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Abstract

We aim to understand the value of additional labeled or unlabeled target data in
transfer learning, for any given amount of source data; this is motivated by prac-
tical questions around minimizing sampling costs, whereby, target data is usually
harder or costlier to acquire than source data, but can yield better accuracy.
To this aim, we establish the first minimax-rates in terms of both source and target
sample sizes, and show that performance limits are captured by new notions of
discrepancy between source and target, which we refer to as transfer exponents.
Interestingly, we find that attaining minimax performance is akin to ignoring one
of the source or target samples, provided distributional parameters were known a
priori. Moreover, we show that practical decisions – w.r.t. minimizing sampling
costs – can be made in a minimax-optimal way without knowledge or estimation
of distributional parameters nor of the discrepancy between source and target.

1 Introduction

The practice of transfer-learning often involves acquiring some amount of target data, and involves
various practical decisions as to how to best combine source and target data; however much of the
theoretical literature on transfer only addresses the setting where no target labeled data is available.

We aim to understand the value of target labels, that is, given nP labeled data from some source
distribution P , and nQ labeled target labels from a target Q, what is the best Q error achievable by
any classifier in terms of both nQ and nP , and which classifiers achieve such optimal transfer. In
this first analysis, we mostly restrict ourselves to a setting, similar to the traditional covariate-shift
assumption, where the best classifier – from a fixed VC classH – is the same under P and Q.

We establish the first minimax-rates, for bounded-VC classes, in terms of both source and target
sample sizes nP and nQ, and show that performance limits are captured by new notions of discrep-
ancy between source and target, which we refer to as transfer exponents.

The first notion of transfer-exponent, called ρ, is defined in terms of discrepancies in excess risk,
and is most refined. Already here, our analysis reveals a surprising fact: the best possible rate
(matching upper and lower-bounds) in terms of ρ and both sample sizes nP , nQ is - up to constants
- achievable by an oracle which simply ignores the least informative of the source or target datasets.
In other words, if ĥP and ĥQ denote the ERM on data from P , resp. fromQ, one of the two achieves
the optimal Q rate over any classifier having access to both P and Q datasets. However, which of
ĥP or ĥQ is optimal is not easily decided without prior knowledge: for instance, cross-validating on
a holdout target-sample would naively result in a rate of n−1/2

Q which can be far from optimal given
large nP . Interestingly, we show that the optimal (nP , nQ)-rate is achieved by a generic approach,
akin to so-called hypothesis-transfer [1, 2], which optimizes Q-error under the constraint of low
P -error, and does so without knowledge of distributional parameters such as ρ.

We then consider a related notion of marginal transfer-exponent, called γ, defined w.r.t. marginals
PX , QX . This is motivated by the fact that practical decisions in transfer often involve the use of
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cheaper unlabeled data (i.e., data drawn from PX , QX ). We will show that, when practical decisions
are driven by observed changes in marginals PX , QX , the marginal notion γ is then most suited to
capture performance as it does not require knowledge (or observations) of label distribution QY |X .

In particular, the marginal exponent γ helps capture performance limits in the following scenarios
of current practical interest:

•Minimizing sampling cost. Given different costs of labeled source and target data, and a desired
target excess error at most ε, how to use unlabeled data to decide on an optimal sampling scheme
that minimizes labeling costs while achieving target error at most ε. (Section 6)

• Choice of transfer. Given two sources P1 and P2, each at some unknown distance from Q, given
unlabeled data and some or no labeled data from Q, how to decide which of P1, P2 transfers best to
the target Q. (Appendix A.2)

• Reweighting. Given some amount of unlabeled data from Q, and some or no labeled Q data,
how to optimally re-weight (out of a fixed set of schemes) the source P data towards best target
performance. While differently motivated, this problem is related to the last one. (Appendix A.1)

Although optimal decisions in the above scenarios depend tightly on unknown distributional param-
eters such as different label noise in source and target data, and on unknown distance from source
to target (as captured by γ), we show that such practical decisions can be made, near optimally,
with no knowledge of distributional parameters, and perhaps surprisingly, without ever estimating
γ. Furthermore, the unlabeled sampling complexity can be shown to remain low. Finally, the proce-
dures described in this work remain of a theoretical nature, but yield new insights into how various
practical decisions in transfer can be made near-optimally in a data-driven fashion.

Related Work. Much of the theoretical literature on transfer can be subdivided into a few main
lines of work. As mentioned above, the main distinction with the present work is in that they mostly
focus on situations with no labeled target data, and consider distinct notions of discrepancy between
P and Q. We contrast these various notions with the transfer-exponents ρ and γ in Section 3.1.

A first direction considers refinements of total-variation that quantify changes in error over classifiers
in a fixed class H. The most common such measures are the so-called dA-divergence [3, 4, 5] and
the Y-discrepancy [6, 7, 8]. In this line of work, the rates of transfer, largely expressed in terms
of nP alone, take the form op(1) + C · divergence(P,Q). In other words, transfer down to 0 error
seems impossible whenever these divergences are non-negligible; we will carefully argue that such
intuition can be overly pessimistic.

Another prominent line of work, which has led to many practical procedures, considers so-called
density ratios fQ/fP (importance weights) as a way to capture the similarity between P and Q
[9, 10]. A related line of work considers information-theoretic measures such as KL-divergence or
Renyi divergence [11, 12] but has received relatively less attention. Similar to these notions, the
transfer-exponents ρ and γ are asymmetric measures of distance, attesting to the fact that it could be
easier to transfer from some P to Q than the other way around. However, a significant downside to
these notions is that they do not account for the specific structure of a hypothesis class H as is the
case with the aforementionned divergences. As a result, they can be sensitive to issues such as minor
differences of support in P and Q, which may be irrelevant when learning with certain classesH.

On the algorithmic side, many approaches assign importance weights to source data from P so as
to minimize some prescribed metric between P and Q [13, 14]; as we will argue, metrics, being
symmetric, can be inadequate as a measure of discrepancy given the inherent asymmetry in transfer.

The importance of unlabeled data in transfer-learning, given the cost of target labels, has always
been recognized, with various approaches developed over the years [15, 16], including more recent
research efforts into so-called semisupervised or active transfer, where, given unlabeled target data,
the goal is to request as few target labels as possible to improve classification over using source data
alone [17, 18, 19, 20, 21].

More recently, [22, 23, 24] consider nonparametric transfer settings (unbounded VC) allowing for
changes in conditional distributions. Also recent, but more closely related, [25] proposed a nonpara-
metric measure of discrepancy which successfully captures the interaction between labeled source
and target under nonparametric conditions and 0-1 loss; these notions however ignore the additional
structure afforded by transfer in the context of a fixed hypothesis class.

2



2 Setup and Definitions

We consider a classification setting where the input X ∈ X , some measurable space, and the output
Y ∈ {0, 1}. We let H ⊂ 2X denote a fixed hypothesis class over X , denote dH the VC dimension
[26], and the goal is to return a classifier h ∈ Hwith low errorRQ(h)

.
= EQ[h(X) 6= Y ] under some

joint distributionQ onX,Y . The learner has access to two independent labeled samples SP ∼ PnP
and SQ ∼ QnQ , i.e., drawn from source distributions P and target Q, of respective sizes nP , nQ.
Our aim is to bound the excess error, under Q, of any ĥ learned from both samples, in terms of
nP , nQ, and (suitable) notions of discrepancy between P and Q. We will let PX , QX , PY |X , QY |X
denote the corresponding marginal and conditional distributions under P and Q.
Definition 1. For D ∈ {Q,P}, denote ED(h)

.
= RD(h)− infh′∈HRD(h′), the excess error of h.

Distributional Conditions. We consider various traditional assumptions in classification and
transfer. The first one is a so-called Bernstein Class Condition on noise [27, 28, 29, 30, 31].
(NC). Let h∗P

.
= argmin

h∈H
RP (h) and h∗Q

.
= argmin

h∈H
RQ(h) exist. ∃βP , βQ ∈ [0, 1], cP , cQ > 0 s.t.

PX(h 6= h∗P ) ≤ cp · EβPP (h), and QX(h 6= h∗Q) ≤ cq · E
βQ
Q (h). (1)

For instance, the usual Tsybakov noise condition, say on P , corresponds to the case where
h∗P is the Bayes classifier, with corresponding regression function ηP (x)

.
= E[Y |x] satisfying

PX(|ηP (X)− 1/2| ≤ τ) ≤ CτβP /(1−βP ). Classification is easiest w.r.t. P (or Q) when βP
(resp. βQ) is largest. We will see that this is also the case in Transfer.

The next assumption is stronger, but can be viewed as a relaxed version of the usual Covariate-Shift
assumption which states that PY |X = QY |X .

(RCS). Let h∗P , h
∗
Q as defined above. We have EQ(h∗P ) = EQ(h∗Q) = 0. We then define h∗ .= h∗P .

Note that the above allows PY |X 6= QY |X . However, it is not strictly weaker than Covariate-Shift,
since the latter allows h∗P 6= h∗Q provided the Bayes /∈ H. The assumption is useful as it serves to
isolate the sources of hardness in transfer beyond just shifts in h∗. We will in fact see later that it is
easily removed, but at the additive (necessary) cost of EQ(h∗P ).

3 Transfer-Exponents from P to Q.

We consider various notions of discrepancy between P andQ, which will be shown to tightly capture
the complexity of transfer P to Q.
Definition 2. We call ρ > 0 a transfer-exponent from P to Q, w.r.t. H, if there exists Cρ such that

∀h ∈ H, Cρ · EP (h) ≥ EρQ(h). (2)

We are interested in the smallest such ρ with small Cρ. We generally would think of ρ as at least 1,
although there are situations – which we refer to as super-transfer, to be discussed, where we have
ρ < 1; in such situations, data from P can yield faster EQ rates than data from Q.

While the transfer-exponent will be seen to tightly capture the two-samples minimax rates of trans-
fer, and can be adapted to, practical learning situations call for marginal versions that can capture
the rates achievable when one has access to unlabeled Q data.
Definition 3. We call γ > 0 a marginal transfer-exponent from P to Q if ∃Cγ such that

∀h ∈ H, Cγ · PX(h 6= h∗P ) ≥ QγX(h 6= h∗P ). (3)

The following simple proposition relates γ to ρ.
Proposition 1 (From γ to ρ). Suppose Assumptions (NC) and (RCS) hold, and that P has marginal
transfer-exponent (γ,Cγ) w.r.t. Q. Then P has transfer-exponent ρ ≤ γ/βP , where Cρ = C

γ/βP
γ .

Proof. ∀h ∈ H, we have EQ(h) ≤ QX(h 6= h∗P ) ≤ Cγ · PX(h 6= h∗P )1/γ ≤ Cγ · EP (h)βP /γ .
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3.1 Examples and Relation to other notions of discrepancy.

In this section, we consider various examples that highlight interesting aspects of ρ and γ, and their
relations to other notions of distance P → Q considered in the literature. Though our results cover
noisy cases, in all these examples we assume no noise for simplicity, and therefore γ = ρ.

Example 1. (Non-overlapping supports) This first example emphasizes the fact that, unlike in much
of previous analyses of transfer, the exponents γ, ρ do not require thatQX and PX have overlapping
support. This is a welcome property shared also by the dA and Y discrepancy.

In the example shown on the right, H is the class of homogeneous linear separa-
tors, while PX and QX are uniform on the surface of the spheres depicted (e.g.,
corresponding to different scalings of the data). We then have that γ = ρ = 1
with Cγ = 1, while notions such as density-ratios, KL-divergences, or the recent
nonparameteric notion of [25], are ill-defined or diverge to∞.

Example 2. (Large dA, dY ) Let H be the class of one-sided thresholds on the line, but now we
let PX

.
= U [0, 2] and QX

.
= U [0, 1]. Let h∗ be thresholded at 1/2. We then see that for all ht

thresholded at t ∈ [0, 1], 2PX(ht 6= h∗) = 1
2QX(ht 6= h∗), where for t > 1, PX(ht 6= h∗) =

1
2 (t − 1/2) ≥ 1

2QX(ht 6= h∗) = 1
4 . Thus, the marginal transfer exponent γ = 1 with Cγ = 2, so

we have fast transfer at the same rate 1/nP as if we were sampling from Q (Theorem 3).

On the other hand, recall that the dA-divergence takes the form
dA(P,Q)

.
= suph∈H |PX(h 6= h∗)−QX(h 6= h∗)|, while the Y-

discrepancy takes the form dY(P,Q)
.
= suph∈H |EP (h)− EQ(h)|.

The two coincide whenever there is no noise in Y .

Now, take ht as the threshold at t = 1/2, and dA = dY = 1
4 which

would wrongly imply that transfer is not feasible at a rate faster than
1
4 ; we can in fact make this situation worse, i.e., let dA = dY → 1

2 by letting h∗ correspond to a
threshold close to 0. A first issue is that these divergences get large in large disagreement regions;
this is somewhat mitigated by localization, as discussed in Example 4.

Example 3. (Minimum γ, ρ, and the inherent asymmetry of transfer) Suppose H is the class of
one-sided thresholds on the line, h∗ = h∗P = h∗Q is a threshold at 0. The marginal QX has uniform
density fQ (on an interval containing 0), while, for some γ ≥ 1, PX has density fP (t) ∝ tγ−1 on
t > 0 (and uniform on the rest of the support of Q, not shown). Consider any ht at threshold t > 0,
we have PX(ht 6= h∗) =

∫ t
0
fP ∝ tγ , while QX(ht 6= h∗) ∝ t. Notice that for any fixed ε > 0,

lim
t>0, t→0

QX(ht 6=h∗)γ−ε
PX(ht 6=h∗) = lim

t>0, t→0
C tγ−ε

tγ =∞.

We therefore see that γ is the smallest possible marginal transfer-
exponent (similarly, ρ = γ is the smallest possible transfer expo-
nent). Interestingly, now consider transferring instead from Q to P :
we would have γ(Q → P ) = 1 ≤ γ

.
= γ(P → Q), i.e., it could

be easier to transfer from Q to P than from P to Q, which is not
captured by symmetric notions of distance (dA, Wassertein, etc ...).
Finally note that the above example can be extended to more general hypothesis classes as it simply
plays on how fast fP decreases w.r.t. fQ in regions of space.

Example 4. (Super-transfer and localization). We continue on the above Example 2. Now let
0 < γ < 1, and let fP (t) ∝ |t|γ−1 on [−1, 1] \ {0}, with QX

.
= U [−1, 1], h∗ at 0. As before, γ is a

transfer-exponent P → Q, and following from Theorem 3, we attain transfer rates of EQ . n
−1/γ
P ,

faster than the rates of n−1
Q attainable with data from Q. We call these situations super-transfer, i.e.,

ones where the source data gets us faster to h∗; here P concentrates more mass close to h∗, while
more generally, such situations can also be constructed by letting PY |X be less noisy than QY |X
data, for instance corresponding to controlled lab data as source, vs noisy real-world data.
Now consider the following ε-localization fix to the dA = dY divergences over h’s with small P
error (assuming we only observe data from P ): d∗Y

.
= suph∈H: EP (h)≤ε |EP (h)− EQ(h)| . This is no

longer worst-case over all h’s, yet it is still not a complete fix. To see why, consider that, given nP
data from P , the best P -excess risk attainable is n−1

P so we might set ε ∝ n−1
P . Now the subclass

{h ∈ H : EP (h) ≤ ε} corresponds to thresholds t ∈ [±n−1/γ
P ], since EP (ht) = P ([0, t]) ∝ |t|γ .
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We therefore have d∗Y ∝
∣∣∣n−1
P − n

−1/γ
P

∣∣∣ ∝ n−1
P , wrongly suggesting a transfer rate EQ . n−1

P ,

while the super-transfer rate n−1/γ
P is achievable as discussed above. The problem is that, even after

localization, d∗Y treats errors under P and Q symmetrically.

4 Lower-Bounds

Definition 4 ((NC) Class). Let F(NC)(ρ, βP , βQ, C) denote the class of pairs of distributions (P,Q)
with transfer-exponent ρ, Cρ ≤ C, satisfying (NC) with parameters βP , βQ, and cP , cQ ≤ C.

The following lower-bound in terms of ρ is obtained via information theoretic-arguments. In effect,
given the VC classH, we construct a set of distribution pairs {(Pi, Qi)} supported on dH datapoints,
which all belong to F(NC)(ρ, βP , βQ, C). All the distributions share the same marginals PX , QX .
Any two pairs are close to each other in the sense that Πi,Πj , where Πi

.
= PnPi × QnQi , are close

in KL-divergence, while, however maintaining pairs (Pi, Qi), (Pj , Qj) far in a pseudo-distance in-
duced by QX . All the proofs from this section are in Appendix B.
Theorem 1 (ρ Lower-bound). Suppose the hypothesis class H has VC dimension dH ≥ 9. Let
ĥ = ĥ(SP , SQ) denote any (possibly improper) classifier with access to two independent labeled
samples SP ∼ PnP and SQ ∼ QnQ . Fix any ρ ≥ 1, 0 ≤ βP , βQ < 1. Suppose either nP or nQ is
sufficiently large so that

ε(nP , nQ)
.
= min

{(
dH
nP

)1/(2−βP )ρ

,

(
dH
nQ

)1/(2−βQ)
}
≤ 1/2.

Then, for any ĥ, there exists (P,Q) ∈ F(NC)(ρ, βP , βQ, 1), and a universal constant c such that,

P
SP ,SQ

(
EQ(ĥ) > c · ε(nP , nQ)

)
≥ 3− 2

√
2

8
.

As per Proposition 1 we can translate any upper-bound in terms of ρ to an upper-bound in terms of
γ since ρ ≤ γ/βP . We investigate whether such upper-bounds in terms of γ are tight, i.e., given a
class F(NC)(ρ, βP , βQ, C), are there distributions with ρ = γ/βP where the rate is realized.

The proof of the next result is similar to that of Theorem 1, however with the added difficulty that
we need the construction to yield two forms of rates ε1(nP , nQ), ε2(nP , nQ) over the data support
(again dH points). Combining these two rates matches the desired upper-bound. In effect, we follow
the intuition that, to have ρ = γ/βP achieved on some subset X1 ⊂ X , we need βQ to behave as 1
locally on X1, while matching the rate requires larger βQ on the rest of the suppport (on X \ X1).
Theorem 2 (γ Lower-bound). Suppose the hypothesis classH has VC dimension dH, bdH/2c ≥ 9.
Let ĥ = ĥ(SP , SQ) denote any (possibly improper) classifier with access to two independent labeled
samples SP ∼ PnP and SQ ∼ QnQ . Fix any 0 < βP , βQ < 1, ρ ≥ max {1/βP , 1/βQ}. Suppose
either nP or nQ is sufficiently large so that

ε1(nP , nQ)
.
= min

{(
dH
nP

)1/(2−βP )ρ·βQ
,

(
dH
nQ

)1/(2−βQ)
}
≤ 1/2, and

ε2(nP , nQ)
.
= min

{(
dH
nP

)1/(2−βP )ρ

,

(
dH
nQ

)}
≤ 1/2.

Then, for any ĥ, there exists (P,Q) ∈ F(NC)(ρ, βP , βQ, 2), with marginal-transfer-exponent γ =
ρ · βP ≥ 1, with Cγ ≤ 2, and a universal constant c such that,

E
SP ,SQ

EQ(ĥ) ≥ c ·max {ε1(nP , nQ), ε2(np, nQ)} .

Remark 1 (Tightness with upper-bound). Write ε1(nP , nQ) = min{ε1(nP ), ε1(nQ)}, and simi-
larly, ε2(nP , nQ) = min{ε2(nP ), ε2(nQ)}. Define εL

.
= max{ε1(nP , nQ), ε2(nP , nQ)} as in the

above lower-bound of Theorem 2. Next, define εH
.
= min{ε2(nP ), ε1(nQ)}. It turns out that the
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best upper-bound we can show (as a function of γ) is in terms of εH so defined. It is therefore natural
to ask whether or when εH and εL are of the same order.

Clearly, we have ε1(nP ) ≤ ε2(nP ) and ε1(nQ) ≥ ε2(nQ) so that εL ≤ εH (as to be expected).

Now, if βQ = 1, we have ε1(nP ) = ε2(nP ) and ε1(nQ) = ε2(nQ), so that εL = εH . More generally,
from the above inequalities, we see that εL = εH in the two regimes where either ε1(nQ) ≤ ε1(nP )
(in which case εL = εH = ε1(nQ)), or ε2(nP ) ≤ ε2(nQ) (in which case εL = εH = ε2(nP )).

5 Upper-Bounds

The following lemma is due to [32].

Lemma 1. LetAn = dH
n log

(
max{n,dH}

dH

)
+ 1
n log

(
1
δ

)
. With probability at least 1− δ

3 , ∀h, h′ ∈ H,

R(h)−R(h′) ≤ R̂(h)− R̂(h′) + c

√
min{P (h 6= h′), P̂ (h 6= h′)}An + cAn, (4)

and
1

2
P (h 6= h′)− cAn ≤ P̂ (h 6= h′) ≤ 2P (h 6= h′) + cAn, (5)

for a universal numerical constant c ∈ (0,∞), where R̂ denotes empirical risk on n iid samples.

Now consider the following algorithm. Let SP be a sequence of nP samples from P and
SQ a sequence of nQ samples from Q. Also let ĥSP = argminh∈H R̂SP (h) and ĥSQ =

argminh∈H R̂SQ(h). Choose ĥ as the solution to the following optimization problem.

Algorithm 1:

Minimize R̂SP (h)

subject to R̂SQ(h)− R̂SQ(ĥSQ) ≤ c
√
P̂SQ(h 6= ĥSQ)AnQ + cAnQ (6)

h ∈ H.

The intuition is that, effectively, the constraint guarantees we maintain a near-optimal guarantee
on EQ(ĥ) in terms of nQ and the (NC) parameters for Q, while (as we show) still allowing the
algorithm to select an h with a near-minimal value of R̂SP (h). The latter guarantee plugs into the
transfer condition to obtain a term converging in nP , while the former provides a term converging in
nQ, and altogether the procedure achieves a rate specified by the min of these two guarantees (which
is in fact nearly minimax optimal, since it matches the lower bound up to logarithmic factors).

Formally, we have the following result for this learning rule; its proof is below.

Theorem 3 (Minimax Upper-Bounds). Assume (NC). Let ĥ be the solution from Algorithm 1. For
a constant C depending on ρ, Cρ, βP , cβP , βQ, cβQ , with probability at least 1− δ,

EQ(ĥ) ≤ C min

{
A

1
(2−βP )ρ

nP , A
1

2−βQ
nQ

}
= Õ

(
min

{(
dH
nP

) 1
(2−βP )ρ

,

(
dH
nQ

) 1
2−βQ

})
.

Note that, by the lower bound of Theorem 1, this bound is optimal up to log factors.

Remark 2 (Effective Source Sample Size). From the above, we might view (ignoring dH) ñP
.
=

n
(2−βQ)/(2−βP )ρ
P as the effective sample size contributed by P . In fact, the above minimax rate

is of order (ñP + nQ)−1/(2−βQ), which yields added intuition into the combined effect of both
samples. We have that, the effective source sample size ñP is smallest for large ρ, but also depends
on (2− βQ)/(2− βP ), i.e., on whether P is noisier than Q.

Remark 3 (Rate in terms of γ). Note that, by Proposition 1, this also immediately implies a bound
under the marginal transfer condition and RCS, simply taking ρ ≤ γ/βP . Furthermore, by the lower
bound of Theorem 2, the resulting bound in terms of γ is tight in certain regimes up to log factors.
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Proof of Theorem 3. In all the lines below, we let C serve as a generic constant (possibly depending
on ρ, Cρ, βP , cβP , βQ, cβQ ) which may be different in different appearances. Consider the event
of probability at least 1 − δ/3 from Lemma 1 for the SQ samples. In particular, on this event, if
EQ(h∗P ) = 0, it holds that

R̂SQ(h∗P )− R̂SQ(ĥSQ) ≤ c
√
P̂SQ(h∗P 6= ĥSQ)AnQ + cAnQ .

This means, under the (RCS) condition, h∗P satisfies the constraint in the above optimization problem
defining ĥ. Also, on this same event from Lemma 1 we have

EQ(ĥSQ) ≤ c
√
Q(ĥSQ 6= h∗Q)AnQ + cAnQ ,

so that (NC) implies

EQ(ĥSQ) ≤ C
√
EQ(ĥSQ)βQAnQ + cAnQ ,

which implies the well-known fact from [28, 29] that

EQ(ĥSQ) ≤ C
(
dH
nQ

log

(
nQ
dH

)
+

1

nQ
log

(
1

δ

)) 1
2−βQ

. (7)

Furthermore, following the analogous argument for SP , it follows that for any set G ⊆ H with
h∗P ∈ G, with probability at least 1− δ/3, the ERM ĥ′SP = argminh∈G R̂SP (h) satisfies

EP (ĥ′SP ) ≤ C
(
dH
nP

log

(
nP
dH

)
+

1

nP
log

(
1

δ

)) 1
2−βP

. (8)

In particular, conditioned on the SQ data, we can take the set G as the set of h ∈ H satisfying
the constraint in the optimization, and on the above event we have h∗P ∈ G (assuming the (RCS)
condition); furthermore, if EQ(h∗P ) = 0, then without loss we can simply define h∗Q = h∗P = h∗

(and it is easy to see that this does not affect the NC condition). We thereby establish the above
inequality (8) for this choice of G, in which case by definition ĥ′SP = ĥ. Altogether, by the union
bound, all of these events hold simultaneously with probability at least 1 − δ. In particular, on this
event, if the (RCS) condition holds then

EP (ĥ) ≤ C
(
dH
nP

log

(
nP
dH

)
+

1

nP
log

(
1

δ

)) 1
2−βP

.

Applying the definition of ρ, this has the further implication that (again if (RCS) holds)

EQ(ĥ) ≤ C
(
dH
nP

log

(
nP
dH

)
+

1

nP
log

(
1

δ

)) 1
(2−βP )ρ

.

Also note that, if ρ = ∞ this inequality trivially holds, whereas if ρ < ∞ then (RCS) necessarily
holds so that the above implication is generally valid, without needing the (RCS) assumption explic-
itly. Moreover, again when the above events hold, using the event from Lemma 1 again, along with
the constraint from the optimization, we have that

RQ(ĥ)−RQ(ĥSQ) ≤ 2c

√
P̂SQ(ĥ 6= ĥSQ)AnQ + 2cAnQ ,

and (5) implies the right hand side is at most

C

√
Q(ĥ 6= ĥSQ)AnQ + CAnQ ≤ C

√
Q(ĥ 6= h∗Q)AnQ + C

√
Q(ĥSQ 6= h∗Q)AnQ + CAnQ .

Using the Bernstein class condition and (7), the second term is bounded by

C

(
dH
nQ

log

(
nQ
dH

)
+

1

nQ
log

(
1

δ

)) 1
2−βQ

,

while the first term is bounded by

C

√
EQ(ĥ)βQAnQ .

7



Altogether, we have that

EQ(ĥ) = RQ(ĥ)−RQ(ĥSQ) + EQ(ĥSQ)

≤ C
√
EQ(ĥ)βQAnQ + C

(
dH
nQ

log

(
nQ
dH

)
+

1

nQ
log

(
1

δ

)) 1
2−βQ

,

which implies

EQ(ĥ) ≤ C
(
dH
nQ

log

(
nQ
dH

)
+

1

nQ
log

(
1

δ

)) 1
2−βQ

.

Remark 4. Note that the above Theorem 3 does not require (RCS): that is, it holds even when
EQ(h∗P ) > 0, in which case ρ = ∞. However, for a related method we can also show a stronger
result in terms of a modified definition of ρ:
Specifically, define EQ(h, h∗P ) = max{RQ(h)−RQ(h∗P ), 0}, and suppose ρ′ > 0, Cρ′ > 0 satisfy

∀h ∈ H, Cρ′ · EP (h) ≥ Eρ
′

Q (h, h∗P ).

This is clearly equivalent to ρ (Definition 2) under (RCS); however, unlike ρ, this ρ′ can be finite
even in cases where (RCS) fails. With this definition, we have the following result.

Proposition 2 (Beyond (RCS)). If R̂SQ(ĥSP )− R̂SQ(ĥSQ) ≤ c
√
P̂SQ(ĥSP 6= ĥSQ)AnQ + cAnQ ,

that is, if ĥSP satisfies (6), define ĥ = ĥSP , and otherwise define ĥ = ĥSQ . Assume (NC). For a
constant C depending on ρ′, Cρ′ , βP , cβP , βQ, cβQ , with probability at least 1− δ,

EQ(ĥ) ≤ min

{
EQ(h∗P ) + CA

1
(2−βP )ρ′
nP , CA

1
2−βQ
nQ

}
.

The proof of this result is similar to that of Theorem 3, and as such is deferred to Appendix C.

An alternative procedure. Similar results as in Theorem 3 can be obtained for a method that
swaps the roles of P and Q samples:

Algorithm 1′ :

Minimize R̂SQ(h)

subject to R̂SP (h)− R̂SP (ĥSP ) ≤ c
√
P̂SP (h 6= ĥSP )AnP + cAnP

h ∈ H.

This version, more akin to so-called hypothesis transfer may have practical benefits in scenarios
where the P data is accessible before the Q data, since then the feasible set might be calculated (or
approximated) in advance, so that the P data itself would no longer be needed in order to execute
the procedure. However this procedure presumes that h∗P is not far from h∗Q, i.e., that data SP from
P is not misleading, since it conditions on doing well on SP . Hence we now require (RCS).

Proposition 3. Assume (NC) and (RCS). Let ĥ be the solution from Algorithm 1′. For a constant C
depending on ρ, Cρ, βP , cβP , βQ, cβQ , with probability at least 1− δ,

EQ(ĥ) ≤ C min

{
A

1
(2−βP )ρ

nP , A
1

2−βQ
nQ

}
= Õ

(
min

{(
dH
nP

) 1
(2−βP )ρ

,

(
dH
nQ

) 1
2−βQ

})
.

The proof is very similar to that of Theorem 3, so is omitted for brevity.

6 Minimizing Sampling Cost

In this section (and continued in Appendix A.1), we discuss the value of having access to unlabeled
data from Q. The idea is that unlabeled data can be obtained much more cheaply than labeled data,
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so gaining access to unlabeled data can be realistic in many applications. Specifically, we begin
by discussing an adaptive sampling scenario, where we are able to draw samples from P or Q, at
different costs, and we are interested in optimizing the total cost of obtaining a given excess Q-risk.

Formally, consider the scenario where we have as input a value ε, and are tasked with producing
a classifier ĥ with EQ(ĥ) ≤ ε. We are then allowed to draw samples from either P or Q toward
achieving this goal, but at different costs. Suppose cP : N → [0,∞) and cQ : N → [0,∞) are cost
functions, where cP (n) indicates the cost of sampling a batch of size n from P , and similarly define
cQ(n). We suppose these functions are increasing, and concave, and unbounded.

Definition 5. Define n∗Q = dH/ε
2−βQ , n∗P = dH/ε

(2−βP )γ/βP , and c∗ = min
{
cQ(n∗Q), cP (n∗P )

}
.

We call c∗ = c∗(ε; cP , cQ) the minimax optimal cost of sampling from P or Q to attain Q-error ε.

Note that the cost c∗ is effectively the smallest possible, up to log factors, in the range of parameters
given in Theorem 2. That is, in order to make the lower bound in Theorem 2 less than ε, either
nQ = Ω̃(n∗Q) samples are needed from Q or nP = Ω̃(n∗P ) samples are needed from P . We show
that c∗ is nearly achievable, adaptively with no knowledge of distributional parameters.

Procedure. We assume access to a large unlabeled data set UQ sampled from QX . For our pur-
poses, we will suppose this data set has size at least Θ(dHε log 1

ε + 1
ε log 1

δ ).

Let A′n = dH
n log(max{n,dH}

dH
) + 1

n log( 2n2

δ ). Then for any labeled data set S, define ĥS =

argminh∈H R̂S(h), and given an additional data set U (labeled or unlabeled) define a quantity

δ̂(S,U) = sup

{
P̂U (h 6= ĥS) : h ∈ H, R̂S(h)− R̂S(ĥS) ≤ c

√
P̂S(h 6= ĥS)A′|S| + cA′|S|

}
,

where c is as in Lemma 1. Now we have the following procedure.

Algorithm 2:
0. SP ← {}, SQ ← {}
1. For t = 1, 2, . . .
2. Let nt,P be minimal such that cP (nt,P ) ≥ 2t−1

3. Sample nt,P samples from P and add them to SP
4. Let nt,Q be minimal such that cQ(nt,Q) ≥ 2t−1

5. Sample nt,Q samples from Q and add them to SQ

6. If c
√
δ̂(SQ, SQ)A|SQ| + cA|SQ| ≤ ε, return ĥSQ

7. If δ̂(SP , UQ) ≤ ε/4, return ĥSP

The following theorem asserts that this procedure will find a classifier ĥ with EQ(ĥ) ≤ ε while
adaptively using a near-minimal cost associated with achieving this. The proof is in Appendix D.

Theorem 4 (Adapting to Sampling Costs). Assume (NC) and (RCS). There exist a constant c′,
depending on parameters (Cγ , γ, cβQ , βQ, cβP , βP ) but not on ε or δ, such that the following holds.
Define sample sizes ñQ = c′

ε2−βQ

(
dH log 1

ε + log 1
δ

)
, and ñP = c′

ε(2−βP )γ/βP

(
dH log 1

ε + log 1
δ

)
.

Algorithm 2 outputs a classifier ĥ such that, with probability at least 1− δ, we have EQ(ĥ) ≤ ε, and
the total sampling cost incurred is at most min{cQ(ñQ), cP (ñP )} = Õ(c∗).

Thus, when c∗ favors sampling from P , we end up sampling very few labeledQ data. These are sce-
narios where P samples are cheap relative to the cost of Q samples and w.r.t. parameters (βQ,βP ,γ)
which determine the effective source sample size contributed for every target sample. Furthermore,
we achieve this adaptively: without knowing (or even estimating) these relevant parameters.
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A Additional Results

A.1 Reweighting the Source Data

In this section, we present a technique for using unlabeled data fromQ to find a reweighting of the P
data more suitable for transfer. This gives a technique for using the data effectively in a potentially
practical way. As above, we again suppose access to the sample UQ of unlabeled data from Q.

Additionally, we suppose we have access to a set P of functions f : X → [0,∞), which we interpret
as unnormalized density functions with respect to PX . Let Pf denote the bounded measure whose
marginal on X has density f with respect to PX , and the conditional Y |X is the same as for P .

Now suppose SP = {(xi, yi)}nPi=1 is a sequence of nP iid P -distributed samples. Continuing
conventions from above RPf (h) =

∫
1[h(x) 6= y]f(x)dP (x, y) is a risk with respect to Pf , but

now we also write R̂SP ,f (h) = 1
nP

∑
(x,y)∈SP 1[h(x) 6= y]f(x), and additionally we will use

Pf2(h 6= h′) =
∫

1[h(x) 6= h′(x)]f2(x)dP (x, y), and P̂SP ,f2(h 6= h′) = 1
nP

∑
(x,y)∈SP 1[h(x) 6=

h′(x)]f2(x); the reason f2 is used instead of f is that this will represent a variance term in
the bounds below. Other notations from above are defined analogously. In particular, also let
ĥSP ,f = argminh∈H R̂SP ,f (h). For simplicity, we will only present the case of P having finite
pseudo-dimension dp (i.e., dp is the VC dimension of the subgraph functions {(x, y) 7→ 1[f(x) ≤
y] : f ∈ P}); extensions to general bracketing or empirical covering follow similarly.

For the remaining results in this section, we suppose the condition RCS holds for all Pf : that is,
RPf is minimized inH at a function h∗Pf having EQ(h∗Pf ) = 0. For instance, this would be the case
if the Bayes optimal classifier is in the classH.

Define A′′n =
dH+dp
n log

(
max{n,dH+dp}

dH+dp

)
+ 1

n log
(

1
δ

)
. Let us also extend the definition of δ̂ intro-

duced above. Specifically, define δ̂(SP , f, UQ) as

sup

{
P̂UQ(h 6= ĥSP ,f ) : h ∈ H, ÊSP ,f (h) ≤ c

√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP

}
.

Now consider the following procedure.

Algorithm 3:
Choose f̂ to minimize δ̂(SP , f, UQ) over f ∈ P.
Choose ĥ to minimize R̂SQ(h) among h ∈ H
subject to ÊSP ,f̂ (h) ≤ c

√
P̂SP ,f̂2(h 6= ĥSP ,f̂ )A′′nP + c‖f̂‖∞A′′nP .

As we establish in the proof, f̂ is effectively being chosen to minimize an upper bound on the
excess Q-risk of the resulting classifier ĥ. Toward analyzing the performance of this procedure,
note that each f induces a marginal transfer exponent: that is, values Cγ,f , γf such that ∀h ∈ H,
Cγ,fPf2(h 6= h∗Pf ) ≥ Qγf (h 6= h∗Pf ). Similarly, each f induces a Bernstein Class Condition: there

exist values cf > 0, βf ∈ [0, 1] such that Pf2(h 6= h∗Pf ) ≤ cfE
βf
Pf

(h).

The following theorem reveals that Algorithm 3 is able to perform nearly as well as applying the
transfer technique from Theorem 3 directly under the measure in the family P that would provide
the best bound. The only losses compared to doing so are a dependence on dp and the supremum of
the density (which accounts for how different that measure is from P ). The proof is in Appendix E.
Theorem 5. Suppose βQ > 0 and that (NC) and (RCS) hold for all Pf , f ∈ P. There exist
constants Cf depending on ‖f‖∞, Cγ,f , γf , cf , βf , and a constant C depending on cq , βQ such
that, for a sufficiently large |UQ|, w.p. at least 1− δ, the classifier ĥ chosen by Algorithm 3 satisfies

EQ(ĥ) ≤ inf
f∈P

C min

{
Cf
(
A′′nP

) βf
(2−βf )γf , A

1
2−βQ
nQ

}

= Õ

 inf
f∈P

min

Cf
(
dH + dp
nP

) βf
(2−βf )γf

,

(
dH
nQ

) 1
2−βQ


 .
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The utility of this theorem will of course depend largely on the family P of densities. This class
should contain a distribution with small γf marginal transfer exponent, while also small ‖f‖∞
(which is captured by the Cf constant in the bound), and favorable noise conditions (i.e., large βf ).

A.2 Choice of Transfer from Multiple Sources

It is worth noting that all of the above analysis also applies to the case that, instead of a family of
densities with respect to a single P , the set P is a set of probability measures Pi, each with its own
separate iid data set Si of some size ni. Lemma 1 can then be applied to all of these data sets, if
we simply replace δ by δ/|P| to accommodate a union bound; call the corresponding quantity A

′′′

n .
Then, similarly to the above, we can use the following procedure.

Algorithm 4:
Choose î to minimize δ̂(Si, UQ) over Pi ∈ P.
Choose ĥ to minimize R̂SQ(h) among h ∈ H
subject to ÊSî(h) ≤ c

√
P̂Sî(h 6= ĥSî)A

′′′
nî

+ cA
′′′

nî
.

To state a formal guarantee, let us suppose the conditions above hold for each of these distributions
with respective values of Cγ,i, γi, ci, βi. We have the following theorem. Its proof is essentially
identical to the proof of Theorem 5 (effectively just substituting notation), and is therefore omitted.
Theorem 6. Suppose βQ > 0 and that (NC) and (RCS) hold for all Pi ∈ P. There exist constants
Ci depending on Cγ,i, γi, ci, βi, and a constant C depending on cq , βQ such that, for a sufficiently
large |UQ|, with probability at least 1− δ, the classifier ĥ chosen by Algorithm 4 satisfies

EQ(ĥ) ≤ Õ

 inf
Pi∈P

min

Ci
(
dH + log(|P|)

ni

) βi
(2−βi)γi

,

(
dH
nQ

) 1
2−βQ


 .

B Lower-Bounds Proofs

Our lower-bounds rely on the following extensions of Fano inequality.
Proposition 4 (Thm 2.5 of [33]). Let {Πh}h∈H be a family of distributions indexed over a subset
H of a semi-metric (F , dist). Suppose ∃h0, . . . , hM ∈ H, where M ≥ 2, such that:

(i) dist (hi, hj) ≥ 2s > 0, ∀0 ≤ i < j ≤M,

(ii) Πhi � Πh0
∀i ∈ [M ], and the average KL-divergence to Πh0

satisfies

1

M

M∑
i=1

Dkl (Πhi |Πh0
) ≤ α logM, where 0 < α < 1/8.

Let Z ∼ Πh, and let ĥ : Z 7→ F denote any improper learner of h ∈ H. We have for any ĥ:

sup
h∈H

Πh

(
dist

(
ĥ(Z), h

)
≥ s
)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

log(M)

)
≥ 3− 2

√
2

8
.

The following proposition would be needed to construct packings (of spaces of distributions) of the
appropriate size.
Proposition 5 (Varshamov-Gilbert bound). Let d ≥ 8. Then there exists a subset {σ0, . . . , σM} of
{−1, 1}d such that σ0 = (1, . . . , 1),

dist(σi, σj) ≥
d

8
, ∀ 0 ≤ i < j ≤M, and M ≥ 2d/8,

where dist(σ, σ′) .
= card({i ∈ [m] : σ(i) 6= σ′(i)}) is the Hamming distance.

Results similar to the following lemma are known.
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Lemma 2 (A basic KL upper-bound). For any 0 < p, q < 1, we let Dkl (p|q) denote
Dkl (Ber(p)|Ber(q)). Now let 0 < ε < 1/2 and let z ∈ {−1, 1}. We have

Dkl (1/2 + (z/2) · ε | 1/2− (z/2) · ε) ≤ c0 · ε2, for some c0 independent of ε.

Proof. Write p
q

.
= 1/2+(z/2)ε

1/2−(z/2)ε = 1 + 2zε
1−zε , and use the fact that

Dkl (p|q) ≤ χ2(p|q) = q

(
1− p

q

)2

+(1−q)
(

1− 1− p
1− q

)2

= q

(
2zε

1− zε

)2

+(1−q)
(
−2zε

1 + zε

)2

.

Proof of Theorem 1. Let d = dH − 1. Pick x0, x1, x2, . . . , xd a shatterable subset of X under H.
These will form the support of marginals PX , QX . Furthermore, let H̃ denote the projection of H
onto {xi}di=0 (i.e., the quotient space of equivalences h ≡ h′ on {xi}), with the additional constraint
that all h ∈ H̃ classify x0 as 1. We can now restrict attention to H̃ as the effective hypothesis class.

Let σ ∈ {−1, 1}d. We will construct a family of distribution pairs (Pσ, Qσ) indexed by σ to which
we then apply Proposition 4 above. For any Pσ, Qσ , we let ηP,σ, ηQ,σ denote the corresponding
regression functions (i.e., EPσ [Y |x], and EQσ [Y |x]). To proceed, fix ε = c1 · ε(nP , nQ) ≤ 1/2, for
a constant c1 < 1 to be determined, where ε(nP , nQ) is as defined in the theorem’s statement.

- Distribution Qσ . We have that Qσ = QX × QσY |X , where QX(x0) = 1 − εβQ , while QX(xi) =
1
dε
βQ , i ≥ 1. Now, the conditional QσY |X is fully determined by ηQ,σi(x0) = 1, and ηQ,σ(xi) =

1/2 + (σi/2) · ε1−βQ , i ≥ 1.

- Distribution Pσ . We have that Pσ = PX × PσY |X , PX(x0) = 1 − ερβP , while PX(xi) = 1
dε
ρβP ,

i ≥ 1. Now, the conditional PσY |X is fully determined by ηP,σ(x0) = 1, and ηP,σ(xi) = 1/2 +

(σi/2) · ερ(1−βP ), i ≥ 1.

- Verifying that (Pσ, Qσ) ∈ F(NC)(ρ, βP , βQ, 1). For any σ ∈ {−1, 1}d, let hσ ∈ H̃ denote the
corresponding Bayes classifier (remark that the Bayes is the same for both Pσ and Qσ). Now, pick
any other hσ′ ∈ H̃, and let dist(σ, σ′) denote the Hamming distance between σ, σ′ (as in Proposition
5). We then have that

EQσ (hσ′) = dist(σ, σ′) · 1

d
εβQ · ε1−βQ =

dist(σ, σ′)
d

· ε,

while QX(hσ′ 6= hσ) =
dist(σ, σ′)

d
· εβQ ,

and similarly, EPσ (hσ′) =
dist(σ, σ′)

d
· ερ, while PX(hσ′ 6= hσ) =

dist(σ, σ′)
d

· ερβP .

The condition is also easily verified for classifiers not labeling x0 as 1. Since (dist(σ, σ′)/d) ≤ 1,
it follows that (1) holds with exponents βP and βQ for any Pσ and Qσ respectively (with CPσ = 1,
CQσ = 1), and that any Pσ admits a transfer-exponent ρ w.r.t. Qσ , with Cρ = 1.

- Reduction to a packing. Now apply Proposition 5 to identify a subset Σ of {−1, 1}d, where
|Σ| = M ≥ 2d/8, and ∀σ, σ′ ∈ Σ, we have dist(σ, σ′) ≥ d/8. It should be clear then that for any
σ, σ′ ∈ Σ,

EQσ (hσ′) ≥
d

8
· 1

d
εβQ · ε1−βQ = ε/8.

Furthermore, by construction, any classifier ĥ : {xi} 7→ {0, 1} can be reduced to a decision on σ,
and we henceforth view dist(σ, σ′) as the semi-metric referenced in Proposition 4, with effective
indexing set Σ.

14



- KL bounds in terms of nP and nQ. Define Πσ = PnPσ ×QnQσ . We can now verify that all Πσ,Πσ′

are close in KL-divergence. First notice that, for any σ, σ′ ∈ Σ (in fact in {−1, 1}d)

Dkl (Πσ|Πσ′) = nP · Dkl (Pσ|Pσ′) + nQ · Dkl (Qσ|Qσ′)

= nP · E
PX
Dkl

(
PσY |X |P

σ′

Y |X

)
+ nQ · E

QX
Dkl

(
QσY |X |Q

σ′

Y |X

)
= nP ·

d∑
i=1

ερβP

d
Dkl

(
PσY |xi |P

σ′

Y |xi

)
+ nQ ·

d∑
i=1

εβQ

d
Dkl

(
QσY |xi |Q

σ′

Y |xi

)
≤ c0

(
nP · ερ(2−βP ) + nQ · ε(2−βQ)

)
(9)

≤ c0d(c
ρ(2−βp)
1 + c

2−βQ
1 ) ≤ 2c0c1d. (10)

where, for inequality (9), we used Lemma 2 to upper-bound the divergence terms. It follows that,
for c1 sufficiently small so that 2c0c1 ≤ 1/16, we get that (10) is upper bounded by (1/8) logM .
Now apply Proposition 4 and conclude.

We need the following lemma for the next result.

Lemma 3. Let ε1, ε2, α, α1, α2 ≥ 0, and α1 + α2 ≤ 1. We then have that

For α ≥ 1, α1ε
α
1 + α2ε

α
2 ≥ (α1ε1 + α2ε2)

α
, and

for α ≤ 1, α1ε
α
1 + α2ε

α
2 ≤ (α1ε1 + α2ε2)

α
.

Proof. W.l.o.g., let α1 + α2 > 0, and normalize the l.h.s. of each of the above inequalities by
(α1 + α2)−1 ≥ 1. The results follows by Jensen’s inequality and the convexity of z 7→ zα for
α ≥ 1, and concavity of z 7→ zα for α ≤ 1.

We can now show Theorem 2.

Proof of Theorem 2. We proceed similarly (as far as high-level arguments) as for the proof of Theo-
rem 1, but with a different construction where distributions now all satisfy γ = ρ·βP , and are broken
into two subfamilies (corresponding to the rates ε1 and ε2), and the final result holds by considering
the intersection of these subfamilies. For simplicity, in what follows, assume d is even, otherwise,
the arguments hold by just replacing d by d− 1. First, define x0, x1, x2, . . . , xd, H̃ as in that proof.

Let σ ∈ {−1, 1}d. Next we construct distribution pairs Pσ, Qσ indexed by σ, with corresponding
regression functions ηP,σ, ηQ,σ . Fix ε1 = c1 · ε1(nP , nQ) ≤ 1/2, and ε2 = c2 · ε2(nP , nQ) ≤ 1/2,
for some c1, c2 < 1 to be determined.

The construction is now broken up over I1
.
=
{

1, . . . , d2
}

, and I2
.
=
{
d
2 + 1, . . . , d

}
. Fix a constant

1
2 ≤ τ < 1; this ensures that ε2/τ ≤ 1. We will later impose further conditions on τ .

- Distribution Qσ . We let Qσ = QX × QσY |X , where QX(x0) = 1 − 1
2

(
ε
βQ
1 + (ε2/τ)

)
, while

QX(xi) = 1
dε
βQ
1 for i ∈ I1, and QX(xi) = 1

d (ε2/τ) for i ∈ I2. Now, the conditional QσY |X
is fully determined by ηQ,σ(x0) = 1, and ηQ,σ(xi) = 1/2 + (σi/2) · ε1−βQ1 for i ∈ I1, and
ηQ,σ(xi) = 1/2 + (σi/2) · τ for i ∈ I2.

- Distribution Pσ . We let Pσ = PX×PσY |X , where PX(x0) = 1− 1
2

(
ε
γβQ
1 + εγ2

)
, while PX(xi) =

1
dε
γβQ
1 for i ∈ I1, and PX(xi) = 1

dε
γ
2 for i ∈ I2. Now, the conditional PσY |X is fully determined by

ηP,σ(x0) = 1, and ηP,σ(xi) = 1/2 + (σi/2) · ε(1−βP )ρβQ
1 for i ∈ I1, and ηP,σ(xi) = 1/2 + (σi/2) ·

ε
(1−βP )ρ
2 for i ∈ I2.

- Verifying that (Pσ, Qσ) ∈ F(NC)(ρ, βP , βQ, 2). For any σ ∈ {−1, 1}d, define hσ ∈ H̃ as in the
proof of Theorem 1. Now, pick any other hσ′ ∈ H̃, and let distI(σ, σ′) denote the Hamming distance
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between σ, σ′, restricted to indices in I (that is the Hamming distance between subvectors σI and
σ′I ). We then have that

EQσ (hσ′) = distI1(σ, σ′) · 1

d
εβQ · ε1−βQ1 + distI2(σ, σ′) · 1

d
(ε2/τ)τ

=
distI1(σ, σ′)

d
ε1 +

distI2(σ, σ′)

d
ε2,

while QX(hσ′ 6= hσ) =
distI1(σ, σ′)

d
ε
βQ
1 +

distI2(σ, σ′)

d
(ε2/τ).

Similarly, EPσ (hσ′) = distI1(σ, σ′) · 1

d
ε
γβQ
1 · ε(1−βP )ρβQ

1 + distI2(σ, σ′) · 1

d
εγ2 · ε

(1−βP )ρ
2 ,

=
distI1(σ, σ′)

d
ε
ρβQ
1 +

distI2(σ, σ′)

d
ερ2,

while PX(hσ′ 6= hσ) =
distI1(σ, σ′)

d
ε
γβQ
1 +

distI2(σ, σ′)

d
εγ2 .

The condition is also easily verified for classifiers not labeling x0 as 1. We apply Lemma 3 repeat-
edly in what follows. First, by the above, we have that

QX(hσ′ 6= hσ) ≤ distI1(σ, σ′)

d
ε
βQ
1 + 2

distI2(σ, σ′)

d
ε
βQ
2 ≤ 2EβQQσ (hσ′).

On the other hand,

PX(hσ′ 6= hσ) =
distI1(σ, σ′)

d

(
ε
ρβQ
1

)βP
+

distI2(σ, σ′)

d
(ερ2)

βP ≤ EβPPσ (hσ′),

Finally we have that

EPσ (hσ′) ≥
distI1(σ, σ′)

d
ερ1 +

distI2(σ, σ′)

d
ερ2 ≥ E

ρ
Qσ

(hσ′).

- Verifying that γ is a marginal-transfer-exponent PX to QX . Using the above derivations, the
condition that γ ≥ 1, and further imposing the condition that τ ≥ (1/2)1/γ , we have

PX(hσ′ 6= hσ) ≥ distI1(σ, σ′)

d

(
ε
βQ
1

)γ
+

1

2

distI2(σ, σ′)

d
(ε2/τ)γ ≥ 1

2
QγX(hσ′ 6= hσ).

where we again used Lemma 3.

- Reduction to sub-Packings. Now, in a slight deviation from the proof of Theorem 1, we de-
fine two separate packings (in Hamming distance), indexed by some ς as follows. Fix any
ς ∈ {−1, 1}d/2, and applying Proposition 2, let Σ1(ς) ⊂

{
σ ∈ {−1, 1}d : σI2 = ς

}
, and

Σ2(ς) ⊂
{
σ ∈ {−1, 1}d : σI1 = ς

}
denote m-packings of {−1, 1}d/2, m ≥ d/16, of size M + 1,

M ≥ 2d/16.

Clearly, for any σ, σ′ ∈ Σ1(ς) we have EQσ (hσ′) ≥ ε1/16, while for any σ, σ′ ∈ Σ2(ς) we have
EQσ (hσ′) ≥ ε2/16.

- KL Bounds in terms of nP and nQ. Again, define Πσ = PnPσ × QnQσ . First, for any ς fixed, let
σ, σ′ ∈ Σ1(ς). As in the proof of Theorem 1, we apply Lemma 2 to get that

Dkl (Πσ|Πσ′) = nP · E
PX
Dkl

(
PσY |X |P

σ′

Y |X

)
+ nQ · E

QX
Dkl

(
QσY |X |Q

σ′

Y |X

)
= nP ·

∑
i∈I1

ε
γβQ
1

d
Dkl

(
PσY |xi |P

σ′

Y |xi

)
+ nQ ·

∑
i∈I1

ε
βQ
1

d
Dkl

(
QσY |xi |Q

σ′

Y |xi

)
≤ nP · c0

1

2
ε
(2−βP )ρβQ
1 + nQ · c0

1

2
ε
(2−βQ)
1

≤ c0
d

2
(c

(2−βP )ρβQ
1 + c

2−βQ
1 ) ≤ c0c1d.
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Similarly, for any ς fixed, let σ, σ′ ∈ Σ2(ς); expanding over I2, we have:

Dkl (Πσ|Πσ′) ≤ nP · c0
1

2
ε
(2−βP )ρ
2 + nQ · c0

1

2
ε2 · τ ≤ c0c1d.

It follows that, for c1 sufficiently small so that c0c1 ≤ 1/16, we can apply Proposition 4 twice, to
get that for all ς , there exist σI1 and σI2 , such that for some constant c, we have

EΠσ

(
EQσ (ĥ)

)
≥ c · ε1, where σ = [σI1 , ς], and EΠσ

(
EQσ (ĥ)

)
≥ c · ε2, where σ = [ς, σI2 ].

It follows that c ·max {ε1, ε2} is a lower-bound for either σ = [σI1 , ς] or σ = [ς, σI2 ].

C Upper Bounds Proofs

Proof of Proposition 2. To reduce redundancy, we refer to arguments presented in the proof of The-
orem 3, rather than repeating them here. As in the proof of Theorem 3, we let C serve as a generic
constant (possibly depending on ρ′, Cρ′ , βP , cβP , βQ, cβQ ) which may be different in different ap-
pearances. Define a set

G =

{
h ∈ H : R̂SQ(h)− R̂SQ(ĥSQ) ≤ c

√
P̂SQ(h 6= ĥSQ)AnQ + cAnQ

}
.

We can rephrase the definition of ĥ as saying ĥ = ĥSP when ĥSP ∈ G, and otherwise ĥ = ĥSQ .

We suppose the event from Lemma 1 holds for both SQ and SP ; by the union bound, this happens
with probability at least 1− δ. In particular, as in (8) from the proof of Theorem 3, we have

EP (ĥSP ) ≤ CA
1

2−βP
nP .

Together with the definition of ρ′, this implies

EQ(ĥSP , h
∗
P ) ≤ CA

1
(2−βP )ρ′
nP ,

which means

EQ(ĥSP ) ≤ EQ(h∗P ) + EQ(ĥSP , h
∗
P ) ≤ EQ(h∗P ) + CA

1
(2−βP )ρ′
nP . (11)

Now, if RQ(ĥSP ) ≤ RQ(ĥSQ), then (due to the event from Lemma 1) we have ĥSP ∈ G, so that
ĥ = ĥSP , and thus the rightmost expression in (11) bounds EQ(ĥ). On the other hand, ifRQ(ĥSP ) >

RQ(ĥSQ), then regardless of whether ĥ = ĥSP or ĥ = ĥSQ , we have EQ(ĥ) ≤ EQ(ĥSP ), so that
again the rightmost expression in (11) bounds EQ(ĥ). Thus, in either case,

EQ(ĥ) ≤ EQ(h∗P ) + CA
1

(2−βP )ρ′
nP .

Furthermore, as in the proof of Theorem 3, every h ∈ G satisfies EQ(h) ≤ CA
1

2−βQ
nQ . Since the

algorithm only picks ĥ = ĥSP if ĥSP ∈ G, and otherwise picks ĥ = ĥSQ , which is clearly in G, we
may note that we always have ĥ ∈ G. We therefore conclude that

EQ(ĥ) ≤ CA
1

2−βQ
nQ ,

which completes the proof.

D Proofs for Adaptive Sampling Costs

Proof of Theorem 4. First note that since
∑
n

1
2n2 < 1, by the union bound and Lemma 1, with

probability at least 1− δ, for every h, h′ ∈ H, every set SP in the algorithm has

RP (h)−RP (h′) ≤ R̂SP (h)− R̂SP (h′) + c
√

min{P (h 6= h′), P̂SP (h 6= h′)}A′|SP | + cA′|SP |
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and
P̂SP (h 6= h′) ≤ 2P (h 6= h′) + cA′|SP |

every set SQ in the algorithm has

RQ(h)−RQ(h′) ≤ R̂SQ(h)− R̂SQ(h′) + c
√

min{Q(h 6= h′), P̂SQ(h 6= h′)}A′|SQ| + cA′|SQ|

and
P̂SQ(h 6= h′) ≤ 2Q(h 6= h′) + cA′|SQ|,

and we also have for the set UQ that

1

2
Q(h 6= h′)− cA|UQ| ≤ P̂UQ(h 6= h′) ≤ 2Q(h 6= h′) + cA|UQ|,

which by our choice of the size of UQ implies

1

2
Q(h 6= h′)− ε

8
≤ P̂UQ(h 6= h′) ≤ 2Q(h 6= h′) +

ε

8
.

For the remainder of this proof, we suppose these inequalities hold.

In particular, these imply

RQ(ĥSQ)−RQ(h∗) ≤ c
√
P̂SQ(ĥSQ 6= h∗)A′|SQ| + cA′|SQ|.

Furthermore,

R̂SQ(h∗)− R̂SQ(ĥSQ) ≤ c
√
P̂SQ(h∗ 6= ĥSQ)A′|SQ| + cA′|SQ|,

so that h = h∗ is included in the supremum in the definition of δ̂(SQ, SQ). Together these imply

EQ(ĥSQ) ≤ RQ(ĥSQ)−RQ(h∗) ≤ c
√
δ̂(SQ, SQ)A|SQ| + cA|SQ|.

Thus, if the algorithm returns ĥSQ in Step 6, then EQ(ĥSQ) ≤ ε.
Also by the above inequalities, we have

R̂SP (h∗)− R̂SP (ĥSP ) ≤ c
√
P̂SP (h∗ 6= ĥSQ)A′|SP | + cA′|SP |,

so that h∗ is included in the supremum in the definition of δ̂(SP , UQ). Thus,

EQ(ĥSP ) ≤ Q(ĥSP 6= h∗) ≤ 2P̂UQ(ĥSP 6= h∗) +
ε

2
≤ 2δ̂(SP , UQ) +

ε

2
,

and hence if the algorithm returns ĥSP in Step 7 we have EQ(ĥSP ) ≤ ε as well. Furthermore, the
algorithm will definitely return at some point, since the bound in Step 6 approaches 0 as the sample
size grows. Altogether, this establishes that, on the above event, the ĥ returned by the algorithm
satisfies EQ(ĥ) ≤ ε, as claimed.

It remains to show that the cost satisfies the stated bound. For this, first note that since the costs
incurred by the algorithm grow as a function that is upper and lower bounded by a geometric series,
it suffices to argue that, for an appropriate choice of the constant c′, the algorithm would halt if ever
it reached a set SP of size at least n∗P or a set SQ of size at least n∗Q (which ever were to happen
first); the result would then follow by choosing the actual constant c′ in the theorem slightly larger
than this, to account for the algorithm slighly “overshooting” this target (by at most a numerical
constant factor).

First suppose it reaches SQ of size at least n∗Q. Now, as in the proof of Theorem 3, on the above
event, every h ∈ H included in the supremum in the definition of δ̂(SQ, SQ) has

EQ(h) ≤ C
(
A′|SQ|

) 1
2−βQ ,
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which further implies

Q(h 6= h∗) ≤ C
(
A′|SQ|

) βQ
2−βQ ,

so that (by the triangle inequality and the above inequalities)

P̂SQ(h 6= ĥSQ) ≤ C
(
A′|SQ|

) βQ
2−βQ .

Thus, in Step 6,

c
√
δ̂(SQ, SQ)A|SQ| + cA|SQ| ≤ C

(
A′|SQ|

) 1
2−βQ ,

which, by our choice of n∗Q is at most ε. Hence, in this case, the algorithm will return in Step 6 (or
else would have returned on some previous round).

On the other hand, suppose SP reaches a size at least n∗P . In this case, again by the same argu-
ment used in the proof of Theorem 3, every h ∈ H included in the supremum in the definition of
δ̂(SP , UQ) has

EP (h) ≤ C
(
A′|SP |

) 1
2−βP ,

which implies

P (h 6= h∗) ≤ C
(
A′|SP |

) βP
2−βP ,

and hence

Q(h 6= h∗) ≤ C
(
A′|SP |

) βP
(2−βP )γ

.

By the above inequalities and the triangle inequality (since ĥSP is clearly also included as an h in
that supremum), this implies

P̂UQ(h 6= ĥSP ) ≤ C
(
A′|SP |

) βP
(2−βP )γ

+
ε

8
.

Altogether we get that

δ̂(SP , UQ) ≤ C
(
A′|SP |

) βP
(2−βP )γ

+
ε

8
.

By our choice of n∗P (for an appropriate choice of constant factors), the right hand side is at most
ε/4. Therefore, in this case the algorithm will return in Step 7 (if it had not already returned in some
previous round). This completes the proof.

E Proofs for Reweighting Results

The following lemma is known (see [34, 35]), following from the general form of Bernstein’s in-
equality and standard VC arguments, in combination with the well-known fact that, since the VC
dimension of {(x, y) 7→ 1[h(x) 6= y] : h ∈ H} is dH, and pseudo-dimension of P is dp, it follows
that the pseudo-dimension of {(x, y) 7→ 1[h(x) 6= y]f(x) : h ∈ H, f ∈ P} is at most ∝ dH + dp.

Lemma 4. With probability at least 1− δ
3 , ∀f ∈ P, ∀h, h′ ∈ H,

RPf(h)−RPf(h′)≤R̂SP ,f (h)−R̂SP ,f (h′)+c

√
min{Pf2(h 6=h′),P̂SP ,f2(h 6=h′)}A′′nP +c‖f‖∞A′′nP

and 1
2Pf2(h 6= h′)−c‖f‖∞A′′nP ≤ P̂SP ,f2(h 6= h′) ≤ 2Pf2(h 6= h′)+c‖f‖∞A′′nP , for a universal

numerical constant c ∈ (0,∞).

Proof of Theorem 5. Let us suppose the event from Lemma 4 holds, as well as the event from
Lemma 1 for SQ, and also the part (5) from the event in Lemma 1 holds for UQ. The union bound
implies all of these hold simultaneously with probability at least 1 − δ. For simplicity, and without
loss of generality, we will suppose the constants c in these two lemmas are the same. Regarding the

19



sufficient size of |UQ|, for this result it suffices to have |UQ| ≥ n
βf

(2−βf )γf

P for all f ∈ P; for instance,
in the typical case where γf ≥ 1 for all f ∈ P, it would suffice to simply have |UQ| ≥ nP .

First note that, exactly as in the proof of Theorem 3, since the event in Lemma 4 implies h∗Pf̂ satisfies

the constraint in the optimization defining ĥ, and the RCS assumption implies EQ(h∗Pf̂
) = 0, and

hence by (NC) that Q(h∗Pf̂
6= h∗Q) = 0, we immediately get that

EQ(ĥ) ≤ CA
1

2−βQ
nQ .

Thus, it only remains to establish the other term in the minimum as a bound.

Similarly to the proofs above, we let Cf be a general f -dependent constant (with the same re-
strictions on dependences mentioned in the theorem statement), which may be different in each
appearance below. For each f ∈ P, denote by ĥf the h ∈ H that minimizes R̂SQ(h) among h ∈ H

subject to ÊSP ,f (h) ≤ c
√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP . Also note that ĥSP ,f certainly

satisfies the constraint in the set defining δ̂(SP , f, UQ), and that the event from Lemma 4 implies
h∗Pf also satisfies this same constraint. Therefore, the event for UQ from Lemma 1, and the triangle
inequality, imply

EQ(ĥf ) ≤ Q(ĥf 6= h∗Pf ) ≤ Q(ĥf 6= ĥSP ,f ) +Q(h∗Pf 6= ĥSP ,f ) ≤ 4δ̂(SP , f, UQ) + 4cA|UQ|.

Thus, f̂ is being chosen to minimize an upper bound on the excess Q-risk of the resulting classifier.

Next we relax this expression to match that in the theorem statement. Again using (5), we get that

δ̂(SP , f, UQ) ≤ cA|UQ|+

2 sup

{
Q(h 6= ĥSP ,f ) : h ∈ H, ÊSP ,f ≤ c

√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP

}
.

Again since h∗Pf and ĥSP ,f both satisfy the constraint in this set, the supremum on the right hand
side is at most

2 sup

{
Q(h 6= h∗Pf ) : h ∈ H, ÊSP ,f ≤ c

√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP

}
.

Then using the marginal transfer condition, this is at most

Cf sup

{
Pf2(h 6= h∗Pf )

1
γf : h ∈ H, ÊSP ,f ≤ c

√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP

}
,

and the Bernstein Class condition further bounds this as

Cf sup

{
E
βf
γf

Pf
: h ∈ H, ÊSP ,f ≤ c

√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP

}
.

Finally, by essentially the same argument as in the proof of Theorem 3 above, every h ∈ H with

ÊSP ,f ≤ c
√
P̂SP ,f2(h 6= ĥSP ,f )A′′nP + c‖f‖∞A′′nP satisies

EPf (h) ≤ Cf (A′′nP )
1

2−βf ,

so that the above supremum is at most Cf (A′′nP )
βf

(2−βf )γf for a (different) appropriate choice of Cf .
Altogether we have established that

δ̂(SP , f, UQ) ≤ cA|UQ| + Cf (A′′nP )
βf

(2−βf )γf .

By our condition on |UQ| specified above, this implies

δ̂(SP , f, UQ) ≤ Cf (A′′nP )
βf

(2−βf )γf .
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We therefore have that

EQ(ĥ) = EQ(ĥf̂ ) ≤ 4δ̂(SP , f̂ , UQ) + 4cA|UQ| = inf
f∈P

4δ̂(SP , f̂ , UQ) + 4cA|UQ|

≤ inf
f∈P

Cf (A′′nP )
βf

(2−βf )γf ,

where we have again used the condition on |UQ|. This completes the proof.
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