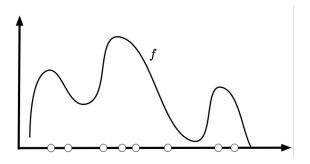
Optimal rates for k-NN density and mode estimation

Samory Kpotufe
ORFE, Princeton University

Joint work with Sanjoy Dasgupta, UCSD, CSE.

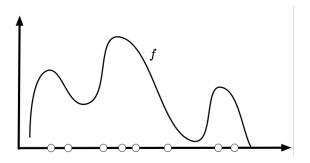
Practical and Optimal estimator of all modes of f from $X_{1:n} \sim F^n$.



Rate-Optimal: single mode case ([S. Tsybakov, 90] ...).

Practical: mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency

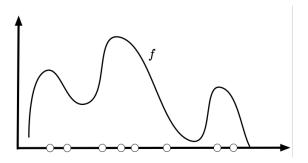
Practical and Optimal estimator of all modes of f from $X_{1:n} \sim F^n$.



Rate-Optimal: single mode case ([S. Tsybakov, 90] ...).

Practical: mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

Practical and Optimal estimator of all modes of f from $X_{1:n} \sim F^n$.

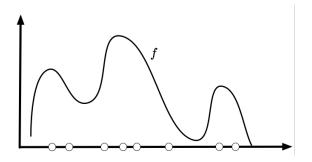


Rate-Optimal: single mode case ([S. Tsybakov, 90] ...).

Practical: mean-shift (hard to analyze ... see [Genovesee, ...

Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

Practical and Optimal estimator of all modes of f from $X_{1:n} \sim F^n$.

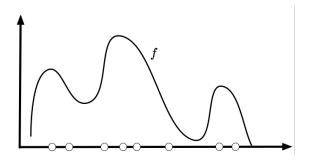


Rate-Optimal: single mode case ([S. Tsybakov, 90] ...).

Practical: mean-shift (hard to analyze ... see [Genovesee, ...

Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

Practical and Optimal estimator of all modes of f from $X_{1:n} \sim F^n$.



Rate-Optimal: single mode case ([S. Tsybakov, 90] ...). Practical: mean-shift (hard to analyze ... see [Genovesee, ... Wasserman et.al., 13], [Arias-Castro et.al., 13] on consistency)

• k-NN density rates:

```
asymptotic 1/\sqrt{k} rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!
```

Single mode:

```
Common estimator in theory: \hat{x} = \arg \sup_{x \in \mathbb{R}^d} \hat{f}(x). Practical estimator: \tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x). Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!
```

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates!

• k-NN density rates: asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!

Single mode: Common estimator in theory: $\hat{x} = \arg\sup_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg\max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!

Multiple modes:
 Practical procedures (e.g. meanshift) are hard to analyze
 Our procedure recovers iust modes at optimal rates!

• k-NN density rates: asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!

Single mode:

Common estimator in theory: $\hat{x} = \arg \sup_{x \in \mathbb{R}^d} \hat{f}(x)$.

Practical estimator: $\tilde{x} = \arg\max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze Our procedure recovers *just* modes at optimal rates!

• k-NN density rates: asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!

• Single mode:

Common estimator in theory: $\hat{x} = \arg\sup_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg\max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!

Multiple modes:
 Practical procedures (e.g. meanshift) are hard to analyze
 Our procedure recovers iust modes at optimal rates!

• k-NN density rates: asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!

• Single mode:

Common estimator in theory: $\hat{x} = \arg \sup_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates!

• k-NN density rates: asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!

• Single mode:

Common estimator in theory: $\hat{x} = \arg \sup_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!

Multiple modes:
 Practical procedures (e.g. meanshift) are hard to analyze

• k-NN density rates: asymptotic $1/\sqrt{k}$ rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!

• Single mode:

Common estimator in theory: $\hat{x} = \arg \sup_{x \in \mathbb{R}^d} \hat{f}(x)$. Practical estimator: $\tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x)$. Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze.

Our procedure recovers just modes at optimal rates

• k-NN density rates:

```
asymptotic 1/\sqrt{k} rates (e.g. [Biau, ..., Devroye et.al., 11]). We show high-prob. finite sample rates!
```

Single mode:

```
Common estimator in theory: \hat{x} = \arg \sup_{x \in \mathbb{R}^d} f(x). Practical estimator: \tilde{x} = \arg \max_{x \in X_{1:n}} \hat{f}(x). Consistency of \tilde{x} [Abraham, Biau, Cadre, 04] We show that \tilde{x} is also minimax-optimal!
```

Multiple modes:

Practical procedures (e.g. meanshift) are hard to analyze. Our procedure recovers *just* modes at optimal rates!

Outline:

- *k*-NN density rates
- Single mode rates
- Multiple modes rates

k-NN density estimate:

Define $r_k(x) \equiv$ distance from x to its kth neighbor in $X_{1:n}$.

$$f_k(x) \triangleq \frac{k}{n \cdot \text{vol}(B(x, r_k(x)))} = \frac{k}{n \cdot v_d \cdot r_k(x)^d}$$

k-NN density estimate:

Define $r_k(x) \equiv$ distance from x to its kth neighbor in $X_{1:n}$.

$$f_k(x) \triangleq \frac{k}{n \cdot \text{vol}\left(B(x, r_k(x))\right)} = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Strong consistency.

Moore, Yackel, 76

$$\sqrt{k} \cdot \frac{(f_k(x) - f(x))}{f(x)} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1).$$

provided $\nabla f < \infty$ on some B(x), and $k o \infty$, $k/n^{2/(2+d)} o 0$.

Similar results by [Biau, Chazal, ... Devroye et. al., 2011]

Strong consistency.

Moore, Yackel, 76

$$\sqrt{k} \cdot \frac{(f_k(x) - f(x))}{f(x)} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1),$$

provided $\nabla f < \infty$ on some B(x), and $k \to \infty$, $k/n^{2/(2+d)} \to 0$.

Similar results by [Biau, Chazal, ... Devroye et. al., 2011]

Strong consistency.

Moore, Yackel, 76

$$\sqrt{k} \cdot \frac{(f_k(x) - f(x))}{f(x)} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1),$$

provided $\nabla f < \infty$ on some B(x), and $k \to \infty$, $k/n^{2/(2+d)} \to 0$.

Similar results by [Biau, Chazal, ... Devroye et. al., 2011]

Strong consistency.

Moore, Yackel, 76

$$\sqrt{k} \cdot \frac{(f_k(x) - f(x))}{f(x)} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1),$$

provided $\nabla f < \infty$ on some B(x), and $k \to \infty$, $k/n^{2/(2+d)} \to 0$.

Similar results by [Biau, Chazal, ... Devroye et. al., 2011]

$$\hat{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \le f(x) + \epsilon \right\}$$

$$\check{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \ge f(x) - \epsilon \right\}$$

Why not just $r(\epsilon, x)$?

For $x = \arg \max f(x)$, $\hat{r}(\epsilon, x) = \infty$ while $\check{r}(\epsilon, x) < \infty$.

$$\hat{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \le f(x) + \epsilon \right\}$$

$$\check{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \ge f(x) - \epsilon \right\}$$

Why not just $r(\epsilon, x)$?

For $x = \arg \max f(x)$, $\hat{r}(\epsilon, x) = \infty$ while $\check{r}(\epsilon, x) < \infty$.

$$\hat{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \le f(x) + \epsilon \right\}$$

$$\check{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \ge f(x) - \epsilon \right\}$$

Why not just $r(\epsilon, x)$?

For $x = \arg\max f(x)$, $\hat{r}(\epsilon, x) = \infty$ while $\check{r}(\epsilon, x) < \infty$

$$\hat{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \le f(x) + \epsilon \right\}$$

$$\check{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \ge f(x) - \epsilon \right\}$$

Why not just $r(\epsilon, x)$?

For $x = \arg \max f(x)$, $\hat{r}(\epsilon, x) = \infty$ while $\check{r}(\epsilon, x) < \infty$.

$$\hat{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \le f(x) + \epsilon \right\}$$

$$\check{r}(\epsilon, x) \triangleq \sup \left\{ r : \sup_{\|x - x'\| \le r} f(x') \ge f(x) - \epsilon \right\}$$

Why not just $r(\epsilon, x)$?

For $x = \arg \max f(x)$, $\hat{r}(\epsilon, x) = \infty$ while $\check{r}(\epsilon, x) < \infty$.

Theorem 1.

 $\mbox{W.p} > 1 - e^{-C} \mbox{, simult. } \forall x \in \mbox{supp}(f) \mbox{, } \forall \epsilon > 0 \mbox{,}$

$$\left(1 - \frac{C}{\sqrt{k}}\right)(f(x) - \epsilon) \le f_k(x) \le \left(1 + \frac{C}{\sqrt{k}}\right)(f(x) + \epsilon),$$

provided $\ln n/n \lesssim k/n \lesssim v_d \cdot r(\epsilon, x)^d \cdot (f(x) - \epsilon)$.

 \therefore optimal (local) rates under smoothness conditions. If f is α -Hölder at x, i.e. $\forall x', |f(x') - f(x)| \leq L \|x - x'\|^{\alpha}$, then

$$|f_k(x) - f(x)| = O\left(n^{-\alpha/(2\alpha+d)}\right), \quad \text{for } k = \Theta(n^{2\alpha/(2\alpha+d)}).$$

Theorem 1.

 $\mbox{W.p} > 1 - e^{-C} \mbox{, simult. } \forall x \in \mbox{supp}(f) \mbox{, } \forall \epsilon > 0 \mbox{,}$

$$\left(1 - \frac{C}{\sqrt{k}}\right)(f(x) - \epsilon) \le f_k(x) \le \left(1 + \frac{C}{\sqrt{k}}\right)(f(x) + \epsilon),$$

provided $\ln n/n \lesssim k/n \lesssim v_d \cdot r(\epsilon, x)^d \cdot (f(x) - \epsilon)$.

 \therefore optimal (local) rates under smoothness conditions.

If f is α -Hölder at x, i.e. $\forall x', |f(x') - f(x)| \leq L ||x - x'||^{\alpha}$, then

$$|f_k(x) - f(x)| = O\left(n^{-\alpha/(2\alpha+d)}\right), \quad \text{for } k = \Theta(n^{2\alpha/(2\alpha+d)}).$$

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) \approx F(B(x,r)) + 1/n$, so $r \approx r_k(x)$

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) \approx F(B(x,r)) + 1/n$, so $r \approx r_k(x)$

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) pprox F(B(x,r)) + 1/n$, so $r pprox r_k(x)$

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) \approx F(B(x,r)) + 1/n$, so $r \approx r_k(x)$

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) pprox F(B(x,r)) + 1/n$, so $r pprox r_k(x)$.

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) \approx F(B(x,r)) + 1/n$, so $r \approx r_k(x)$.

$$f_k(x) = \frac{k}{n \cdot v_d \cdot r_k(x)^d}.$$

Express $r_k(x)$ in terms of f(x):

- For $r < r(\epsilon, x)$ s.t. $F(B(x, r)) \approx f(x) \cdot r^d$.
- If $F(B(x,r)) \approx k/n$ then $r \approx (k/n \cdot f(x))^{1/d}$.
- W.h.p. $F_n(B(x,r)) \approx F(B(x,r)) + 1/n$, so $r \approx r_k(x)$.

Outline:

- *k*-NN density rates
- Single mode rates
- Multiple modes rates

Most commonly studied

$$\hat{x} = \arg\sup_{x \in \mathbb{R}^d} f_n(x)$$

Recursive estimates (One sample at the time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

Direct estimates

$$ilde{x} = rg \max_{x \in X_{1:n}} f_k(x) = rg \min_{x \in X_{1:n}} r_k(x).$$
 (Consistency, [Abraham, Biau, Cadre,)

Most commonly studied

$$\hat{x} = \arg\sup_{x \in \mathbb{R}^d} f_n(x)$$

Recursive estimates (One sample at the time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

Direct estimates

```
\tilde{x} = \arg\max_{x \in X_{1:n}} f_k(x) = \arg\min_{x \in X_{1:n}} r_k(x) (Consistency, [Abraham, Biau, Cadre, )
```

Most commonly studied

$$\hat{x} = \arg\sup_{x \in \mathbb{R}^d} f_n(x)$$

Recursive estimates (One sample at the time)

[L. Devroye 79], [S. Tsybakov, 90 (optimal for Hölder classes.)]

Direct estimates

$$\tilde{x}=rg\max_{x\in X_{1:n}}f_k(x)=rg\min_{x\in X_{1:n}}r_k(x).$$
 (Consistency, [Abraham, Biau, Cadre,)

A.1 (local): single mode $x = \arg \max f(x)$, $\nabla^2 f(x) \prec 0$. **A.2 (global):** level sets of f have single CC.

Theorem 2. Let $\tilde{x} = \arg \max_{x \in X_{1:n}} f_k(x)$. W.h.p. we have

$$\|\tilde{x} - x\| \lesssim k^{-1/4}$$
, provided $\ln n \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$. (OPTIMAL, see Tsyb.90)

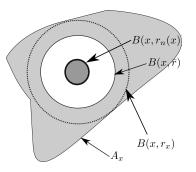
A.1 (local): single mode $x = \arg\max f(x)$, $\nabla^2 f(x) \prec 0$. **A.2 (global):** level sets of f have single CC.

Theorem 2. Let $\tilde{x} = \arg \max_{x \in X_{1:n}} f_k(x)$. W.h.p. we have

$$\|\tilde{x} - x\| \lesssim k^{-1/4}$$
, provided $\ln n \lesssim k \lesssim n^{4/(4+d)}$.

Constants depend on f(x) and $\nabla^2 f(x)$. (OPTIMAL, see Tsyb.90)

$$r_n \triangleq \mathsf{dis}(x, X_{1:n}) \lesssim_{\mathsf{w.h.p.}} n^{-1/d} = o(n^{-1/(4+d)}) \triangleq \bar{r}$$

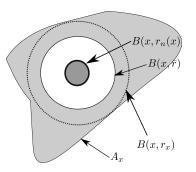


 $\nabla^2 f(x) \prec 0 : \exists \text{ a level set } A_x$:

$$c \|x - x'\|^2 \le f(x) - f(x') \le C \|x - x'\|^2$$
.

Theorem 1 allows for different rates near or far from x: $\min_{B(x,y)} f_b > \max_{V \setminus B(x,y)} f_b$

$$r_n \triangleq \mathsf{dis}(x, X_{1:n}) \lesssim_{\mathsf{w.h.p.}} n^{-1/d} = o(n^{-1/(4+d)}) \triangleq \bar{r}$$

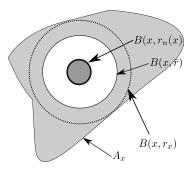


 $\nabla^2 f(x) \prec 0$: \exists a level set A_x :

$$c \|x - x'\|^2 \le f(x) - f(x') \le C \|x - x'\|^2$$
.

Theorem 1 allows for different rates near or far from x $\min_{B(x,r_n(x))} f_k > \max_{X \setminus B(x,\bar{r})} f_k$

$$r_n \triangleq \mathsf{dis}(x, X_{1:n}) \lesssim_{\mathsf{w.h.p.}} n^{-1/d} = o(n^{-1/(4+d)}) \triangleq \bar{r}$$



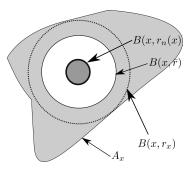
 $\nabla^2 f(x) \prec 0$: \exists a level set A_x :

$$c \|x - x'\|^2 \le f(x) - f(x') \le C \|x - x'\|^2$$
.

Theorem 1 allows for different rates near or far from x:

$$\min_{B(x,r_n(x))} f_k > \max_{\mathcal{X} \setminus B(x,\bar{r})} f_k$$

$$r_n \triangleq \mathsf{dis}(x, X_{1:n}) \lesssim_{\mathsf{w.h.p.}} n^{-1/d} = o(n^{-1/(4+d)}) \triangleq \bar{r}$$



 $\nabla^2 f(x) \prec 0$: \exists a level set A_x :

$$c \|x - x'\|^2 \le f(x) - f(x') \le C \|x - x'\|^2$$
.

Theorem 1 allows for different rates near or far from x:

$$\min_{B(x,r_n(x))} f_k > \max_{\mathcal{X} \setminus B(x,\bar{r})} f_k$$

Outline:

- *k*-NN density rates
- Single mode rates
- Multiple modes rates

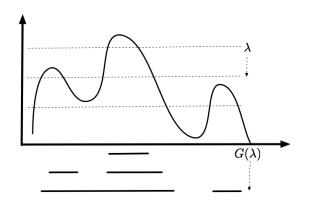
Setup:

Modes:
$$\mathcal{M} \equiv \{x : \exists r > 0, \forall x' \in B(x, r), f(x') < f(x)\}.$$

A.1 (local) $\forall x \in \mathcal{M}, \nabla^2 f(x) \prec 0.$

A.2 (global) Any CC of any level set of f contains a mode in \mathcal{M} .

ALGO: As f_k goes down, pick a new mode as a new *bump* appears.

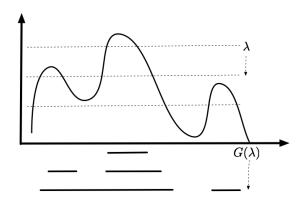


Identifying CCs of level sets:

CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14] How to identify false modes in f_k ?

Remove all *bumps* of height $\lesssim |f_k - f| \approx 1/\sqrt{k}$

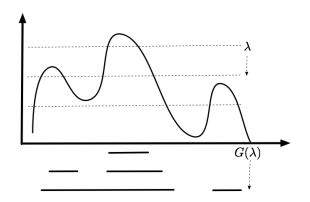
ALGO: As f_k goes down, pick a new mode as a new *bump* appears.



Identifying CCs of level sets:

CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14] How to identify false modes in f_k ? Remove all bumps of height $\lesssim |f_k - f| \approx 1/\sqrt{k}$.

ALGO: As f_k goes down, pick a new mode as a new *bump* appears.

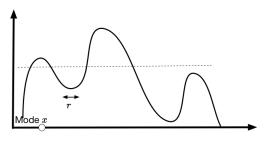


Identifying CCs of level sets:

CCs of subgraphs of a k-NN graph [Chau., Das., Kpo., v Lux., 14] How to identify false modes in f_k ?

Remove all *bumps* of height $\lesssim |f_k - f| \approx 1/\sqrt{k}$.

Identifying good modes



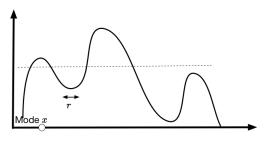
x is r-salient: separated from other modes by valley of radius r.

Theorem 3. Suppose $x \in \mathcal{M}$ is r-salient. Let $n \geq N(x)$. W.h.p. $\exists \tilde{x} \in \mathcal{M}_n$ s.t.

$$\|\tilde{x} - x\| \lesssim k^{-1/4}, \quad \text{provided } \ln n/r^4 \lesssim k \lesssim n^{4/(4+d)}$$

Constants depend on f(x) and $\nabla^2 f(x)$

Identifying good modes



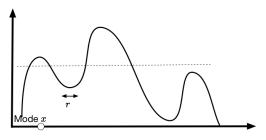
x is r-salient: separated from other modes by valley of radius r.

Theorem 3. Suppose $x \in \mathcal{M}$ is r-salient. Let $n \geq N(x)$. W.h.p $\exists \tilde{x} \in \mathcal{M}_n$ s.t.

$$\|\tilde{x} - x\| \lesssim k^{-1/4}, \quad \text{provided } \ln n/r^4 \lesssim k \lesssim n^{4/(4+d)}$$

Constants depend on f(x) and $\nabla^2 f(x)$

Identifying good modes



x is r-salient: separated from other modes by valley of radius r.

Theorem 3. Suppose $x \in \mathcal{M}$ is r-salient. Let $n \geq N(x)$. W.h.p. $\exists \tilde{x} \in \mathcal{M}_n$ s.t.

$$\|\tilde{x} - x\| \lesssim k^{-1/4}$$
, provided $\ln n/r^4 \lesssim k \lesssim n^{4/(4+d)}$.

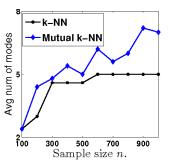
Constants depend on f(x) and $\nabla^2 f(x)$.

Pruning bad modes

Theorem 4. Suppose f is Lipschitz. Assume $k \geq \ln n$. Let $\lambda_0 = \Theta(\ln n/k)$. All modes in \mathcal{M}_n at f_k -level $\lambda > \lambda_0$ can be assigned to *distinct* modes in \mathcal{M} at f-level $\approx \lambda_0$.

Pruning bad modes

Theorem 4. Suppose f is Lipschitz. Assume $k \ge \ln n$. Let $\lambda_0 = \Theta(\ln n/k)$. All modes in \mathcal{M}_n at f_k -level $\lambda > \lambda_0$ can be assigned to *distinct* modes in \mathcal{M} at f-level $\approx \lambda_0$.



TRUTH: 5-modes mixture $\sum_{i=1}^{5} 0.2\mathcal{N}(2\sqrt{d}e_i, I_d)$

Merci!