
GR 8201, (Spring 2023) Topics in Theoretical Statistics

Nonparametric Theory in Machine Learning

Schedule
Time: Tuesdays 3pm to 5:20pm (with a 15-20 mn break), Location: SSW 1025.

Instructor: Samory Kpotufe. email: skk2175@columbia.edu

Office hours: Mondays 5:45 pm to 6:30 pm, on Zoom (upon request):

https://columbiauniversity.zoom.us/j/97983713376?pwd=V05ENGNBaVJOdm9kU3NvdmtETzlSQT09

Description
This course is on Statistical Machine Learning Theory (emphasis on theory). The plan is to cover
new theoretical insights on the performance of nonparametric methods in ML, while keeping in mind
practical realities of modern ML, e.g., computational constraints, costs of data acquisition, etc.
End Goal: at the end of the class you should be able to parse most theoretical papers on the subject.

We will start with traditional nonparametric methods, arising early in Statistics proper, and dive into
the rich philosophy and the key mathematical concepts underlying nonparametrics (e.g. minimax upper
and lower-bounds, adaptivity, smoothness classes, etc). We will then spend much time on more modern
kernel machines arising in ML (but with roots in other traditional areas of applied math).

• Traditional Nonparametric Methods. These are the usual suspects, namely, kernel density estimation,
k-NN classification and regression, tree-based prediction, nonlinear regression via basis expansion, etc.
Many of these approaches appear in ML either directly, or as part of more sophisticated learning pipelines
(e.g. the use of k-NN in prediction layers of neural networks, e.g., for transfer tasks).

• Kernel Machines. Common examples are SVMs, Kernel Ridge, Gaussian Processes, Kernel PCA,
Maximum Mean Discrepancy, etc. They remain one of the most successful and better understood
methods in Machine Learning. In fact, there has been recent attempts to cast less understood methods
like Neural Nets as forms of kernel machines, in the hope for better insights. In parallel, much recent
research effort has gone into scaling up kernel methods to meet the various computational challenges of
real-world ML. All of this has called for refined understanding of their statistical properties, rooted in
mathematical tools from functional analysis and (linear) operator theory.

Basic background
While we’ll try to have self-contained discussions, familiarity with the following will be helpful.

- Basic probability concepts, e.g., measurability, integration, characterictic functions, Lp(µ) spaces, . . . .
- Basic Linear Algebra, e.g., vector spaces, Spectral and Singular Value theorems, . . . .
- Basic Real Analysis, e.g. completeness, compactness, forms of continuity, . . . .
- Basic Statistical concepts, e.g., `p Risks, Regularization, basic concentration inequalities such as Cher-
noff, Bernstein, . . . .

Useful Reading: I’ll be giving out recommendations on papers and books as class progresses. Some
authors of books on the subject (to get a sense): Lászlo Györfi, Alexandre Tsybakov, Ingo Steinwart, ...

Grading: The idea is to mostly base evaluation on class participation and engagement, along with
projects, group homeworks, and or paper presentations.
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