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Abstract

In high-dimensional classification or regression
problems, the expected gradient outerproduct
(EGOP) of the unknown regression function f ,
namely EX

(
∇f(X) · ∇f(X)>

)
, is known to

recover those directions v ∈ Rd most relevant
to predicting the output Y .

However, just as in gradient estimation, opti-
mal estimators of the EGOP can be expensive in
practice. We show that a simple rough estima-
tor, much cheaper in practice, suffices to obtain
significant improvements on real-world nonpara-
metric classification and regression tasks. Fur-
thermore, we prove that, despite its simplicity,
this rough estimator remains statistically consis-
tent under mild conditions.

1 INTRODUCTION

In high-dimensional nonparametric classification or regres-
sion problems, the output Y might not depend equally on
all input variables in X = (Xi)di=1. To be more precise,
let Y ≈ f(X) for some unknown smooth f , it is often the
case that f varies most along a few relevant coordinates,
and varies little along most coordinates. This observation
has given rise to many practical variable selection methods.

The usual assumption in variable selection is that f(X) =

g(PX), where P ∈ {0, 1}k×d projects X down to k <
d relevant coordinates. This assumption is generalized in
multi-index regression (see e.g. [7, 9, 2, 13]) by letting P ∈
Rk×d project X down to a k-dimensional subspace of Rd.
In other words, while f might vary significantly along all
coordinates of X , it actually only depends on an unknown
k-dimensional subspace.

Recovering this relevant subspace (sometimes called effec-
tive dimension reduction [7]) gives rise to the expected gra-
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dient outerproduct (EGOP):

EXG(X) , EX
(
∇f(X) · ∇f(X)>

)
.

The EGOP recovers the average variation of f in all direc-
tions: the directional derivative at x along v ∈ Rd is given
by f ′v(x) = ∇f(x)>v, in other words EX |f ′v(X)|2 =
EX

(
v>G(X)v

)
= v> (EXG(X)) v.

It follows that, if f does not vary along v, v must be
in the null-space of the EGOP matrix EXG(X), since
EX |f ′v(X)|2 = 0. In fact, it is not hard to show that,
under mild conditions (f continuously differentiable on a
compact space X ), the column space of EXG(X) is ex-
actly the relevant subspace defined by P ([12]).

Interestingly, the EGOP is useful beyond the above multi-
index motivation: even if there is no clearly relevant
dimension-reduction P , as is likely in practice, one can ex-
pect that f does not vary equally in all directions. Instead
of dimension-reduction, we might rather weight any direc-
tion v ∈ Rd according to its relevance as captured by the
average variation of f along v (encoded in the EGOP). The
weighting approach will be the main use of EGOP consid-
ered in this work.

The EGOP can be estimated in various sophisticated ways,
which can however be prohibitively expensive. For in-
stance an optimal way of estimating ∇f(x), and hence
the EGOP, is to estimate the slope of a linear approx-
imation to f locally at each x = Xi in an n-sample
{(Xi, Yi)}ni=1. Local linear fits can however be pro-
hibitively expensive since it involves multiplying and in-
verting large-dimensional matrices at all Xi. This can ren-
der the approach impractical although it is otherwise well
motivated.

The main message of this work is that the EGOP need not
be estimated optimally, but just well enough to use towards
improving classification or regression, our practical end-
goal.

The cheaper estimator considered here is as follows. Let fn
denote an initial estimate of f (we use a kernel estimate);



for the i-th coordinate of∇f(x), we use the rough estimate

∆t,ifn(x) = (fn(x+ tei)− fn(x− tei))/2t, t > 0.

Let Gn(x) be the outer-product of the resulting gradient
estimate ∇̂fn(x), the EGOP is estimated as E nGn(X), the
empirical average of Gn. The exact procedure is given in
Section 3.1.

We first show that this estimator is sound: despite being
a rough approximation, it remains a statistically consis-
tent estimate of the EGOP under very general distributional
conditions, milder than the usual conditions on proper gra-
dient estimation (see Section 3.2). The main consistency
result and key difficulties (having to do with interdepen-
dencies in the estimate) are discussed in Section 4.

More importantly, we show through extensive experiments
that preprocessing data with this cheaper EGOP estimate
can significantly improve the performance of nonparamet-
ric classification and regression procedures in real-world
applications. This described in Section 5.

In the next Section 2, we start with an overview of relevant
work, followed by Section 3 describing the estimator and
our theoretical setup.

2 SUMMARY OF RELEVANT WORK

The recent work of [6] considers estimating the coordinates
f ′i of ∇f in a similar fashion as in the present work. How-
ever [6] is only concerned with a variable selection setting
where each coordinate i of X is to be weighted by an es-
timate of EX |f ′i(X)|, which is their quantity of interest.
This work addresses the more general approach of estimat-
ing the EGOP, its consistency and applicability.

Multiple methods have been developed for multi-index re-
gression analysis, some using the so-called inverse regres-
sion approach (e.g. [7]), and many of them incorporating
the estimation of derivate functionals of the unknown f .
These approaches can already be found in early work such
as [9], and typically estimate∇f as the slope of local linear
approximations of f .

Recent works of [12, 8] draws a clearer link between the
various approaches to multi-index regression, and in partic-
ular relate the EGOP to the covariance-type matrices esti-
mated in inverse regression. Furthermore, [8] proposes an
alternative to estimating local linear slopes: their method
estimates∇f via a regularized least-squares objective over
an RKHS. This is however still expensive since the least-
square solution involves inverting an n× n feature matrix.
In contrast our less sophisticated approach will take time
in the order of n times the time to estimate fn (fn in prac-
tice could be a fast kernel regressor employing fast range-
search methods).

The main use of the EGOP in the context of multi-index

regression (as in the above cited work) is to recover the
relevant subspace given by P in the model f(x) = g(Px).
The data can then be projected to the estimated subspace
before projection.

While we do not argue for a particular way to use the EGOP
to preprocess data, our experiments focus on the following
use: let V DV > be a spectral decomposition of the esti-
mated EGOP, transform the input x as D1/2V >x. Thus we
do not rely on the multi-index model holding, but rather on
a more general model where P might be a full-dimensional
rotation (i.e. all directions are relevant), but g varies more
in some coordinate than in others. The diagonal element
Di,i recovers EX(g′i(X))2 where g′i denotes coordinate i
of∇g, while V > recovers P .

3 SETUP AND DEFINITIONS

We consider a regression or classification setting where the
input X belongs to a space X ⊂ Rd, of bounded diameter
1. The output Y is real. We are interested in the unknown
regression function f(x) , E[Y |X = x] (in the case of
classification with Y ∈ {0, 1}, this is just the probability of
1 given x).

For a vector x ∈ Rd, let ‖x‖ denote the Euclidean norm,
while for a matrix A, let ‖A‖2 denote the spectral norm,
i.e. the largest singular value σmax(A).

We use A ◦B to denote the entry-wise product of matrices
A and B.

3.1 ESTIMATING THE EGOP

We let µ denote the marginal of PX,Y on X and we let µn
denote its empirical counterpart on a random sample X =
{Xi}ni=1. Given a labeled sample (X,Y) = {(Xi, Yi)}n1
from PnX,Y , we estimate the EGOP as follows.

We consider a simple kernel estimator defined below, us-
ing a Kernel K satisfying the following admissibility con-
ditions:

Definition 1 (Admissible Kernel). K : R+ 7→ R+ is non-
increasing, K > 0 on [0, 1), and K(1) = 0.

Using such an admissible kernel K, and a bandwidth
h > 0, we consider the regression estimate fn,h(x) =∑
i ωi(x)Yi where

ωi(x) =
K(‖x−Xi‖ /h)∑
j K(‖x−Xj‖ /h)

if B(x, h) ∩X 6= ∅,

ωi(x) =
1

n
otherwise.

For any dimension i ∈ [d], and t > 0, we first define

∆t,ifn,h(x) ,
fn,h(x+ tei)− fn,h(x− tei)

2t
.



This is a rough estimate of the line-derivative along coordi-
nate i. However, for a robust estimate we also need to en-
sure that enough sample points contribute to the estimate.
To this end, given a confidence parameter 0 < δ < 1 (this
definiton for δ is assumed in the rest of this work), define
An,i(X) as the event that

min
s∈{t,−t}

µn(B(X + sei, h/2)) ≥ 2d ln 2n+ ln(4/δ)

n
.

The gradient estimate is then given by the vector

∇̂fn,h(x) =
(
∆t,ifn,h(x) · 1An,i(x)

)
i∈[d]

.

Note that, in practice we can just replace An,i(X) with the
event that the balls B(X + sei, h), s ∈ {−t, t}, contain
samples.

Finally, defineGn(x) as the outer-product of ∇̂fn,h(x), we
estimate EXG(X) as

E nGn(X) ,
1

n

n∑
i=1

∇̂fn,h(Xi) · ∇̂fn,h(Xi)
>.

3.2 DISTRIBUTIONAL QUANTITIES AND
ASSUMPTIONS

For the analysis, our assumptions are quite general. In
fact we could simply assume, as is common, that µ has
lower-bounded density on a compact support X , and that f
is continuously differentiable; all the assumptions below
will then hold. We list these more general detailed as-
sumptions to better understand the minimal distributional
requirements for consistency of our EGOP estimator.

A1 (Noise). Let η(X) , Y − f(X). We assume the
following general noise model: ∀δ > 0 there exists c >
0 such that supx∈X PY |X=x (|η(x)| > c) ≤ δ. We denote
by CY (δ) the infimum over all such c. For instance, sup-
pose η(X) has exponentially decreasing tail, then ∀δ > 0,
CY (δ) ≤ O(ln 1/δ).

Last the variance of (Y |X = x) is upper-bounded by a
constant σ2

Y uniformly over x ∈ X . The next assumption
is standard for nonparametric regression/classification.

A2 (Bounded Gradient). Define the τ -envelope of X as
X + B(0, τ) , {z ∈ B(x, τ), x ∈ X}. We assume there
exists τ such that f is continuously differentiable on the
τ -envelope X + B(0, τ). Furthermore, for all x ∈ X +
B(0, τ), we have ‖∇f(x)‖ ≤ R for some R > 0, and ∇f
is uniformly continuous on X + B(0, τ) (this is automati-
cally the case if the support X is compact).

The next assumption generalizes common smoothness as-
sumptions: it is typically required for gradient estimation
that the gradient itself be Hölder continuous (or that f be

second-order smooth). These usual assumptions imply the
more general assumptions below.

A3 (Modulus of continuity of ∇f ). Let εt,i =

supx∈X ,s∈[−t,t] |f ′i(x)−f ′i(x+sei)|. We assume εt,i
t→0−−−→

0 which is for instance the case when∇f is uniformly con-
tinuous on an envelope X +B(0, τ).

The next two assumptions capture some needed regularity
conditions on the marginal µ. To enable local approxima-
tions of ∇f(x) over X , the marginal µ should not concen-
trate on the boundary of X . This is captured in the follow-
ing assumption.

A4 (Boundary of X ). Define the (t, i)-boundary of X as
∂t,i(X ) = {x : {x+ tei, x− tei} 6⊆ X}. Define the vector
µ∂t = (µ(δt,i(X )))i∈[d]. We assume that µ∂t

t→0−−−→ 0. This
is for instance the case if µ has a continuous density on X .

Finally we assume that µ has mass everywhere, so that for
samples X in dense regions, X ± tei is also likely to be in
a dense region.

A5 (Full-dimensionality of µ). For all x ∈ X and h > 0,
we have µ(B(x, h)) ≥ Cµh

d. This is for instance the case
if µ has a lower-bounded density on X .

4 CONSISTENCY OF THE ESTIMATOR
EnGn(X) OF EXG(X)

We establish consistency by bounding ‖EnGn(X) −
EXG(X)‖2 for finite sample size n. The main tech-
nical difficulties in establishing the main result below
have to do with the fact that each gradient approximation
∆t,hfn,h(X) at a sample pointX depends on all other sam-
ples in X. These inter-dependencies are circumvented by
proceeding in steps which consider related quantities that
are less sample-dependent.

Theorem 1 (Main). Assume A1, A2 and A5. Let t < τ
and suppose h ≥ (log2(n/δ)/n)1/d. There exist C =
C(µ,K(·)) and N = N(µ) such that the following
holds with probability at least 1 − 2δ. Define A(n) =√
Cd · log(n/δ) · C2

Y (δ/2n) · σ2
Y / log2(n/δ). Suppose

n ≥ N , we have:

‖EnGn(X)]− EXG(X)‖2 ≤
6R2

√
n

(
√

ln d+

√
ln

1

δ

)
+

(
3R+ ‖εt‖+

√
d

(
hR+ CY (δ/n)

t

))
·

[
‖εt‖+

√
d

t

√
A(n)

nhd
+ 2h2R2 +R

√d ln d
δ

2n
+ ‖µ∂t‖





Proof. Start with the decomposition

‖EnGn(X)− EXG(X)‖2 ≤‖EnG(X)− EXG(X)‖2
+‖EnGn(X)− EnG(X)‖2.

(1)

The two terms of the r.h.s. are bounded separately in
Lemma 2 and 12.

Remark. Under the additional assumptions A3 and A4, the
theorem implies consistency for t n→∞−−−−→ 0, h n→∞−−−−→ 0,
h/t2

n→∞−−−−→ 0, and (n/ log n)hdt4
n→∞−−−−→ ∞, this is

satisfied for many settings, for example t ∝ h1/4, h ∝
(1/n)1/(2(d+1)).

The bound on the first term of (1) is a direct result of the
below concentration bound for random matrices:

Lemma 1. [10, 3]. Consider a random matrix A ∈
Rd×d with bounded spectral norm ‖A‖2 ≤ M . Let
A1, A2, ..., An be i.i.d. copies of A. With probability at
least 1− δ, we have∥∥∥∥∥ 1

n

n∑
i=1

Ai − EA

∥∥∥∥∥
2

≤ 6M√
n

(
√

ln d+

√
ln

1

δ

)
.

We apply the above concentration to the i.i.d. matri-
ces G(X), X ∈ X, using the fact that ‖G(X)‖2 =
‖∇f(X)‖2 ≤ R2.

Lemma 2. Assume A2. With probability at least 1− δ over
the i.i.d sample X , {Xi}ni=1, we have

‖EnG(X)− EXG(X)‖2 ≤
6R2

√
n

(
√

ln d+

√
ln

1

δ

)
.

The next Lemma provides an initial bound on the second
term of (1).

Lemma 3. Fix the sample (X,Y). We have:

‖EnGn(X)− EnG(X)‖2 ≤En‖∇f(X)− ∇̂fn,h(X)‖
·max
x∈X
‖∇f(x) + ∇̂fn,h(x)‖.

(2)

Proof. We have by a triangle inequality ‖EnGn(X) −
EnG(X)‖2 is bounded by:

En
∥∥∥(∇̂fn,h(X) · ∇̂fn,h(X)> −∇f(X) · ∇f(X)>

)∥∥∥
2
.

To bound the r.h.s above, we use the fact that, for vectors
a, b, we have

aa> − bb> =
1

2
(a− b)(b+ a)> +

1

2
(b+ a)(a− b)>,

implying that∥∥aa> − bb>∥∥
2
≤1

2

∥∥(a− b)(b+ a)>
∥∥

2

+
1

2

∥∥(b+ a)(a− b)>
∥∥

2

=
∥∥(b+ a)(a− b)>

∥∥
2

since the spectral norm is invariant under matrix transposi-
tion.

We therefore have that ‖EnGn(X)−EnG(X)‖2 is at most

En‖(∇f(X)− ∇̂fn,h(X)) · (∇f(X) + ∇̂fn,h(X))>‖2
= En‖∇f(X)− ∇̂fn,h(X)‖ · ‖∇f(X) + ∇̂fn,h(X)‖
≤ En‖∇f(X)− ∇̂fn,h(X)‖ ·max

x∈X
‖∇f(x) + ∇̂fn,h(x)‖.

Thus the matrix estimation problem is reduced to that of
an average gradient estimation. The two terms of (2) are
bounded in the following two subsections. These sections
thus contain the bulk of the analysis. All omitted proofs are
found in the supplementary.

4.1 BOUND ON En‖∇f(X)− ∇̂fn,h(X)‖

The analysis of this section relies on a series of approxi-
mations. In particular we relate the vector ∇̂fn,h(x) to the
vector

∇̂f(x) ,
(
∆t,if(x) · 1An,i(x)

)
i∈[d]

.

In other words we start with the decomposition:

En‖∇f(X)− ∇̂fn,h(X)‖ ≤En‖∇f(X)− ∇̂f(X)‖
+En‖∇̂f(X)− ∇̂fn,h(X)‖.

(3)

We bound each term separately in the following subsec-
tions.

4.1.1 Bounding En‖∇f(X)− ∇̂f(X)‖

We need to introduce vectors In(x) ,
(
1An,i(x)

)
i∈[d]

, and

In(x) ,
(
1Ān,d(x)

)
i∈[d]

. We then have:

En‖∇f(X)− ∇̂f(X)‖ ≤ En‖∇f(X) ◦ In(X)‖
+En‖∇f(X) ◦ In(X)− ∇̂f(X)‖. (4)

The following lemma bounds the first term of (4).

Lemma 4. Assume A2 and A5. Suppose h ≥
(log2(n/δ)/n)1/d. With probability at least 1− δ over the



sample of X:

En
∥∥∥∇f(X) ◦ In(X)

∥∥∥ ≤ R ·
√d ln d

δ

2n
+ ‖µ∂t‖

 .

The second term of (4) is bounded in the next lemma.

Lemma 5. Fix the sample X. We have
maxX∈X ‖∇f(X) ◦ In(X)− ∇̂f(X)‖ ≤ ‖εt‖.

The last two lemmas can then be combined using equation
(4) into the final bound of this subsection.

Lemma 6. Assume A2 and A5. Suppose h ≥
(log2(n/δ)/n)1/d. With probability at least 1− δ over the
sample X:

En‖∇f(X)− ∇̂f(X)‖ ≤R ·

√d ln d
δ

2n
+ ‖µ∂t‖


+ ‖εt‖ .

4.1.2 Bounding En‖∇̂f(X)− ∇̂fn,h(X)‖

We need to consider bias and variance functionals of esti-
mates fn,h(x). To this end we introduce the expected esti-
mate f̃n,h(x) = EY|Xfn,h(x) =

∑n
i=1 wi(x)f(Xi).

The following lemma bounds the bias of estimates fn,h.
The proof relies on standard ideas.

Lemma 7 (Bias of fn,h). Assume A2. Let t < τ . We have
for all X ∈ X, all i ∈ [d], and s ∈ {−t, t}:

|f̃n,h(X + sei)− f(X + sei)| · 1An,i(x) ≤ hR.

The following lemma bounds the variance of estimates fn,h
averaged over the sample X. To obtain a high probability
bound, we relie on results of Lemma 7 in [6]. However
in [6], the variance of the estimator if evaluated at a point,
therefore requiring local density assumptions. The present
lemma has no such local density requirements given that
we are interested in an average quantity over a collection
of points.

Lemma 8 (Average Variance). Assume A1. There exist
C = C(µ,K(·)), such that the following holds with proba-
bility at least 1− 2δ over the choice of the sample (X,Y).
Define A(n) =

√
Cd · ln(n/δ) · C2

Y (δ/2n) · σ2
Y , for all

i ∈ [d], and all s ∈ {−t, t}:

En|f̃n,h(X + sei)− fn,h(X + sei)|2 · 1An,i(X) ≤
A(n)

nhd

The main bound of this subsection is given in the next
lemma which combines the above bias and variance results.

Lemma 9. Assume A1 and A2. There exist C =
C(µ,K(·)), such that the following holds with probabil-
ity at least 1 − 2δ over the choice of (X,Y). Define
A(n) =

√
Cd · ln(n/δ) · C2

Y (δ/2n) · σ2
Y :

En‖∇̂f(X)− ∇̂fn,h(X)‖ ≤
√
d

t

√
A(n)

nhd
+ 2R2h2.

Proof. In what follows, we first apply Jensen’s inequality,
and the fact that (a+ b)2 ≤ 2a2 + 2b2. We have:

En‖∇̂f(X)− ∇̂fn,h(X)‖

= En

∑
i∈[d]

|∆t,ifn,h(X)−∆t,if(X)|2 · 1An,i(X)

1/2

≤

∑
i∈[d]

En|∆t,ifn,h(X)−∆t,if(X)|2 · 1An,i(X)

1/2

≤
√
d

2t

(
max

i∈[d],s∈{−t,t}
4En|fn,h(X̃)− f(X̃)|2 · 1An,i(X)

)1/2

(5)

where X̃ = X + sei. Next, use the fact that for any s ∈
{−t, t}, we have the following decomposition into variance
and bias terms

|fn,h(X + sei)− f(X + sei)|2

≤ 2|fn,h(X + sei)− f̃n,h(X + sei)|2

+ 2|f̃n,h(X + sei)− f(X + sei)|2.

Combine this into (5) to get a bound in terms of the aver-
age bias and variance of estimates fn,h(X + sei). Apply
Lemma 7 and 8 and conclude.

4.1.3 Main Result of this Section

The following theorem provides the final bound of this sec-
tion on En‖∇f(X)−∇̂fn,h(X)‖. It follows directly from
the decomposition of equation 3 and Lemmas 6 and 9.

Lemma 10. Assume A1, A2 and A5. Let t < τ and suppose
h ≥ (log2(n/δ)/n)1/d. With probability at least 1 − 2δ
over the choice of the sample (X,Y), we have

En‖∇f(X)− ∇̂fn,h(X)‖ ≤
√
d

t

√
A(n)

nhd
+ 2R2h2

+R

√d ln d
δ

2n
+ ‖µ∂t‖

+ ‖εt‖ .



4.2 BOUNDING maxX∈X ‖∇f(X) + ∇̂fn,h(X)‖

Lemma 11. Assume A1 and A2. With probability at least
1− δ, we have

‖∇f(X) + ∇̂fn,h(X)‖ ≤3R+ ‖εt‖

+
√
d

(
hR+ CY (δ/n)

t

)
.

Proof. Fix X ∈ X.We have

‖∇f(X) + ∇̂fn,h(X)‖ ≤2‖∇f(X)‖
+ ‖∇f(x)− ∇̂fn,h(X)‖
≤2R+ ‖∇f(X)− ∇̂f(x)‖

+ ‖∇̂f(X)− ∇̂fn,h(X)‖.
(6)

We can bound the second term of (6) above as follows.

‖∇f(X)− ∇̂f(X)‖ ≤‖∇f(X) ◦ In(X)− ∇̂f(X)‖

+ ‖∇f(X) ◦ In(X)‖
≤‖εt‖+R,

where we just applied Lemma 5.

For the third term of (6), ‖∇̂f(x)− ∇̂fn,h(x)‖ equals√∑
i∈[d]

(|∆t,ifn,h(x)−∆t,if(x)| · 1An,i(x))2.

As in the proof of Lemma 9, we decompose the above sum-
mand into bias and variance terms, that is:

|∆t,ifn,h(x)−∆t,if(x)|

≤ 1

t
max

s∈{−t,t}
|f̃n,h(x+ sei)− f(x+ sei)|

+
1

t
max

s∈{−t,t}
|f̃n,h(x+ sei)− fn,h(x+ sei)|.

By Lemma 7, |f̃n,h(x + sei)− f(x + sei)| ≤ Rh for any
s ∈ {−t, t}.

Next, by definition of CY (δ/n), with probaility at least 1−
δ, for each j ∈ [n], Yj has value within CY (δ) of f(Xj). It
follows that |f̃n,h(X + sei)− fn,h(X + sei)| ≤ CY (δ/n)
for s ∈ {−t, t}.

Thus, with probability at least 1− δ, we have

‖∇̂f(X)− ∇̂fn,h(X)‖ ≤
√
d

(
hR+ CY (δ/n)

t

)
.

Combine these bounds in (6) and conclude.

4.3 FINAL BOUND ON ‖EnGn(X)− EnG(X)‖2.

We can now combine the results of the last two subsections,
namely Lemma 10 and 11, into the next lemma, using the
bound of Lemma 3.
Lemma 12. Assume A1, A2 and A5. Let t < τ and sup-
pose h ≥ (log2(n/δ)/n)1/d. With probability at least
1− 2δ over the choice of the sample (X,Y), we have that
‖EnGn(X)− EnG(X)‖2 is at most(

3R+ ‖εt‖+
√
d

(
hR+ CY (δ/n)

t

))
·√d

t

√
A(n)

nhd
+ 2h2R2 +R

√d ln d
δ

2n
+ ‖µ∂t‖

+ ‖εt‖

 .
5 EXPERIMENTAL EVALUATION

In this section we describe experiments aimed at evaluat-
ing the utility of EGOP as a metric estimation technique
for regression or classification. We consider a family of
non-parametric methods that rely on the notion of distance
under a given Mahalanobis metric M , computed as (x −
x′)TM(x − x′). In this setup, we consider three choices
of M : (i) identity, i.e., Euclidean distance in the original
space; (ii) the estimated gradient weights (GW) matrix as
in [6], i.e., Euclidean distance weighted by the estimated
∆t,ifn, and (iii) the estimated EGOP matrix EnGn(X).
The latter corresponds to Euclidean distance in the origi-
nal space under linear transform given by [EnGn(X)]

1/2.
Note that a major distinction between the metrics based on
GW and EGOP is that the former only scales the Euclidean
distance, whereas the latter introduces a rotation.

Each choice of M can define the set of neighbors of an in-
put point x in two ways: (a) k nearest neighbors (kNN)
of x for a fixed k, or (b) neighbors with distance ≤ h for
a fixed h; we will refer to this as hNN. When the task is
regression, the output values of the neighbors are simply
averaged; for classification, the class label for x is decided
by majority vote among neighbors. Note that hNN corre-
sponds to kernel regression with the boxcar kernel.

Thus, we will consider six methods, based on combinations
of the choice of metric M and the definition of neighbhors:
kNN, kNN-GW, kNN-EGOP, hNN, hNN-GW, and hNN-
EGOP.

5.1 SYNTHETIC DATA

We first discuss experiments on synthetic data, the goal of
which is to examine the effect of varying the dependence of
f on input dimensions on the quality of metric recovered
with EGOP and alternative approaches. In these experi-
ments, the output is generated i.i.d. as: y =

∑
i sin(cixi),

where the sum is over the dimensions of x ∈ Rd, and the
profile of c determines the degree to which the value of



xi affects the output. We used d = 50-dimensional input
sampled over a bounded domain, and set c[1] = 50 and
c[i] = 0.6 ∗ c[i − 1] for i = 2 : 50. We consider two
cases: (R) the input features are transformed by a random
rotation in Rd, after y has been generated; and (I) the input
features are preserved. Under these conditions we evaluate
the out of sample regression accuracy with original metric,
GW and EGOP-based metrics, for different value of n; in
each experiment, the values of h and t are tuned by cross-
validation on the training set.

The first observation from results in Figures 1 is that adapt-
ing the metric by either GW or EGOP helps performance
across the board. As can be expected, performance of
EGOP, however, is not significantly affected by rotation.
On the other hand, GW is able to recover a good metric in
the no-rotation case, but much less so under rotation. Some
insight into the nature of estimated metrics is obtained from
the profile of the estimated feature relevance. For GW this
consists of values on the diagonal of M, and for EGOP of
the (square roots) of the eigenvalues of M. Plots in Figure 1
show these profiles (sorted in descending order). It is clear
that EGOP is largely invariant to rotation of the features,
and is consistently better at recovering the true relative rel-
evance of features corresponding to the c described above.

5.2 REGRESSION EXPERIMENTS

In this section we present results on several real world
datasets. The list of data sets with vital statistics (dimen-
sionality and number of training/test points) is found in Ta-
ble 1. For each data set, we report the results averaged over
ten random training/test splits.

As a measure of performance we compute for each exper-
iment the normalized mean squared error (nMSE): mean
squared error over test set, divided by target variance over
that set. This can be interpreted as fraction of variance in
the target unexplained by the regressor.

In each experiment the input was normalized by the mean
and standard deviation of the training set. For each method,
the values of h or k as wel as t (the bandwidth used to
estimate finite differences for GW and EGOP) were set by
two fold cross-validation on the training set.

5.3 CLASSIFICATION EXPERIMENTS

The setup for classification data sets is very similar for re-
gression, except that the task is binary classification, and
the labels of the neighbors selected by each prediction
method are aggregated by simple majority vote, rather than
averaging as in regression. The performance measure of
interest here is classification error. As in regression exper-
iments, we normalized the data, tuned all relevant param-
eters by cross validation on training data, and repeated the
entire experimental procedure ten times with random train-

ing/test splits.

In addition to the baselines listed above, in classification
experiments we considered another competitor: the pop-
ular feature relevance determination method called Reli-
efF [4, 5]. A highly engineered method that includes
heuristics honed over considerable time by practitioners, it
has the same general form of assigning weights to features
as do GW and EGOP.

5.4 RESULTS

The detailed results are reported in Tables 1 and 2. These
correspond to a single value of training set size. Plots in
Figures 2 and 3 show a few representative cases for regres-
sion and classification, respectively, of performance of dif-
ferent methods as a function of training set size; it is evident
from these that while the performance of all methods tends
to improve if additional training data are available, the gaps
methods persist across the range of training set sizes.

From the results in Tables 1 and 2, we can see that the -
EGOP variants dominate the -GW ones, and that both pro-
duce gains relative to using the original metric. This is true
both for kNN and for kernel regression (hNN) methods,
suggesting general utility of EGOP-based metric, not tied
to a particular non-parametric mechanism.

We also see that the metrics based on estimated EGOP are
competitive with ReliefF, despite the latter benefiting from
extensive engineering efforts over the years.

5.5 EXPERIMENTS WITH LOCAL LINEAR
REGRESSION

As mentioned earlier in the paper, our estimator for EGOP
is an alternative to an estimator based on computing the
slope of locally linear regression (LLR) [1] over the train-
ing data. We have compared these two estimation methods
on a number of data sets, and the results are plotted in Fig-
ure 4. In these experiments, the bandwidth of LLR was
tuned by a 2-fold cross-validation on the training data.

We observe that despite its simplicity, the accuracy of pre-
dictors using EGOP-based metric estimated by our ap-
proach is competitive with or even better than the accuracy
with EGOP estimated using LLR. As the sample size in-
creases, accuracy of LLR improves. However, the compu-
tational expense of LLR-based estimator also grows with
the size of data, and in our experiments it became dramati-
cally slower than our estimator of EGOP for the larger data
sizes. This confirms the intuition that our estimator is an
appealing alternative to LLR-based estimator, offering a
good tradeoff of speed and accuracy.
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Figure 1: Synthetic data, d=50, with and without rotation applied after generating y from x. In each case we show error of
hNN with different metrics (left) and the profile of derivatives recovered by GW and EGOP. The deterioration of the error
performance of the Gradient Weights approach after the feature space is subject to a random rotation is noteworthy. See
text for details.

Table 1: Regression results, with ten random runs per data set.
Dataset d train/test hNN hNN-GW hNN-EGOP
Ailerons 5 3000/2000 0.3637 ± 0.0099 0.3381 ± 0.0087 0.3264 ± 0.0095
Concrete 8 730/300 0.3625 ± 0.0564 0.2525 ± 0.0417 0.2518 ± 0.0418
Housing 13 306/200 0.3033 ± 0.0681 0.2628 ± 0.0652 0.2776 ± 0.0550
Wine 11 2500/2000 0.7107 ± 0.0157 0.7056 ± 0.0184 0.6867 ± 0.0145
Barrett1 21 3000/2000 0.0914 ± 0.0106 0.0740 ± 0.0209 0.0927 ± 0.0322
Barrett5 21 3000/2000 0.0906 ± 0.0044 0.0823 ± 0.0171 0.0996 ± 0.0403
Sarcos1 21 3000/2000 0.1433 ± 0.0087 0.0913 ± 0.0054 0.1064 ± 0.0101
Sarcos5 21 3000/2000 0.1101 ± 0.0033 0.0972 ± 0.0044 0.0970 ± 0.0064
ParkinsonM 19 3000/2000 0.4234 ± 0.0386 0.3606 ± 0.0524 0.3546 ± 0.0406
ParkinsonT 19 3000/2000 0.4965 ± 0.0606 0.3980 ± 0.0738 0.4168 ± 0.0941
TeleComm 48 3000/2000 0.1079 ± 0.0099 0.0858 ± 0.0089 0.0380 ± 0.0059

Dataset kNN kNN-GW kNN-EGOP
Ailerons 0.3364 ± 0.0087 0.3161 ± 0.0058 0.3154 ± 0.0100
Concrete 0.2884 ± 0.0311 0.2040 ± 0.0234 0.2204 ± 0.0292
Housing 0.2897 ± 0.0632 0.2389 ± 0.0604 0.2546 ± 0.0550
Wine 0.6633 ± 0.0119 0.6615 ± 0.0134 0.6574 ± 0.0171
Barrett1 0.1051 ± 0.0150 0.0843 ± 0.0229 0.1136 ± 0.0510
Barrett5 0.1095 ± 0.0096 0.0984 ± 0.0244 0.1120 ± 0.0315
Sarcos1 0.1222 ± 0.0074 0.0769 ± 0.0037 0.0890 ± 0.0072
Sarcos5 0.0870 ± 0.0051 0.0779 ± 0.0026 0.0752 ± 0.0051
ParkinsonM 0.3638 ± 0.0443 0.3181 ± 0.0477 0.3211 ± 0.0479
ParkinsonT 0.4055 ± 0.0413 0.3587 ± 0.0657 0.3528 ± 0.0742
TeleComm 0.0864 ± 0.0094 0.0688 ± 0.0074 0.0289 ± 0.0031

Table 2: Classification results with 3000 training/2000 testing.
Dataset d hNN hNN-GW hNN-EGOP hNN-ReliefF
Cover Type 10 0.2301 ± 0.0104 0.2176 ± 0.0105 0.2197 ± 0.0077 0.1806 ± 0.0165
Gamma 10 0.1784 ± 0.0093 0.1721 ± 0.0082 0.1658 ± 0.0076 0.1696 ± 0.0072
Page Blocks 10 0.0410 ± 0.0042 0.0387 ± 0.0085 0.0383 ± 0.0047 0.0395 ± 0.0053
Shuttle 9 0.0821 ± 0.0095 0.0297 ± 0.0327 0.0123 ± 0.0041 0.1435 ± 0.0458
Musk 166 0.0458 ± 0.0057 0.0477 ± 0.0069 0.0360 ± 0.0037 0.0434 ± 0.0061
IJCNN 22 0.0523 ± 0.0043 0.0452 ± 0.0045 0.0401 ± 0.0039 0.0510 ± 0.0067
RNA 8 0.1128 ± 0.0038 0.0710 ± 0.0048 0.0664 ± 0.0064 0.1343 ± 0.0406

Dataset kNN kNN-GW kNN-EGOP kNN-ReliefF
Cover Type 0.2279 ± 0.0091 0.2135 ± 0.0064 0.2161 ± 0.0061 0.1839 ± 0.0087
Gamma 0.1775 ± 0.0070 0.1680 ± 0.0075 0.1644 ± 0.0099 0.1623 ± 0.0063
Page Blocks 0.0349 ± 0.0042 0.0361 ± 0.0048 0.0329 ± 0.0033 0.0347 ± 0.0038
Shuttle 0.0037 ± 0.0025 0.0024 ± 0.0016 0.0021 ± 0.0011 0.0028 ± 0.0021
Musk 0.2279 ± 0.0091 0.2135 ± 0.0064 0.2161 ± 0.0061 0.1839 ± 0.0087
IJCNN 0.0540 ± 0.0061 0.0459 ± 0.0058 0.0413 ± 0.0051 0.0535 ± 0.0080
RNA 0.1042 ± 0.0063 0.0673 ± 0.0062 0.0627 ± 0.0057 0.0828 ± 0.0056
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Figure 2: Regression error (nMSE) as a function of training set size for Ailerons, TeleComm, Wine data sets.
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Figure 3: Classification error as a function of training set size for Musk, Gamma, IJCNN data sets.
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Figure 4: Comparison of EGOP estimated by our proposed method vs. locally linear regression, for Ailerons, Barrett1
and the synthetic (with rotation) data sets (this synthetic dataset is similar to the one used in section 5.1 but with d = 12
and c = [5, 3, 1, .5, .2, .1, .08, .06, .05, .04, .03, .02]). We also report the following running times (averaged over the ten
random runs) for the same using our method and LLR respectively for the highest sample size used in the above real world
datasets: Ailerons (128.13s for delta and 347.48s for LLR), Barrett (377.03s for delta and 1650.55s for LLR). Showing
that our rough estimator is significantly faster than Local Linear Regression while giving competitive performance. These
timings were recorded on an Intel i7 processor with CPU @ 2.40 GHz and 12 GB of RAM.
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A Omitted proofs

Proof of Lemma 4. By assumption, ‖∇f(x)‖ ≤ R, so we
have

En
∥∥∥∇f(X) ◦ In(X)

∥∥∥ ≤ R · En ∥∥∥In(X)
∥∥∥ . (7)

We bound
∥∥∥In(X)

∥∥∥ as follows. For any i ∈ [d], define
the events Ai(X) ≡ min{t,−t} µ(B(X + sei, h/2)) ≥
3 · 2d ln 2n+ln(4/δ)

n , and define the vector I(X) ,(
1Āi(X)

)
i∈[d]

.

By relative VC bounds [11], let αn = 2d ln 2n+ln(4/δ)
n , then

with probability at least 1− δ over the choice of X, for all
ballsB ∈ Rd we have µ(B) ≤ µn(B)+

√
µn(B)αn+αn.

Therefore, with probability at least 1− δ, ∀i ∈ [d] and x in
the sample X, Ān,i(x)⇒ Āi(x).

Moreover, since ‖I(X)‖ ≤
√
d, by Hoeffding’s inequality,

P(En‖I(X)‖ − EX‖I(X)‖ ≥ ε) ≤ e− 2nε2

d .

It follows that, with probability at least 1− δ,

En‖In(X)‖ ≤En‖I(X)‖

≤EX‖I(X)‖+

√
d ln 1

δ

2n

≤
√

EX‖I(X)‖2 +

√
d ln 1

δ

2n
, (8)

by Jensen’s inequality. We bound each of the d terms of
EX‖I(X)‖2 =

∑
i∈[d] EX1Āi(X) as follows.

Fix any i ∈ [d]. We have EX1Āi(X) ≤ EX [1Āi(X)|X ∈
X\∂t,i(X )] + µ(∂t,i(X )). Notice that EX [1Āi(X)|X ∈
X\∂t,i(X )] = 0 since, by assumption, µ(B(x +
sei, h/2)) ≥ Cµ(h/2)d ≥ 3α whenever h ≥
(log2(n/δ)/n)1/d. Hence, we have√

EX‖I(X)‖2 ≤
√∑
i∈[d]

µ2(∂t,i(X )).

Combine this last inequality with (7) and (8) and conclude.

Proof of Lemma 5. For a given coordinate i ∈ [d], let f ′i
denote the directional derivative e>i ∇f along i. Pick any
x ∈ X . Since f(x+tei)−f(x−tei) =

∫ t
−t f

′
i(x+sei)ds,

we have

2t(f ′i(x)− εt,i) ≤f(x+ tei)− f(x− tei)
≤2t(f ′i(x) + εt,i)



Thus | 1
2t (f(x + tei) − f(x − tei)) − f ′i(x)| ≤ εt,i. We

therefore have that ‖∇f(x) ◦ In(x)− ∇̂f(x)‖ equals√√√√ d∑
i=1

(
f ′i(x) · 1An,i(x) −∆t,if(x) · 1An,i(x)

)2
=

√√√√ d∑
i=1

(
1

2t
(f(x+ tei)− f(x− tei))− f ′i(x)

)2

≤ ‖εt‖ .

Proof of Lemma 7. Let x = X + sei. Using a Taylor ap-
proximation on f to bound |f(Xi)− f(x)|, we have

|f̃n,h(x)− f(x)| ≤
∑
i∈[d]

wi(x)|f(Xi)− f(x)|

≤
∑
i∈[d]

wi(x)‖Xi − x‖ · sup
X+B(0,τ)

‖∇f‖

≤ hR.

Proof of Lemma 8. Fix the sample X and consider only the
randomness in Y. The following result is implicit to the
proof of Lemma 7 of [6]: with probability at least 1 − 2δ,
for all X ∈ X, i ∈ [d], and s ∈ {−t, t}, we have (where,
for simplicity, we write x = X+sei) |f̃n,h(x)−fn,h(x)|2 ·
1An,i(X) is at most

Cd · log(n/δ)C2
Y (δ/2n) · σ2

Y

nµn((B(x, h/2))
.

Fix i ∈ [d] and s ∈ {−t, t}. Taking empirical expectation,
we get En|f̃n,h(x)− fn,h(x)|2 is at most√

Cd · ln(n/δ) · C2
Y (δ/2n) · σ2

Y

n

∑
j∈[n]

1

n(xj , h/2)

where xj = Xj + sei, and n(xi, h/2) = nµn(B(xi, h/2))
is the number of samples in B(xi, h/2). Let Z ⊂ Rd de-
note a minimal h/4-cover of {X1, ..., Xn}. Since X has
bounded diameter, such a cover has size at most CX (h/4)d

for some CX depending on the support X of µ.

Assume every xj is assigned to the closest z ∈ Z , where
ties can be broken any way, and write xj → z to denote
such an assignment. By definition of Z, xj is contained
in the ball B(z, h/4), and we therefore have B(z, h/4) ⊂
B(xj , h/2).

Thus∑
j∈[n]

1

n(xj , h/2)
=
∑
z∈Z

∑
xj→z

1

n(xj , h/2)

≤
∑
z∈Z

∑
xj→z

1

n(z, h/4)

≤
∑
z∈Z

n(z, h/4)

n(z, h/4)
= |Z| ≤ CX (h/4)−d.

Combining with the above analysis finishes the proof.
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