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This paper aims to extend the analytical tractability of the Black–Scholes model to alternative models with
arbitrary jump size distributions. More precisely, we propose a jump diffusion model for asset prices whose

jump sizes have a mixed-exponential distribution, which is a weighted average of exponential distributions
but with possibly negative weights. The new model extends existing models, such as hyperexponential and
double-exponential jump diffusion models, because the mixed-exponential distribution can approximate any
distribution as closely as possible, including the normal distribution and various heavy-tailed distributions. The
mixed-exponential jump diffusion model can lead to analytical solutions for Laplace transforms of prices and
sensitivity parameters for path-dependent options such as lookback and barrier options. The Laplace transforms
can be inverted via the Euler inversion algorithm. Numerical experiments indicate that the formulae are easy
to implement and accurate. The analytical solutions are made possible mainly because we solve a high-order
integro-differential equation explicitly. A calibration example for SPY options shows that the model can provide
a reasonable fit even for options with very short maturity, such as one day.
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1. Introduction
1.1. Background
It is well known that empirically asset return distribu-
tions have heavier left and right tails than the normal
distributions, as suggested in the classical Black–
Scholes model. Jump diffusion models are among the
most popular alternative models proposed to address
this issue, and they are especially useful to price
options with short maturities. For the background
of alternative models, see, e.g., Hull (2005). This
paper aims to further extend the analytical tractability
of the Black–Scholes model to jump diffusion mod-
els with arbitrary jump size distributions. Indeed,
we propose a jump diffusion model for asset prices
whose jump sizes have a mixed-exponential distri-
bution, which is a weighted average of exponential
distributions but with possibly negative weights. The
mixed-exponential distribution can approximate any
distribution arbitrarily closely, including any discrete
distribution, the normal distribution, and various
heavy-tailed distributions such as Gamma, Weibull,
and Pareto distributions. We show that the mixed-
exponential jump diffusion model (MEM) can lead

to analytical solutions for Laplace transforms of
prices and sensitivity measures (e.g., deltas) for path-
dependent options, such as continuously monitored
lookback and barrier options. These analytical solu-
tions are made possible primarily because we solve
a high-order integro-differential equation explicitly
related to the first passage time problem.

The motivation of this paper is twofold. First,
a key question for jump diffusion models is what
jump size distributions will be used. The question is
closely related to how heavy the tails of asset return
distributions are. Although we know that asset return
distributions have heavier tails than the normal distri-
bution, it is not clear at all how heavy the tails may be.
For example, empirically it may be difficult to identify
how heavy the tails are based on 5,000 daily obser-
vations (approximately 20 years worth) (see Heyde
and Kou 2004). Accordingly, we want the jump size
distribution to be general enough to approximate
any distribution, including various exponential- and
power-tail distributions.

Second, analytical tractability is one of the chal-
lenges for alternative models to the Black–Scholes
model. More precisely, although many alternative
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models can lead to analytical solutions for European
call and put options, unlike the Black–Scholes model,
it is difficult to do so for path-dependent options
such as lookback and barrier options. Even numer-
ical methods for these derivatives are not easy.
For example, the convergence rates of binomial
trees and Monte Carlo (MC) simulation for path-
dependent options are typically much slower than
those for call and put options; for a survey, see, e.g.,
Boyle et al. (1997).

Therefore, it is desirable to have a class of jump
diffusion models that allow jump size distributions
that can approximate any distribution while remain-
ing tractable enough to allow analytical solutions for
path-dependent options. We shall show that this is
possible if we consider an MEM.

1.2. Comparison with the Existing Literature
Two well-known jump diffusion models are Merton’s
model (1976) and the double-exponential jump dif-
fusion model (see Kou 2002), in which the jump
size distributions are normal and double exponen-
tial, respectively. One advantage of the double-
exponential jump diffusion model is that it can lead
to analytical tractability for path-dependent options,
including lookback, barrier, Asian, and occupation-
time-related options; see, e.g., Kou and Wang (2003,
2004), Cai and Kou (2011), and Cai et al. (2010).
More general models, including the phase-type jump
diffusion model (PHM) and the hyperexponential
jump diffusion model (HEM), were also proposed;
see, e.g., Asmussen et al. (2004), Boyarchenko (2006),
Boyarchenko and Boyarchenko (2008), Boyarchenko
and Levendorskiı̆ (2009), Cai et al. (2009), Carr and
Crosby (2010), Crosby et al. (2010), Jeannin and Pisto-
rius (2010), and Lipton (2002). Here is a comparison
between our MEM model and the existing HEM and
PHM models.

(1) The HEM specifies the jump size distribution as
a weighted average of exponential distributions, and
the weights can only be nonnegative. Therefore, the
HEM is a special case of our MEM model, because our
weights can be negative. Compared with the HEM,
which can only approximate jump diffusion models
with completely monotone jump size distributions (see
Appendix B for more details), our MEM can approx-
imate jump diffusion models with any jump size dis-
tribution, because the mixed-exponential distribution
is dense with respect to (w.r.t.) the class of all the dis-
tributions in the sense of weak convergence (see Botta
and Harris 1986). In particular, the MEM may be used
to approximate Merton’s (1976) model, which cannot
be approximated by the HEM because the normal dis-
tribution is not completely monotone. In §6, an example
is provided to demonstrate that this approximation
can lead to accurate prices and deltas for lookback
and barrier options under the Merton model.

(2) The PHM, in which the jump sizes have a
phase-type distribution, can also approximate jump
diffusion models with any jump size distribution (see
Botta and Harris 1986). One issue worth mentioning
is that the class of the MEM and that of the PHM
do not contain each other. Moreover, one advantage
of the MEM might be that the representation of the
mixed-exponential distribution is unique, whereas that
of the phase-type distribution is not unique (see Botta
and Harris 1986); i.e., for phase-type distributions dif-
ferent sets of parameters may lead to the same cumu-
lative distribution function (cdf). The uniqueness is
desirable for statistical procedures such as parameter
estimation.

In terms of the related literature on pricing path-
dependent options, Feng and Linetsky (2008) and
Feng et al. (2007) showed how to price path-
dependent options numerically, via extrapolation
and variational methods, for jump diffusion models
with general jump size distributions. Davydov and
Linetsky (2001, 2003) provided analytical pricing for-
mulae for lookback and barrier options under the
CEV model. For option pricing under exponential
Lévy models, see Carr et al. (2003), Cont and Tankov
(2004), and Kijima (2002). The emphasis of the current
paper is on explicit calculations for a particular expo-
nential Lévy model, which are different from these
results.

We point out that none of the exponential Lévy
models can capture both short- and long-term behav-
iors of market options. In fact, the jump diffu-
sion models are useful especially for short maturity
options. In general, to get an excellent fit across all
strikes and all option maturities, spatial inhomogene-
ity and/or stochastic volatilities may be used; see,
e.g., Bates (1996), Bakshi et al. (1997), and Carr et al.
(2003). Therefore, the formulae given in this paper are
only meant to be a first step to price options analyt-
ically under more general models with jumps. How-
ever, the analytical formulae presented here may be
useful for short-term options, and can also provide a
useful benchmark for more complicated models, for
which one perhaps has to resort to simulation or other
numerical procedures.

This paper is organized as follows. Section 2 gives
the basic setting of the MEM and provides motiva-
tion and intuition of our results. First passage times
of the mixed-exponential jump diffusion process are
studied in §3. Section 4 discusses pricing of European
options and provides an example of calibration to a
set of data of European options. Laplace transforms
of prices and deltas for lookback and barrier options
are given in §5, where numerical results are also pro-
vided. In §6, a numerical example is given to illus-
trate an approximation to Merton’s (1976) model by
the MEM, especially in terms of lookback and barrier
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options. Section 7 concludes this paper. The proofs are
deferred to the appendices or the e-companion.1

2. The Mixed-Exponential Jump
Diffusion Model

Under the MEM, the dynamics of the asset price St
under a risk-neutral measure2 P to be used for option
pricing is given by

dSt
St−

= r dt +� dWt + d

( Nt
∑

i=1

4Vi − 15
)

1 (1)

where r is the risk-free interest rate, � the volatility,
8Nt2 t ≥ 09 a Poisson process with rate �, 8Wt2 t ≥ 09
a standard Brownian motion, and 8Yi 2= log4Vi52 i =

112 0 0 09 a sequence of independent and identically
distributed mixed-exponential random variables with
the probability density function (pdf) fY 4x5. In this
model all sources of randomness, Nt , Wt , and Yi, are
assumed to be independent.

More precisely, the pdf fY 4x5 is given by

fY 4x5= pu

m
∑

i=1

pi�ie
−�ixI8x≥09 + qd

n
∑

j=1

qj�je
�jxI8x<091 (2)

where pu ≥ 0, qd = 1 − pu ≥ 0,

pi ∈ 4−�1�5 for all i = 11 0 0 0 1m1
m
∑

i=1

pi = 11

qj ∈ 4−�1�5 for all j = 11 0 0 0 1n1
n
∑

j=1

qj = 11

�i > 1 for all i = 11 0 0 0 1m1 and

�j > 0 for all j = 11 0 0 0 1n0

Because pi and qj can be negative, the parameters
should satisfy some conditions to guarantee that fY 4x5
is always nonnegative and is a probability density
function. A necessary condition for fY 4x5 to be a prob-
ability density function is p1 > 0, q1 > 0,

∑m
i=1 pi�i ≥ 0,

and
∑n

j=1 qj�j ≥ 0. A simple sufficient condition is
∑k

i=1 pi�i ≥ 0 for all k = 11 0 0 0 1m and
∑l

j=1 qj�j ≥ 0
for all l = 11 0 0 0 1n. For alternative conditions, see
Bartholomew (1969). A special case of the mixed-
exponential distribution is the hyperexponential dis-
tribution, where all the pi and qj must be nonnegative.

1 An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.
2 Because of the jumps in the model, there are many risk-neutral
probability measures. It can be shown (see, e.g., Kou 2002) that by
using the rational expectations argument with a HARA-type utility
function for the representative agent, one can choose a particular
risk-neutral measure P so that the equilibrium price of an option is
given by the expectation under this risk-neutral measure of the dis-
counted option payoff. The measure P is called risk neutral because
E4e−rtSt5= S0.

In addition, the condition �i > 1, for all i = 11 0 0 0 1m,
is imposed above to ensure that the stock price St has
a finite expectation. By solving the stochastic differen-
tial Equation (1), we obtain that under the MEM the
return process Xt 2= log4St/S05 is given by

Xt =�t +�Wt +

Nt
∑

i=1

Yi1 X0 = 01

where

�= r −
�2

2
−��1 and

� 2= E6eY1 7− 1 = pu

m
∑

i=1

pi�i

�i − 1
+ qd

n
∑

j=1

qj�j

�j + 1
− 10

Simple algebra yields that the moment generating
function of Xt is

E6exXt 7= eG4x5t1 for any t ≥ 0 and x ∈ 4−�11�151

where G4x5, called the exponent of the Lévy pro-
cess Xt , is defined as

G4x5=
�2

2
x2

+�x+�

(

pu

m
∑

i=1

pi�i

�i − x
+

n
∑

j=1

qd
qj�j

�j + x
− 1

)

0

(3)
For more information about exponents of this type,
we refer to Hirshman and Widder (1955). Besides, the
infinitesimal generator of 8Xt9 is given by

4Lu54x5 =
�2

2
u′′4x5+�u′4x5

+�
∫ +�

−�

6u4x+ y5−u4x57fY 4y5dy1 (4)

where u4x5 is any twice continuously differentiable
function, and fY 4 · 5 is given by (2).

The difficulty in distinguishing tail behaviors (see
Heyde and Kou 2004) motivates us to consider
the MEM, whose jump size distribution is general
enough to approximate any jump size distribution,
no matter which ones we prefer. In fact, the mixed-
exponential distribution can approximate any dis-
tribution in the sense of weak convergence (see
Botta and Harris 1986).

We shall provide several examples of approxi-
mating some heavy-tailed distributions numerically
with the mixed-exponential distribution, including
(a) Gamma 410210055, i.e., the Gamma distribution
with shape parameter 1.2 and scale parameter 0.5;
(b) Gamma 4008100855; (c) Pareto 421255, i.e., the
Pareto distribution with shape parameter 2 and scale
parameter 25; and (d) Weibull 40002510055, i.e., the
Weibull distribution with scale parameter 0.025 and
shape parameter 0.5. Note that (b)–(d) are com-
pletely monotone, but (a) is not, and hence cannot be
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Figure 1 Approximate Heavy-Tailed Distributions (Gamma, Pareto, and Weibull) with Mixed-Exponential Distributions
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Notes. This figure suggests that it seems possible to use a mixture of two, three, three, and five exponential distributions to fit Gamma 410210055, Gamma
4008100855, Pareto 421255, and Weibull 40002510055, respectively. Note that Gamma 410210055 is not completely monotone and hence cannot be approximated
by the hyperexponential distribution. For Gamma 410210055, a plotted approximation is 10142441 − e−108401x 5− 00142441 − e−705316x 5. For Gamma 4008100855,
a plotted approximation is 00843541 − e−102937x 5 + 00130541 − e−504092x 5 + 00026041 − e−7000207x 5. For Pareto (2, 25), a plotted approximation is 00084141 −

e−507140x 5+ 00516541 − e−2705604x 5+ 00399441 − e−8607169x 5. For Weibull (0.025, 0.5), a plotted approximation is 00141141 − e−501891x 5+ 00160441 − e−1405982x 5+

00251941 − e−2904403x 5+ 00273441 − e−13500813x 5+ 00173241 − e−2000x 5.

approximated by the hyperexponential distributions.
Besides, although theoretically phase-type distribu-
tions can approximate (a)–(d), the numerical fitting
might not be easy because the representation of a
phase-type distribution is not unique (see Botta and
Harris 1986).

In our examples, we first fix the number m of
components of the mixed-exponential distribution,
whose cdf is denoted by MExpm4x5. Then an approx-
imation to the target cdf H4x5 by a mixture of m
exponential distributions can be found by minimiz-
ing

∑N
i=14MExpm4xi5 − H4xi55

2, where x11 0 0 0 1 xN are
grid points on some interval. Figure 1 suggests
that it seems possible to use a mixture of two,
three, three, and five exponential distributions to fit
Gamma 410210055, Gamma 4008100855, Pareto 421255,
and Weibull 40002510055, respectively.

3. First Passage Times
To price lookback and barrier options, it is pivotal
to study the first passage times �b that the process
crosses a flat boundary with a level b, where

�b 2= inf8t ≥ 02 Xt ≥ b91 b > 01 (5)

and the infimum of an empty set is defined as +�

and X�b
2= lim supt→+�

Xt on the set 8�b = +�9. When
a jump diffusion process crosses the boundary, some-
times it hits the boundary exactly, and sometimes it
incurs an “overshoot,” X�b

− b, over the boundary.3

3 If the jump size distribution is one sided, one can solve the
overshoot problems by either using renewal equations or fluctu-
ation identities for Lévy processes; see, e.g., Avram et al. (2002)
and Rogers (2000). However, for two-sided jumps, because of the
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The overshoot presents several problems if one wants
to compute the distribution of the first passage time
analytically. First, one needs the exact distribution of
the overshoot, X�b

− b, particularly P4X�b
− b = 05 and

P4X�b
−b > x5 for x > 0. Second, one needs to know the

dependence structure between the overshoot, X�b
− b,

and the first passage time �b.
These difficulties can be resolved if one can solve

the following ordinary integro-differential equation
(OIDE) explicitly:


























4Lu54x5−�u4x5=
�2

2
u′′4x5+�u′4x5−4�+�5u4x5

+�
∫ +�

−�

u4x+y5fY 4y5dy=0 if x<x01

u4x5=g4x5 if x≥x01

(6)

where � > 0, L is the infinitesimal generator of 8Xt9
given by (4), and g4x5 is a given function. Note that
the main challenge is that although this OIDE exists
only when x < x0, it does involve the information
of the function u4x5 for x ≥ x0 because the integral
inside the generator L depends on the values of u on
both regions. To emphasize the above particularity of
the OIDE, we call it a forced OIDE, meaning that the
OIDE has a forcing term defined by g4x5. In this sec-
tion, this OIDE will be solved explicitly, leading to
an analytical solution of the joint distribution of the
first passage time �b and Xt . Intuitively, the solution
is available analytically because the exponential func-
tion has some very nice properties, such as that the
product of exponential functions is still an exponen-
tial function, and the derivatives of exponential func-
tions are still exponential functions.

It is worth noting that our argument requires nei-
ther the Wiener–Hopf factorization nor a more gen-
eral theory about Markov processes. We prove the
main results by solving the OIDE (6) explicitly and
by using a martingale method. More specifically, we
will achieve the objective in four steps: (i) show that
G4x5= � has only real roots for any sufficiently large
�> 0; (ii) use the roots to solve the OIDE (6) explicitly
by transforming the OIDE into a high-order homo-
geneous linear ordinary differential equation (ODE)
(some indications of possible reduction of an OIDE to
a high-order ODE are also given in Mayo 2008, Carr
et al. 2004); (iii) derive Ex6e−��b+�X�b 7 via a martingale
method based on the solution of the OIDE, where the
superscript x means X0 = x; (iv) obtain the double

ladder-variable problems, generally speaking, the renewal equa-
tions are not available, and the fluctuation identities for arbitrary
distributions become too complicated for explicit computation; see,
e.g., the discussion in Siegmund (1985) and Rogers (2000). See also
Boyarchenko and Levendorskiı̆ (2002) and Kyprianou and Pistorius
(2003) for some representations related to the overshoot problems
for general Lévy processes.

Figure 2 Plot of the Function G4x5 Under the MEM with m = n = 3
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4201401605, 4�11 �21 �35 = 4201351605, pu = qd = 005, 4p11 p21 p35 =

41021−00310015, and 4q11 q21 q35 = 410310011−0045. The vertical dotted lines
represent the six singularities −�3, −�2, −�1, �1, �2, and �3. It is easily seen
that for sufficiently large � > 0, G4x5 = � has eight (i.e., m + n + 2) dis-
tinctive real roots, among which four (i.e., m+ 1) are positive and four (i.e.,
n+ 1) are negative.

Laplace transform of the joint distribution of �b and
Xt using the result in Step (iii).

(i) Roots of the equation G4x5= �.

Theorem 3.1. For sufficiently large � > 0, the equa-
tion G4x5 = � has 4m + n + 25 roots that are all real
and are distinct. Specifically, we have 4m + 15 posi-
tive roots, �11�1 0 0 0 1�m+11�, and 4n + 15 negative roots,
�11�1 0 0 0 1�n+11�, as follows:

−�<�n+11� < · · ·<�21� <�11� < 0 <�11�

<�21� < · · ·<�m+11� <+�0 (7)

The proof is given in §A of the e-companion. Fig-
ure 2 illustrates the function G4x5, from which we
can see how the roots behave for sufficiently large
�> 0.

(ii) Solving the OIDE (6) explicitly. A technical con-
tribution of the current paper is that we solve explic-
itly the forced OIDE (6) by transforming it into a
homogeneous linear ODE.

Theorem 3.2. Assume that � > 0 is sufficiently large
such that G4x5 = � has 4m + n + 25 real roots, satisfy-
ing (7). Then any solution u4x5 of OIDE (6) is also a
solution of an 4m+n+ 25-order homogeneous linear ODE
with constant coefficients, whose characteristic equation is
given by 4G4x5− �5

∏m
i=14x − �i5

∏n
j=14x + �j5 = 00 Thus,

any solution of OIDE (6) is of the form

u4x5=

m+1
∑

i=1

cie
�i1�x +

n+1
∑

j=1

dje
�j1�x1 (8)
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where c11 c21 0 0 0 1 cm+1, d11d21 0 0 0 1 dn+1 are undetermined
constants.

Proof. See §B in the e-companion. �
(iii) Joint distribution of the first passage time �b and

the overshoot X�b
− b.

Theorem 3.3. For any sufficiently large � > 0, � < �1

and x1 b ∈�, we have

Ex6e−��b+�X�b 7=















e�x if x ≥ b1

m+1
∑

l=1

wle
�l1�x if x < b1

(9)

where x =X0 and �11�1 0 0 0 1�m+11� are the m+ 1 positive
roots of the equation G4x5= � such that 0 <�11� <�21� <
· · · < �m+11�. Here w 2= 4w11w21 0 0 0 1wm+15

′ is a vector
uniquely determined by the following linear system

ABw = J 1 (10)

where A is an 4m+ 15× 4m+ 15 nonsingular matrix

A=

































1 1 000 1
�1

�1 −�11�

�1

�1 −�21�
000

�1

�1 −�m+11�

�2

�2 −�11�

�2

�2 −�21�
000

�2

�2 −�m+11�

000
000

0 0 0
000

�m

�m−�11�

�m

�m−�21�
000

�m

�m−�m+11�

































1 (11)

B is an 4m + 15 × 4m + 15 diagonal matrix, and J is an
4m+ 15-dimensional vector

B = diag8e�11�b1 e�21�b1 0 0 0 1 e�m+11�b91

J = e�b
(

11
�1

�1 − �
1

�2

�2 − �
1 0 0 0 1

�m

�m − �

)′

0
(12)

In particular, with � = 0, we have, for sufficiently large
�> 0,

Ex6e−��b 7=















1 if x ≥ b1

m+1
∑

l=1

cle
�l1�x if x < b0

(13)

Here c 2= 4c11 c21 0 0 0 1 cm+15
′ is a positive vector uniquely

determined by the linear system

ABc = 11 (14)

where 1= 41111 0 0 0 115′.

Proof. See §C in the e-companion. �

(iv) Joint distribution of �b and Xt . Without loss of
generality, we assume X0 = 0. The joint distribution of
�b and Xt , i.e.,

P 04Xt ≥ a1 �b ≤ t5= P 04Xt ≥ −â1 �b ≤ t51 (15)

for some fixed numbers a ≡ −â ≤ b and b > 0, has
a variety of applications, including pricing barrier
options.

Theorem 3.4. Assume X0 = 0. Denote by L4�1�5 the
double Laplace transform of P 04Xt ≥ −â1 �b ≤ t5 w.r.t. t
and â, respectively, i.e.,

L4�1�5=

∫ +�

0

∫ +�

−�

e−�â−�tP 04Xt ≥ −â1 �b ≤ t5 dâ dt0

Then for any � ∈ 401�15 and sufficiently large � >
max4G4�5105, we have

L4�1�5=

∑m+1
l=1 d̂le

−�l1�b

�4�−G4�55
1 (16)

where �11�1 0 0 0 1�m+11� are the m + 1 positive roots of
the equation G4x5 = � such that 0 < �11� < �21� < · · · <

�m+11�. Here d̂ 2= 4d̂11 d̂21 0 0 0 1 d̂m+15
′ solves the linear sys-

tem Ad̂ = J , where A and J are the same as in (11)
and (12).

Proof. See §D in the e-companion. �

4. Pricing European Options
Under the MEM and a
Calibration Example

4.1. Pricing European Options Under the MEM
Under the risk-neutral measure P , the value of a
European call option with a fixed strike K and matu-
rity T is given by e−rT E64ST − K5+7. To apply the
two-sided Euler inversion (EI) algorithm proposed by
Petrella (2004), we introduce a scaling factor X >K,
which ensures that the Euler inversion algorithm con-
verges quickly. The call option value can then be
expressed as

CT 4kc5= e−rTX ·E

[(

ST
X

− e−kc

)+]

1

where kc = log4X/K5. The same proof as that for
Lemma 1 in Kou et al. (2005), which is based on Carr
and Madan (1999), leads to the Laplace transform of
CT 4kc5 w.r.t. kc:

Ĉ4�5 2=
∫ +�

−�

e−�kcCT 4kc5 dkc = e−rT S
�+1
0 eG4�+15T

�4� + 15X�
1

for any � ∈ 401�1 − 151 (17)

where G4 · 5 is given by (3). As an immediate result,
we can obtain the closed-form Laplace transform
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Table 1 The Euler Inversion (EI Value or BA Value) vs. Monte Carlo Simulation (MC Value) for Calculating the Prices and Deltas of European Options
Under the MEM

Prices of European call options under the MEM

� = 002 � = 003

�1 � EI value BA value MC value Std. err. EI value BA value MC value Std. err.

20 1 10097472 10097472 10097339 0001923 14059752 14059752 14059520 0002776
3 11094485 11094485 11092641 0002172 15029993 15029993 15027560 0002944
5 12083076 12083076 12087446 0002407 15096677 15096677 15099681 0003121

40 1 10057572 10057572 10056959 0001807 14031636 14031636 14030866 0002703
3 10082050 10082050 10080522 0001865 14048475 14048475 14046554 0002740
5 11005846 11005846 11007213 0001934 14065079 14065079 14065308 0002790

Deltas of European call options under the MEM

� = 002 � = 003

S0 K EI value BA value MC value Std. err. EI value BA value MC value Std. err.

100 90 0079027 0079027 0078973 0000080 0074249 0074249 0074283 0000082
100 0063645 0063645 0063709 0000091 0062633 0062633 0062610 0000091
110 0047150 0047150 0047112 0000100 0050940 0050940 0050895 0000099

102 90 0081396 0081396 0081368 0000077 0076198 0076198 0076237 0000080
100 0066848 0066848 0066869 0000089 0064953 0064953 0064899 0000089
110 0050648 0050648 0050494 0000098 0053414 0053414 0053450 0000097

Notes. For the “price” part, the default choices for unvarying parameters are r = 0005, �1 = �1, �2 = �2 = 50, pu = 004, qd = 006, p1 = 102, p2 = −002,
q1 = 103, q2 = −003, S0 = 100, K = 100, and t = 1. For the “delta" part, the default choices of unvarying parameters are r = 0005, � = 3, �1 = 30, �2 = 40,
�1 = 20, �2 = 30, pu = 004, qd = 006, p1 = 102, p2 = −002, q1 = 103, q2 = −003, and t = 1. Parameters for the Euler inversion method are A= 18, n = 30, and
X = 101000. The MC values and the associated standard errors are obtained by simulating 100,000 sample paths and by setting the step size to be 0.00005.
Here ST is used as a control variate to achieve variance reduction. We can see that all the EI values stay within the 95% confidence intervals of the associated
MC values. In addition, the BA values denote the European call option prices or deltas obtained by calculating prices or deltas of up-and-in call barrier options
with barrier H = S0. It is easily seen that all the BA values agree with the EI values to five decimal points. The CPU times to generate one EI value, one BA
value, and one MC value are less than 0.01 seconds, approximately 5 seconds, and approximately 50 seconds, respectively.

of the European option delta ãT 4kc5 2= ¡CT 4kc5/¡S0
w.r.t. kc:

ã̂4�5 2=
∫ +�

−�

e−�kcãT 4kc5 dkc = e−rT S
�
0 e

G4�+15T

�X�
1

for any � ∈ 401�1 − 151 (18)

where the interchange of derivatives and integrals
can be justified by Theorem A.12 of Schiff (1999,
pp. 203–204).

Inverting Ĉ4�5 and ã̂4�5 via the two-sided Euler
inversion method4 yields numerical results of Euro-
pean call option prices and deltas under the MEM,

4 Note that Petrella’s (2004) algorithm is faster and more stable than
the original Euler inversion (see Abate and Whitt 1992) because
of the introduction of a scaling factor. In the implementation of
the one-sided, one-dimensional (two-sided, two-dimensional) Euler
inversion method, some parameters n and A (n1, n2, A1, and A2)
are involved. The parameter n (n1 and n2) is used in the Euler
transformation to accelerate the computation of some alternating
series in the inversion formula, whereas A (A1 and A2) is used to
control the discretization errors. For more information about these
parameters and the inversion formulae, see Petrella (2004), Abate
and Whitt (1992), and Cai et al. (2007).

which are provided in Table 1. It can be seen that all
of our numerical results (denoted by EI values) stay
within the 95% confidence intervals of the associated
Monte Carlo simulation estimates (denoted by MC
values), which are obtained by using ST as a control
variate to reduce variances. All the computations in
this paper are conducted on a laptop with a Duo 2.50
GHz central processing unit (CPU).

Because a European call option is the same as a
degenerated up-and-in call barrier option with barrier
H = S0, the column “BA value” in Table 1 also reports
the results using the degenerated barrier options
by numerically inverting the double Laplace trans-
forms (22) and (23) in Theorem 5.2. We can see that
the numerical European option prices (and deltas)
obtained in this way agree with those by inverting
Ĉ4�5 in (17) (and ã̂4�5 in (18)) up to five decimal
points.

4.2. A Calibration Example
In general, model calibration is an important and yet
difficult problem that involves various optimization
and numerical pricing techniques. In this subsection,
we give an example to illustrate the calibration of our
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MEM to a set of market data. For a more comprehen-
sive discussion on the calibration, we refer readers to
Cont and Tankov (2004). In our example, the data set
obtained from Morningstar Inc. consists of the clos-
ing prices (i.e., the averages of bid and ask prices) of
47 SPY (S&P 500 ETF stock) European call options on
March 29, 2010, with three maturities (1 day, 18 days,
and 53 days) and various strike prices. Our goal is to
calibrate the model to these option prices across dif-
ferent maturities and different strikes using only one
set of parameters. The calibration is especially inter-
esting because it is well known that it is difficult to
calibrate models to options with very short maturity
such as one day.

We shall minimize the objective function
∑47

i=144Ci4�5− C̃i4�5525/Vega24IVi5 over the set of
unknown parameters �=4�1�1�11 0 0 0 1�m1 �11 0 0 0 1 �n1
p11 0 0 0 1 pm1 q11 0 0 0 1 qn5, where Ci and C̃i represent the
calibrated European option price and the market
price, respectively, and IVi is the market implied
volatility for the ith option. This objective function
for calibration is suggested by Cont and Tankov
(2004, p. 439). For simplicity, we use an MEM with
an upward jump distribution that is exponential and
a downward jump distribution that is a mixture of
two exponentials (i.e., m = 1 and n = 2). To solve the
optimization problem, we first select 100 best starting
points from approximately 201000 grid points and
then search the optimal solution for each of these 100
starting points. The best one is chosen to be our final
optimal solution.

Figure 3 shows both observed market implied
volatilities and calibrated implied volatilities. It is
worth mentioning that although in general it is diffi-
cult to fit the implied volatilities for the options with
very short maturity such as one day, it seems that
our model can produce a close fit even to this sharp
volatility skew.

5. Lookback and Barrier Options
5.1. Lookback Options
We shall only consider lookback put options because
lookback call options can be obtained by symmetry.
Under the risk-neutral measure P , the price of a look-
back put option with the maturity T is given by

LP4T 5 = E

[

e−rT

(

max
{

M1 max
80≤t≤T 9

St

}

− ST

)]

= E

[

e−rT max
{

M1 max
80≤t≤T 9

St

}]

− S01

where M ≥ S0 is a fixed constant representing the pre-
scribed maximum at time 0.

Figure 3 Calibrated Implied Volatilities vs. Observed Market Implied
Volatilities
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Notes. The initial stock price is 117032. The risk-free interest rates corre-
sponding to these three maturities (1 day, 18 days, and 53 days) are 000011,
000011, and 000012, respectively. Note that in general it is difficult to fit the
implied volatilities for the options with very short maturity such as one day.
However, it seems that our model can produce a close fit even to this sharp
volatility skew. The parameters used in the calibrated model are �̂ = 0010997,
�̂ = 6019653, �̂1 = 202, �̂1 = 45021588, �̂2 = 78040339, p̂1 = 0000077, q̂1 =

3009202, and q̂2 = −2009279.
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Table 2 Pricing Lookback and Barrier Options Under the MEM

Pricing lookback options under the MEM

� = 001 � = 002

M � EI value MC value Std. err. EI value MC value Std. err.

105 1 7013774 7014438 0000717 15011777 15012439 0000676
3 8038446 8039709 0000737 15096876 15097562 0000679
5 9054401 9055256 0000747 16079455 16080643 0000683

107 1 7069091 7069950 0001046 15048878 15049762 0001038
3 8091452 8093285 0001084 16033422 16034394 0001043
5 10005471 10006516 0001108 17015486 17016885 0001052

Pricing up-and-in call barrier options under the MEM when K varies and H = 115

� = 001 � = 002

� K EI value MC value Std. err. EI value MC value Std. err.

2 101 10002579 10003530 0002077 13094197 13091411 0002840
105 8035828 8036193 0002072 12025099 12024949 0002935
109 6084158 6084678 0002073 10070121 10067303 0002984

Pricing up-and-in call barrier options under the MEM when H varies and K = 102

� = 001 � = 002

� H EI value MC value Std. err. EI value MC value Std. err.

3 105 10009973 10010853 0002004 13075881 13075839 0002859
110 10004892 10008167 0002035 13074182 13078379 0002877
115 9083030 9083137 0002117 13066264 13068834 0002910

Notes. The Euler inversion (EI value) versus Monte Carlo simulation (MC value) is shown. Default parameters are r = 0005, S0 = 100, �1 = 30,
�2 = 50, �1 = 30, �2 = 40, pu = 004, qd = 006, p1 = 102, p2 = −002, q1 = 103, q2 = −003, and t = 1. EI values are obtained using Euler inversion
(related parameters are A = 18 and n = 30 for lookback options and A1 = A2 = 18, n1 = 30, n2 = 50, and X = 11000 for barrier options).
MC values are Monte Carlo simulation estimates by simulating 20,000 sample paths and using step size 0.00001 for lookback options, and by
simulating 100,000 sample paths and using step size 0.00005 for barrier options. We can see that all the EI values stay within the 95% confidence
intervals of the associated MC values. The CPU times for generating one EI value for lookback options, one MC value for lookback options, one EI
value for barrier options, and one MC value for barrier options are approximately 0.04 seconds, 3 minutes, 6 seconds, and 2 minutes, respectively.

Theorem 5.1. For all sufficiently large � > 0, the
Laplace transforms of the lookback put option price LP4T 5
and delta ã4T 5 2= ¡LP4T 5/¡S0 w.r.t. the maturity T are
given by

∫ +�

0
e−�TLP4T 5dT =

S0

�+ r

m+1
∑

i=1

di
�i1�+r − 1

(

S0

M

)�i1�+r−1

+
M

�+ r
−

S0

�
(19)

and
∫ +�

0
e−�Tã4T 5dT

=
1

�+ r

m+1
∑

i=1

di�i1�+r

�i1�+r − 1

(

S0

M

)�i1�+r−1

−
1
�
1 (20)

respectively, where �11�+r1�21�+r1 0 0 0 1�m+11�+r are the
4m + 15 positive roots of the equation G4x5 = � + r , and
d 2= 4d11d21 0 0 0 1 dm+15

′ is the unique solution of the linear
system Ad = 1, where A associated with �+ r is defined
in Theorem 3.3 and 1= 41111 0 0 0 115′.

Proof. See Appendix A. �
To invert the Laplace transform, we employ the

one-sided, one-dimensional Euler inversion method
(see Abate and Whitt 1992). The corresponding
numerical results are given in the upper panels of
Tables 2 and 3, where EI and MC values represent the
results obtained via the Euler inversion method and
the Monte Carlo simulation, respectively. “Std. err.”
is the associated standard error of the MC value. For
Monte Carlo simulation, we use the running maxi-
mum max0≤t≤T St , whose expectation can be computed
analytically (see §E in the e-companion), as a control
variate to achieve variance reduction. It can be seen
that all the EI values stay within the 95% confidence
intervals of the associated MC values. The CPU time
is only around 0004 seconds. In comparison, the CPU
time to generate one MC value is approximately two
to three minutes.5

5 Furthermore, the numerical inversion is robust w.r.t. the inver-
sion algorithm parameters. For example, any A ∈ 6151457 produces
almost identical results with four-digit accuracy.
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Table 3 Deltas of Lookback and Barrier Options Under the MEM

Deltas of lookback options under the MEM

�= 1 �= 3

S0 � EI value MC value Std. err. EI value MC value Std. err.

100 002 −0016998 −0017434 0000293 −0015430 −0015790 0000294
003 −0000711 −0001025 0000296 0000201 0000181 0000295
004 0012957 0012923 0000290 0013616 0013792 0000289

102 002 −0010240 −0010499 0000287 −0008909 −0009001 0000286
003 0004420 0004453 0000279 0005248 0005264 0000279
004 0017194 0017204 0000270 0017815 0018155 0000267

Deltas of up-and-in call barrier options under the MEM

� = 002 � = 003

S0 K EI value MC value Std. err. EI value MC value Std. err.

100 95 0065316 0064857 0000243 0066112 0066375 0000230
100 0060236 0060289 0000242 0061359 0061711 0000237
105 0053793 0053699 0000247 0056102 0056205 0000243

102 95 0069626 0069906 0000235 0068828 0068779 0000224
100 0064241 0064539 0000238 0063967 0063941 0000233
105 0057555 0057783 0000243 0058646 0058203 0000241

Notes. The Euler inversion (EI value) versus Monte Carlo simulation (MC value) is shown. The default choices of
unvarying parameters are r = 0005, M = 110 (for lookback options), H = 110 and � = 3 (for barrier options),
�1 = 30, �2 = 50, �1 = 30, �2 = 40, pu = 004, qd = 006, p1 = 102, p2 = −002, q1 = 103, q2 = −003, and t = 1.
EI values are obtained using the Euler inversion with parameters A = 18 and n = 30 for lookback options and
A1 = A2 = 18, n1 = 30, n2 = 50, and X = 11000 for barrier options. All the MC values along with the associated
standard errors are obtained by simulating 15,000 sample paths and by using step size 0.00001. We can see that all
the EI values stay within the 95% confidence intervals of the associated MC values. The CPU times to generate one EI
value for lookback option delta, one MC value for lookback option delta, one EI value for barrier option delta, and one
MC value for barrier option delta are approximately 0.04 seconds, 2 minutes, 6 seconds, and 2 minutes, respectively.

5.2. Barrier Options
There are eight types of (one dimensional, single) bar-
rier options: up (down)-and-in (out) call (put) options.
Here, we only illustrate how to deal with the up-and-
in call (UIC) barrier option because the other seven
barrier options can be priced similarly. The price of
a UIC with a fixed strike K and a maturity T under
the risk-neutral measure P can be expresses as E6e−rT ·

4ST − K5+I8�b<T 97, where H > S0 is the barrier level,
and b = log4H/S05 is the barrier corresponding to the
return process Xt ≡ log4St/S05. To apply the two-sided
Euler inversion method proposed by Petrella (2004),
we introduce a scaling factor X so that the price of a
UIC can be rewritten as

UIC4k1T 5= E

[

Xe−rT

(

ST
X

− e−k

)+

I8�b<T 9

]

1 (21)

where k = log4X/K5. Note that the scaling factor is
crucial in our algorithm because it ensures that the
Euler inversion method converges rapidly, making
the algorithm accurate and efficient.

Define f̂UIC4�1�5 and ã̂UIC4�1�5 as the double
Laplace transforms of the price UIC4k1T 5 in (21) and
the delta ãUIC4k1T 5 2= ¡UIC4k1T 5/¡S0 w.r.t. T and k,
respectively, i.e.,

f̂UIC4�1�5 2=
∫ +�

0

∫ +�

−�

e−�k−�TUIC4k1T 5dk dT 1

ã̂UIC4�1�5 2=
∫ +�

0

∫ +�

−�

e−�k−�TãUIC4k1T 5dk dT 0

Theorem 5.2. For any � ∈ 401�1 − 15 and sufficiently
large �> max4G4� + 15− r105,

f̂UIC4�1�5=
S�+1

0
∑m+1

l=1 wle
−�l1�+r b

X��4� + 154r +�−G4� + 155
1 (22)

and

ã̂UIC4�1�5=
S�

0
∑m+1

l=1 wle
−�l1�+r b

X��4r +�−G4� + 155
1 (23)

where �11�+r1�21�+r1 0 0 0 1�m+11�+r are the 4m + 15 pos-
itive roots of the equation G4x5 = � + r , and w 2=
4w11w21 0 0 0 1wm+15

′ is the unique solution of the linear
system Aw = J , where A associated with �+ r is defined
as in Theorem 3.3 and

J = e4�+15b

(

11
�1

�1 −� − 1
1

�2

�2 −� − 1
1 0 0 0 1

�m

�m −� − 1

)′

0

Proof. See Appendix A. �
To compute the prices and deltas of barrier options,

we apply a two-sided, two-dimensional Euler inver-
sion method (see Petrella 2004). The numerical results
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Table 4 Pricing European Options and Calculating Deltas Under Merton’s (1976) Model by Approximating
It with the MEM

�= 1 �= 3

� K EI value True value Abs. err. EI value True value Abs. err.

Prices of European options under Merton’s model
0.2 95 13035534 13035476 0000058 13037306 13037131 0000175

100 10046061 10045995 0000066 10048063 10047866 0000197
105 8003196 8003126 0000070 8005312 8005103 0000209

0.3 95 16080753 16080711 0000042 16082015 16081891 0000124
100 14023802 14023758 0000044 14025154 14025021 0000133
105 11098391 11098345 0000046 11099796 11099657 0000139

Deltas of European options under Merton’s model
0.2 95 0072772 0072773 −0000001 0072736 0072740 −0000004

100 0063676 0063676 0000000 0063661 0063662 −0000001
105 0054228 0054227 0000001 0054237 0054237 0000000

0.3 95 0068706 0068706 0000000 0068698 0068699 −0000001
100 0062425 0062425 0000000 0062424 0062424 0000000
105 0056124 0056124 0000000 0056131 0056130 0000001

Notes. Default parameters are r = 0005, S0 = 100, and t = 1. “EI” values and “true” values are obtained by using
Euler inversion (related parameters are A = 18, n = 30, and X = 101000) under the approximate MEM with the
jump size pdf being (24) and under Merton’s model, respectively.

are given in the lower panels of Tables 2 and 3, where
“EI value,” “MC value,” and “Std. err.” have the same
meanings as for lookback options. For Monte Carlo
simulation, we use ST as a control variate to achieve
variance reduction. All the EI values stay within the
95% confidence intervals of the associated MC val-
ues. The CPU time of computing one price via the
Euler inversion is approximately 600 seconds, whereas
the CPU time of generating one MC value is approx-
imately two minutes.6

6. An Example of Approximating
Merton’s (1976) Model via the MEM

Although Merton’s normal jump diffusion model (see
Merton 1976) is very popular in finance, analytical
pricing of path-dependent options under Merton’s
model remains challenging. We shall approximate
Merton’s model by the MEM, partly because of
the denseness of the mixed-exponential distributions
w.r.t. the class of all the distributions in the sense of
weak convergence. In this section, our objective is not
to discuss how to approximate Merton’s model opti-
mally, which by itself is an interesting open problem.
Rather, we shall provide a simple example to illus-
trate that this approximation may lead to quite accu-
rate European, lookback, and barrier option prices
and deltas for Merton’s model.

6 The numerical inversion is also insensitive to the change of the
algorithm parameters A1, A2, and X. Indeed, any A1 ∈ 6151557,
A2 ∈ 6161457, and X ∈ 63001410007 can produce almost identical
results with four-digit accuracy.

For simplicity, we intend to approximate Merton’s
(1976) model with the jump size distribution
N401000125, the normal distribution with mean 0 and
standard deviation 0.01, using the MEM with the pdf
of the jump size given by

fY 4x5 = 005
(

807303 × 21300215e−21300215�x�

+ 201666 × 23600406e−23600406�x�

− 10 × 23701139e−23701139�x�

+ 000622 × 93907441e−93907441�x�

+ 000409 × 93908021e−93908021�x�
)

0 (24)

Figure 4 Approximate the Normal Distribution N401000125 Using the
Mixed-Exponential Distribution with the pdf Given by (24)
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Table 5 Pricing Lookback and Barrier Options Under Merton’s (1976) Model by Approximating It with
the MEM

Pricing lookback options under Merton’s model

�= 1 �= 5

� M EI value MC value Std. err. EI value MC value Std. err.

0.1 105 6051320 6050105 0001049 6066681 6065129 0001077
107 7007855 7006909 0001041 7022694 7021430 0001068
109 7084251 7083448 0001026 7098273 7097271 0001051

0.2 105 14070418 14067465 0002287 14079288 14077413 0002311
107 15007787 15005112 0002270 15016551 15015086 0002293
109 15057228 15054649 0002253 15065840 15064581 0002275

Pricing up-and-in call barrier options under Merton’s model when K varies and H = 115

� = 002 � = 003

� K EI value MC value Std. err. EI value MC value Std. err.

1 101 9054594 9054397 0001988 13063140 13064003 0002774
105 7088753 7087605 0001966 11093684 11093757 0002855
109 6038154 6039107 0001952 10038581 10041109 0002922

Pricing up-and-in call barrier options under Merton’s model when H varies and K = 102

� = 002 � = 003

� H EI value MC value Std. err. EI value MC value Std. err.

3 105 9045243 9044670 0001839 13031261 13029997 0002754
110 9039394 9038877 0001863 13029437 13030942 0002754
115 9014142 9012743 0001979 13020890 13025942 0002804

Notes. The Euler inversion (EI value) versus Monte Carlo simulation (MC value) is shown. Default parameters are
r = 0005, S0 = 100, and t = 1. EI values are obtained using the Euler inversion (related parameters are A = 18
and n = 30 for lookback options, and A1 = A2 = 18, n1 = 30, n2 = 50, and X = 11000 for barrier options) under
the approximate MEM with the jump size pdf being (24). MC values are Monte Carlo simulation estimates under
Merton’s model by simulating 100,000 sample pathes and by using step sizes 0.00001 for lookback options and
0.00005 for barrier options. We can see that all the EI values obtained using the approximate MEM stay within
the 95% confidence intervals of the MC values obtained under Merton’s model. The CPU times to generate one EI
value for the lookback option price, one MC value for the lookback option price, one EI value for the barrier option
price, and one MC value for the barrier option price are approximately 0.04 seconds, 10 minutes, 6 seconds, and
2 minutes, respectively.

These parameters are obtained by minimizing the
sum of the square differences between cdf values
of N401000125 and the mixed-exponential distribution
over the grid points on the interval 6−000351000357.
We first select 100 best starting points among approx-
imately 1,600,000 points and then minimize the objec-
tive function by starting from each of these 100 points.
The final solution is the best one among the 100 opti-
mal solutions. Figure 4 demonstrates the close fit of
the mixed-exponential distribution (24) to the cdf of
N401000125.

Using the MEM with jump size pdf being (24), we
shall price European, lookback, and barrier options
as well as calculate associated deltas approximately
under Merton’s model.

Table 4 provides the approximation to the European
option prices and deltas. Our approximation appears
to be reasonably good, because the maximum abso-
lute errors between our approximate values (denoted
by EI values) and “true values” are quite small.

Tables 5 and 6 provide approximate lookback
and barrier option prices and deltas under Merton’s
model, respectively. All of our numerical approxi-
mations (denoted by EI values) obtained using the
approximate MEM stay within the 95% confidence
intervals of the Monte Carlo simulation estimates
(denoted by MC values) obtained under Merton’s
model. For Monte Carlo simulation, we use ST as a
control variate to achieve variance reduction. In addi-
tion, our approximation method is very fast in that it
takes only approximately 0.04 and 6 seconds to pro-
duce one EI value for lookback options and barrier
options, respectively.

7. Conclusion
We propose a jump diffusion model for option pricing
whose jump sizes have the mixed-exponential distri-
bution, which can approximation any jump size dis-
tribution. The Laplace transforms of option prices and



Cai and Kou: Option Pricing Under a Mixed-Exponential Jump Diffusion Model
Management Science 57(11), pp. 2067–2081, © 2011 INFORMS 2079

Table 6 Deltas of Lookback and Barrier Options Under Merton’s (1976) Model by Approximating It with the
MEM with the Jump Size pdf Being (24)

Deltas of lookback options under Merton’s model

�= 3 �= 5

S0 � EI value MC value Std. err. EI value MC value Std. err.

100 002 −0017675 −0017610 0000406 −0017579 −0018082 0000407
003 −0001101 −0001092 0000419 −0001051 −0001062 0000418
004 0012675 0013043 0000431 0012709 0012681 0000431

102 002 −0010808 −0010785 0000389 −0010725 −0010582 0000387
003 0004068 0004341 0000393 0004114 0004203 0000392
004 0016929 0017165 0000402 0016961 0017135 0000400

Deltas of up-and-in call barrier options under Merton’s model

� = 002 � = 003

S0 K EI value MC value Std. err. EI value MC value Std. err.

100 95 0065201 0065094 0000095 0066127 0066061 0000090
100 0060053 0060019 0000094 0061262 0061145 0000092
105 0053291 0053228 0000096 0055839 0055790 0000095

102 95 0069917 0069815 0000092 0068963 0069016 0000087
100 0064418 0064356 0000092 0063978 0063937 0000090
105 0057368 0057410 0000094 0058483 0058536 0000093

Notes. The Euler inversion (EI value) versus Monte Carlo simulation (MC value) is shown. Default parameters are
M = 110 (for lookback options), H = 110 and �= 3 (for barrier options), r = 0005, and t = 1. Parameters for the
Euler inversion methods are A= 18 and n = 30 for the lookback options and A1 = A2 = 18, n1 = 30, n2 = 50, and
X = 11000 for the barrier options. MC values along with the associated standard errors are obtained by simulating
100,000 sample paths and using 20,000 steps for barrier options, and by simulating 10,000 sample paths and using
150,000 steps for lookback options. We can see that all the EI values obtained using the approximate MEM stay
within the 95% confidence intervals of the MC values obtained under Merton’s model. The CPU times to generate
one EI value for the lookback option delta, one MC value for the lookback option delta, one EI value for the barrier
option delta, and one MC value for the barrier option delta are approximately 0.04 seconds, 2 minutes, 6 seconds,
and 2 minutes, respectively.

deltas for some path-dependent options such as look-
back and barrier options are obtained. These Laplace
transforms can be inverted easily via the Euler inver-
sion method, and numerical examples indicate that
the method is accurate and efficient. In addition,
we show that the mixed-exponential jump diffusion
model may be used to approximate Merton’s (1976)
normal jump diffusion model. Open problems for
future research include pricing of sequential barrier
options and finite-horizon American options under
the mixed-exponential jump diffusion model, as well
as extensions to more general models, e.g., the models
with stochastic interest rates.

8. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.

Acknowledgments
We thank Gérard Cachon, Michael Fu, the associate edi-
tor, two anonymous referees, and participants of INFORMS
annual conferences and various seminars at Columbia Uni-
versity, Cornell University, University of Oxford, Johns

Hopkins University, Georgia Tech, and Hong Kong Univer-
sity of Science and Technology for their helpful comments.
The research of the first author was partially supported by
the GRF of the Hong Kong RGC (Project References 610709
and 610711) and the RPC of the UGC (Project Reference
RPC11EG13). The research of the second author was sup-
ported in part by the National Science Foundation.

Appendix A. Some Proofs

Proof of Theorem 5.1. First of all, define MX4t5 2=
max0≤u≤t Xu. Then for any t > 0, we shall prove that

lim
y→+�

eyP6MX4t5≥ y7= 00 (A1)

Indeed, note that the process 8e�Xt−G4�5t 2 t ≥ 09 is a mar-
tingale for any � ∈ 4−�11�15, because G4�5 is the exponent
of the Lévy process 8Xt 2 t ≥ 09. Fix � ∈ 411�15 such that
G4�5 > 0. This � must exist because G4�1−5= +�, and G4�5
is continuous on the interval 411�15. Note that

e�yP4�y ≤ t5≤ E6e
�Xt∧�y 7≤ eG4�5tE6e

�Xt∧�y −G4�54t∧�y 57≤ eG4�5t1

where the last inequality holds thanks to the optional sam-
pling theorem. So for any y > 0,

eyP6MX4t5≥ y7 = e41−�5ye�yP6MX4t5≥ y7

= e41−�5ye�yP4�y ≤ t5≤ e41−�5yeG4�5t 0



Cai and Kou: Option Pricing Under a Mixed-Exponential Jump Diffusion Model
2080 Management Science 57(11), pp. 2067–2081, © 2011 INFORMS

Note that � > 1, so letting y go to infinity completes the
proof of (A1).

Next, define

L4S01M1T 5 2= E

[

e−rT max
{

M1 max
80≤t≤T 9

St

}]

= E6e−rT max8M1S0e
MX 4T 5971

and z 2= log4M/S05≥ 0. Then we have

L4S01M1T 5 = S0E6e
−rT max8ez1 eMX 4T 597

= S0e
−rT E64eMX 4T 5

− ez5I8MX 4T 5≥z97+ S0e
z−rT

= S0e
−rT E64eMX 4T 5

− ez5I8MX 4T 5≥z97+Me−rT 0

On the other hand, we can obtain

E64eMX 4T 5
− ez5I8MX 4T 5≥z97 =

∫ +�

0
4ey − ez5I8y≥z9fMX 4T 54y5dy

= −

∫ +�

z
4ey − ez5 dP4MX4T 5≥ y5

=

∫ +�

z
eyP4MX4T 5≥ y5dy1

where fMX 4T 5 is the pdf of MX4T 5, and the third equality
holds because of (A1). Therefore,

L4S01M1T 5= S0e
−rT

∫ +�

z
eyP4MX4T 5≥ y5dy+Me−rT 0

For any � > 0, the Laplace transform of L4S01M1T 5 w.r.t.
T is given by
∫ +�

0
e−�T L4S01M1T 5dT

=S0

∫ +�

0
e−�T e−rT

∫ +�

z
eyP4MX4T 5≥y5dydT +

M

�+r

=S0

∫ +�

z
ey
[

∫ +�

0
e−4�+r5T P4MX4T 5≥y5dT

]

dy+
M

�+r
0 (A2)

Note that for any y > z≥ 0, integration by parts leads to
∫ +�

0
e−4�+r5T P4MX4T 5≥ y5dT

=
1

�+ r

∫ +�

0
e−4�+r5T dP4MX4T 5≥ y5

=
1

�+ r

∫ +�

0
e−4�+r5T dP4�y ≤ T 5=

1
�+ r

E6e−4�+r5�y 70

Applying (13) with x = 0, we have that, for sufficiently large
�> 0,

∫ +�

0
e−4�+r5T P4MX4T 5≥ y5dT =

1
�+ r

m+1
∑

i=1

die
−�i1�+r y0 (A3)

Plugging (A3) into (A2) yields
∫ +�

0
e−�T L4S01M1T 5dT

= S0

∫ +�

z
ey
[

1
�+ r

m+1
∑

i=1

die
−�i1�+r y

]

dy+
M

�+ r

=
S0

�+ r

m+1
∑

i=1

di

∫ +�

z
e−4�i1�+r−15y dy+

M

�+ r
0

Note that �11�+r > �11 r = 1 and �i1�+r > �1 > 1 for any i =

21 0 0 0 1m+ 1. So we have that
∫ +�

0
e−�T L4S01M1T 5dT

=
S0

�+ r

m+1
∑

i=1

di
�i1�+r − 1

e−4�i1�+r−15z
+

M

�+ r

=
S0

�+ r

m+1
∑

i=1

di
�i1�+r − 1

(

S0

M

)�i1�+r−1

+
M

�+ r
1

which leads to (19), because LP4T 5= L4S01M1T 5− S0.
Then (20) can be obtained by interchanging derivatives

and integrals based on Theorem A.12 of Schiff (1999, pp.
203–204). �

Proof of Theorem 5.2. Note that f̂UIC4�1�5 can be
expressed as follows:

f̂UIC4�1�5

=X
∫ +�

0

∫ +�

−�

e−�k−4r+�5T E

[(

ST
X

− e−k

)+

I8�b<T 9

]

dkdT

=XE

[

∫ +�

0
e−4r+�5T I8�b<T 9

∫ +�

− log4ST /X5
e−�k

(

ST
X

− e−k

)+

dkdT

]

=
1

�4� + 15X�
E

[

∫ +�

0
e−4r+�5T I8�b<T 9S

�+1
T dT

]

=
1

�4� + 15X�
E

[

∫ +�

�b

e−4r+�5T S�+1
T dT

]

=
1

�4� + 15X�
E

[

e−4r+�5�b

∫ +�

0
e−4r+�5tS�+1

t+�b
dt

]

1

where the last equality holds because of a change of vari-
ables T = t + �b . On the other hand, the strong Markov
property of the return process 8Xt9 implies that for any �>
G4� + 15− r ,

E

{[

e−4r+�5�b

∫ +�

0
e−4r+�5tS�+1

t+�b
dt

]

∣

∣

∣

∣

F�b

}

= e−4r+�5�bS�+1
�b

∫ +�

0
e−4r+�5tE6e4�+15Xt 7 dt

= e−4r+�5�bS�+1
�b

∫ +�

0
e−4r+�−G4�+155t dt

=
S�+1

0 e−4r+�5�b+4�+15X�b

r +�−G4� + 15
1

where G4 · 5 is the exponent of 8Xt9. Combining them
together and applying (9) with x = 0 yields (22) immedi-
ately. Then (23) can be obtained by interchanging deriva-
tives and integrals based on Theorem A.12 of Schiff (1999,
pp. 203–204). �

Appendix B. Hyperexponential Distributions and
Completely Monotone Distributions
A distribution with the pdf h4x5 for x ≥ 0 is completely
monotone if the function h4x5 is completely monotone, i.e.,
h4k54x5 exists for any k ≥ 1 and 4−15kh4k54x5≥ 0 for any x > 0
and k ≥ 1 (see, e.g., Feldmann and Whitt 1998). A distri-
bution with the pdf h4x5 for x ∈ 4−�1+�5 is completely
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monotone if the two functions h4x5I8x≥09 and h4−x5I8x≥09 are
both completely monotone. Without loss of generality, from
now on we assume that the supports of all the cdf’s are
401+�5. For any completely monotone distribution with
the cdf F 4x5, there must exist a sequence of hyperexponen-
tial distributions that converge to F 4x5 weakly (see, e.g.,
Feldmann and Whitt 1998, p. 256). The following proposi-
tion shows the converse under some conditions.

Proposition B.1. Consider a sequence of hyperexponential
distributions (with the cdf’s 8Fn4x59 and the pdf’s 8fn4x59), which
converge to a continuous distribution (with the cdf F 4x5 and the
pdf f 4x5) weakly, namely, limn→+� Fn4x5 = F 4x5 for any x > 0.
Assume that (i) f 4k54x5 exists for any x > 0 and k ≥ 1, and
(ii) limn→+� f

4k5
n 4x5= f 4k54x5 for any x > 0 and k ≥ 1. Then f 4x5

is completely monotone.

Proof. Because the hyperexponential distribution is
completely monotone, it follows that 4−15kf 4k5

n 4x5 ≥ 0 for
any x > 0 and k1n ≥ 1. Then by assumption (ii), we have
4−15kf 4k54x5 = limn→+�4−15kf 4k5

n 4x5 ≥ 0 for any x > 0 and
k ≥ 1, which implies that f 4x5 is completely monotone. �
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