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Abstract

Although understanding tail behavior of distributions is important in many areas, such as telecommunications network
analysis and .nance, there is considerable controversy about distinctions between exponential-type and power-type tails. This
paper explains why the distinctions are surprisingly di2cult for popular methods in the literature, and why particularly large
samples are needed for clear discrimination.
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1. Introduction

The behavior of most probabilistic models is crit-
ically in:uenced by the tails of the distribution(s)
which drive the models. This is especially important
in such areas as asset pricing, value-at-risk, reliabil-
ity, insurance risk, queueing theory and telecommu-
nications network analysis. The literature, however,
reveals considerable uncertainty, controversy, and er-
ror in connection with the distinctions between tail
weights. In this paper we will explain why the distinc-
tions are surprisingly di2cult, why particularly large
samples, perhaps in the tens of thousands or even hun-
dreds of thousands, are necessary for clear discrimi-
nation and why theoretical errors have confused the
discrimination.
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To illustrate the qualitatively diDerent behavior
engendered by diDerent tailweights we .rst exam-
ine the record behavior of a sample X1; X2; : : : ; Xn

of i.i.d. random variables with distribution func-
tion F . Clearly, P(max16k6nXk ¿x) = 1 − Fn(x).
If 1 − F(x) = cx−�; �¿ 0, for x¿ 0, it is easily
checked that P(max16k6nXk ¿ (ny)1=�) → 1−e−c=y.
Thus, for a power tail, n−1=�max16k6nXk converges
in distribution, that is the records increase at a power
rate. If, on the other hand, the tail is exponential,
1 − F(x) = ke−x�; �¿ 0 for x¿ 0, then it is eas-
ily checked that P(max16k6nXk ¿ (y=�) log n) →
1 − e−k=y, that is, �(log n)−1max16k6nXk converges
in distribution; the records increase at a logarith-
mic rate. As another illustration, a simple queue-
ing example in which tail behavior can in:uence
performance unexpectedly concerns the waiting
time process {Wn} of the customers in a stationary
M=G=1 queue. Here the usual asymptotic normality
of n−1=2(W1 + · · · + Wn − nEW ) breaks down if
the service time S has ES4 = ∞, not as might be
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expected ES2=∞ (see [14]). The distinction between
power and exponential tails may appear to be easy to
observe, but it is not.
The idea that there is a true statistical model for any

real data set is a (convenient) theoretical idealization.
Cox [4] has usefully pointed to the role and purpose
of statistical models being to provide a “concise de-
scription of the aspects of the data judged relevant for
interpretation”. Kac [20] has written that “Models are,
for the most parts, caricatures of reality, but if they are
good, then, like good caricatures, they portray, though
perhaps in distorted manner, some of the features of
the real world.”
We should not expect more than a parsimonious

description. Indeed, any assumed distributional form
is likely to be rejected in a test of adequacy when
one has a (su2ciently) large data set, this usually be-
ing a re:ection of departures, which may be quite
small, in the middle part of the distribution. Perhaps
even 5000 observations may be su2cient for rejec-
tion, and in some contexts, such as telecommunica-
tions, 50,000 observations may be routinely available.
Introducing additional model parameters, up to three
or four, may appear to help a little, but does not re-
solve the intrinsic di2culty. In fact, if a true distri-
bution is assumed, it is known to be impossible to
consistently estimate its density in the extreme tail
(see [2]).
Therefore, it seems to us to be more appropriate to

ask what type of distribution is suitable for the data
than to seek some best-.tting distribution; and we will
make this issue the focus of the paper. This apparently
straightforward distinction is surprisingly di2cult to
make, and requires a substantially larger sample than
what is intuitively expected to achieve good statistical
precision. It turns out that the distinction rests on an
extremely small percentage of the sample, perhaps less
than 0.01%! See Sections 3 and 4.
First we need to be clear about the terminology,

because diDerent specialist areas have established
somewhat diDerent norms. For example, what may
be described as a light tail in the queueing literature
could be called a semi-heavy tail in the .nance lit-
erature. In this paper, we will settle on the simple
dichotomy of calling tails light or heavy according to
whether or not a .nite moment generating function
exists. For a detailed classi.cation of tails see [9, p.
50], and references therein.

Heavyness of tails is a subject of controversy in
some areas, but especially in .nance. For example, it
is accepted that real returns data has tails which are
heavier than those of the normal distribution, but one
school of thought believes the tails to be light (typ-
ically exponential) and the other believes that they
are heavy (typically powers). Representatives of the
former school of thought are [1,8]. The advocacy of
power tails dates back at least to [24]; for recent
advocacy in book form see [25] and for associated
modeling insights see [10]. For further substantive dis-
cussion see, e.g., [11,12,15–18,21–23]. Some authors
conclude that both tail types are required (e.g. Chapter
13 in [26]).
DiDerences of opinion also appear in studies on

World Wide Web tra2c. Heavy tails are widely advo-
cated (e.g. [5,6,28]), but also Weibull and exponential
tails (e.g. [3]). See [13] for a nonparametric estima-
tion of tail probabilities for a single server queue.

2. Standard methods of discrimination and
estimation

2.1. The methods

We shall begin by mentioning six of the most
widely used methods, together with their strengths
and weaknesses. These methods, and variants of them,
essentially span the spectrum of standard theory. The
.rst .ve are discussed in considerable detail in the
literature, for example in the books of [9,26], but
insu2cient attention has been given to their intrinsic
capacity to discriminate. The sixth method, although
widely used in practice, has a serious theoretical :aw,
and should not be employed except under very special
circumstances.
Throughout the study below, we will assume inde-

pendent identically distributed samples, Y1, Y2; : : :. To
make a further simpli.cation, we shall assume the dis-
tribution is either one-sided or symmetric. Therefore,
in the two-sided case, to study tail behavior, we can
simply consider the random variables Xi= |Yi| instead
of the original random variables Yi; i¿ 1, and focus
on the right tail; this eDectively doubles the sample
size, compared to considering both tails. If the distri-
bution is asymmetric, then the problem becomes even
harder, requiring larger sample sizes.
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Method 1: The tail-probability plot has been
widely used in the literature to study the tail behav-
ior. The method relies on the fact that for exponential
tails with mean �

P(X ¿ u) ≈
∫ ∞

u

1
�
e−x=� dx = e−u=�;

and for power tails with the tail index �¿ 1, we have
that

P(X ¿ u) ≈ C
∫ ∞

u

1
x�

dx = C
1

�− 1
u−�+1:

Therefore, taking the logarithm we have for exponen-
tial type distributions

logP(X ¿ u) ≈ −u=�;

and for power type distributions

logP(X ¿ u) ≈ logC� − (�− 1) log u:

This suggests that if we have the log–log plot of the tail
probability, then for power type tails it should display
a straight line, but not for exponential type tails.
Method 1 has the appearance of a robust discrimi-

nator, but the clarity that comes from taking log–log
plots is compromised by the fact that the range of u
values for which data is available is generally small.
If the data is standardized to make the standard devi-
ation one, then the typical range of u values might be
16 u6 6, or at most 16 u6 8, observations of more
than 8 standard deviations being very rare. But for
such a range, the distinction between C1u and C2 log u,
with unknown constants C1; C2, may be intrinsically
di2cult to discern.
Method 2: The popular mean excess function

method is based on the function e(u) = E(X −
u|X ¿u). For exponential tails with X = |Y |,

E[X |X ¿ u] =
E(XI(X ¿ u))
P(X ¿ u)

≈
∫∞
u (x=�) e−x=� dx∫∞
u (1=�) e−x=� dx

=
e−u=�(u+ �)

e−u=� = u+ �;

so that

e(u) = �;

while for power tails with the power index �¿ 2, we
have that with X = |Y |,

E(XI(X ¿ u)) ≈ C
∫ ∞

u
x
1
x�

dx = C
1

�− 2
u−�+2;

E[X |X ¿ u] =
E(XI(X ¿ u))
P(X ¿ u)

≈ [1=(�− 2)]u−�+2

[1=(�− 1)]u−�+1 =
�− 1
�− 2

u

and

e(u) =
u

�− 2
; �¿ 2:

This suggests that we can plot the empirical value of
e(u) against u: (a) If the plot is a linear curve, then
it may be either a power type or exponential type
distribution; otherwise it may re:ect some other type
of tail behavior. (b) If the slope of the linear curve
is greater than zero and the intercept is zero, then it
suggests a power type; otherwise, if the slope is equal
to zero, it suggests an exponential type.
Method 2 avoids the problem of the compression

of scale which comes about by taking logarithms in
Method 1. However, the problem with the small range
of u values available in practice remains. Furthermore,
there are families of widely used distributions, such
as the Weibull, which have an intermediate behavior
of the form e(u) ≈ Ku1−� for some K ¿ 0 and whose
presence may further cloud the choice of model.
Method 3: The moment generating function

method. For exponential tails

E(e�X I(X ¿ u))≈
∫ ∞

u
e�x

1
�
e−x=� dx

=




1
1− ��

e−u(1−��)=�; ��¡ 1;

∞; ��¿ 1

and for �¡ 1=� we have

E[e�X |X ¿ u] =
E(e�X I(X ¿ u))

P(X ¿ u)

≈ e−u(1−��)=�

e−u=� · 1
1− ��

=
e�u

1− ��
;

so that

logE[eX |X ¿ u] ≈ �u− log (1− ��):
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For power tails with �¿ 2 we have that

E(e�X I(X ¿ u)) ≈ C
∫ ∞

u
e�x

1
x�

dx =∞;

for any �. This suggests that one can plot, for small
�; logE[e�X |X ¿ u] against u, and check the slope:
(a) If the plot is approximately linear in uwith slope �,
then the distribution may be an exponential type. (b) If
the curve blows up, then it may not be an exponential
type, and it is possibly a power type.
Here there is an advantage of the linearity in u, but

the disadvantage is the uncertainty about what increase
constitutes, in practice, a blowing-up for distributions
for which amoment generating function does not exist.
Method 4: The next popular method is themax-sum

ratio plot. The idea is based on the fact that for sta-
tionary {Yi},

Rn(p) =
max(Xp

1 ; : : : ; X
p
n )

Xp
1 + · · ·+ Xp

n
→ 0 a:s:

as n → ∞, if and only if E[Xp
1 ]¡∞. Therefore, if

one plots Rn(p) against n for various p, and .nds that
Rn(p) jumps up at some large n, then it is an indication
that E[Xp

1 ]=∞, which means that X has a power type
tail.
Method 4 has the advantage of requiring minimal

assumptions about the distribution of the data, only
a moment condition which can be varied :exibly for
exploratory investigation. However, in practice Rn(p)
may jump signi.cantly at extreme values of the pro-
cess, and convergence may not seem convincing. The
larger p, the more dramatic is the eDect. For example,
even for p = 8, the diDerence between observations
of 6 and 6.5 magni.es to 68 = 1:68 × 106 compared
with (6:5)8 = 3:19× 106.

Methods 1–4 continue to apply even if the processes
generating the data are (strictly) stationary, rather than
of independent and identically distributed variables.
This is a consequence of the ergodic theorem, and
no assumptions about asymptotic independence are
needed. Unfortunately, they all have the disadvantage
of being qualitative in nature, with no formal assess-
ment of statistical precision.
Method 5: The .fth method is the generalized Hill

ratio plot. The method uses the asymptotic result that
if the tail probability is regularly varying

P(X ¿x) =
L(x)
x�

;

where L(x) is a function which is slowly varying at
in.nity and �¿ 0, then

an(xn) =
∑n

i=1 I(Xi ¿xn)∑n
i=1 log(Xi=xn)I(Xi ¿xn)

;

I being the indicator function, is a consistent esti-
mator of �, if xn is chosen so that P(X ¿xn) → 0
and nP(X ¿xn) → ∞. The standard Hill estima-
tor corresponds to the particular case where the ob-
servations are ordered X(n)6X(n−1)6 · · ·6X(1) and
xn = X(kn+1), where kn is an integer (which tends to
in.nity as n tends to in.nity).
In practice, one plots an(xn) again xn, and hopes

to .nd some stable region from which to determine
a value of an(xn) as an estimator of �. There is a
signi.cant trade-oD between small values of xn, for
which the estimation bias is large, and large values of
xn which produce small bias but large variance.
The Hill estimator and its variants are widely used

in practice, often with apparent success, but the perfor-
mance is erratic despite the availability of various con-
sistency and asymptotic normality results. Hill “horror
plots”, which have been published in [27,9, p. 194],
of poor behavior, even under conditions for which the
theory applies. The additional complications of depen-
dent data, such as one meets in .nance, may further
cloud the performance picture.
Method 6: The last method is based on the use of

likelihood and models the whole of the distribution,
not just the tails. Necessarily this places some focus
on the center of the distribution, for which most in-
formation is available. However, although it has been
widely used (e.g. [17,18,25, Chapter 4]) it turns out
that there is a serious problem with this method. Of
course a likelihood approach could be arranged to fo-
cus directly on the tails, using conditional distributions
of values over thresholds as in Method 5. The same
problem that is indicated below with the Kullback–
Leibler entropy continues to apply.
If the hypothesized density for the sample {Yi; i =

1; 2; : : : ; n}, which is assumed to be of independent
variables, is g(y) then the computed likelihood based
on g is Lg =

∏n
i=1 g(Yi). The approach taken in the

literature has been to say that the distribution with the
largest likelihood from within a target class of com-
petitors should be chosen. This apparently plausible
approach masks a serious, possibly fatal, :aw.
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Suppose that the (unknown) true density is f(y).
We have log Lg=

∑n
i=1 log g(Yi) and using the strong

law of large numbers,

log Lg ∼ nEflog g(Y ) a:s:

the expectation being taken with respect to the true
density. Now,

Ef log g(Y ) =
∫ ∞

−∞
log g(y)f(y) dy

=
∫ ∞

−∞
logf(y)f(y) dy − K(g; f);

where

K(g; f) =−
∫ ∞

−∞
log(g(y)=f(y))f(y) dy¿ 0

is the Kullback–Leibler entropy.
Therefore, the investigators who have used this

method have, in essence, been seeking from among
their target distributions, the one which minimizes
K(g; f). Unfortunately, the Kullback–Leibler en-
tropy is not a metric, as is easily seen by noting that
K(g; f) �= K(f; g), and there can be various unfor-
tunate consequences of attempting to treat it as a
distance.
To illustrate the di2culties, suppose that we have

two target distributions, namely normal and Laplace,
and that these are standardized to have mean zero and
variance one. The Laplace (symmetric double expo-
nential) distribution with variance one has density
1√
2
e−

√
2|y|; −∞¡y¡∞: (1)

Suppose also that the true underlying distribution of
Y is t#; #¿ 2, with mean zero and variance rescaled
to one. This has the density

1√
$(#− 2)

· %((#+ 1)=2)
%(#=2)(1 + y2=(#− 2))(#+1)=2 ;

−∞¡y¡∞: (2)

Then, if g1, g2 and f are, respectively, the densities
of the normal target distribution, the Laplace target
distribution and the standardized t# true distribution,
it is shown in the appendix that

−Ef log g1(Y )¡− Ef log g2(Y );

for #= 8; 9; 10; : : : : (3)

That is, while the normal distribution has tails
which are much lighter than the Laplace and is fur-
ther removed from those of the t8 distribution, it
could erroneously be preferred. This anomaly, ap-
pearing unexpectedly for the t# distribution with
degrees of freedom bigger than seven, highlights
the risk of a wrong conclusion if this method is
employed.

2.2. A numerical illustration

As an example to illustrate the di2culty in dis-
tinguishing between distributions we will perform a
small simulation study. It should be emphasized that
the purpose here is not to use the simulation to deliver
a rejection to the standard methods. Rather, the goal is
to gain some intuition for the further discussion of the
sample size requirement in Sections 3 and 4. Further-
more, the calculation in the next two sections shows
that the intuition revealed in the simulation may be
quite general, and it is not the result of an unusual
sample.
We shall consider a Laplace distributed random

variable with variance 1 and a t random variable with
d.f. #=6 rescaled to have variance 1, the densities be-
ing given by (1) and (2), respectively. Of course, the
rescaling, which aims at giving the fairest comparison
of the tails of the two distributions, does not alter the
basic tail behavior of the distribution.
After generating 5000 samples of Yi’s from each

distribution, we then take absolute values to get Xi =
|Yi|. For simplicity, in the paper we shall refer to the
two samples as Sample E (derived from 5000 obser-
vations from the Laplace distribution) and Sample T
(derived from 5000 observations from the normalized
t distribution with d.f. 6). The Laplace and t6 distribu-
tions are chosen as typical of exponential and power
tail cases respectively.
With 5000 sample size it is very easy to distinguish

between Samples E and T via Kolmogorov–Smirnov
goodness of .t test (for Sample E the test statistic gives
0.0414 with p-value being 0.00, and for Sample T the
test statistic gives 0.0092 with p-value being 0.80),
which seems to have a good power thanks to the large
sample size here. However, it is important to note that
we are able to do this mainly because of the small
diDerences in the middle part (which is magni.ed due
to the large sample size) of the two distributions, not
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Fig. 1. QQ-plots for Samples E (upper) and T (lower).
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Fig. 2. Tail probability plots for Samples E (upper) and T (lower).

because of the diDerences in the tail parts; the qq-plots
in Fig. 1 illustrate this point.
To see how the log–log plot of Method 1 works, we

apply it to the absolute values of Samples E and T.
Taking absolute values should only increase the reso-
lution of the method, as more observations are avail-
able in the right tails. However, Fig. 2 indicates that the
method cannot distinguish the exponential tails from
power tails, both samples exhibit a linear relationship
(the R2 being 0.9917 and 0.9914 for Samples E and
T, respectively) in the log–log plot. Furthermore, the
plot estimates �̂=5:26 for Sample E (which is entirely
wrong) and �̂ = 5:34 for Sample T (while the true �
is 7).
Method 2 with the mean excess function plot does

not seem to be eDective in our case. Fig. 3 illustrates
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this point. In both cases, we do not see a strong linear
relationship between E[X−u|X ¿ u] and u; in fact R2

are 0.1524 and 0.4078 for the exponential and t distri-
bution cases, respectively. In the exponential case, the
plot makes a mistake by estimating �̂ = 23:01; while
in the t distribution case, the estimate is �̂ = 14:86,
and the intercept is mistakely regarded as nonzero.
In the case of the moment generating function plot

of Method 3, we see a strong linear relationship with
R2 are 0.9882 and 0.9924 for the exponential (which
should be linear) and t distribution cases (which
should not be linear), respectively. Fig. 4 demon-
strates the method for Samples E and T using �=0:1.
The estimated slopes are, respectively, 0.1044 and
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0.1085; both values are quite close to � = 0:1, thus
failing to distinguish the two tails.
In the case of the max-sum plot of Method 4, with

p=6, Fig. 5 shows that the exponential tails can also
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Fig. 6. Hill ratio plots for two simulated Samples E (upper) and T (lower).

have jumps for large n as well. This is mainly due to
the fact that Rn(p) is very sensitive to a single large
value, especially for p not too small.
In the case of Method 5 the two simulations of both

Samples E and T in Fig. 6 show that the plot can be
highly variable, and clearly may fail to produce a re-
liable estimator of �. We have also tried diDerent rate
parameters for the Laplace distribution, and obtained
similar simulation results. It is important to note that
Hill estimation may not give any clue if it is inappro-
priately applied to a distribution which does not have
power tails.

3. An explanation

After showing that the arguably most popular meth-
ods may fail to distinguish the diDerence between
power type tails and exponential type tails for samples
of size 5000, one may reasonably ask how large the
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Table 1
The (right) quantiles for the Laplace and normalized t densities
as in (1) and (2)

Prob. (%) Laplace t7 t6 t5 t4 t3

1 2:77 2.53 2.57 2.61 2.65 2.62
0.1 4:39 4.04 4.25 4:57 5.07 5.90
0.01 6:02 5.97 6:55 7.50 9.22 12.82
0.001 7:65 8:54 9.82 12.04 16.50 27.67

Table 2
The (right) quantiles for the Laplace and t densities normalized
by their interquartile ranges

Prob. (%) Laplace t7 t6 t5 t4 t3

1 2:82 2.11 2.19 2.31 2.53 2:97
0.1 4:48 3.37 3.63 4.02 4:81 6.66
0.01 6:14 4.93 5.56 6:63 8.78 14.51
0.001 7:80 7.08 8:36 10.68 15.74 31.33

sample size should be in order to make the distinction
with appropriate con.dence.
A reasonable impression may be obtained by simply

looking at the quantile tables for both standardized
Laplace and standardized t distributions. The quantiles
for the Laplace and normalized t densities as in (1)
and (2) are given in Table 1.
Table 1 shows that the Laplace distribution may

have higher tail probabilities than those of t distribu-
tions with low degrees of freedom. For example, the
99:9% quantile of the Laplace distribution is actually
larger than that of t distribution with d.f. 6 and 7! Thus,
regardless of the sample size, the Laplace distribution
may appear to be heavier tailed than a t-distribution
with d.f. 6 or 7, up to the 99:9% quantile. In order
to distinguish the distributions it is necessary to use
quantiles with very low p values and correspondingly
large samples, typically in the tens of thousands or
even hundreds of thousands, as revealed in Table 1.
Some speci.c assessments and general advice is given
below in Section 4.
It may be thought that standardization using the

variance is not an innocuous choice since the variance
itself is sensitive to the extreme tail of the distribution.
To this end, an illustration is given in Table 2 which
adopts standardization using unit interquartile range.
This standardization has the virtue of being able to

be used if some of the comparator distributions have
in.nite variance, such as is the case for non-normal
stable laws. However, the results turn out to be very
similar in Tables 1 and 2.
Overlapping of quantiles even for very lowp values

makes the job of distinguishing power and exponen-
tial type tails extremely di2cult in practice. And the
problem is further exacerbated by the fact that most
large data sets are likely to be contaminated by depar-
tures from stationarity or autocorrelation structures.

4. Making assessments of the minimum sample
size

Theoretical quantile results are useful to give a
guideline of the theoretical minimum sample size
required to distinguish two tails. For example, sup-
pose we have two distributions, with the .rst one
having asymptotically heavier tails. If the second dis-
tribution has a larger qth quantile, then obviously we
cannot distinguish which one has the heavier tail at
least up to the qth quantile. Therefore, the theoretical
minimum sample size required is at least 1=(1− q).
For example, to distinguish the Laplace distribu-

tion from the t distribution with d.f. 7, the theoretical
minimum sample size should at least be 1=(0:01%)=
10; 000, if the normalization is taken to be the stan-
dard deviation (as in Table 1 the 99.99% quantile for
the Laplace distribution is 6.02 versus 5.97 for the
t-distribution with d.f. 7), and at least be 1=(0:001%)=
100; 000, if the normalization is taken to be interquar-
tile ranges (as in Table 2 the 99.999% quantile for
the Laplace distribution is 7.80 versus 7.08 for the
t-distribution with d.f. 7).
Note that the computation of the theoretical mini-

mum sample size is linked to the calculation of the
quantiles, hence to the VaR literature (see, for exam-
ple, [7,12]), which makes the calculation feasible.
In practice, the theoretical minimum sample size

may not be large enough, as the quantiles can only
be observed empirically (hence with a standard devia-
tion) rather than observed precisely. One easy way to
handle with this di2culty is by considering the asymp-
totic distributions of sample quantiles. For example, it
is well known that for an i.i.d. sample of size n from
an absolutely continuous distribution with density f,
the [np] (integer part of np) order statistic X[np] is
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Table 3
Asymptotic standard deviation for (right) quantile values X[np] for
n = 5000 and densities as in (1) and (2)

Prob. (%) Laplace t7 t6 t5 t4 t3

1 0.10 0.08 0.09 0.10 0.12 0.14
0.1 0.32 0.32 0.38 0.46 0.60 0.90
0.01 1.00 1.34 1.67 2.22 3.33 6.07
0.001 3.16 5.73 7.55 10.93 18.54 41.22

asymptotically normally distributed with mean 'p, the
pth quantile, and variance p(1− p)=(nf2('p)) (e.g.
[29]).
Table 3 gives the standard deviations for the dis-

tributions used in Table 1 and for a sample size of
5000, typical of .nance data sets. The standard devi-
ations for sample size n can be calculated by dividing
the table values by (n=5000)1=2. Thus for sample size
50,000 the table entries are obtained by dividing each
by 101=2 ≈ 3:16.
It is immediately clear that there is no prospect of

distinguishing the tabulated distributions on the ba-
sis of the even the 99.9% quantile with a sample of
5000. This is because, from Tables 1 and 3, the asymp-
totic 95% con.dence interval of the 99:9% quantile
are (4:39±1:96×0:32), (4:04±1:96×0:32), (4:25±
1:96×0:38), (4:57±1:96×0:46), (5:07±1:96×0:60),
(5:90±1:96×0:90), for Laplace and t7 to t3 distribu-
tions, respectively; and therefore the observed 99.9%
quantile of the Laplace distribution may overlap with
that of the other t-distributions. Conservative general
advice (with the con.dence level at 99% rather than
95%), to allow for rather broader families than are
tabulated, is that one needs to use at least the 99.9%
quantile and 50,000 observations for discrimination.
As a concrete example of the use of the tables con-

sider the Hill plots in the upper section of Fig. 6. They
are suggestive of a tail index of around 6 even though
they are derived from a Laplace distribution. But Ta-
bles 1 and 3 make it evident that this is to be expected;
it is not the result of an unusual sample.
As a .nal example, suppose that one has data sug-

gestive of a large and possibly unstable kurtosis, which
might be due to an in.nite fourth moment. What sam-
ple size would one require to be reasonably sure that
the data did not come from a distribution with a .-
nite moment generating function? The t# distribution

has a .nite or in.nite fourth moment according as
#¿ 4; #6 4 and the comparison between the Laplace
and t4 distributions is indicative of the distinction re-
quired. Consulting Tables 2 and 3 we see again that
the use of the 99.9% or higher quantile would be re-
quired and the order of 50,000 observations would be
necessary even at 95% con.dence level.
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Appendix

Sketched Proof of (3)Note that

−Ef log g1(Y ) = 1
2 log 2$+

1
2 Ef(Y 2) = 1

2 log 2$+
1
2 ;

−Ef log g2(Y ) = 1
2 log 2+

√
2Ef|Y |:

It follows from (2) (or e.g. from [19, p. 366]) that

Ef|Y |= 2
#− 1

√
#− 2
$

%(#+ 1=2)
%(#=2)

;

and then it is easily checked that Ef|Y | is mono-
tone increasing in # along each of the subsequences
# = 3; 5; 7; : : : and # = 4; 6; 8; : : :. We then .nd that
−Ef log g1(Y )¿ − Eflog g2(Y ) for #=3; 4; : : : ; 7,
but −Ef log g1(Y )¡ − Ef log g2(Y ) for #=8;
9; 10; : : :.
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