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Rate-Optimal: single mode case ([S. Tsybakov, 90] ...).
Practical: mean-shift (hard to analyze ... see [Genovesee, ...
Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

We derive a rate-optimal estimator based on k-NN graphs ...
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Program of construction

e k-NN density rates:
asymptotic 1/V/k rates (e.g. [Biau, ..., Devroye et.al., 11]).
We show high-prob. finite sample rates!

¢ Single mode:
Common estimator in theory: & = argsup,a f(ac)
Practical estimator: & = arg maxycx,., f(x).
Consistency of & [Abraham, Biau, Cadre, 04]
We show that z is also minimax-optimal!

e Multiple modes:
Practical procedures (e.g. meanshift) are hard to analyze.
Our procedure recovers just modes at optimal rates!
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Define r(z) = distance from x to its kth neighbor in X1.,.

N k = K
Tilz) = n-vol (B(z,ri(x))) — n-va-ri(z)?
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Devroye, Wagner, 77

Strong consistency.

Moore, Yackel, 76

@W 2 N (0, 1),

provided Vf < 0o on some B(x), and k — co, k/n?/(2td) 0.

Similar results by [Biau, Chazal, ... Devroye et. al., 2011]

We seek high-prob. finite sample rates ...
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Express rates generally in terms of mod. of continuity at x:

(e, x) £ sup {7" : osup  f(2)) < f(x) + e}

[z—a'||<r

7(e,x) £ sup {7‘ . sup  f(2)) > f(x) — e}

z—a'||<r

Why not just r(e, x)?
For z = argmax f(x), 7(e,x) = oo while 7(e, ) < 0.
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Theorem 1.

W.p >1—e% simult. Va € supp(f), Ve > 0,

(1 - \%) (f(z) —€) < fr(x) < <1 - %) (f(x) + ),

provided Inn/n <k/n <vg-rle, )t (f(z) —¢).

.. optimal (local) rates under smoothness conditions.
If fis a-Holder at z, i.e. V', |f(z') — f(x)| < Lz — 2'||”, then

few) = fl@)| = O (n=o/Co+D) | for fr = @(n2e/ Gk,
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Ji(@) = W
Express 7. () in terms of f(z):
o Forr <r(e,x)st. F(B(x,r))~ f(z)-r
o If F(B(z,r)) ~ k/n then r ~ (k/n - f(x))/<.

e W.h.p. F,(B(z,7)) = F(B(x,r)) + 1/n, so r = ri(z).



Proof idea:

Jr(z) = M
Express 7. () in terms of f(z):
e Forr <r(e,x)st. F(B(x,r))~ f(z)-rd.
o If F(B(z,r)) ~ k/n then r ~ (k/n - f(x))/<.
e W.h.p. F,(B(z,7)) ~ F(B(x,7)) + 1/n, so r ~ rp(z).

Show that r exists, donel!
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Most commonly studied

& = argsup,cpd fu(z)

Recursive estimates (One sample at the time)
[L. Devroye 79], [S. Tsybakov, 90 (optimal for Holder classes.)]

Dairect estimates

T = argmaxgex,., fr(z) = argmingex,., mx(x).
(Consistency, [Abraham, Biau, Cadre, )
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A.1 (local): single mode z = arg max f(z), V2f(z) < 0.
A.2 (global): level sets of f have single CC.

Theorem 2. Let T = argmazzex,., fx(x). W.h.p. we have
1z — 2| <k 4, provided Inn < k < p¥/(+d),

Constants depend on f(z) and V2f(x). (OPTIMAL, see Tsyb.90)
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Proof idea:

Tn £ diS(«T, Xl:n) <W.h.p. n_l/d = 0(77’_1/(4+d)) = r

~

V2f(x) <0: 3 alevel set A,:
cllz —a'|* < fla) - f(2) < Cllz = 2/|.

Theorem 1 allows for different rates near or far from z:
MiNg (g r, (2)) [k > MAXA\B(,7) [k
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Setup:

Modes: M = {z : 3r > 0,V2' € B(z,7r), f(2') < f(2)}.

A.1 (local) Vz € M, V2f(z) < 0.
A.2 (global) Any CC of any level set of f contains a mode in M.
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ALGO: As fi, goes down, pick a new mode as a new bump appears.

A

\

Identifying CCs of level sets:

CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14]
How to identify false modes in f;.?

Remove all bumps of height < |fx — f| ~ 1/Vk.
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Identifying good modes

x is r-salient: separated from other modes by valley of radius 7.

Theorem 3. Suppose x € M is r-salient. Let n > N(x). W.h.p.
Jz € M, s.t.

17 — 2| Sk Y4, provided Inn/rt <k < pt/0Fd),

Constants depend on f(z) and V2f(x).
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Pruning bad modes

Theorem 4. Suppose f is Lipschitz. Assume k > Inn. Let
Ao = O(Inn/k). All modes in M,, at fi-level A > )\ can be
assigned to distinct modes in M at f-level = Ag.

8

——k-NN
——Mutual k-NN

Avg hum of modes
o

2
foo 300 500 700 900
Sample size n.

TRUTH: 5-modes mixture 3°_, 0.2\ (2v/de;, I)



Merci!



