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We analyze the performance of an importance sampling estimator for a rare-event probability in
tandem Jackson networks. The rare event we consider corresponds to the network population
reaching K before returning to O, starting from O, with K large. The estimator we study is based

on interchanging the arrival rate and the smallest service rate and 1s therefore a generalization

of the asymptotically optimal estimator for an M/M/1 queue. We examine its asymptotic

performance for large K, showing that in certain parameter regions the estimator has an
asymptotic efficiency property, but that in other regions it does not. The setting we consider is
perhaps the simplest case of a rare-event simulation problem in which boundaries on the state
space play a significant role.
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tics —probabdwtic algorithms; 1.6.1 [Simulation and Modeling]: Simulation Theory
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1. INTRODUCTION

We analyze the performance of an importance sampling estimator for a
rare-event probability in certain queueing networks. The probability in ques-
tion is

p~ ~ P (network population reaches K before returning to O,

starting from O),

a type of overflow probability if we think of K as an upper limit on the
network population. The networks we consider are tandem Jackson networks
—serial networks of single-server nodes with Poisson arrivals and exponen-
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tial service times. The estimator we study, originally proposed by Parekh and
Walrand [1989], is based on interchanging the arrival rate and the smallest
service rate. We analyze its asymptotic performance as K becomes large, and
show that in certain parameter regions the estimator has an asymptotic
efficiency property, but that in other regions it does not.

To put this problem in context, we give some background. In his analysis of
importance sampling for level-crossing probabilities associated with random
walks, Siegmund [1976] identified the unique asymptotically optimal change
of measure within a parametric class. It follows from his analysis and results
in Asmussen [1982] that the asymptotically optimal change of measure for
simulating large build-ups in GI\G/ 1 queues exponentially twists (in the
sense of, e.g., ) the interarrival- and service-time distributions by a parameter
@o>0 satisfying +~( – 60)&.( O.) = 1, where ~~ and +~ are the moment-
generating functions of the interarrival- and service-times. In the case of an
M/M/ 1 queue with arrival rate A and service rate ~, this equation becomes

which has 00 = ~ – A as its only positive solution, if A < p. Twisting the
interarrival- and service-time distributions by this parameter has the effect
of interchanging A and p. Thus, the asymptotically optimal change of mea-
sure for estimating p~ in an M/M/1 queue corresponds to simulating an
unstable M/M/ 1 queue with arrival rate p and service rate A

More recently, this idea has been extended to queues with complex arrival
processes (see, in particular, Chang et al. [1994] and Kesidis and Walrand
[1993]), to heavy-traffic simulation [Asmussen 1987, X11.7], and to multi-
server queues [Sadowsky 199 1]. Rather less has been accomplished in extend-
ing Siegmund’s original result to networks of queues. Networks—even those
that can be modeled as Markov chains—introduce difficulties not present in a
single queue, primarily because of boundaries on their state spaces. The
queue-length process of a single queue has a boundary at O, but since pK, for
example, depends only on events before the first return to the origin, this
boundary plays no essential role. In contrast, the boundaries in queueing
networks significantly affect the form of the likelihood ratio associated with a
change of measure, and make it much more difficult to identify effective
importance sampling distributions. The boundaries also complicate the
large-deviations analysis of rare events (see, in particular, Dupuis, Ishii, and
Soner [ 1990]).

Based on a heuristic application of large-deviations techniques, Parekh and
Walrand [1989] proposed importance sampling estimators for overflow proba-
bilities in various Jackson networks. For tandem networks, their estimator
interchanges the arrival rate and the slowest service rate, thus generalizing
the M/M/ 1 estimator described above. They evaluated this estimator numer-
ically and found that it generally works well. An optimization step required
in Parekh and Walrand [1989] was solved in Frater et al. [1991]; the
underlying large-deviations problem was further considered in Tsoucas [1992].
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Our analysis of the Parekh-Walrand estimator for tandem queues includes
both positive and negative conclusions. We verify that estimating pK is
difficult in the sense that, without importance sampling, the number of
replications required to achieve a fixed relative error grows exponentially in
K. We show that in certain parameter regions the Parekh-Walrand estimator
is asymptotically efficient, in the sense that the number of runs required
grows subexponentially; indeed, we show that it has linearly bounded relative

error, meaning that the number of runs required grows at most linearly in K_.
Under an additional condition on the model parameters, the estimator has
bounded relative error, meaning that the number of runs required is bounded
in K.

However, we also show that in other parameter regions the estimator fails
to be asymptotically efficient and is therefore no better, in an asymptotic
sense, than straightforward simulation. In particular, in two-node systems
we show that asymptotic efficiency fails when the two service rates are nearly
equal and the arrival rate is small. This is consistent with a numerical
observation in Parekh and Walrand [1989] and the discussion in Anantharam
et al. [1990]. The intuition for this is as follows, In a system with significantly
different service rates, given that a large network buildup has occurred, it
has most likely occurred because of a large buildup at the bottleneck node;
interchanging the arrival rate with the bottleneck service rate mimics this
conditional behavior. But if the service rates are close, there are many ways
for a large network population to accumulate, so importance sampling based
on the interchange rule tends to be less effective. (For an example of a precise
connection between a change of measure and a conditional law given a rare
event, see Asmussen [1982 ].)

Both the positive and negative results reported here contribute to the
growing area of rare-event simulation. The negative results may serve as a
cautionary note on the presumption that importance-sampling distributions
suggested by large-deviations calculations are automatically effective (though
even this statement must be qualified because a complete large-deviations
analysis of the models we consider is not available). The positive results
represent, as far as we know, the only proof of asymptotic efficiency for an
exponentially rare event in a setting where boundaries play a significant role.
Some of the techniques we use in establishing both types of results may prove
useful in other settings.

The rest of this paper is organized as follows. In section 2, we present
bounds and asymptotic for p~ as a function of K; these are needed for the
relative-error analysis in later sections. With no additional complication we
present these results for arbitrary Jackson networks, not just tandem queues.
Section 3 analyzes the performance of straightforward simulation and then
introduces the importance sampling estimator in detail. Sections 4 and 5
present, respectively, necessary conditions and sufficient conditions for
asymptotic efficiency.

Preliminary versions of some of the results reported here are contained in
Glasserman and Kou [1993]. However, that paper considered only two-node
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networks and did not establish linearly bounded relative error or bounded
relative error—only asymptotic efficiency.

2. OVERFLOW PROBABILITIES IN JACKSON NETWORKS

In this section, we derive upper and lower bounds on the overflow probability

PK for arbitrary (stable) Jackson networks. The lower bounds, in particular,
are necessary for the asymptotic analysis of the importance-sampling estima-
tor given in subsequent sections. The development in this section proceeds in
two steps: we first bound the stationary probability of the overflow set—the
set of states with job population K; we then use a regenerative argument to
convert the stationary bounds to bounds on the transient probability p~.

2.1 Stationary Overflow

Consider a d-node Jackson network with arrival rate A and service rates

I.L=(l..q, ..., Wd). Arrivals join node i with probability q,; departures from
node i join node j with probability P,J and leave the network with probability

1 – ~lpij. The matrix P is irreducible and has spectral radius less than 1.
Letq=(ql,... , q~) and suppose throughout that

[Aq(l– P)-l], < ~,, i=l ,. ... d, (1)

so that the network is stable. The utilization parameters p = ( p ~, . . . , p~ ) are
given by

[ 1p, = Aq(I – P)”l ,/I.LL, i=l ?. ..9 d.

When (1) holds, the vector queue-length process has stationary distribution n
given by

d

57(X) = ~ (1 – p,)p,”, X=2:; (2)
~=1

see, e.g., Kelly [1979].
Define the ouerfZow set

cK={xez: :xl+”””+xd= K},

the set of states in which the network population is exactly K. We bound PK
by first bounding m-(CK). Let

P* = max p,,
i

the utilization of the most highly utilized node in the network.

LEMMA 2.1. m(CK) > p!$~f.l(l – p,).

This follows from the fact that the state in which there are K jobs at a
maximal-utilization node and no jobs anywhere else is an element of CK.
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LEMMA 2.2. There is a constant c s 1 such that T(C~) < CP$(K + I)d-1.

MoreoverJ if d = 2, then

where cl, Cz are constants,

PROOF. For the general case, we have

d

m-(ck)= E JJ (1 -p,)p;’
xl+ +xd=K i=l

d

< JJ (l–p, )pf z 1
~=1

xl+ +x~=K

(3)

= cp$(K+ l)d-l.

For the special case d = 2, the result for pl = pz follows directly from (3). If,
instead, we have pl < pz, then (3) becomes

K

7T(CK)= (1 – pl)(l – p2)p: ~ (pl/p2)x’ < Clp:
Xl=o

The case pz < pl works the same way. ❑

2.2 Transient Overflow

Under the stability condition (1), the origin is positive recurrent for the
queue-length process X~ = (X:,. . ., x:), t >0. Let TO denote the time of the
first return to zero, let 230denote expectation for X started at the origin, and
let co = I?o[ To ] be the expected length of a O-cycle. A standard result on
regenerative processes (e.g., Asmussen 1987, p. 126) then asserts that

7T(CK)= C;lEO [J‘01
o I,x,=cK} dt ~ (4)

We use this to prove the following result, applying an argument of Anan-
tharam [ 1989].

THEOREM 2.3. For all K >1,

where b ~, bz are constants.

PROOF. Let
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and observe that

EOIIK] =pKE~[I~ l~jy>01,
so (4) implies

C077-(CK)

‘K= EOIIKIIK>OI” (5)

We can therefore bound p~ using our bounds on n(C~ ), provided we can
bound EO[ ~K I ~~ >01.

Once the network population reaches K, at least one service time must
elapse before the last exit from C~ in the cycle. Thus,

O < min W,-1 <Eo[IKllK> o]. (6)
L

To get an upper bound, let

( }t’ =max EXITO]:~x, = 1 ,
1

where Ez denotes expectation starting from state x. Thus, t* bounds the
expected time to empty the network from any state in which there is exactly
one job in the network. The stability condition (1) implies t* < m. Moreover,
given that C~ is reached, 1~ is bounded above by the time to reach zero. We
claim that the expected time to reach zero from C~ is bounded by Kt*. This
will follow if we can show that the expected time to reach C~_ ~ from C~ is
bounded by t*.For this, consider the following sample-path argument. The
time to reach C~_ ~ from C~ is bounded above by the time to reach C~_ ~ with
all but one of the original K jobs frozen, and all newly arriving jobs given
preemptive priority over the frozen jobs. But this is the same as the time to
empty the system from an initial population of 1, and thus has expectation
bounded by t*.We conclude that

Combining (5)-(7) with our bounds on m(C~) concludes the proof. ❑

Remark. An immediate consequence of the bounds in Theorem 2.3 is the
logarithmic limit

1
#+mX~ logp~ = –log p*, (8)

which was proved in Glasserman and Kou [1993].

It seems plausible that Eo[ 1~ I 1~ > O] is in fact bounded by a constant
independent of K; Anantharam and Ganesh [to appear] have proved such a
result for a different type of overflow set. An improvement on the bound in (7)
from 0(K) to 0(1) would allow us to remove the factor K-1 from the lower
bound in Theorem 2.3, and this has implications for the analysis in Section 5.
We point out one case in which such an improvement is readily available:
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PROPOSITION 2.4. In a d-node tandem network satisfying

1 dl
;>~—,

1=1 /4
(9)

we have p~ k bp& with b a constant.

PROOF. Construct an associated queue with arrival rate A and service

times equal to the sum of d exponential random variables with parameters

P’1> ..., I-Ld; under condition (9); this queue is stable. It can be coupled to the
tandem network so that its queue length Y~ is never less than the total
population X: + .. . +X: of the tandem system. Hence, ,?3.[1~ I 1~ > O] is
bounded above by the time Y, spends at or above level K, given that it
reaches level K before returning to zero. This, in turn, is bounded by the
expectation of the last time Y~ > K before reaching O, starting from K, which

is finite and bounded in K [Janson 1986, Theorem I(ii)]. It follows that

EO[ 1~ IIK >01 is bounded independent of K. ❑

3. DIRECT SIMULATION AND IMPORTANCE SAMPLING

3.1 Relative Error

Define the relatiue error of any unbiased estimator of p~ to be the ratio of
the standard deviation of the estimator and p~. The direct-simulation esti-
mator of p~ generates sample paths of the vector queue-length process X
(starting from the origin) and returns the indicator l{TX. ~,}, where T~ is the
time of the first visit to C~. This indicator is clearly unbiased, and the sample
mean of n replications of the indicator has variance ( p~ – p; )/n. For large
K, its relative error is therefore

since p; << p~. But from Theorem 2.3 we find that

A 2 4nb,p~~K+ 1)’

It follows that for large K, the number of replications na required to achieve
a relative error 8 will obey

1

“2 b2p$82(~+ l)d;

i.e., the number of replications required to achieve a fixed relative error grows
exponentially in K.

This analysis shows that a precise estimation of p~ by direct simulation
becomes infeasible for large K. The source of the difficulty is the fact that the
second moment of the indicator l{TK <To} is just p~ itselfi in particular, then,

the first and second moments of the direct estimator vanish at the same rate,

resulting in a relative error that increases exponentially in K.
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Let us contrast this with the best possible performance for any estimator.

Denote by mK the second moment of an unbiased estimator of p~; then.

log m~
Iim inf —

K+= ~0~ PK

The estimator is asymptotically efficient if

log m~
lim sup —

K+ z log PK

> 2.

< 2. (lo)

The second moment of an asymptotically efficient estimator vanishes at twice
the exponential rate of pK itself. Consequently, its relative error increases at
a subexponential rate. More precisely, (10) and the convergence of K-l log p~

together imply that K-1($ log m~ – log p~) -0. Since RE < @/p~, this
implies that lim sup K-1 log RE < O; i.e.,

log(RE) – ●K- –~, VE >0,

which is to say that RE = o(e ‘K) for all e > 0. Because RE grows at a
subexponential rate, the number of replications required to achieve a speci-
fied relative error grows at a subexponential rate as well. This property is
sometimes called asymptotic optimality.

The best possible performance for an asymptotically efficient estimator is
that it have bounded relative error, for then the number of replications
required to achieve a specified RE is bounded in K. A somewhat weaker
requirement, which nevertheless represents a significant improvement over
unqualified asymptotic efficiency, is that the relative error be linearly

bounded in K, or polynomially bounded by a polynomial of known degree.
The analysis in the rest of the paper is devoted to identifying conditions
under which a particular estimator of PK is asymptotically efficient and has
bounded or linearly bounded relative er~or. - ‘ “

3.2 The Importance Sampling Estimator

For the rest of the paper we restrict attention to tandem queues with
rate A and consecutive service rates PI, ..., p~. We always assume

~d = min ~t;
L

arrival

(11)

changing the order of the service rates does not change p~ [Weber 1979] so
this assumption entails no essential loss of generality. The importance sam-
pling estimator we study interchanges A and ~d to make the network
unstable and thus the overflow event less rare.

For simplicity, we work with the discrete-time chain embedded at the
transition epochs of the continuous-time queue-length process. Thus, let X:
denote the number of jobs at node i just after the nth transition, i = 1, . . . . d.

Take as initial state XO = (1, 0,..., O), the only state reachable from the
origin in one transition. Let T~ be the smallest n for which ~, X: = K and
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TO the smallest n for which ~, X; = O. Thus, PK

the subscript on P indicates the starting state.
convention that

,i+~l+...+~d=l.

= PLO, ,O(TK < TO), where
Throughout, we adopt the

(12)

Let Al, Az, . . . . AZ, _ ~ be the distinct, nonempty subsets of {1,..., d – 1}.
Foreach i=l, . . ..21 -l. letet

the number of visits before time n to the boundary on which the nodes in A,

are nonempty but node d and all other nodes not in A, are empty. Define
constants

Let ~, ~ denote probability and expectation for the new system in which A
and Pd are interchanged. The likelihood ratio for {(X:, . . . . X:), O < k < n}
relating to the original (A, KI, . . . . ~d ) system to the new system with parame-
ters (Wd, Ml, ..., A) is given by

More specifically, we have the following result. (In the statement of the
proposition and throughout the paper, for any event G the notation ~[.; G]
denotes ~[. lG ], where 1~ is the indicator of G.)

PROPOSITION 3.1. With the notation above,

PK = ‘1,0, ,O~TK < ‘()) ‘z~,o, ,O[&x; ~K < ‘o],

the subscripts indicating the starting state.

This result is a version of Wald’s likelihood ratio identity in the particular
form put forth in Glynn and Iglehart [ 1989] for Markov chains, so we omit
the proof.

Remark. In Section 5, it will be important to keep in mind that none of
the N; counts visits to the origin, since the A, are nonempty. Every visit to
the origin is directly followed by a visit to (1, 0,.. ., O) under both the old and
new measures. Consequently, the likelihood ratio associated with this transi-
tion is just 1, and does not contribute to Ln,

From Proposition 3.1 and (13) we find that

[ 1PK = (~/l.Ld)K-lE1,o,.,0 ~a~k;TK < To .
L

Thus, the estimator of pK obtained from simulation under the new measure
consists of independent replications of

(14)
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from initial state (1, 0,..., O). Comparing this expression with (8) and noting
that p* = A/~~, we see that ~~ in effect estimates the correction to the
asymptotic result (8) for finite K. The analysis of this estimator is compli-
cated by the fact that the al are strictly greater than 1. The presence of these
factors embodies the difficulty introduced in the problem by the boundaries
corresponding to states in which the last node is empty. A consequence of
Proposition 3.1 and (8) is

though a priori

finite.

4. NECESSARY

K-1log El
[

.0.. ,0 rI@’; ~ir< To +0,
i 1

it is not even obvious that the El o ,, 0[ a~.; T~ <2’0 ] are,,>

CONDITIONS FOR ASYMPTOTIC EFFICIENCY

The second moment of the estimator j5~ in (14) is

El,o, [ [
,0 @K;TK< To]= (A\/-L~)2K-2~10,,,0 ~afN;.;T’ < TO . (,@>>>

c 1
Thus, in light of (8) and (10), our estimator is asymptotically efficient only if

[ 1limsup K-l log~l,o, ,0 ~a2N~~;T~ < To = O. (16)
K+ x L

We will see that this is not always the case.

4.1 Two-Node Networks

We begin by examining the case d = 2 because it is the simplest. In two-node
networks there is only one boundary to consider—the set of states in which
the second node is empty. Thus, we may simply write

P’2 + /%

a= al= A+~l’

and let N. be the number of visits to the horizontal boundary Al =

{(xl, X2): xl >0, Xz = O} before time n. We now have

PROPOSITION 4.1. A necessary condition for asymptotic efficiency is p2 s

1/(pl + 2); in particular, p2 cannot exceed fi – 1.

PROOF. we obtain a lower bound on ~l,o[ a2NTK; T~ < To] by considering a
single sample path in the event {T~ < To}. Consider the path that moves
K – 1 stem to the right from (1, O) to hit (K, O). This path has probability

/-L2))K-1;o; this path; NT~ = K – 1. Thus,
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and our necessary condition (16) for asymptotic

(&11i:::12

efficiency entails

< 1. (17)

This simplifies to ~z < 1/( WI + 2). The largest value of ~z satisfying this
inequality and also the condition pz < PI required by (11) is ~ – 1. ❑

Our necessary condition is consistent with observations in Parekh and
Walrand [1989], based on numerical experiments, that the estimation prob-
lem is most difficult when Kz is close to ~l. Anantharam et al. [ 1990] propose
an entirely different estimator for the case WI = pz.

4.2 Multinode Systems

We now derive necessary conditions for asymptotic efficiency in multinode
systems. The argument we use is the same as that used to prove Proposition
4.1: we identify sample paths with sufficiently high probability and suffi-
ciently large likelihood ratios that they are consistent with asymptotic effi-
ciency only in certain parameter ranges. The presence of additional nodes
provides considerably more flexibility in the choice of paths.

To state the next result, we introduce the notation

A,j =A, U {j}, A,J~ =A, u {j, h} i=l ,...,21-l; l; j,k=l,..., d.

With this we have the following theorem.

THEOREM 4.2. The following conditions are necessary for asymptotic effi-

ciency:

(18)

PROOF. Each of the (d – 1) x (2 d -1 – 1) cases in (18) is established using

the argument in Proposition 4.1 for a particular sequence of sample paths.

For each i and j, the inequality in (18) corresponds to the following path: the
first job advances to the highest-index node in A,; a second job arrives and
advances to the node in A, with the next highest index; this continues until
each node in A, has one job. Subsequently, jobs arrive and advance through
the network, accumulating at node j, without any of the other nodes in A,

emptying. This continues until there are K – IA,J I jobs at node j, and 1 job at
each of the other nodes in A, j. The path is completed with the arrival of a
Kth job at node 1. A straightforward but tedious calculation shows that the
~-probability of this path is
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ratio for this path is

where Ml and Mz represent positive terms independent of K. Consequently,

2?1,., ~[L;E; TK< To]

A necessary condition is, then, that the product of the terms in square
brackets be no greater than 1, which yields (18) after some algebraic simplifi-
cation. ❑

With Al = {1} and j = 1, (18) becomes WI I..Ld+ Vj s (WI + A)2, which
matches (17) when d = 2. Examples of parameters violating this necessary
condition are (A, WI, ~z, ~z) = (0.10, 0.30, 0.32, 0.28), for d = 3, and

(A, PI, Ka, p~, Wl) = (0.09, 0.23,0.227,0.227, 0.226), for d = 4.

5. SUFFICIENT CONDITIONS FOR ASYMPTOTIC EFFICIENCY

Lower bounds on the second moment of the estimator give necessary condi-
tions for asymptotic efficiency; to get sufficient conditions, we need upper
bounds. We begin by making two modifications that result in upper bounds:
we omit the indicator 1~TK<TO}in (15), and we replace the N$~ with

the total number of transitions on boundaries in which the last node is
empty; N is almost surely finite under the new measure because the last
node is unstable in the ( Kd,, I-Ll, ..., ~d -1, A) system, and thus empty for only
finitely many transitions. If we can show that

E1,0, .,o[~2N1 < ‘, (19)

with

a = max ai (20)
i

it will follow that the expectation on the right side of (15) is bounded
uniformly in K, and this will lead to asymptotic efficiency.
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5.1 A Gauge-Function Lemma

To establish (19), we prove a general result on moment-generating functions
of functional of Markov chains, sometimes called gauge functions. Lemma
5.1, below, is a counterpart of a result in Simon [1979, p, 117] for Brownian
motion. Simon cites earlier work in the mathematical-physics literature, and
points out that the result extends to general strong Markov processes; for
completeness, we include a proof of the result in the form required for our
setting. This result could prove useful in the analysis of other likelihood
ratios for Markov chains with boundaries.

~EMiMA 5.1. Let q be a nonnegative, real-valued function on the state space

of X. If

‘= ‘:p+oq(xn)]“
then

‘:pEx[exp(:oq(x41<(’-7)-’<m

PROOF. We have

I
.

E, HIz dxnl)q(x,) = E. E. i q(xnl)q(xn,) Ix,,..., X.,osn1<n2 o<nlsn~ 11

= i ‘x[q(xn)Ex[:oq’xJ)llnl=O

‘Ex[n:oq(xn)ly<yz.
Thus, by symmetry,

;Ex[(:lq(.xn)~] 5y2>

and by an analogous argument

;~.[(:lq(xn))k] sy’,

forallk = 0,1,2, . . . . By the monotone convergence theorem, we thus have

‘x[exp{sq(x41sk!oyk=(1-7)-’ ❑
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The particular form of this result we employ is the following:

COROLLARY 5.2. For 0>1, if

log(6) (sup Ex[N]) <1,
x

then

x

PROOF. Take q(x) = log O. l{ X,. O1in Lemma 5.1. El

To establish asymptotic efficiency, we need to verify the hypothesis of
Corollary 5.2 for 6 = az, with a as in (20). We give particular attention to the
case d = 2, then generalize to arbitrarily many nodes.

5.2 Two-Node Networks

In a two-node tandem network, we have

and N counts the total number of visits to the horizontal boundary

A={(X1, XZ):X1>O, XZ =()}.

(Notice that A does not include the origin; see the remark that follows
Proposition 3.1.) To apply Corollary 5.2, we need to bound ,??,[N]. We do this
through a sequence of lemmas, beginning with a known result (see, e.g.,
Asmussen 1987, pp. 90-91):

LEMMA 5.3. Consider an M/M/l queue with service rate A and arrival

rate p, A < p. If the system starts with one job present, the probability that it

ever empties is A/p.

Now consider again the ( ~z, Wl, A) tandem system. Let

Z’+= inf{n>O:X~ @A},

so that T+ is the first time the process is outside the horizontal boundary.
Let

T~=inf{n>T+ :X~GA],

so that T~ is the time of the first visit to A after at least one visit to the
complement of A. When WZ < WI, let ~fi,l denote the law of the process
started in state (X;, 1), with X; having distribution % and

‘(k’=(:)’(%)‘=01---
This is the stationary distribution for the first queue in the ( Pz, PI, A)
system.
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PROOF. When the first queue is given its stationary distribution, its
departure process becomes Poisson with rate pz and the second queue
becomes M/M/ 1 with arrival rate ~j and service rate A; thus, the result
follows from Lemma 5.3. ❑

LEMMA 5.5. The following decrease in i for i = 1,2... : ~,,O(TA < ~) and

~,O(N > n) for all n > 1.

PROOF. Both claims follow from straightforward sample-path arguments.
For the second claim, start two copies of the vector queue-length process in
states (Z, O) and (i + 1, O), respectively. The number of jobs at node 2 in the
second copy is never less than that in the first. Hence, by the time the second
process makes its n th visit to A, the first process has already done so. The
first claim works the same way. ❑

A consequence of Lemma 5.5 is that ~,,O(T~ < CO)is maximized over i ~ 1 at
i = 1. Let p+ be a constant for which

~l,O(T~ < ~) < p“.

We now have

LEMMA 5.6. Ifp* <1, then sup, ~2[N] s (1 – p*)- l(w1 + Wz)\W1.

PROOF. For the supremum over x it suffices to consider x G A, and then
in light of Lemma 5.5 it suffices to consider the single starting state (1, O).
From this state, the total number of returns to A preceded by visits to the
complement of A is stochastically bounded by a geometric random variable
with parameter p*. At each return to A, the process makes geometrically
many transitions along the boundary, with parameter ~z/( WI + ~z ). Thus,
the total number of transitions on A is stochastically bounded by the sum of
geometrically many geometric random variables, all independent of each
other. The mean number of visits is bounded by the product of the means of
the two geometric distributions. ❑

Now we bound p*. Starting from state (1, O), the process makes geometri-
cally many transitions along the boundary before leaving it. In particular,

‘(k)=(w1Tw21’(w1:w21‘=071
ACM Transactions on Modeling and Computer Slmulatlon, Vol 5, No. 1, January 1995



Analysis of an Importance Sampling Estimator . 37

If MZ < Wl, then the distribution % exists and we have

( )S Xfi(k)Fk,l(TA < m) s:p (u(k) /i-(k))
k

= F;,l(TA < ~) sup (u(k)/%(k))
k

= (A//L, ) sup (u(k)/%(k)),
k

(21)

(22)

the last equality following from Lemma 5.4. Next, observe that

Thus, we may set

Whenever this is less than 1, we get the bound in Lemma 5.6. Thus, we arrive
at our main result for two-node networks:

THEOREM 5.7. If Pz < PI, p“ <1 and

then the estimator in (14) is asymptotically efficient and has linearly bounded

relative error. If, in addition, (9) holds, then the estimator has bounded

relative error.

PROOF. If the hypotheses of the theorem hold, then from Corollary 5.2,
Lemma 5.6, and (20), we conclude that ~[ az~; T~ < TO] is bounded uniformly
in K, and therefore that the second moment of ( 14) is bounded by a constant

Z(~– 1) combining this with the lower bound on PK in Theoremtimes (A\~2) .
2.3 proves asymptotic efficiency and shows that

&L2)2(K-1)~constant ~
RE s constant o

(A/P2)KK-l

If (9) holds, then by Proposition 2.4 the factor K maybe omitted, resulting in
a uniform bound on the relative error. ❑
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0.OO~ 0,4 ~#5 ~le ~v7 018 ~19 ~
c1

Fig. 1. Conditions for asymptotic efficiency and bounded relative error in a two-node system

The conclusions of Proposition 4.1 and Theorem 5.7 are illustrated in
Figure 1. The triangular region in the figure is the set of possible parameter
values ( PI, Wz) for a two-node system with A + PI + ~z = 1. Points to the
right of curve A satisfy our sufficient condition for asymptotic efficiency.
Points above curve B satisfy condition (9), so in the intersection of these
regions the estimator has bounded relative error. Points above curve C
violate our necessary condition for asymptotic efficiency.

Remark. A sharper bound on (21) is provided by the value of the optimiza-
tion problem

maximize ~ u(k )a,

subject to ~ n(k)ak = h/wz
k

O<ak <l.

Because u(k) decreases with k, this problem is easy to solve. However, we
have found numerically that it very rarely improves the simpler bound in
Lemma 5.6.

5.3 Multinode Networks

Our overall approach to proving asymptotic efficiency for multinode networks
is the same as that used for two-node networks, but there are some important
differences in the details. The two-node network offers simplifying features
not present in the general case, so the results we obtain here, even when
specialized to d = 2, are not as effective as those in the previous subsection.

In the multinode setting, we take

( )
A= UA, = (xl,..., x~):x~=O, ~x, >O ,

L L
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and (as before) let N be the total number of visits to A, and T~ the time of
the first visit to A preceded by at least one visit to the complement of A. We

bound sup. EX[ N] by bounding supX. ~ ~x(TA < ~) (leading to a bound on the
number of distinct visits to A) and by bounding the number of transitions on
A at each distinct visit. Each of these steps is somewhat more complicated in
the multinode setting than it was before. Throughout this section, we restrict
attention to the case

so that under the new measure only the last node is unstable,

LEMMA 5.8. Supz. ~ ~z(TA < ~) s p“, where

A( /L1 + “.” +/-Ld)
P* = /.L~fr(o) ‘

(23)

and

d–1

()

i+(o)=~ 1–;.
~=1

PROOF. Much as in the two-node case, the supremum over z G A of
~X(T~ < ~) is easily seen to be attained at x = (O, O,..., 1, O), so we consider
this starting state. Notice that FO,O,., , ~,O(T~ < ~) = ~u,l(T~ < CO)where u is
the distribution of the first d – 1 components of the state at the arrival of the
first job to node d, starting from state (O, 0,...,1, O). The first arrival to node
d is the first d~partu~e from :he subnetwork consisting of nodes 1,..., d – 1.

Let us write Xf = (X:,..., X~- 1) for the (right-continuous) continuous-time
queue-length process of this subnetwork, and let Td be the time of the first
departure from this subnetwork. For any 5?= (xl,..., xd - ~),

u(i) =Po,,,.,l,o(XT,= q,

the subscript on ~ still referring to the full d-dimensional state. Let ? = 2 +
(o ,..., O,l); then

PO,,,,,,0 (XT,=i) <Fo,, ,,~,() [~ visits i’ before Td )

)< PO( X visits Z before T~ .

Moreover, if we let To be the time of the first return of X to the origin, then

PO(X visits i before T~) s PO( X visits i before TO).

Thus, we have shown that

—
U(xl, ..., ~&~) <P(X visits (~1, ..., xd _ ~) in a O-cycle), (24)
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the O-cycle referring to the process X. Now let

ii-(x l,. ... xd_l ‘=i-iHZ’(1-%1
denote the stationary distribution of ~. The mean length of a O-cycle for X is
1/( w~?3-(0)); given that X reaches (xl, ..., xd. 1) in a cycle, the expected time
it spends there is no less than 1/( WI + . . . + ~~ ), the minimal mean holding

time in any state. It follows from the regenerative representation of * that

P(X visits i = (xl, ..., Xd. ~) in a O-cycle)

+(X1,..., %l)~o[~ol—
E. [time spent in ~ I X visits 2 in cycle]

Thus,

P[X visits t = (xl, ..., x,-,) in a O-cycle)

PI + . . . +pd_l

<fi( xl,..., Xd-1) ~d+(o) ‘

which together with (24) yields

U(xl, ..., xd-1)
<(&Ll+ ‘o. +/-Ld)\(/Ldii(o)).

i-(xl, . . ..xd_l
~–

Arguing just as in (22), we conclude that p% in (23) is indeed an upper bound
on FO, 1,0(7’” < ~). ❑

We now have

THEOREM 5.9. Ifp* <1 ad

+[(d-l)+(;+...+ &j210g(a)<l,l,

then the estimator in (14) is asymptotically efficient and has linearly bounded

relative error. If, in addition, (9) holds, then the estimator has bounded

relative error.

PROOF. It suffices to show that the term in square brackets is an upper

bound on the expected number of transitions on A at each distinct visit to A;

once we establish that, the rest of the argument is just as in Theorem 5.7.
The expected number of transitions until the first exit from A is clearly

maximized (over A) at the initial state (1, O, . . . . O); the required number of
transitions can be made pathwise smaller from any other initial state.
Starting from (1, O,. . . . O), the first exit from A occurs when the job at node 1
reaches node d. The number of transitions required for this job to complete
service at each node i, i = 1, . . . , d – 1, is stochastically bounded by a geo-
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metric random variable with mean ( p, + ~~ )/w,, so the expected number of
transitions for the job to reach node d is bounded by

Pl+Pd+ +Pd-l+k%
. . .

7
P1 ~d-1

which is equivalent to the expression in square brackets in the statement of
the theorem. ❑

Examples of parameter values satisfying the hypotheses of Theorem 5.9 are
(A, Kl, I.Lz, p~) = (0.0012, 0.4431, 0.4873, 0.0684), and (0.0001, 0.8, 0.17,
0.0299).

6. CONCLUSION

We have analyzed an importance sampling estimator for overflow probabili-
ties in tandem Jackson networks that generalizes the asymptotically optimal
estimator for M/M/ 1 queues. We have shown that in certain parameter
regions this estimator has linearly bounded and even purely bounded relative
error, but that in other regions it is not even asymptotically efficient. These
results follow from upper and lower bounds on the first and second moments
of the estimator.

The techniques used to bound the second moment may be of broader
applicability in the analysis of importance sampling estimators, so we briefly
summarize them. We obtained lower bounds by evaluating the square of the
estimator on individual paths; well-chosen paths have sufficiently high prob-
ability and a sufficiently large squared-estimator value to rule out asymptotic
efficiency. We obtained upper bounds by separating the contributions to the
likelihood ratio due to the interior of the state space and the boundaries. The
contribution of the interior is easily handled, because in its interior the
queue-length process is spatially homogeneous. The boundaries, however,
contribute factors to the likelihood ratio that are exponential in the number
of transitions on boundaries; these are more problematic. A “gauge function
lemma” bounds the expectations of these exponential factors in terms of the
expected number of visits to the boundaries. This part of the analysis seems
fairly general. The final step—bounding the expected number of visits to
boundaries—exploits particular features of the model.
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