�024�9 13�073�2 0�37
pL = 150 �H0 = 80� �L0 = 160 P 71 75 170�35 0�127 17�517�5 17�564�3 0�27
pH = 300 (�H = 29� �L = 59) NB 74 80 186�28 0�215 16�335�1 16�609�0 1�68
pL = 168 �H0 = 100� �L0 = 200 P 66 70 191�01 0�142 20�958�3 21�191�5 1�11
pH = 318 (�H = 35� �L = 65) NB 70 76 204�40 0�215 19�203�4 19�671�8 2�44
pL = 243 �H0 = 150� �L0 = 300 P 62 65 266�12 0�143 28�957�5 29�222�7 0�92
pH = 393 (�H = 41� �L = 59) NB 69 74 276�83 0�202 26�590�9 27�097�8 1�91

Notes. The negative binomial case (NB) has �= 2 and �= 10 for low-fare and high-fare customers, respectively, and �’s are chosen to match the mean of the
Poisson case (P). “Base” refers to results without callable products and “Call.” to results with callable products. Total capacity c= 100.

5.3. Demand Induction
Demand induction has two possible impacts: it may
increase the arrival rate for the low-fare demand DL,
and it may increase the participation probability. For
example, in the case of Poisson demand, with s = 6%,
a = 0� b = $300 for the low fare and a = 0� b = $600
for the high fare, the expected revenue for the case
,L0 = 200 and ,H0 = 100 (with an optimal choice of pL

and pH ) is $26,131. This number was obtained by sim-
ulation using the booking limit and the recall price
that were found optimal for the case without demand
induction. This represents an increment of about $65
relative to the case without demand induction. Of the
$65 increase, $6 is due to the increase in the participa-
tion function and the rest is due to the increase in DL.
After optimizing over a and p using Crystal Ball,
we obtained an estimated expected revenue equal to
$26,154 with a= 69 and p= $241�54.
We note that the numerical results in this section

have assumed that potential customers are risk neu-
tral. Everything else being equal, we would expect
that the benefits would be somewhat lower in the case
in which some or all customers showed some degree
of risk aversion. In particular, the effect of risk aver-
sion is to reduce the value of g�p� for each value of
p. However, the same basic analysis would be used
to calculate the p∗, a, and expected revenue. In prac-
tice, we anticipate that the function g�p� would be
empirically derived from historical experience, just as

airlines forecast demand for various booking classes as
described in Chapter 9 of Talluri and van Ryzin (2004).

6. Discussion and Extensions
We have introduced the concept of callable prod-
ucts and have shown how they can generate riskless
revenue improvement in the case of a simple two-
period revenue management setting. There are a
number of ways that this model simplifies reality.
Real-world revenue management involves multiple
fare classes offered through multiple channels over
many time periods, often across a network. Exten-
sion to multiple time periods and multiple fares raises
a number of important design issues and potential
analytical complications. However, we believe that
they would not alter the fundamental insight—that
offering callable products to early-booking low-fare
customers would increase expected revenue when
there are also later booking high-fare passengers.13

We have presented our analysis of the callable prod-
ucts in the traditional revenue management model
in which low-fare passengers book prior to high-fare

13 Of course, calculation of the booking limits for all fares would
need to be modified in the presence of callable products. It is
unlikely that a closed-form solution for the general problem of set-
ting booking limits in the presence of callable products will be
possible—rather, we would expect that airlines would use modi-
fications of existing booking limit heuristics such as EMSR-a and
EMSR-b (see Talluri and van Ryzin 2004 for a discussion of these
heuristics).
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passengers. We should note that this assumption sim-
plifies analysis and provides easy comparison with
standard results, such as Littlewood’s rule. How-
ever, for callable products to improve revenue, it is
not critical that all low-fare demand books before
high-fare demand; it is only important that some low-
fare demand books before some high-fare demand.

6.1. The Timing Issue
A more serious issue involves timing. We have
assumed in this analysis that the airline can observe
all high-fare demand before determining the number
of calls to issues. In reality, the calls would need to
be issued some time before departure (say 24 hours).
There is then the probability of additional high-fare
demand materializing after the decision has been
made on how many bookings to call. In fact, air-
lines experience significant walk-up demand (some-
times called “go-shows”) that does not appear until
just prior to departure. With the possibility of such
late-booking high-fare demand, the decision of how
many calls to issue is no longer trivial. However, even
in this case, offering callable products can provide
additional revenue.
To see this, consider the case in which the high-

fare booking period is divided into two subperiods.
Calls need to be issued at the end of the first subpe-
riod when some, but not all, of the high-fare bookings
have arrived. Specifically, let DH1 be demand during
the first subperiod and DH2 be demand during the
second subperiod. It is easy to see that during the
first subperiod, it is optimal for the airline to first
sell inventory until it is exhausted and then exercise
calls until they are exhausted. Let s be the number
of seats and let z be the number of calls remaining
at the end of the first subperiod, after observing DH1

but before observing DH2. The problem is to decide
how many, if any, of the calls to exercise before the
beginning of the second subperiod. We can write this
problem as 42�s� z� =min0≤x≤z�pHEmin�DH2� s + x�−
px
. The expected marginal value of exercising the
�x+1�st option is pHPr�DH2 > s+x�−p. Conceptually,
we could find the optimal value x∗ by starting at zero
and increasing x by one until we find the smallest
integer at which increasing to x + 1 would lead to a
decrease in value. It follows that x∗ =min�z� �y∗−s�+
,
where y∗ is the smallest integer such that pHP�DH2

>y� < p.
We have assumed so far that the demand in the

two subperiods is independent. In fact, we would
anticipate that the high-fare demand observed in the
first subperiod would be highly correlated with the
high-fare demand in the second subperiod. In this
case, y∗�dH1� would be the smallest integer such that
pHP�DH2 > y � DH1 = dh1� < p and x∗�dH1� would be

modified accordingly. The problem of setting a book-
ing limit and an optimal recall price becomes

max
a�p

E
[
R�a�+W�a�p�+42��c− SL�a�−DH1�

+�

�VL�a�− �SL�a�+DH1− c�+�+�
]
�

where now R�a� and W�a�p� are defined relative to
the low-fare demand and the high-fare demand dur-
ing the first subperiod. Gallego and Lee (2004) have
developed this extension allowing for cancellations
and no-shows. They show that selling callable prod-
ucts is an effective revenue enhancing and overbook-
ing reduction tool even when calls have to be made
before departure.

6.2. Hedging Against Cancellations and No-Shows
We have presented the concept of callable tickets
as a hedge against high-fare demand uncertainty.
However, even in industries in which late-booking
demand does not pay a higher fare, there is the
opportunity to use callable products to hedge against
no-shows and late cancellations. Optimal calculation
of total booking limits in the face of cancellations and
no-shows has been estimated to increase revenue at
American Airlines by 8% or more (Smith et al. 1992).
A typical approach to setting total booking levels is
for an airline to estimate a denied boarding cost B
and determine the level of total bookings at which
the marginal expected denied boarding cost of accept-
ing an additional booking is equal to the expected
increase in fare revenue from the additional book-
ing (see Phillips 2005 for a discussion of different
overbooking approaches). In this spirit, we consider
overbooking in the following simple model. An air-
line offers seats at a single fare pL. The ticket price
is entirely refundable, so no-shows pay no penalty.
Each “show” pays the fare but the airline must pay
B > pL to each denied boarding. Let the random vari-
able T �y�a�� denote the number of shows given y
bookings at departure when the airline has set a total
booking limit a. Then, the net revenue that the air-
line will receive is R�a�= pLT �y�a��−B�T �y�a��− c�+,
where D is demand and y�a� = min�D�a� is the
number of bookings at departure given the booking
limit a.
Now assume that the airline has sold V �a� units of

callable product with recall price p with B > p > pL,
and the airline is able to observe shows before decid-
ing which customers to call. In this case, the airline
would call x=min�T �y�a�− c�+�V �a�� units and rev-
enue would be R′�a� = pLT �y�a�� − px − B�T �y�a�� −
x− c�+. Because R′�a�≥R�a� for all values of T �y�a��,
this approach would generate a riskless savings to
the airline. However, it is more realistic that the air-
line would need to exercise the calls some time before
departure. In this case, the airline would not know
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whether or not the passenger being called would
actually show and the revenue to the airline would
be �R�a� = pLT �y�a�� − px − BE�T �y�a� − x� − c
+. The
airline may have the opportunity to improve revenue
by calling some bookings, however, the revenue is
not riskless because products need to be called prior
to observing actual shows. Furthermore, using the
call option in this fashion raises the issue of adverse
selection—customers who choose the callable prod-
ucts may tend to be those who would be most likely
to no-show. This means that the recall price, the total
booking limit, and the number of products called
would need to be jointly optimized to maximize rev-
enue. Callables would also provide revenue benefits
to the seller in the case where there is a chance that
a flight (or other event) might be canceled. In this
case, the seller would only need pay a cancellation
penalty of p to holders of a callable product but a
higher penalty of B to ordinary ticket holders.

6.3. Pure Callable Products
We have considered the case where low-fare cus-
tomers decide whether or not to grant the call option
to the capacity provider. We can also consider the
case where the capacity provider offers a pure callable
product in which the callable option is an intrinsic
part of the product. If the provider is selling both
standard and pure callable products at the same price,
then from the customer’s point of view the situation
is the same as the model we have already analyzed.
Alternatively, the provider may decide to discount

the pure callable product relative to the standard low-
fare product. The following proposition shows that,
under certain conditions, the provider can achieve the
same expected revenue using a single low-fare prod-
uct with a callable option.

Proposition 6. Assume that a provider is offering
(noncallable) discount product at a fare pL along with pure
callable product at a price pC < pL and a call price p. If
first-period buyers are risk neutral and share a common
probability q that their product will be called where q > 0
is equal to the fraction of callable products that the airline
will call, then the airline can achieve the same revenue by
selling a single discount product at pL and offering a free
callable option with recall price �p= p+ �pL − pC�/q.

Proof. See the online supplement. �

The equivalence principal in Proposition 6 holds for
any distribution of first-period customer willingness-
to-pay. However, it does not necessarily hold if cus-
tomers vary in their levels of risk aversion and/or
their ex ante estimates of the probability that their
product will be called. Any one of these variations
could motivate the provider to offer one or more fla-
vors of callable product. In addition, offering pure
callable products would allow the supplier to, at any

point, choose to sell only callable products. In this
case, a potential customer will find that he can only
purchase at the low fare if he grants the callable
option. This could discourage speculators from buy-
ing tickets for shows and sporting events with the
anticipation of selling them later at a higher price.
Using an intensity control model, Feng and Gallego
(2004) show that it is never optimal to close the
callable product before closing the standard product
(without the call option). They also investigate the
problem of dynamically selecting the recall price as a
function of the number of available calls.

6.4. Callable Products with Reaccommodation
Callable products can be generalized to include pas-
senger reaccommodation when an airline offers sev-
eral different routes between the same origin and
destination. Currently airlines manually reschedule
the flights of customers that are bumped at the airport
and of customers whose travel plans are changed by
the replane mechanism. The same manual mechanism
could be used to reschedule passengers whose seats
are called, but we envision the development of more
sophisticated reservation systems that would do this
automatically. The strategy of selling callable products
can be complemented by the introduction of flexible
products in Gallego et al. (2004). While callable prod-
ucts pay only if the call option is exercised, flexible
products offer an up-front discount to customers will-
ing to grant the provider the option of assigning them,
at a later date, to a specific product from a known pre-
specified set. As an example, a customer could buy
a morning flight from New York to San Francisco at
a discount with the airline assigning the customer to
an actual flight at some later time. In a competitive
environment it is also possible, maybe even desirable,
to combine the features of flexible and callable prod-
ucts. One possibility would be to give a small up-front
discount at the time of sale, as in flexibles, and an
additional discount, as in callables, if the option of
reallocating the customer is exercised. Another option
is to sell a flexible product as a callable product that
can be recalled at a preagreed price. Gallego et al.
(2004) provide a network fluid model of callable prod-
ucts that include elements of flexible products.

6.5. Further Application
This paper has focused on the application of callable
products on a single leg in the case of two fare classes.
However, the basic concept can be extended in a num-
ber of ways. One extension would be to offer multiple
callable products on a leg with different conditions,
strike prices, etc. While this might be of theoretical
interest, we suspect that it might prove consuming
in practice as well as highly complex to implement.
Furthermore, some recent research has suggested that
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offering customers too many complex choices can
be demotivating and actually lead to lower overall
sales (see Iyengar and Lepper 2000). Another exten-
sion would be to apply the concept to a network of
flight legs—Gallego et al. (2004) provide some results
on using a column generation approach to choose
the optimal mix of callable and flexible products to
offer on a network. Also, as noted by Biyalogorsky
et al. (2005), a similar approach could be used for
upgrading—for example, selling a firm a coach ticket
that includes an option to be upgraded to first class.
Although we have focused on airlines as the pri-

mary example, the analysis is applicable to any com-
pany selling constrained and perishable capacity in
which some customers booking later tend to pay more
than some of those booking earlier. Such companies
include any of those in the traditional revenue man-
agement industries such as hotels, rental cars, cruise
lines, freight carriers, and tour operators. We believe
that callable products are also potentially applicable
for tickets to sporting events, concerts, or shows. Sec-
ondary markets such as ebay.com and stubhub.com
are currently used as a forum in which tickets for pop-
ular events are sold at prices that are often well above
face value. Offering callable tickets in such markets
would allow a seller to keep list price constant but call
some tickets if the event proves more popular than
expected.
The examples that we have discussed so far have

involved consumer markets. However, we believe
that there are also business-to-business selling situ-
ations in which low-margin demand tends to arrive
early and there is supply uncertainty. In these cases,
a call option could provide a useful addition to
the various business-to-business contract types sur-
veyed in Kleindorfer and Wu (2003). The concept of
a callable product could also apply in electric-power
markets. Currently, “interruptible” contracts provide
the supplier the right to interrupt service to certain
customers in cases of very high demand in return for
compensation. The callable alternative would be to
pay willing customers a preagreed amount whenever
service is interrupted.
Finally, we note that callable products could be

communicated and implemented in a number of dif-
ferent ways. In some industries, it might be most
appropriate to implement “short-selling” as discussed
in Biyalogorsky et al. (2000). A similar approach was
taken by a now defunct company, iDerive.com, that
enabled sellers to purchase “put options” from con-
sumers (Businesswire 2000). A seller would make a
small payment to a willing customer prior to the
release of a new product. If demand for the prod-
uct turned out to be lower than anticipated, then the
seller could exercise the put—in which case the cus-
tomer would be obliged to buy the product at a dis-
count. If the product proved to be more popular than

anticipated, the seller could choose to sell the product
at list price to another customer and the holder of the
“put” would keep the payment. This provided a way
for companies to hedge against the demand uncer-
tainty intrinsic in introducing a high-risk new product
such as a game player or other consumer electronic
product.
Ultimately, the form in which callable products

would be communicated and managed would de-
pend on the industry and the setting. While there
are obvious challenges, the benefits could be substan-
tial. This is particularly true for airlines in the current
environment in which load factors are extremely high
and, for many carriers, the difference between full-
fare and discount tickets is at record levels. This is the
perfect environment for callable products, and several
airlines are currently investigating ways to implement
the concept.

7. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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