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A CONTINUITY CORRECTION FOR DISCRETE BARRIER OPTIONS
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The payoff of abarrier option depends on whether or not a specified asset price, index, or rate
reaches a specified level during the life of the option. Most models for pricing barrier options assume
continuous monitoring of the barrier; under this assumption, the option can often be priced in closed
form. Many (if not most) real contracts with barrier provisions specify discrete monitoring instants;
there are essentially no formulas for pricing these options, and even numerical pricing is difficult. We
show, however, that discrete barrier options can be priced with remarkable accuracy using continuous
barrier formulas by applying a simple continuity correction to the barrier. The correction shifts the
barrier away from the underlying by a factor of exp(βσ

√
1t), whereβ ≈ 0.5826,σ is the underlying

volatility, and1t is the time between monitoring instants. The correction is justified both theoretically
and experimentally.

KEY WORDS: path-dependent options, Siegmund’s corrected diffusion approximation, level crossing
probabilities

1. THE MAIN RESULT

1.1. Introduction

A barrier optionis activated (knocked in) or extinguished (knocked out) when a specified
asset price, index, or rate reaches a specified level. The simplest such options are otherwise
standard calls and puts that are knocked in or knocked out by the underlying asset itself.
Some variants tie the barrier crossing to one variable and the payoff to another; others
specify “binary” payoffs in place of the usual payoffs for calls and puts. Taken together,
these are among the most popular options with path-dependent payoffs. The knock-in and
knock-out features lower the price of an option, and may provide a payoff distribution that
better matches a hedger’s risk or a speculator’s view.

Most models of barrier options assume continuous monitoring of the barrier: a knock-in
or knock-out is presumed to occur if the barrier is breached atany instant in the life of the
option. Under this assumption, Merton (1973) obtained a formula for pricing a knock-out
call. Subsequent work on pricing continuously monitored barrier options includes Heynen
and Kat (1994a, 1994b), Kunitomo and Ikeda (1992), Rich (1994a, 1994b), and Rubinstein
and Reiner (1991). However, a sizable portion of real contracts with barrier features spec-
ify fixed times for monitoring of the barrier—typically, daily closings. One article in the
trade literature (Derivatives Week1995a) faults existing pricing models for not addressing
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this feature. Another (Derivatives Week1995b) discusses concerns that when monitoring
times are not specified, extraneous barrier breaches may occur in less liquid markets while
the major Western markets are closed. Moreover, numerical examples, including those in
Chance (1994), Flesaker (1992), and Kat and Verdonk (1995), indicate that there can be
substantial price differences between discrete and continuous barrier options, even under
daily monitoring of the barrier. Unfortunately, the exact pricing results available for contin-
uous barriers do not extend to the discrete case.1 Even numerical methods using standard
lattice techniques or Monte Carlo simulation face significant difficulties in incorporating
discrete monitoring, as demonstrated in Broadie, Glasserman, and Kou (1996).

In this paper, we introduce a simple continuity correction for approximate pricing of
discrete barrier options. Our method uses formulas for the prices of continuous barrier
options but shifts the barrier to correct for discrete monitoring. The shift is determined
solely by the monitoring frequency, the asset volatility, and a constantβ ≈ 0.5826. It
is therefore trivial to implement. Compared with using the unadjusted continuous price,
our formula reduces the error fromO(1/

√
m) to o(1/

√
m), as the number of monitoring

pointsm increases. Numerical results indicate that the approximation is accurate enough to
correctly price barrier options in all but the most extreme circumstance; i.e., except when
the price of the underlying asset nearly coincides with the barrier.

Our analysis is based on the usual Black–Scholes market assumptions (Black and Scholes
1973). In particular, the asset price{St , t ≥ 0} follows the stochastic differential equation

dS

S
= ν dt + σ d Z,(1.1)

whereZ is a standard Wiener process,ν andσ > 0 are constants, andS0 is fixed. The
term structure is flat, and we letr denote the constant, continuously compounded risk-free
interest rate. The price of a claim contingent onS is the expected present value of its cash
flows under the equivalent martingale measure, which setsν = r in (1.1).

Let H denote the level of the barrier. Anup option hasH > S0 and adownoption has
H < S0; in particular, we always assumeH 6= S0. The asset price reaches the barrier for
the first time at2

τH = inf{t > 0 : St = H};(1.2)

this is an up-crossing ifS0 < H and a down-crossing ifS0 > H . A knock-in call option
with maturityT and strikeK pays(ST − K )+ at timeT if τH ≤ T and zero otherwise. Its
price is thus3

e−rT E[(ST − K )+; τH ≤ T ],

the expectation taken with respect to the equivalent martingale measure. For a put option,
replace(ST − K )+ with (K − ST )

+, and for knock-out options replace the event{τH ≤ T}

1The price of a discrete barrier option can be expressed in “closed form” in terms of multivariate normal
probabilities. The dimension of the relevant multivariate normal distribution is equal to the number of monitoring
instants. This is typically too large for numerical evaluation.

2Here and in what follows, we adopt the usual convention that the infimum of an empty set is infinity, so that
in particularτH = ∞ if the asset prices never reach the barrier.

3For a random variableX and an eventA, the notationE[X; A] meansE[X1A], with 1A the indicator ofA.
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with its complement{τH > T}. Formulas for pricing these continuously monitored barrier
options are reviewed in Section 3.

Now suppose the barrier is monitored only at timesi1t , i = 0, 1, . . . ,m, where1t =
T/m. Let us writeS̃i for Si1t , so that{S̃i , i = 0, 1, . . .} is the asset price at monitoring
instants. Define

τ̃H =
{

inf{n > 0 : S̃n > H}, S0 < H
inf{n > 0 : S̃n < H}, S0 > H.

The price of adiscreteknock-in call option is given by

e−rT E[(S̃m − K )+; τ̃H ≤ m];

the same modifications as before yield puts and knock-outs.
In general, there are no easily computed closed-form expressions for the prices of these

discrete barrier options. A consequence of our analysis is the obvious conclusion that the
discrete price converges to the continuous price as the monitoring frequency increases,
suggesting that the continuous price may be used as a naive approximation. The following
result shows how to adjust the continuous formula to obtain a far better approximation to
the discrete price.

THEOREM1.1. Let Vm(H) be the price of a discretely monitored knock-in or knock-
out down call or up put with barrier H. Let V(H) be the price of the corresponding
continuously monitored barrier option. Then

Vm(H) = V(He±βσ
√

T/m)+ o

(
1√
m

)
,(1.3)

where+ applies if H> S0,− applies if H< S0, andβ = −ζ( 1
2)/
√

2π ≈ 0.5826, with ζ
the Riemann zeta function.

This result indicates that to use the continuous price as an approximation to the discrete
price, we should first shift the barrier away fromS0 by a factor of exp(βσ

√
1t). Numerical

results in Section 2 suggest that the resulting approximation is remarkably accurate.

1.2. A Sketch of the Argument

Sections 3 and 4 and the appendices are devoted to the proof of Theorem 1.1. To give
some insight into the result, we illustrate the argument for an example. Consider abinary
knock-in option paying one dollar if the asset price reachesH at some point in [0, T ] and if at
timeT it is belowK , with H > max{S0, K }. A by-product of the analysis in later sections
(Corollary 4.1) is that Theorem 1.1 applies to binary barrier options as well. Suppose,
for purposes of illustration, thatr − 1

2σ
2 = 0, so that under the equivalent martingale

measure logSt has zero drift.4 Defineb andc via the relationsH = S0 exp(bσ
√

T) and

4Ito’s lemma applied to (1.1) yieldsd log S= (ν − 1
2σ

2) dt + σ d Z.
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K = S0 exp(cσ
√

T). Assuming continuous monitoring of the barrier, the value of the
option ise−rT times

P(ST < K , τH ≤ T) = P(log ST < cσ
√

T, max
0≤t≤T

log St ≥ bσ
√

T)

= P(log ST ≥ (2b− c)σ
√

T)(1.4)

= 1−Φ(2b− c),(1.5)

whereΦ is the standard normal cumulative distribution function. Equation (1.4) is an
application of the reflection principle (Karatzas and Shreve 1991, pp. 79–80).

Suppose, now, that for the option to be knocked in, the asset price must reachH at some
time in{0,1t, 21t, . . . ,m1t}, with1t = T/m. Becauser − 1

2σ
2 = 0, we may represent

the asset price at these monitoring instants as

S̃n = S0eσ
√
1t W̃n, with W̃n =

n∑
i=1

Zi ,

where theZi are independent standard normal random variables. The price of the option
under discrete monitoring of the barrier ise−rT times

P(S̃m < K , max
0≤n≤m

S̃n ≥ H) = P(W̃m < c
√

m, τ̃ ≤ m),

where τ̃ is the first timeW̃ exceedsb
√

m. The increments of the random walk̃W are
symmetrically distributed, so the reflection principle yields

P(W̃m < c
√

m, τ̃ ≤ m) = P(W̃m > 2(b
√

m+ Rm)− c
√

m),(1.6)

whereRm
4= W̃τ̃ − b

√
m is theovershootabove levelb

√
m (see Figure 1.1). Notice that

P(W̃m > x
√

m) = 1− Φ(x). Applying this to (1.6) and treating̃Wm and Rm as though
they were independent we get

P(W̃m > 2(b
√

m+ Rm)− c
√

m) ≈ E

[
1−Φ(2

(
b+ Rm√

m

)
− c

)]
.(1.7)

Expanding in a formal Taylor series withϕ denoting the standard normal density, and using
the fact (to be reviewed in Section 4.3) thatE[Rm] → β, we get

P(W̃m > 2(b
√

m+ Rm)− c
√

m) ≈ E

[
1−Φ(2b− c)− 2Rm√

m
ϕ(2b− c)+ o

(
1√
m

)]
≈ 1−Φ(2b− c)− 2√

m
E[Rm]ϕ(2b− c)+ o

(
1√
m

)
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FIGURE 1.1. Overshoot and reflection principle illustration.

= 1−Φ(2b− c)− 2β√
m
ϕ(2b− c)+ o

(
1√
m

)
= 1−Φ(2

(
b+ β√

m

)
− c

)
+ o

(
1√
m

)
.

In light of (1.5), this is

P(ST < K , τH exp(βσ
√
1t) ≤ T)+ o

(
1√
m

)
,

and thus agrees, up too(1/
√

m), with the price of a continuously monitored barrier option
knocked in at levelH exp(βσ

√
1t). The differenceHeβσ

√
1t − H may be viewed as

an approximation to the amount by which the asset price exceeds the barrier at the first
monitoring instant at which it is above the barrier.

The heuristic argument just sketched points out the key steps in proving Theorem 1.1
rigorously: we find a suitable representation of the discrete price, expand it in a Taylor series,
evaluate the limits of the coefficients asm→ ∞, and identify the resulting expression as
an expansion of the continuous price. Evaluation of the limits of coefficients requires
consideration of the joint limit of the overshoot and the barrier-crossing time; the necessary
asymptotic independence result is given in Section 4.3, and this may be viewed as the
rigorous counterpart of (1.7). Handling ordinary barrier options instead of just binary
options requires consideration of integrals of the probabilities outlined above.

Continuity corrections for level-crossing probabilities of random walks have a long his-
tory in sequential analysis and, to a lesser extent, in risk theory. Key references from
the statistical literature are Chernoff (1965), Siegmund (1979, 1985), Siegmund and Yuh
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(1982), and Woodroofe (1982); for developments in risk theory see Asmussen (1989). We
especially build on the work of Siegmund and Yuh. Also in the context of sequential
analysis, Chernoff and Petkau (1986) have shown that a boundary correction improves the
numerical solution of an optimal stopping problem based on a binomial approximation to
a diffusion. Recently, AitSahlia (1995) has analyzed a similar technique in the pricing of
American options (without barriers).

2. PERFORMANCE OF THE CORRECTED BARRIER APPROXIMATION

Before proceeding with the main proof, we present numerical results to indicate the accuracy
of the corrected barrier approximation given in equation (1.3). Table 2.1 compares the
approximation (and two related approximations to be described shortly) with the true value
for different levels of the barrierH . The options considered are down-and-out call options,
i.e., S0 > H , and the option becomes worthless ifS crosses the barrier before the option
expires at timeT . The “true” value is determined from a trinomial procedure modified in
several ways to specifically handle discrete barriers and is fully described in Broadie et al.
(1996). This numerical procedure has an average accuracy of about 0.001 for this range of
parameters.

Table 2.1 and later tables show that the continuous barrier price can differ from the discrete
barrier price by economically significant amounts. For example, forH = 97 in Table 2.1,
the continuous barrier price is $3.06 while the discrete barrier option with daily monitoring
is worth 25% more ($3.83). The prices under approximation (1) in the tables result from the
corrected continuous barrier formula suggested by Theorem 1.1. The relative absolute error
of this formula is less than 0.1% forH ≤ 98; overall, this formula is remarkably accurate
except in extreme cases withH very close toS0. It can be evaluated very fast (more than
10,000/sec on an Intel Pentium 133 MHz processor), while the procedure used to compute
the true value to comparable accuracy is many orders of magnitude slower (approximately
one hour on the same processor).5

Table 2.1 shows results for two other approximations. Approximation (2) uses a formula
of Heynen and Kat (1994b) for continuouspartial barrier options, i.e., options whose
barriers are monitored throughout a time interval [0, t1] or [t1, T ], with 0 < t1 < T . The
first monitoring point for a discrete barrier option does not occur until1t , suggesting an
approximation that shifts the barrier in the formula for a partial barrier option monitored
during [1t, T ]. Specifically, approximation (2) setst1 = 1t and shifts the barrier in
equation (9) on p. 259 of Heynen and Kat (1994b). It can be evaluated in about the same
(negligible) computing time as the first approximation. Although correcting the continuous
barrier formula (approximation (1)) leads to small underpricing in some cases, the corrected
partial barrier formula (approximation (2)) leads to small overpricing in these cases.

The modified corrected partial barrier approximation (3) in Table 2.1 is a further heuristic
that attempts to compromise between the slight underpricing and overpricing observed with
(1) and (2). It does so by adjusting the beginning of the partial barrier tot1 = 0.581t . (The
factor 0.58 was found experimentally to be the best among a few different values tried.)
In most of the test cases, this heuristic had the smallest error of the three approximations.
It is worth emphasizing, however, that only approximation (1) is rigorously supported; an
attempt to justify a refinement of (1) would involve the daunting task of carrying out the

5In order to compute the true value to within 0.001 on average, we needed to run a modified trinomial routine
using 80,000 time steps. The large number of steps required for this accuracy is quite computationally intensive.
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TABLE 2.1
Down-and-Out Call Option Price Results,m= 50 barrier points

Corrected Corrected Modified
continuous partial corrected Relative error

Continuous barrier barrier partial (in percent)
Barrier barrier (1) (2) (3) True (1) (2) (3)

85 6.308 6.322 6.322 6.322 6.322 0.0 0.0 0.0
86 6.283 6.306 6.306 6.306 6.306 0.0 0.0 0.0
87 6.244 6.281 6.281 6.281 6.281 0.0 0.0 0.0
88 6.185 6.242 6.242 6.242 6.242 0.0 0.0 0.0
89 6.099 6.184 6.184 6.184 6.184 0.0 0.0 0.0
90 5.977 6.098 6.098 6.098 6.098 0.0 0.0 0.0
91 5.808 5.977 5.977 5.977 5.977 0.0 0.0 0.0
92 5.579 5.810 5.810 5.810 5.810 0.0 0.0 0.0
93 5.277 5.585 5.585 5.585 5.584 0.0 0.0 0.0
94 4.888 5.288 5.288 5.288 5.288 0.0 0.0 0.0
95 4.398 4.907 4.907 4.907 4.907 0.0 0.0 0.0
96 3.792 4.428 4.429 4.428 4.427 0.0 0.1 0.0
97 3.060 3.836 3.845 3.837 3.834 0.1 0.3 0.1
98 2.189 3.121 3.160 3.129 3.126−0.2 1.1 0.1
99 1.171 2.271 2.408 2.321 2.337−2.8 3.0 −0.6

Option parameters:S0 = 100,K = 100,σ = 0.30,r = 0.10, andT = 0.2. Assuming 250 trading days per year,
m= 50 barrier points roughly corresponds to daily monitoring of the barrier.

expansions in Sections 3 and 4 to one more term. Also, approximations (2) and (3) are
slightly more complicated to implement than approximation (1).

Table 2.2 shows that the approximations degrade slowly as the number of monitoring
points decreases. Indeed, even though Theorem 1.1 is based on the limit asm increases
to infinity, the approximation is quite accurate even form = 5, in marked contrast to the
continuous price. Table 2.3 shows results for high asset volatility (σ = 0.6), long maturity
(T = 2), and higher strike (K = 110). The overall performance of the approximations
remains excellent, except when the barrier is very close to the underlying asset price. In this
case, the relative errors are slightly larger with higher volatility and longer time to maturity
and are slightly lower with a higher strike (compared to Table 2.1).

Option price derivatives (e.g., “delta” =∂V/∂S0) are of particular importance to practi-
tioners for hedging and risk management. Although this case is not covered by Theorem 1.1,
the correction can be applied to the continuous delta formula as well. Table 2.4 shows how
the deltas of the three approximations compare to the true delta (determined through exten-
sive numerical computations). Relative absolute errors are less than 0.1% forH ≤ 97 for
approximation (1). Delta approximations (2) and (3) are better than (1) forH very close
to S0.

Next we consider a two-state example where the payoff of the option is determined by one
state variable and the knock in and or knock out is determined by a second state variable—
for example, options on stocks or stock indices which are knocked out if a currency reaches
a barrier trade in the over-the-counter market. Rich (1996) models options with default
risk in this framework. Heynan and Kat (1994a) and Rich (1996) derive formulas for such
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TABLE 2.2
Down-and-Out Call Option Price Results, varyingm

Corrected Corrected Modified
continuous partial corrected Relative error

Continuous barrier barrier partial (in percent)
m Barrier barrier (1) (2) (3) True (1) (2) (3)

85 6.308 6.327 6.327 6.327 6.326 0.0 0.0 0.0
87 6.244 6.293 6.293 6.293 6.292 0.0 0.0 0.0
89 6.099 6.210 6.210 6.210 6.210 0.0 0.0 0.0
91 5.808 6.033 6.033 6.033 6.032 0.0 0.0 0.0

25 93 5.277 5.688 5.688 5.688 5.688 0.0 0.0 0.0
95 4.398 5.084 5.088 5.084 5.081 0.0 0.1 0.0
97 3.060 4.113 4.154 4.120 4.116−0.1 0.9 0.1
99 1.171 2.673 2.923 2.779 2.813−5.0 3.9 −1.2

85 6.308 6.337 6.338 6.337 6.337 0.0 0.0 0.0
87 6.244 6.323 6.323 6.323 6.321 0.0 0.0 0.0
89 6.099 6.284 6.287 6.285 6.281 0.1 0.1 0.1
91 5.808 6.194 6.205 6.195 6.187 0.1 0.3 0.1

5 93 5.277 6.004 6.043 6.011 6.000 0.1 0.7 0.2
95 4.398 5.646 5.760 5.676 5.671−0.5 1.6 0.1
97 3.060 5.028 5.323 5.141 5.167−2.7 3.0 −0.5
99 1.171 4.050 4.724 4.392 4.489−9.8 5.2 −2.2

Option parameters:S0 = 100,K = 100,σ = 0.30,r = 0.10, andT = 0.2.

two-state options when the barrier is continuously monitored. More specifically, suppose
that the risk-neutralized asset price processes aredSi = Si (r dt + σi d Zi ), i = 1, 2, where
Z1 andZ2 have a constant correlationρ. Table 2.5 presents results for a two-asset discrete
barrier down-and-out call option. The payoff of the option is(S1

T − K )+ if S2 is greater
than H at all monitoring times. The “true” price is more difficult to determine because
of the extra dimension involved, but the two-dimensional trinomial procedure used has an
average accuracy of about 0.003 for this range of parameters. Table 2.5 shows that the
corrected continuous barrier formula is very accurate as long as the barrier is not too close
to the initial price of asset 2.

The previous examples involved down-call options, i.e., options that are knocked out
when an asset pricedecreasesto a barrier level, but whose payoff is positive if the terminal
asset price isabovea strike level. Table 2.6 gives results for up call options (not covered by
Theorem 1.1). The results indicate that the corrected barrier formula works well for these
options, though perhaps not as well as for down calls. Corrected versions of the continuous
partial barrier formulas in Heynen and Kat (1994b) could also be used to approximate the
discrete barrier price.

3. THE CONTINUOUS PRICE

The purpose of this section is to derive expressions for the continuous priceV(H) and its
derivative. In this and the remaining sections, we detail the case of the down-and-in call,
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TABLE 2.3
Down-and-Out Call Option Price Results, varyingσ , T , andK

Corrected Corrected Modified
continuous partial corrected Relative error

Continuous barrier barrier partial (in percent)
Panel Barrier barrier (1) (2) (3) True (1) (2) (3)

85 10.048 10.505 10.505 10.505 10.505 0.0 0.0 0.0
87 9.404 10.020 10.020 10.020 10.020 0.0 0.0 0.0
89 8.578 9.384 9.384 9.384 9.383 0.0 0.0 0.0
91 7.547 8.573 8.574 8.573 8.572 0.0 0.0 0.0

A 93 6.293 7.566 7.572 7.566 7.563 0.0 0.1 0.0
95 4.803 6.346 6.379 6.351 6.344 0.0 0.6 0.1
97 3.067 4.900 5.033 4.937 4.941−0.8 1.9 −0.1
99 1.084 3.219 3.638 3.414 3.475−7.4 4.7 −1.8

85 18.856 20.821 20.822 20.821 20.819 0.0 0.0 0.0
87 17.232 19.573 19.577 19.574 19.571 0.0 0.0 0.0
89 15.361 18.120 18.133 18.121 18.114 0.0 0.1 0.0
91 13.227 16.446 16.487 16.450 16.436 0.1 0.3 0.1

B 93 10.815 14.534 14.650 14.553 14.537 0.0 0.8 0.1
95 8.111 12.371 12.657 12.446 12.451−0.6 1.7 0.0
97 5.104 9.945 10.576 10.183 10.254−3.0 3.1 −0.7
99 1.782 7.243 8.499 7.874 8.061−10.1 5.4 −2.3

85 2.494 2.496 2.496 2.496 2.496 0.0 0.0 0.0
87 2.485 2.491 2.491 2.491 2.491 0.0 0.0 0.0
89 2.459 2.475 2.475 2.475 2.475 0.0 0.0 0.0
91 2.394 2.433 2.433 2.433 2.433 0.0 0.0 0.0

C 93 2.250 2.336 2.337 2.337 2.336 0.0 0.0 0.0
95 1.964 2.136 2.136 2.136 2.135 0.0 0.0 0.0
97 1.446 1.757 1.761 1.757 1.756 0.1 0.3 0.1
99 0.591 1.105 1.171 1.129 1.136−2.7 3.0 −0.6

Option parameters:S0 = 100 andr = 0.10. There arem = 50 barrier points (daily monitoring). Panel A has
σ = 0.6, K = 100,T = 0.2; Panel B hasT = 2.0, σ = 0.3, K = 100; and Panel C hasK = 110,σ = 0.3,
T = 0.2.

the other cases following with only minor modifications. Thus,

V(H) = e−rT E[(ST − K )+; τH < T ],

with H < S0 andH < K . We defineW to be a Wiener process with variance parameterσ 2

and driftµ
4= r − 1

2σ
2. This allows us to represent the asset price asSt = S0 exp(Wt ) and

then work withW rather thanS. The barrier is breached whenW hitsa
4= log(H/S0); i.e.,

τH = inf{t ≥ 0 : S0eWt ≤ H}
= inf{t ≥ 0 : Wt ≤ a}.
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TABLE 2.4
Down-and-Out Call Option Delta Results,m= 50 barrier points

Corrected Corrected Modified
continuous partial corrected Relative error

Continuous barrier barrier partial (in percent)
Barrier barrier (1) (2) (3) True (1) (2) (3)

85 0.594 0.591 0.591 0.591 0.591 0.0 0.0 0.0
86 0.599 0.594 0.594 0.594 0.594 0.0 0.0 0.0
87 0.607 0.600 0.600 0.600 0.600 0.0 0.0 0.0
88 0.618 0.607 0.607 0.607 0.607 0.0 0.0 0.0
89 0.633 0.618 0.618 0.618 0.618 0.0 0.0 0.0
90 0.653 0.633 0.633 0.633 0.633 0.0 0.0 0.0
91 0.679 0.653 0.653 0.653 0.653 0.0 0.0 0.0
92 0.711 0.678 0.678 0.678 0.678 0.0 0.0 0.0
93 0.752 0.710 0.710 0.710 0.711 0.0 0.0 0.0
94 0.800 0.750 0.750 0.750 0.750 0.0 0.0 0.0
95 0.857 0.798 0.797 0.798 0.798 0.0−0.1 0.0
96 0.921 0.853 0.851 0.853 0.854−0.1 −0.4 −0.2
97 0.994 0.917 0.904 0.915 0.917 0.0−1.4 −0.2
98 1.073 0.988 0.938 0.972 0.966 2.2−2.9 0.6
99 1.158 1.066 0.922 0.988 0.958 11.3−3.7 3.1

Option parameters:S0 = 100, K = 100,σ = 0.30, r = 0.10, andT = 0.2. There arem = 50 barrier points
(daily monitoring).

Define

BSC(s) = e−rT E[(seWT − K )+],

the Black–Scholes price of a call option as a function of the initial asset price. Then we
have

PROPOSITION3.1. For a down-and-in call,

V(H) =
(

H

S0

)(2r/σ 2)−1

BSC(H2/S0)(3.1)

= e2µa/σ 2
BSC(S0e2a)(3.2)

= e−rT e2µa/σ 2
∫ ∞

[log(K/S0)]/σ
√

T

(
1−Φ(x − µ

√
T

σ
− 2a

σ
√

T

))
(3.3)

× S0exσ
√

Tσ
√

T dx.

Proof. The first identity is a consequence of Merton’s (1973, eqn. (55)) formula for a
barrier option; this particular representation is from Boyle and Lau (1994). The second
identity restates the first becausea = log(H/S0). To get the last identity, write the Black–
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TABLE 2.5
Two-Asset Down-and-Out Call Option Price Results,m= 50 barrier points

Corrected Relative
Continuous continuous error

Barrier barrier barrier True (in percent)

85 5.893 5.986 5.985 0.0
86 5.772 5.887 5.886 0.0
87 5.626 5.766 5.765 0.0
88 5.452 5.621 5.620 0.0
89 5.246 5.448 5.447 0.0
90 5.005 5.244 5.243 0.0
91 4.726 5.005 5.005 0.0
92 4.404 4.729 4.729 0.0
93 4.038 4.412 4.413 0.0
94 3.623 4.051 4.052 0.0
95 3.158 3.643 3.645 −0.1
96 2.639 3.185 3.187 −0.1
97 2.066 2.676 2.679 −0.1
98 1.435 2.112 2.121 −0.4
99 0.747 1.493 1.542 −3.2

Option parameters: Initial assets prices areS1 = S2 = 100, K = 100,
σ1 = σ2 = 0.30, r = 0.10, ρ = 0.5, andT = 0.2. There arem = 50
barrier points (daily monitoring). The option is knocked out ifS2 hits the
barrier at a monitoring time. The option payoff is(S1

T − K )+ at timeT if
the option has not been knocked out.

TABLE 2.6
Up-and-Out Call Option Price Results,m= 50 barrier points

Corrected Relative
Continuous continuous error

Barrier barrier barrier True (in percent)

155 12.775 12.905 12.894 0.1
150 12.240 12.448 12.431 0.1
145 11.395 11.707 11.684 0.2
140 10.144 10.581 10.551 0.3
135 8.433 8.994 8.959 0.4
130 6.314 6.959 6.922 0.5
125 4.012 4.649 4.616 0.7
120 1.938 2.442 2.418 1.0
115 0.545 0.819 0.807 1.5

Option parameters:S0 = 110,K = 100,σ = 0.30,r = 0.10, andT = 0.2.
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Scholes price as

BSC(s) = e−rT E[(seWT − K )+]

= e−rT
∫ ∞
−∞
(sey − K )+

1

σ
√

T
ϕ

(
y− µT

σ
√

T

)
dy

= e−rT
∫ ∞

log(K/s)

(
1−Φ( y− µT

σ
√

T

))
sey dy

using integration by parts. Apply this to (3.2) to get

V(H) = e−rT e2µa/σ 2
∫ ∞

log(K/S0e2a)

(
1−Φ( y− µT

σ
√

T

))
S0e2aey dy,

and make the substitutionx = (y+ 2a)/(σ
√

T) to get (3.3).

The price of a down-and-out call can be obtained by subtracting the down-and-in price
from the standard Black–Scholes price. For a comprehensive treatment of the other cases
and of connections among the various prices, see Rich (1994) and Rubinstein and Reiner
(1991).

We now writeV(S0ea) for V(H) and calculate the derivative of the continuous option
price with respect toa:

PROPOSITION3.2. For a down-and-in call,

∂

∂a
V(S0ea) = e−rT

(
2µ
√

T

σ

)
e2µa/σ 2

∫ ∞
[log(K/S0)]/σ

√
T

(3.4)

×
(

1−Φ(x − µ
√

T

σ
− 2a

σ
√

T

))
S0exσ

√
T dx

+ 2e−rT e2µa/σ 2
∫ ∞

[log(K/S0)]/σ
√

T
ϕ

(
x − µ

√
T

σ
− 2a

σ
√

T

)
× S0exσ

√
T dx.

Proof. From (3.2) we get

∂

∂a
V(S0ea) = 2µ

σ 2
e2µa/σ 2

BSC(S0e2a)+ e2µa/σ 2 · 2S0e2a1(S0e2a),

where1(·) is the Black–Scholes delta as a function of the initial asset price withr , T , σ ,
andK held fixed. Substituting(2µ/σ 2) times (3.3) for the first term yields the first term of
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(3.4). To get the second term in (3.4) we use (3.2) and (3.3) again and differentiate to get

2S0e2a1(S0e2a) = e−rT ∂

∂a

[∫ ∞
[log(K/S0)]/σ

√
T

(
1−Φ(x − µ

√
T

σ
− 2a

σ
√

T

))

× S0exσ
√

Tσ
√

T dx

]

= e−rT

(
2

σ
√

T

)∫ ∞
[log(K/S0)]/σ

√
T
ϕ

(
x − µ

√
T

σ
− 2a

σ
√

T

)
× S0exσ

√
Tσ
√

T dx.

A simple justification of this interchange of derivative and integral first makes the change
of variabley = x− (2a/σ

√
T). This movesa out of the argument ofΦ and into the lower

limit of integration.

Combining Propositions 3.1 and 3.2, we obtain formulas for the option price and its
derivative in expressions of the formV(S0ea+ε) = V(S0ea) + ε∂aV(S0ea) + o(ε), where
∂a is short for∂/∂a.

4. MAIN STEPS OF THE PROOF

In this section, we give the main steps of the proof of Theorem 1.1. Most of the technical
details of intermediate steps are relegated to appendices.

4.1. The Discrete Price

As in Section 1, we usẽSn to denote the asset price at thenth monitoring instant,nT/m.
We use the representation

S̃n = S0 exp

{
µn1t + σ

√
1t

n∑
i=1

Zi

}
= S0 exp{W̃nσ

√
1t},

where theZi are independent standard normal random variables,

W̃n =
n∑

i=1

(
Zi + µ

σ

√
1t
)
,

µ = r − 1
2σ

2, and1t = T/m. Also, we let

τ̃ = inf{n ≥ 1 : S̃n ≤ H}
= inf{n ≥ 1 : W̃n ≤ a/(σ

√
1t)},
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where, as before,a = log(H/S0) < 0. The option price is

Vm = e−rT E[(S̃m − K )+; τ̃ < m] = e−rT E[(S0eW̃mσ
√
1t − K )+; τ̃ < m].

This expectation is an integral with respect to the density inx of the distributionP(τ̃ <
m, W̃m ≤ x). Integration by parts and a change of variables yields the following:

LEMMA 4.1. With the notation above

Vm = e−rT
∫ ∞

[log(K/S0)]/σ
√

T
P(τ̃ < m, W̃m ≥ y

√
m)σ
√

T S0eyσ
√

T dy.

Our approach to proving Theorem 1.1 will be to approximate the integrandP(τ̃ <

m, W̃m ≥ y
√

m) for y ≥ log(K/S0)/σ
√

T to terms of orderm−3/2; evaluate the coefficients
on the terms of orderm−1/2 and integrate them, as required by Lemma 4.1; show that the
higher-order terms areo(m−1/2), even after integration; and finally identify the resulting
expressions with continuous formulas from Section 3.

4.2. Approximation of the Probability

To approximate the integrand in Lemma 4.1, we first generalize the setting slightly.
We use notation consistent with Siegmund and Yuh (1982), on which Theorem 4.1 below
builds. We work with a family of probability measures{Pθ , θ ∈ R}; underPθ , the random
variables{X1, X2, . . .} are independent and normally distributed with meanθ and unit
variance. Define

Un =
n∑

i=1

Xi ;

underPθ , the random walkUn thus has driftθ . Let θ1 = ξ/
√

m andθ0 = −ξ/
√

m, with
ξ ≥ 0 a finite constant. Define

τ ′ = inf{n ≥ 1 : Un ≥ b},

whereb = ζ
√

m for someζ < ξ . To make the correspondence with the notation of
Section 4.1, set

ξ = −µ
√

T

σ
and ζ = − a

σ
√

T
> 0.(4.1)

Then

P(τ̃ < m, W̃m ≥ y
√

m) = Pθ1(τ
′ < m,Um ≤ −y

√
m)

with y ≥ a/(σ
√

T) = −ζ , as in Lemma 4.1. By the symmetry of the normal distribution,
the caseξ < 0 (corresponding toµ > 0) follows from an analysis ofξ ≥ 0.
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THEOREM4.1. Let Rm = Uτ ′ − b, and define

A(τ ′, y) = Φ(− ζ + y√
1− τ ′/m

− ξ
√

1− τ ′/m

)
B(τ ′, y) = 1√

1− τ ′/m
ϕ

(
ζ + y√

1− τ ′/m
+ ξ

√
1− τ ′/m

)
.

Then for y> −ζ ,

Pθ1(τ
′ < m,Um < −y

√
m) = e2ξζ (1−Φ(2ζ + y+ ξ))(4.2)

+ 2ξ√
m

Eθ1[RmA(τ ′, y); τ ′ < m] − 2√
m

Eθ1[RmB(τ ′, y); τ ′ < m]

− 1

m
Eθ1[C · 4ξ2R2

mA(τ ′, y); τ ′ < m] + 2ξ

m
Eθ1[R

2
mB(τ ′, y); τ ′ < m]

− 1

m
√

m
Eθ1[D · 4ξ2R2

mB(τ ′, y); τ ′ < m]

− 1

m
Eθ1[e

−2ξRm/
√

mR2
m(1− τ ′/m)−1 · 1

2ϕ
′(η1); τ ′ < m]

+ 1

m
Eθ1[R

2
m(1− τ ′/m)−1 · 1

2ϕ
′(η2); τ ′ < m],

where|C| ≤ 1, |D| ≤ 1,

η1 ∈
[

ζ + y√
1− τ ′/m

+ ξ
√

1− τ ′/m− Rm√
1− τ ′/m

,
ζ + y√

1− τ ′/m
+ ξ

√
1− τ ′/m

]
,

and

η2 ∈
[

ζ + y√
1− τ ′/m

+ ξ
√

1− τ ′/m,
ζ + y√

1− τ ′/m
+ ξ

√
1− τ ′/m+ Rm√

1− τ ′/m

]
.

Proof. See Appendix A.

4.3. Limits of the Coefficients

In light of Lemma 4.1, integrating equation (4.2) in Theorem 4.1 yields the discrete price
Vm. To approximate the discrete price, we evaluate the integral of each of the terms in the
right-hand side of (4.2) asm→∞. An essential tool is the following result:

LEMMA 4.2. There is a probability distribution BR on[0,∞), such that for any t, y ≥ 0,

Pθ1(τ
′/m≤ t, Rm ≤ y)→ G(t; ξ, ζ )BR(y),
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as m→∞, where

G(t; ξ, ζ ) = 1−Φ(ζT−1/2− ξ
√

T)+ e2ξζΦ(−ζT−1/2− ξ
√

T).

Moreover,
∫

y d BR(y) = β, withβ as defined in Theorem 1.1.

REMARK. G(t; ξ, ζ ) is the probability that a Wiener process with driftξ and variance
parameter 1 reachesζ by timet .

Proof. From Lemma 10.11 of Siegmund (1985) we have

Pθ1(τ
′ ≤ ζ 2mt, Rm ≤ y)→ G(t; ξ, ζ )BR(y).

Hence,

Pθ1(τ
′/m≤ t, Rm ≤ y) → G(t/ζ 2; ξζ, 1)BR(y)

= G(t; ξ, ζ )BR(y),

as can be seen from the formula forG. Theorem 10.55 of Siegmund (1985) gives a general
expression for the mean ofBR. Specializing to the case of normal increments and comparing
with Chernoff (1965) we find that this mean is theβ defined in Theorem 1.1.

We interpret this result as stating thatτ ′/m andRm are asymptotically independent, and
that the distributions ofτ ′/m andRm can be approximated byG andBR respectively. So, to
approximate the expectations in Theorem 4.1, we factor them into products of expectations
involving just Rm and justτ ′, then evaluate them under the limiting marginal distributions
indicated by Lemma 4.2. To approximate integrals overy of these expectations (as required
by Lemma 4.1), we integrate the approximations to the expectations. The next result justifies
this process.

PROPOSITION4.1. Denote by g the density of the distribution G. Letβ1 = β and letβ2

denote the second moment of BR. Then,

lim
m→∞

∫ ∞
[log(K/S0)]/σ

√
T

Eθ1[R
`
mA(τ ′, y); τ ′ < m]eyσ

√
T dy(4.3)

= β`
∫ ∞

[log(K/S0)]/σ
√

T

∫ 1

0
Φ(− ζ + y√

1−t
− ξ√1−t

)
g(t) dt eyσ

√
T dy, ` = 1, 2,

and

lim
m→∞

∫ ∞
[log(K/S0)]/σ

√
T

Eθ1[R
`
mB(τ ′, y); τ ′ < m]eyσ

√
T dy(4.4)

= β`
∫ ∞

[log(K/S0)]/σ
√

T

∫ 1

0

1√
1− t

ϕ

(
ζ + y√
1− t

+ ξ√1− t

)
× g(t) dt eyσ

√
T dy, ` = 1, 2.
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Proof. See Appendix B.

To evaluate the limits in Proposition 4.1, we need the following identities:

LEMMA 4.3.

∫ 1

0
Φ(− x√

1− t
− ξ√1− t

)
g(t) dt = e2ξζΦ(−x − ζ − ξ).(4.5)

∫ 1

0

1√
1− t

ϕ

(
x√

1− t
+ ξ√1− t

)
g(t) dt = e2ξζ ϕ(x + ζ + ξ).(4.6)

Proof. Both identities can in principle be verified algebraically using the fact that

g(t) = ζ√
2π

t−3/2 exp

{
ξζ − 1

2

(
ζ 2

t + ξ2t

)}
, t > 0.

An alternative probabilistic argument notes that both sides of (4.5) are equal toP(τ (ξ) <
1,W(ξ)

1 < ζ − x), whereW(ξ) is a unit-variance Wiener process with driftξ , andτ (ξ) is the
first timeW(ξ) reachesζ . For the right side use equation (3.14) of Siegmund (1985) and for
the left side condition onτ . Both sides of (4.6) yield the corresponding density atζ − x.

Using Proposition 4.1 and Lemma 4.3, we can handle integrals of the first five expectations
on the right side of equation (4.2) in Theorem 4.1. To dispense with integrals of the last
two expectations there, we need the following:

PROPOSITION4.2. For i = 1, 2,

lim sup
m→∞

Eθ1

[∫ ∞
[log(K/S0)]/σ

√
T
ϕ′(ηi )

eyσ
√

T

√
1− τ ′/m

dy; τ ′ < m

]
<∞,

whereη1, η2 are as in Theorem 4.1.

Proof. See Appendix C.

4.4. Comparison with the Continuous Price

Consider the expression given for the discrete price in Lemma 4.1. For the integrand
appearing there, substitute the expression in (4.2) using the parameters in (4.1). Theorem 4.1
applies because for anyy ≥ log(K/S0)/σ

√
T we havey > log(H/S0)/σ

√
T = −ζ . The
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result of the substitution is of the form

erT Vm(S0ea) =
∫ ∞

[log(K/S0)]/σ
√

T
e2µa/σ 2

(
1−Φ(y− 2a

σ
√

T
− µ
√

T

σ

))
× σ
√

T S0eyσ
√

T dy

+ 1√
m

∫ ∞
[log(K/S0)]/σ

√
T

2Eθ1[Rm(ξ A(τ ′, u)− B(τ ′, y)); τ ′ < m]

× σ
√

T S0eyσ
√

T dy

+ 1

m

∫
· · · dy

+ 1

m
√

m

∫
· · · dy.

Now apply (3.3) to the first integral, and invoke the boundedness of the limits in Proposi-
tion 4.1 for` = 2 and the boundedness proved in Proposition 4.2 to write this as

erT Vm(S0ea) = erT V(S0ea)

+ 1√
m

∫ ∞
[log(K/S0)]/σ

√
T

2Eθ1[Rm(ξ A(τ ′, u)− B(τ ′, y)); τ ′ < m]

× σ
√

T S0eyσ
√

T dy+ o

(
1√
m

)
.

We may replace the remaining integral with its limit asm→∞ and preserve the validity
of this expression. Using Proposition 4.1 with` = 1 and then Lemma 4.3, we thus obtain

Vm(S0ea) = V(S0ea)+ 2ξβσ
√

T√
m

e−rT
∫ ∞

[log(K/S0)]/σ
√

T
e2ξζΦ(−2ζ − y− ξ)S0eyσ

√
T dy

− 2βσ
√

T√
m

e−rT
∫ ∞

[log(K/S0)]/σ
√

T
e2ξζ ϕ(2ζ + y+ ξ)S0eyσ

√
T dy+ o

(
1√
m

)
.

Substituting forξ andζ as in (4.1), we get

Vm(S0ea) =

V(S0ea)− βσ
√

T√
m

2µ
√

T

σ
e−rT

∫ ∞
[log(K/S0)]/σ

√
T

e2µa/σ 2

×
(

1−Φ(y− µ
√

T

σ
− 2a

σ
√

T

))
S0eyσ

√
T dy

− βσ
√

T√
m

2e−rT e2µa/σ 2
∫ ∞

[log(K/S0)]/σ
√

T
ϕ

(
y− µ

√
T

σ
− 2a

σ
√

T

)
S0eyσ

√
T dy

+ o

(
1√
m

)
.
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Comparing this with Proposition 3.2, we may rewrite it as

Vm(S0ea) = V(S0ea)− βσ
√

T√
m

∂aV(S0ea)+ o

(
1√
m

)
,

which is to say that

Vm(S0ea) = V(S0ea−βσ√1t )+ o

(
1√
m

)
,

concluding the proof of Theorem 1.1.
Notice that if we simply omit the integral from the expression in Lemma 4.1, we obtain

the price of a discretely monitored binary barrier option. Omitting the integral from (3.3)
produces the price of the corresponding continuously monitored barrier option. The steps
carried out in proving Theorem 1.1 for the integrals apply equally well—indeed, with much
less effort—for the integrands. Thus, we have the following corollary.

COROLLARY 4.1. Theorem 1.1 holds for binary barrier options as well.

APPENDIX A: PROOF OF THEOREM 4.1

Directly from Siegmund and Yuh (1982, p. 244), we have

Pθ1(τ
′ < m,Um < −y

√
m) = e(θ1−θ0)bPθ0(Um ≥ (2ζ + y)

√
m)

−Eθ1

[
e−(θ1−θ0)Rm

× {
1− Fθ0,m−τ ′(

√
m(y+ ζ )− Rm)− Fθ1,m−τ ′(−

√
m(y+ ζ )− Rm)

} ; τ ′ < m
]
,

whereFθ,n is the distribution ofUn underPθ . Let us write this as

Pθ1(τ
′ < m,Um < −y

√
m) = X − Eθ1[Y; τ ′ < m].(A.1)

Then

X = e2ξζ

(
1−Φ( (2ζ + y)

√
m− θ0m√

m

))
= e2ξζ (1−Φ(2ζ + y+ ξ)),

which is exactly the first term on the right side of equation (4.2) in Theorem 4.1.
Next we analyzeY. By the definition ofUn, eachFθ,n is a normal distribution with mean

nθ and variancen. Thus,

Y = e−2ξRm/
√

m

(
1−Φ( (y+ ζ )√m− Rm + ξ(m− τ ′)/

√
m√

m− τ ′
))

−Φ(−(y+ ζ )√m− Rm − ξ(m− τ ′)/√m√
m− τ ′

)
.
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Taylor expansion now gives

Y = e−2ξRm/
√

m

[
1−Φ( y+ ζ√

1− τ ′/m
+ ξ

√
1− τ ′/m

)

+ Rm√
m− τ ′ ϕ

(
y+ ζ√

1− τ ′/m
+ ξ

√
1− τ ′/m

)
+ 1

2

R2
m

m− τ ′ ϕ
′(η1)

]

−
[Φ(− y+ ζ√

1− τ ′/m
− ξ

√
1− τ ′/m

)

− Rm√
m− τ ′ ϕ

(
− y+ ζ√

1− τ ′/m
− ξ

√
1− τ ′/m

)

+ 1

2

R2
m

m− τ ′ ϕ
′(η2)

]
,

for someη1, η2 as stated in the theorem. BecauseΦ(−x) = 1−Φ(x) andϕ(−x) = ϕ(x),
this becomes

Y = (e−2ξRm/
√

m − 1)Φ(− y+ ζ√
1− τ ′/m

− ξ
√

1− τ ′/m

)

+ (e−2ξRm/
√

m + 1)
Rm√

m− τ ′ ϕ
(

y+ ζ√
1− τ ′/m

+ ξ
√

1− τ ′/m

)

+ e−2ξRm/
√

m R2
m

m− τ ′
1

2
ϕ′(η1)− R2

m

m− τ ′
1

2
ϕ′(η2).

For anyx ≥ 0 there is ac with |c| ≤ 1, such thate−x = 1−x+cx2. We may thus introduce
C andD as stated in the theorem to get

Y = (−2ξRm/
√

m)Φ(− y+ ζ√
1− τ ′/m

− ξ
√

1− τ ′/m

)

+C · 4ξ2 R2
m

m
Φ(− y+ ζ√

1− τ ′/m
− ξ

√
1− τ ′/m

)

+ (2− 2ξRm/
√

m)
Rm√

m− τ ′ ϕ
(

y+ ζ√
1− τ ′/m

+ ξ
√

1− τ ′/m

)

+ D · 4ξ2 R2
m

m

Rm√
m− τ ′ ϕ

(
y+ ζ√

1− τ ′/m
+ ξ

√
1− τ ′/m

)

+ e−2ξRm/
√

m R2
m

m− τ ′
1

2
ϕ′(η1)− R2

m

m− τ ′
1

2
ϕ′(η2).
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With A(τ ′, y) andB(τ ′, y) as defined in the theorem, this becomes

Y = (−2ξRm/
√

m)A(τ ′, y)+ C · 4ξ2 R2
m

m
A(τ ′, y)

+ (2− 2ξRm/
√

m)
Rm√

m
B(τ ′, y)+ D · 4ξ2 R3

m

m
√

m
B(τ ′, y)

+ e−2ξRm/
√

m R2
m

m− τ ′
1

2
ϕ′(η1)− R2

m

m− τ ′
1

2
ϕ′(η2).

Grouping terms according to their denominators, we get

Y = −2ξRm√
m

A(τ ′, y)+ 2Rm√
m

B(τ ′, y)

+ 1

m
C · 4ξ2R2

mA(τ ′, y)− 1

m
2ξR2

mB(τ ′, y)

+ 1

m
√

m
D · 4ξ2R2

mB(τ ′, y)

+ e−2ξRm/
√

m R2
m

m− τ ′
1

2
ϕ′(η1)− R2

m

m− τ ′
1

2
ϕ′(η2).

Via (A.1), this concludes the proof of the theorem.

APPENDIX B: UNIFORM INTEGRABILITY

The main objective of this appendix is to prove Proposition 4.1. We begin by recording two
useful facts. From Lemma 10.11 of Siegmund (1985) we get convergence of all moments
of the overshoot to moments ofBR:

lim
m→∞ Eθ1[R

q
m] =

∫
yqd BR(y), for all q > 0.(B.1)

In particular,Eθ1[Rm] → β. We will also use the easily verified identity

∫ ∞
b

ecyϕ(u+ y) dy= ec(c+2u)/2Φ(−b+ c+ u).(B.2)

We now prove

LEMMA B.1. There is a finite constant M such that for all m

sup
0≤t<m

∫ ∞
[log(K/S0)]/σ

√
T

B(t, y)eyσ
√

T dy≤ M.
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Proof. Using first the definition ofB(t, y) and then (B.2), we get

∫ ∞
[log(K/S0)]/σ

√
T

B(t, y)eyσ
√

T dy

=
∫ ∞

[log(K/S0)]/σ
√

T
ϕ

(
ζ + y√
1− t/m

+ ξ
√

1− t/m

)
eyσ
√

T dy√
1− t/m

= exp

(
1

2
σ
√

T
√

1− t/m

[
σ
√

T
√

1− t/m+ 2ξ
√

1− t/m+ 2ζ√
1− t/m

])
×Φ(− log(K/S0)

σ
√

T
√

1− t/m
+ σ
√

T
√

1− t/m+ ξ
√

1− t/m+ ζ√
1− t/m

)
,

and this is bounded for 0≤ t < m.

We proceed with the proof of Proposition 4.1, first considering (4.4). Because all quanti-
ties inside the integral and expectation on the left side of (4.4) are nonnegative, by Tonelli’s
Theorem we may interchange the integral and expectation to get

∫ ∞
[log(K/S0)]/σ

√
T

Eθ1[R
`
mB(τ ′, y); τ ′ < m]eyσ

√
T dy

= Eθ1

[
R`m

∫ ∞
[log(K/S0)]/σ

√
T

B(τ ′, y)eyσ
√

T dy; τ ′ < m

]
.

By Lemma B.1, the integral inside the expectation is uniformly bounded. But then by (B.1)
the entire expression inside the expectation is uniformly integrable. To evaluate the limit
asm→∞, we may therefore integrate with respect to the limiting distribution to get

β`

∫ 1

0

∫ ∞
[log(K/S0)]/σ

√
T

1√
1− t

ϕ

(
ζ + y√
1− t

+ ξ√1− t

)
eyσ
√

T dy g(t) dt.

Again interchanging the order of integration yields (4.4).
The proof of (4.3) is similar. Just as in Lemma B.1, we integrate to verify that

∫ ∞
[log(K/S0)]/σ

√
T

A(t, y)eyσ
√

T dy

is uniformly bounded for 0≤ t < m. This proves uniform integrability which, together
with two applications of Tonelli’s Theorem yields (4.3).

APPENDIX C: PROOF OF PROPOSITION 4.2

We begin with the following bound on the integral inside the expectation:



A CONTINUITY CORRECTION FOR DISCRETE BARRIER OPTIONS 347

LEMMA C.1. There are finite constants M1, M2, and M3 for which

sup
0≤t<m

∣∣∣∣∣
∫ ∞

[log(K/S0)]/σ
√

T
ϕ′(ηi )

eyσ
√

T

√
1− t/m

dy

∣∣∣∣∣ ≤ M1+ M2eM3Rm/
√

m

for i = 1, 2.

Proof. For anyν > 0, integration by parts shows that

∫ ∞
b

ecyϕ′(u+νy) dy= −1

ν
ecbϕ(u+νb)− c

ν2
exp

(
1

2

c

ν

( c

ν
+ 2u

))Φ (−νb+ c

ν
+ u

)
.

Apply this identity to the integral in the lemma by settingb = log(K/S0)/(σ
√

T), c =
σ
√

T , ν = 1/
√

1− t/m, andu = ζ(1− t/m)−1/2+ ξ√1− t/m+ di , i = 1, 2, with

d1 ∈
[
− Rm√

m
√

1− t/m
, 0

]

d2 ∈
[
0,

Rm√
m
√

1− t/m

]
.

This results in a bound of the form in the lemma.

The proof of Proposition 4.2 will be complete once we verify that

lim supEθ1[exp(M3Rm/
√

m)]

is finite asm→∞. For this we need

LEMMA C.2. There is a finite constant M4 such that Pθ1(Rm > u) ≤ M4e−u, for all m
and all u≥ 0.

Proof. Since 1−Φ(x) ≤ 1
x e−x2/2 ≤ e−x for all x > 0, by the argument of Example 2.2

on p. 19 of Woodroofe (1982) we have

Pθ1(Rm > u) =
∞∑

n=1

Pθ1(τ
′ ≥ n,Un > b+ u)

≤
∞∑

n=1

Eθ1[e
−(b+u−Un−1); τ ′ ≥ n]

= e−u
∞∑

n=1

Eθ1[e
−(b−Un−1); τ ′ ≥ n]

≡ M4e−u.
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It follows now that

Eθ1[e
M3Rm/

√
m] ≤ M4

∫ ∞
0

eM3r/
√

me−r dr,

which remains bounded asm→∞.
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