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Abstract

We consider the problem of nonparametric regression, consisting of learning an arbitrary
mapping f : X → Y from a data set of (x, y) pairs in which the y values are corrupted
by noise of mean zero. This statistical task is known to to be subject to a severe curse of
dimensionality: if X ⊂ RD, and if the only smoothness assumption on f is that it satisfies
a Lipschitz condition, it is known that any estimator based on n data points will have an
error rate (risk) of Ω

(
n−2/(2+D)

)
.

Here we present a tree-based regressor whose risk depends only on the doubling dimension
of X , not on D. This notion of dimension generalizes two cases of contemporary interest:
when X is a low-dimensional manifold, and when X is sparse. The tree is built using
random hyperplanes as splitting criteria, building upon recent work of Dasgupta and Freund
[DF08]; and we show that axis-parallel splits cannot achieve the same finite-sample rate of
convergence.

Keywords: nonparametric regression, notions of dimension, manifold, sparse data

1. Introduction

Given a set of data points (X,Y ), where Y = f(X) + noise (of mean zero), is it possible
to infer the unknown function f? This is the problem of regression. When f is a linear
function, there are simple solutions such as least-square approximations. But what if f is
fairly arbitrary – if all that is assumed about it is simply that it is smooth in some sense,
for instance that it satisfies a Lipschitz condition1? Several families of statistical estimators
have been shown to be consistent for this nonparametric problem, including kernel and tree-
based methods [GKKW02]. However, it is also known that this statistical task is subject to a
severe curse of dimensionality: if X is D-dimensional, then the error rate of any estimator fn
based on n samples is Ω

(
n−2/(2+D)

)
[Sto80, Sto82]. This means that to halve the error, the
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1That is to say, there exists an (unknown) constant λ such that ‖f(x)− f(x′)‖ ≤ λ‖x− x′‖ for all x, x′.
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number of samples needs to grow by a multiplicative factor of about 2D, which is prohibitive
even when D is in the low double digits.

This lower bound would appear to rule out nonparametric approaches for the increasingly
high-dimensional data sets that arise in modern applications. In image retrieval, or text
classification, or genomic analysis, for instance, the number of features, or dimensions, of
X can easily grow to tens of thousands, or more. However, in many of these cases, it is
believed that the dimensionality is large only in the superficial sense of there being many
coordinates, whereas the true degrees of freedom are much smaller in number. This might
occur, for example, because of strong dependencies between the features. It is therefore of
interest to identify the intrinsic dimension of these data sets as the true measure of their
complexity.

In this paper, we work with a fairly broad such notion, known as doubling dimension, and
we demonstrate a tree-based regressor whose convergence rate depends only on this quantity
rather than on the ambient dimension of the space in which X happens to lie.

1.1. Intrinsic dimension

In what sense might a set of data points in RD have an intrinsic dimensionality less than
D? To take an example, a speech signal is typically represented by a high-dimensional
time series: the signal is broken into overlapping windows, and a variety of filters is applied
within each window. Even richer representations can be obtained by using more filters, or
by concatenating vectors corresponding to consecutive windows. In this way, the dimen-
sionality D can be made arbitrarily high. However, the physical system can alternatively
be described by just a few (d� D) parameters specifying the configuration of the speaker’s
vocal apparatus. These are the true degrees of freedom of the data, and as they vary, the
high-dimensional representation traces out a d-dimensional submanifold of RD. A recent
trend in machine learning and statistics has been to design algorithms for data that lie on
a manifold. Usually the goal is to recover the manifold, or else to obtain a mapping into a
lower-dimensional space that preserves key quantities like interpoint distances.

A different type of low-dimensional structure arises in document classification. The most
common way of representing a document is as a vector with one coordinate per word, which
describes whether or not that word appears in the document (or the number of times the
word appears, or some function thereof). The dimensionality D is therefore the size of the
vocabulary, which is typically in the tens of thousands. However, any given document only
contains a few hundred (or so) words, and thus most of its vector is zero: it is sparse. In a
sense, the intrinsic dimension d of the data is the average number of non-zero entries, which
is much smaller than D.

There are many ways to formalize intrinsic dimension. We adopt a particular notion called
the doubling dimension, which is defined for any set of data points in RD (or in fact, in any
metric space). What makes it particularly attractive is that it generalizes both the notion
of manifold dimension and that of sparsity, while at the same time being amenable to the
kinds of analysis that arise in algorithm design.
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(a) Dyadic tree (b) k-d tree (c) RP tree

Figure 1: Spatial partitioning induced by various splitting rules. Two levels of the tree are shown for each.

1.2. Tree-based regression

A tree-based regression scheme takes as input a data set of n pairs (X,Y ), with X ∈ RD,
and then works (typically) in two phases.

1. It builds a tree T each of whose nodes corresponds to a cell (region) of RD.

The root node is all of RD; and each internal node’s cell is the disjoint union of the
cells of its two children.

2. It prunes the trees to some T ′, and fits a simple (e.g. constant, or at any rate contin-
uous) function to the data in each leaf of T ′.

The cells corresponding to the leaves of T ′ are a partition of RD, and the collection of
these local estimates, one per cell, form a piecewise continuous function fn.

An attractive property of this estimator is that fn(x) can be evaluated by simply navigating
down to the leaf containing x, which takes time proportional to the height of the tree, often
just O(logn). This computational efficiency, and an overall ease of use, have motivated
a variety of tree partition methods (Figure 1) such as CART, dyadic trees, and k-d trees
[GN05, SN06, DGL96], but none of these has been shown to adapt to intrinsic dimension in
its regression risk.

In this paper we build upon the recently-proposed random projection tree (RP tree), which
uses random hyperplanes to partition space (Figure 1(c)). Previous work has analyzed RP
trees for unsupervised learning, and established that they are adaptive to intrinsic dimension
when used in this way [DF08, GLZ08, VKD09]. Here we explore their use in regression.

A random projection tree is built using successive hyperplane splits that yield increasingly
fine partitions of RD into convex cells. At what point should the splitting process be stopped,
and the resulting cells used to fit local regressors (step 2 of the template above)? The right
granularity is one that properly balances the bias of the estimator (which favors smaller
cells) with the variance (which favors large cells). Traditional methods grow a tree fully (to
the point where the leaves contain a single data point, say) and then use penalized empirical
risk minimization over all possible partitions induced by the tree. Our approach can be more
efficient in practice. We grow the tree in blocks, rather than just one node or level at a
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time; this severely limits the number of candidate partitions. We then provide two options
for selecting the final partition:

(a) An automatic rule for when to stop growing the tree.

This is based entirely on observable quantities like the diameters of cells.

(b) Cross-validation over the candidate partitions.

This chooses the partition with lowest regression risk on a held-out data set.

The former method is computationally cheaper, while the latter gives a slightly better risk
bound. In both cases, we show that the excess risk of the RP tree regressor depends only
on the (unknown) doubling dimension of the input space, no matter what the distribution
of data.

We introduce novel tools for the analysis of bias. In the literature, the bias of a tree estimator
is typically analyzed in terms of the physical diameter of its cells (see, for instance, Chapter
20 of [DGL96]). However, this can worked out only when the cells have simple shapes like
hyper-rectangles. The cells of an RP tree are irregular convex polytopes, and their diameters
might not systematically decrease while moving down the tree. What we do instead is to
track the diameter of the data within each cell, and we develop new techniques to relate these
empirical data diameters to the estimator’s bias. Our method takes the focus away from
the cells’ physical diameters, opening the door to richer partitioning rules with nontrivial
cell structure.

1.3. Related work

There are many types of high-dimensional data, like the speech example above, that are likely
to lie near a low-dimensional manifold because of either physical or geometric constraints.
This realization has galvanized the field of manifold learning, which seeks to transform data
from RD to a lower-dimensional space while preserving important structure; key early results
are [RS00, BN03, TSL00]. These embedding methods can be used as a prelude to regression:
the regressor will then operate in the lower-dimensional space where it might perform better.
However, this approach does not easily yield theoretical guarantees for distribution-free
regression. Our interest is in circumventing the embedding step and automatically adapting
to low intrinsic dimension while operating in the original space RD.

Recent work of Bickel and Li [BL07] has shown that local kernel regressors are adaptive to
manifold structure. Specifically, they obtain a bandwidth setting under which the asymp-
totic risk at any given point in RD depends only on the manifold dimension and on the
behavior of the kernel in the vicinity of that point. The appropriate bandwidth can be
found either by estimating the manifold dimension or by cross-validating over possible val-
ues of this dimension [BL07, LW07].

Earlier work of Kulkarni and Posner [KP95], although not treating the topic of adaptivity
to intrinsic dimension, expresses the risk of nearest neighbor regression in terms of the box
dimension [Cla05] of the data, which is related to the doubling dimension.

A disadvantage of kernel and nearest neighbor regressors is that they are expensive to
evaluate on a new data point. Either kernel weights must be computed at many training
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points, resulting in an Ω(n) evaluation time, or the kn nearest neighbors of a query point
must be located, where kn is optimally chosen as a root of n [GKKW02]. This sort of time
complexity can be a burden in practice considering that nonparametric regression usually
depends upon large data sizes n for accuracy. Hence the appeal of an adaptive tree-based
regressor that can be evaluated in O(logn) time.

For classification problems, Scott and Nowak [SN06] have shown that dyadic decision trees
(Figure 1(a)) achieve convergence rates depending only on (something like) the box di-
mension, under smoothness conditions on the input distribution and the Bayes decision
boundary. We show later in the paper that the risk of a regressor based on dyadic partition-
ing does depend on D, but that this dependence appears in a leading constant (exponential
in D) rather than in the exponent of n.

The random regression graph of Caponnetto and Smale [CS07] is similar in spirit to an RP
tree since it also partitions space using random hyperplanes. However, its regression risk
has only been analyzed in terms of a quantity that is different from the kind of intrinsic
dimension we consider here: the norm of the regression function in the reproducing kernel
Hilbert space induced by a specific kernel. In particular, our notion of dimension involves
only the predictor variable X and not the response Y .

2. Detailed overview of results

Suppose each data point is of the form (X,Y ), where the predictor X lies in a space X ⊂ RD

and the response Y lies in a space Y ⊂ RD′
. The distance measure we will use in these

spaces is the `2 (Euclidean) norm. Our rates of convergence depend upon the diameter of
X and of Y; to quantify these we assume that the two spaces lie within balls of (unknown)
diameter ∆X and ∆Y , respectively.

2.1. Doubling dimension

We capture the intrinsic dimensionality of X by its doubling dimension [GKL03], which is
defined for any metric space, but is here specialized to Euclidean spaces.

Definition 1. The doubling dimension of X ⊂ RD is the smallest d such that for any ball
B ⊂ RD, the set B ∩ X can be covered by 2d balls of half the radius of B.

Consider, for instance, a line S in a high-dimensional space RD. For any ball B ⊂ RD, the
intersection of S and B is a line segment, and this segment can be covered by two balls
whose radii are half that of B. Therefore the doubling dimension of S is 1. Something
similar holds for any affine subspace of RD:

Lemma 2. [Cla05] There is a universal constant co < 3 such that for any d < D, a
d-dimensional affine subspace of RD has doubling dimension at most cod.

A set of n points can always be covered by n balls, and therefore has doubling dimension
at most log n (where the logarithm is taken base two). This is easily generalized:
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(a) Sparse data set. (b) 2-dimensional manifold.

Figure 2: Examples of data with low doubling dimension.

Lemma 3. Suppose sets S1, . . . , Sn each have doubling dimension ≤ d. Then S1 ∪ · · · ∪ Sn

has doubling dimension at most d+ log n.

Proof. Pick any ball B; by hypothesis B ∩ Si can be covered by 2d balls of half the radius.
Therefore B ∩ (S1 ∪ · · · ∪ Sn) can be covered by n · 2d such balls.

The previous two lemmas yield a bound on the doubling dimension of any sparse set.

Lemma 4. Suppose that S ⊂ RD is k-sparse: that is, each point in S has at most k nonzero
coordinates. Then S has doubling dimension at most cok + k logD.

Proof. S is contained within the union of
(
D
k

)
≤ Dk subspaces of dimension k: pick which

k coordinates, out of D, will be nonzero, and consider the subspace in which the remaining
coordinates are forced to zero. By Lemma 2, each of these subspaces has doubling dimension
at most cok. Lemma 3 then bounds the increase in dimension from taking the union of the
subspaces.

Thus the doubling dimension captures sparse data, a subject of significant contemporary
interest. What about manifold data? Here the situation is slightly more subtle. Although
it is intuitively sensible in many situations to suppose that data lie on (or close to) a low-
dimensional manifold, this is not of much help, algorithmically or statistically, unless the
manifold has bounded curvature; a space-filling 1-dimensional curve, for instance, is just
as bad as a full-dimensional data set. Recent work [NSW08] has identified a clean way to
capture curvature by a single value called the condition number of the manifold. When this
is bounded, neighborhoods of the manifolds are sufficiently flat that they can be shown to
have low doubling dimension.

Lemma 5. [DF08] If a d-dimensional Riemannian submanifold of RD has bounded con-
dition number κ < ∞, then its neighborhoods of radius < 1/κ have doubling dimension
O(d).
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2.2. Other notions of dimension

The problem of identifying the intrinsic dimension of a set has arisen in many different
scientific communities, and has produced a variety of definitions. Where does doubling
dimension lie in this panorama? Some insight can be obtained by situating it with respect
to three other successful notions of dimensionality, arranged here in decreasing order of
generality: covering dimension, manifold dimension, and affine dimension. It turns out that
the doubling dimension lies somewhere between the first two.

The most general is the covering dimension of a set X : the smallest d for which there is a
constant C > 0 such that for any ε > 0, X has an ε-cover of size C(1/ε)d. This notion lies at
the heart of much of empirical process theory. Although it permits many kinds of analysis
and is very general, for our purposes it falls short on one count: in nonparametric estimation,
we need small covering numbers not just for X , but also for individual neighborhoods of X .
Thus we would like this same covering condition (with the same constant C) to hold for
all Euclidean balls within X . This additional stipulation yields the doubling dimension as
defined above. The following two trivial lemmas summarize this connection.

Lemma 6. If X has diameter C and doubling dimension d, then for any ε > 0, it has an
ε-cover of size at most (2C/ε)d.

Proof. Applying the doubling condition recursively, X can be covered by one ball of radius
C, 2d balls of radius C/2, 22d balls of radius C/4, and so on.

Lemma 7. If X has doubling dimension d, then so does any subset of X .

At the bottom end of the spectrum is the affine dimension, which is simply the smallest
d such that X is contained in a d-dimensional affine subspace of RD. It is a tall order
to expect this to be smaller than D, although we may hope that X lies close to such a
subspace. A more general hope is that X lies on (or close to) a d-dimensional Riemannian
submanifold of RD. As we have seen, under suitable curvature conditions, this notion is less
general than doubling dimension (at least when limited to small enough neighborhoods).
In fact, the containment is strict: there is a substantial gap between manifolds of bounded
curvature and sets of low doubling dimension, on account of the smoothness properties of
the former. This divide is not just a technicality but has important algorithmic implications.
For instance, a variant of the Johnson-Lindenstrauss lemma [JL84] states that when a
d-dimensional manifold (of bounded curvature) is projected onto a random subspace of
dimension O(d/ε2), then all interpoint distances are preserved within 1 ± ε [Cla05]. For
sets of doubling dimension d, however, no such guarantee can be given: an arbitrarily high-
dimensional range space might be needed [IN07].

Recent work [DF08] introduced a notion called the local covariance dimension, meant specif-
ically for data analysis. The definition formalizes a type of “local flatness” and tries to
capture the intuition that a data set might have low intrinsic dimension only when limited
to neighborhoods that are small enough (Figure 4). We consider a similar extension of our
results in the appendix.
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2.3. Statistical setup

Our results are in the framework of statistical learning theory, which posits an (unknown)
underlying distribution over joint predictor-response space X ×Y . All data points are drawn
independently at random from this distribution. Let µ be the marginal distribution over X .
Recall we are assuming X ⊂ RD and Y ⊂ RD′

.

In nonparametric regression, the target function is

f(x)
.
= E [Y |X = x] .

The rate of convergence to f depends inevitably on how smooth it is, and there are a variety
of ways in which this can be quantified. Here we simply assume that f is λ-Lipschitz for
some unknown parameter λ:

∀x, x′ ∈ X , ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖ .

Suppose g : X → Y is some estimate of f . We define its l2 pointwise risk at x to be
R(g, x)

.
= EY |X=x ‖Y − g(x)‖2 and its integrated risk to be R(g)

.
= EX R(g,X). Standard

manipulations show that

R(g, x) = R(f, x) + ‖f(x)− g(x)‖2

R(g) = R(f) + EX ‖f(X)− g(X)‖2 .

Thus, the pointwise excess risk of g(x) over f(x) is simply ‖f(x)− g(x)‖2. In this paper we
are interested in the integrated excess risk

‖f − g‖2 .
= R(g)−R(f) = EX ‖f(X)− g(X)‖2 .

Suppose the training set consists of n points (X1, Y1), . . . , (Xn, Yn); denote these collectively
by (X,Y). This data set defines an empirical distribution which assigns mass 1/n to each
of these n support points. Let µn be the marginal empirical distribution over X .

2.4. Notions of diameter

Based on the training set, we will construct a partition A of X (or more precisely, of RD,
since X is unknown), and we will build a piecewise-constant estimator fn,A on the cells of
this partition. It is standard to decompose the error of the estimator into two parts.

bias ≡ how much does f vary within a single cell?

variance ≡ what is the error in estimating the mean value of f within a cell?

The bias can controlled by making sure cells are small. The variance can be controlled by
making sure cells are large enough that they contain many data points. A lot of the novelty
of our approach arises from the particular way in which we define the size of a cell.

Traditionally, the analysis of bias is based on the physical diameters of cells A ∈ A,

∆(A)
.
= max

x,x′∈A
‖x− x′‖
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(see, for instance, [GN05, SN06, DGL96]). In this work we instead relate bias to the data
diameters of the cells,

∆n(A)
.
= max

x,x′∈A∩X
‖x− x′‖

(or 0 if A ∩X is empty); recall that X is the set of data points.

Cell A ∈ A

∆(A) ∆n(A)

We’ll see, in fact, that in order to bound the bias of the estimator, we don’t need all cells
of a partition to have small data diameter, but merely for these diameters to be small in
an average sense. For a collection A of disjoint subsets of X , we use the following notion of
average data diameter:

∆n(A)
.
=

√∑
A∈A µn(A)∆2

n (A)∑
A∈A µn(A)

.

By focusing on data diameter, we are no longer constrained to the kinds of highly regular
cells (like hyper-rectangles) whose physical diameters are amenable to analysis. Instead, we
move towards richer partitioning schemes which may adapt better to intrinsic dimension.

2.5. Limitations of axis parallel splitting rules

Consider the data space depicted in Figure 2(a),

S =
D⋃
i=1

{tei : −1 ≤ t ≤ 1}

where ei is the unit vector in the ith coordinate direction. S is an extreme case of a sparse
data set: each point in it has at most one nonzero coordinate. It is not hard to see that
tree structures with axis-parallel splits (such as k-d trees and dyadic trees) would require at
least D levels to halve the diameter of S; that is, any tree with fewer levels would contain
leaf cells of diameter greater than one. Thus halving the diameter would require 2D data
points, which is prohibitive for large D.
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However, by using a richer class of splits, cell size can be decreased a lot quicker. By
Lemma 3, S has doubling dimension d ≤ 1 + logD, and it is shown in [DF08] that an RP
tree halves the diameter in just O(d log d) levels, no matter what the distribution over the
data space.

This example suggests that, depending on the distribution µ on X , regression based on
axis-parallel cells might require a data size (n) exponential in D in order to attain low risk,
whereas regression based on RP splits might do better, requiring resources that depend
just on the intrinsic dimension d. However, there is an interesting subtlety. We show in
Theorem 24 (appendix) that the excess risk of a dyadic tree regressor depends on D only in
the form of a leading constant 2D, and not in the exponent of n. That is, for n ≥ 2D, the risk
looks like O

(
n−2/(2+d)

)
. This is a curse of dimensionality that emerges in a finite-sample

analysis but not necessarily in an asymptotic analysis. All our results on RP tree regression
in this paper are finite-sample convergence rates which depend just on d even for small n.

2.6. Building the regression tree

A tree-based regressor works in two phases.

1. The data space is split into some partition A.

2. A regressor is learned as a piecewise continuous function over the cells of A.

In this work we’ll consider a piecewise constant regressor over A, defined as follows: for any
x ∈ X , let A(x) be the cell of A to which x belongs, and set

fn,A(x)
.
=

∑n
i=1 Yi · 1 (Xi ∈ A(x))

n · µn(A(x))

if µn(A(x)) > 0 (that is, if the cell A(x) contains at least one training point). If A(x)∩X is
empty, then a default setting fn,A(x) = yo is used instead, for some yo ∈ Y. We will often
refer to the final regressor as fn when the partition A used for the estimate is clear from
context.

The first phase of the regression algorithm implicitly builds a tree, each of whose nodes
corresponds to a region of RD. Each node has two children whose regions are a partition of
its own. We will also associate each such cell A with the data points A∩X that happen to
fall in it.

All the splitting is done by random hyperplanes, and thus each cell is a convex region of
RD. The precise details are deferred to section 5.1; all we need to know at present is that
there is a subroutine coreRPtree that operates as follows:

• It takes as input a region A ⊂ RD (or more precisely, the data points that fall in this
region).

• By recursive splits, it builds a tree whose root corresponds to A and whose leaves all
have data diameter at most half that of A.
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Procedure adaptiveRPtree(sample X ⊂ RD, confidence parameter δ)

A0 ← RD;
for i← 1 to ∞ do

foreach cell A ∈ Ai−1 do
(subtree rooted at A) ← coreRPtree (A, ∆n(A)/2, δ);

end

Ai ← partition of RD defined by the leaves of the current tree;
level

(
Ai
)
← maxA∈Ai level (A) ; // level = depth in tree

// There are two options for stopping and returning a partition.

Option 1: Cross-validation

if ∆n

(
Ai
)
= 0 or level

(
Ai
)
≥ 2 log n then

Define R′
n(·) as the empirical risk on a validation sample (X′,Y′) of size n;

A∗ ← argmin
A∈{A0,...,Ai}

R′
n(fn,A);

return fn
.
= fn,A∗ ;

end

Option 2: Automatic stopping

α(n)←
(
log2 n

)
log log(n/δ) + log(1/δ);

if ∆2
n

(
Ai
)
≤ ∆2

n

(
A0
)
· (α(n)/n) · 2level(Ai) then

A∗ ← argmin
A∈{Ai−1,Ai}

(
α(n)

n
· |A|+∆2

n (A)
)
;

return fn
.
= fn,A∗ ;

end

end

• If A has zero diameter (for instance, if it contains one point), then the procedure leaves
it untouched. Otherwise, a tree is returned whose leaves contain at most d|A ∩X|/2e
points.

The main tree building algorithm is Procedure adaptiveRPtree. It starts with a single node
A0 for all of RD, and then grows a tree in measured steps. At each stage, the current set
of leaves constitute a partition Ai of RD, whose cells have diameter ∆n(Ai) ≤ 2−i∆n(RD).
Then the subroutine coreRPtree is called on each leaf to yield an even finer partition Ai+1.

This process is stopped when each cell of the current partition is sufficiently small that
the bias is controlled, but also has sufficiently many data points in it that the variance is
controlled. How can the right stopping point be identified? We present two options.

1. Automatic stopping. We return a partition as soon as the data diameters of cells are
small enough relative to tree size.

2. Cross-validation. Here, we grow a large tree and then prune it using a separate
validation sample (X′,Y′), also of size n, drawn from the same underlying distribution.
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To prune, the intermediate partition Ai is chosen which minimizes the empirical risk

R′
n(g)

.
=

1

n

∑
i∈[n]

‖Y ′
i − g(X ′

i)‖
2
.

The automatic stopping option requires no validation sample and is computationally faster.
As we’ll see, its risk bound is only slightly worse than that of the cross-validation option.

Regardless of which stopping rule is employed, it follows from the properties of coreRPtree
that the final tree has height at most 2 log 2n and the number of partitions Ai generated is
at most log 2n.

2.7. Main Results

The excess risk of the tree-based regressor can be expressed in terms of the rate at which
diameters decrease from the root down. We have the following definition.

Definition 8. Given a sample X, we say that coreRPtree attains a diameter decrease
rate of k on X for k ≥ d, if every call to it in the second loop of the main procedure
adaptiveRPtree returns a tree of depth at most k.

Recent work [DF08] shows that by using RP trees, a diameter decrease rate of O(d log d)
can be achieved, where d is the doubling dimension of X . Building upon this result, we have
the following main theorem.

Theorem 9. Assume that X has doubling dimension d. There exist constants C, C ′ inde-
pendent of d and µ, such that the following hold. Pick any δ > 0 and define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ).

With probability at least 1− δ:

(a) coreRPtree attains a diameter decrease rate of k ≤ C ′d log d.

(b) If the automatic stopping option is used, the excess risk of the regressor is

‖fn − f‖2 ≤ C ·
(
∆2

Y + λ2
)
(∆2

X + 1) ·
(
α(n)

n

)2/(2+k)

.

(c) If the cross-validation option is used and n ≥ max
{
(λ∆X /∆Y)

2
, α(n)

}
, then the

excess risk of the regressor is

‖fn − f‖2 ≤ C · (λ∆X )
2k/(2+k)

(
∆2

Y · α(n)
n

)2/(2+k)

+ 2∆2
Y

√
log log n+ log 8/δ

2n
.
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The two stopping options yield similar bounds in terms of the dependence on n and d;
however the cross-validation bound has a better dependence on λ, ∆X , and ∆Y .

In section 3, we lay out the key tools for the rest of the analysis, culminating in a risk bound
in terms of data diameter. In section 4, we investigate the two stopping rules, and bound
the excess risk of the final regressor in terms of the observed diameter decrease rate. And
in section 5, we show that these decrease rates depend only on the intrinsic dimensionality
of the data.

The algorithm takes an input a permissible failure probability δ. There are three sources
of failure, and we apportion each of them a δ/3 probability: failure to build a tree with
the desired height and diameter decrease rate; an (X,Y) sampling failure in which either
the empirical masses of cells do not accurately represent their true masses or the y-values
within cells have non-representative averages; and an (X′,Y′) sampling failure in the cross-
validation step.

Parts (a), (b), and (c) of Theorem 9 result from Corollary 23, Lemma 20, and Lemma 18
respectively.

3. Risk bound for fn,A

In this section we develop the necessary tools to bound the excess risk of fn,A, where A is an
RP tree partition, that is, A is defined by the leaves of the tree returned by adaptiveRPtree.

3.1. Generic decomposition of pointwise excess risk

We start the analysis with a standard decomposition of the excess risk into bias and variance
terms. Let A be any partition of X , on which the regressor fn,A is defined. Recall that we
denote by A(x) the cell of A containing x.

A useful intermediary between fn,A and the target f is the following function on X :

f̃n,A(x)
.
=

∑n
i=1 f(Xi)1 (Xi ∈ A(x))

nµn(A(x))

if µn(A(x)) 6= 0; otherwise f̃n,A(x) = yo ∈ Y. Notice that both fn,A and f̃n,A are constant
within any cell A ∈ A; we will therefore overload notation and occasionally write these
quantities as fn,A(A) and f̃n,A(A), respectively.

The pointwise excess risk at x can be bounded as

‖fn,A(x)− f(x)‖2 ≤
(∥∥∥fn,A(x)− f̃n,A(x)

∥∥∥+ ∥∥∥f̃n,A(x)− f(x)
∥∥∥)2

≤ 2
∥∥∥fn,A(A(x))− f̃n,A(A(x))

∥∥∥2︸ ︷︷ ︸
variance

+2
∥∥∥f̃n,A(x)− f(x)

∥∥∥2︸ ︷︷ ︸
bias2

. (1)

In the next two lemmas, we separately bound the variance and the bias.
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Lemma 10 (Variance). Fix any partition A and any set of n points X = {X1, . . . , Xn} ⊂ X .
Suppose the Yi are now drawn according to their conditional distribution given Xi. Pick any
δ > 0. Then with probability at least 1− δ, for every cell A ∈ A with µn(A) > 0:∥∥∥fn,A(A)− f̃n,A(A)

∥∥∥2 ≤ ∆2
Y ·

2 + ln(|A| /δ)
nµn(A)

.

Proof. For any cell A ∈ A, let I(A) = {1 ≤ i ≤ n : Xi ∈ A} be the indices of points falling
in that cell. Then µn(A) = |I(A)|/n, and∥∥∥fn(A)− f̃n(A)

∥∥∥ =

∥∥∥∥ 1

|I(A)|
∑

i∈I(A)

(Yi − f(Xi))

∥∥∥∥.
Changing any single Yi value alters this expression by at most ∆Y/|I(A)|. We can therefore
use McDiarmid’s inequality to assert that with probability at least 1− δ/|A| over the choice
of the Yi’s, ∥∥∥fn(A)− f̃n(A)

∥∥∥ ≤ E
∥∥∥fn(A)− f̃n(A)

∥∥∥+∆Y ·

√
ln(|A| /δ)
2|I(A)|

.

The expectation can be bounded as follows:

E
∥∥∥fn(A)− f̃n(A)

∥∥∥ ≤
(
E
∥∥∥fn(A)− f̃n(A)

∥∥∥2)1/2

=
1

|I(A)|

E
∥∥∥∥ ∑

i∈I(A)

(Yi − f(Xi))

∥∥∥∥2
1/2

=
1

|I(A)|

 ∑
i∈I(A)

E ‖Yi − f(Xi)‖2
1/2

≤ 1

|I(A)|
(
|I(A)|∆2

Y
)1/2

=
∆Y√
|I(A)|

.

The first line uses Jensen’s inequality. The third uses the fact that the vectors vi = Yi−f(Xi)

are independent random vectors with zero expectation, so that E ‖
∑

i vi‖
2
=
∑

i E ‖vi‖
2
.

We conclude with a union bound over all nonempty A ∈ A.

Lemma 11 (Bias). Fix any partition A and any set of n points X = {X1, . . . , Xn} ⊂ X .
For any x ∈ X with µn(A(x)) > 0,∥∥∥f̃n,A(x)− f(x)

∥∥∥ ≤ λ ·∆(A(x)) .
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Proof. Let A = A(x), so that∥∥∥f̃n,A(x)− f(x)
∥∥∥ =

∥∥∥∥∑n
i=1(f(Xi)− f(x))1 (Xi ∈ A)

nµn(A)

∥∥∥∥
≤

∑n
i=1 ‖f(Xi)− f(x)‖1 (Xi ∈ A)

nµn(A)

≤
∑n

i=1 λ ‖Xi − x‖1 (Xi ∈ A)

nµn(A)
≤ λ ·∆(A) ,

where the second inequality uses the Lipschitz condition on f(·).

What we have at this point is a fairly standard bias-variance decomposition of the risk. It
contains two quantities that are nontrivial to bound in our context: the empirical weights
of cells, µn(A); and, more importantly, their physical diameters ∆(A).

To relate the empirical masses µn(A) to their true values µ(A), we could use a uniform
large deviation bound. A naive such bound would involve terms in D, since each cell is an
intersection of hyperplanes. To avoid such a dependency, we make heavy use of the fact that
the directions of the hyperplanes are chosen at random, independent of the data points, and
that the data are consulted only to determine the displacements of the boundaries along
these directions.

The bigger challenge is to handle cell diameters. The bound on bias involves the physical
diameters ∆(A) of cells, and these might not decrease gracefully down the tree. So we create
an alternate partition A′ with the following properties:

• Each cell of A is the union of two cells of A′.

• Every cell in A′ is either void of data points (and thus likely has low probability under
µ and can be disregarded) or else has a physical diameter that is roughly the same as
its data diameter.

This construction lets us upper-bound the bias in terms of the data diameters ∆n(A) of
cells, which are easier to quantify and to control.

3.2. An alternate partition

Although the algorithm works with a partition A built from recursive hyperplane splits,
and the regressor is defined using this partition, for purposes of the analysis only we will
also consider an alternate, related partition A′. This A′ will be designed so that fn,A′ is
equivalent to fn,A on most of X , but has the advantage that its cells are well-behaved as
explained at the end of the previous section.

A′ is obtained by intersecting the cells of A with balls or complements-of-balls from a fixed,
pre-defined collection B (Figure 3). Specifically, let Bi be a cover of X by balls of radius
∆X /2i. Take a variety of scales: i = 0, 1, 2, . . . , I = blog n2/(2+d)c. Then B is the union of
all these balls of different sizes, blown up by a factor of 4:

B =

I⋃
i=0

{4B : B ∈ Bi}.
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(a) Cover B (b) Partition A (c) Partition A′

Figure 3: We start with a cover B of X with balls of different size; then, we see the data and obtain a
partition A; and finally we substitute A with an alternate partition A′, by intersecting the cells of A with
balls of B.

The partition A′ is created by replacing each cell A ∈ A by two cells A′
1, A

′
2 as follows:

• If A ∩X = ∅, then set A′
1 = A and A′

2 = ∅.

• Otherwise, set i = min{I, dlog(∆X /∆n(A))e}; we’ll find a ball B ∈ Bi such that A∩X
is contained in 4B. To this end, pick any x ∈ A ∩X, and pick the ball B ∈ Bi whose
center z is closest to x. Then A ∩X ⊂ 4B because ∀x′ ∈ A ∩X,

‖z − x′‖ ≤ ‖z − x‖+ ‖x− x′‖
≤ 2−i∆X +∆n (A)

≤ 2−i∆X + 2−(i−1)∆X ≤ 4 · 2−i∆X

(we’ve used the fact that i − 1 ≤ log(∆X /∆n(A)), whereby ∆n(A) ≤ 2−(i−1)∆X ).
Define A′

1 = A ∩ 4B and A′
2 = A \A′

1.

A′ is the collection of all such A′
1, A

′
2, over A ∈ A. What makes this refined partition

valuable is that the average physical diameter of its cells can be upper-bounded by the
empirical data diameters of cells in A.

Lemma 12 (Diameters of A′). Let A be a partition of X and define A′ as above. Then∑
A′∈A′

µn(A
′)∆2(A′) ≤ 64∆2

n (A) + 256n−4/(2+d)∆2
X .

Proof. Pick any cell A ∈ A for which A ∩X 6= ∅. This cell is broken into two pieces in A′:
a set A′

1 with µn(A
′
1) = µn(A) and a set A′

2 with µn(A
′
2) = 0. Specifically, A′

1 = A ∩ 4B,
where B is a ball of radius 2−i∆X , for i = min{I, dlog(∆X /∆n(A))e}. It follows that A′

1

has diameter at most 8 · 2−i∆X ≤ 8max{2−I∆X ,∆n(A)}.
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This bound makes it natural to divide the cells of A into two groups: A+ = {A ∈ A :
∆n (A) > 2−I∆X }; and A \ A+. Then∑

A′∈A′

µn(A
′)∆2(A′) =

∑
A∈A+

µn(A)∆2(A′
1) +

∑
A∈A\A+

µn(A)∆
2(A′

1)

≤
∑

A∈A+

64µn(A)∆
2
n (A) +

∑
A∈A\A+

64µn(A)2
−2I∆2

X

≤ 64∆2
n (A) + 256n−4/(2+d)∆2

X .

3.3. Bounding the empirical masses of cells

In order to bound the integrated excess risk, we will need the empirical masses of cells,
µn(A

′), to be close to their true masses, µ(A′). In particular, this will allow us to disregard
cells that are empty of data since they will have little effect on the integrated excess risk.

The uniform convergence bounds we use are based on the following standard notion of
shatter coefficient, which describes the complexity of a (potentially infinite) collection of
subsets of RD. In our case, each such subset is a cell.

Definition 13. Let n be some positive integer, and let C be a class of subsets of RD. The
n-shatter coefficient of C, denoted S (C, n), is the largest possible size of a collection of sets
obtained by intersecting sets of C with a sample X of size n. That is,

S (C, n) .
= max

|X|=n
|{C ∩X : C ∈ C}| .

For example, suppose D = 1 and C is the set of all half lines, that is, intervals of the form
(−∞, t] or [t,+∞). For any set of n distinct points X = {x1, . . . , xn} where (without loss
of generality) x1 < · · · < xn, the intersection of these points with half lines consists of all
subsets of the form {x1, . . . , xi} or {xi, . . . , xn}. Therefore S (C, n) = 2n.

The following theorem of Vapnik and Chervonenkis gives uniform rates of convergence for
empirical masses over a class C, using the 2n-shattering coefficient of C.

Lemma 14 (Relative VC bounds [VC71]). Let C be a class of subsets of RD. Pick any
δ > 0. Suppose a sample of size n is drawn independently at random from a distribution µ
over RD, with resulting empirical distribution µn. Then with probability at least 1− δ over
the choice of sample, all C ∈ C satisfy

µ(C) ≤ µn(C) + 2

√
µn(C)

lnS (C, 2n) + ln(4/δ)

n
+ 4

lnS (C, 2n) + ln(4/δ)

n
.

where S (C, 2n) is the 2n-shatter coefficient of C.

Recall that in our algorithm, we use the data sample X to generate a tree that contains
various candidate partitions Ai, and that eventually one of these partitions is chosen, and a
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regressor is defined on it. We would like to argue that for any A = Ai, the empirical mass
of each cell of A′ is close to its true mass. How should the class C in lemma 14 be defined?

Since the tree has height at most 2 log 2n (remark 21 of section 5.1) and the splits are by
hyperplanes, one option is to let C consist of all convex sets that are intersections of at most
2 log 2n halfspaces. This works, but yields a bound that depends on the ambient dimension
D. Instead, we exploit the fact that the directions of the hyperplanes used in the tree are
chosen at random independently of the sample X, whereas their displacements depend on
the sample X. We can therefore condition on these directions being fixed before the choice
of X. This allows us to define a less complex class C containing the cells, and therefore
yields a tighter bound independent of D.

Lemma 15 (Masses of cells of A′). There is a constant C0 such that the following holds.
Pick any δ > 0. With probability at least 1− δ over the choice of X and the randomness in
the algorithm, we have that for any partition A = Ai generated during the construction of
the tree, every cell A′ ∈ A′ satisfies

µ(A′) ≤ µn(A
′) + 2

√
µn(A′)

V + ln(4/δ)

n
+ 4
V + ln(4/δ)

n
, where (2)

V ≤ C0 log n(logn+ loglog(1/δ)).

Proof. Suppose without loss of generality that during the construction of the tree, all random
directions (for hyperplane splits) are picked from a fixed collection P without replacement.
How big should P be so that there are enough directions to choose from? The implementa-
tion of coreRPtree ensures that |P| ≤ 8n2 log (3n/δ) is sufficient (see remark 21 of section
5.1). Now fix such a collection P and let HP be the class of half spaces of RD defined by
hyperplanes normal to the directions in P. For any tree partition A, each cell of A is the
intersection of at most 2 log 2n elements of HP since the tree is guaranteed to have height
at most 2 log 2n (remark 21). Each cell of A′ is the intersection of a ball or the complement
of a ball in B with a cell of A.
All such cells therefore belong to the following class of subsets of RD:

C =

{
h : h = h0 ∩

(
2 log 2n⋂
l=1

hl

)
, h0 or hC

0 is in B, hl ∈ HP

}
.

We now proceed to bounding S (C, 2n), the 2n-shatter coefficient of C.
Given 2n sample points and a direction v ∈ P, there are at most 4n possible intersections
of the sample with halfspaces normal to v. Therefore

S (C, 2n) ≤ 2 |B| (4n |P|+ 1)
2 log 2n

≤ 2 |B|
(
32n3 log (3n/δ) + 1

)2 log 2n
.

Since X has doubling dimension d, we have |B| ≤
∑I

i=0 2
di ≤ 2n2d/(2+d). The proof is

completed by letting V = logS (C, 2n) for P fixed, and then appealing to Lemma 14.
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3.4. A bound on the integrated excess risk in terms of data diameters

Lemma 16 (Integrated excess risk). There exists a constant C1 independent of d and µ such
that the following holds. Define α(n)

.
=
(
log2 n

)
loglog(1/δ) + log(1/δ). With probability at

least 1−δ/3 over the choice of (X,Y) and the randomness in the algorithm, for all partitions
A = Ai obtained during the execution of adaptiveRPtree,

‖fn,A − f‖2 ≤ C1

(
∆2

Y |A|
α(n)

n
+ λ2

(
∆2

n (A) + n−4/(2+d)∆2
X

))
.

Proof. Define δ′ = δ/(6 log 2n). By Lemma 15 we have that with probability at least
1 − δ′ over the randomness in the algorithm and the choice of X, equation (2) — with δ′

substituted for δ — holds for all cells A′ ∈ A′, where A = Ai is any partition obtained
during the construction of the tree and V ≤ C0 log n(logn + loglog(1/δ′)). Let’s assume
that this condition holds, and fix X. Henceforth we will randomize only over the choice of
Y.

Pick any partition A = Ai obtained by adaptiveRPtree. The integrated excess risk can be
decomposed over A′ as follows:

‖fn,A − f‖2 =
∑

A′∈A′

∫
A′
‖fn,A(x)− f(x)‖2 µ(dx).

We next divide the cells of A′ into two groups: those of significant mass, whose bias and
variance must be controlled, and those of negligible mass, whose contribution to the overall
risk can be ignored even if it is the worst possible. Specifically, set

A′
>

.
=

{
A′ ∈ A′, µn(A

′) ≥ V + ln(4/δ′)

n

}
, and A′

<
.
= A′ \ A′

>.

From equation (2), every A′ ∈ A′
> satisfies µ(A′) ≤ 7µn(A

′) while every A′ ∈ A′
< has

µ(A′) ≤ 7(V + ln(4/δ′))/n.

Given this upper bound on the masses of cells in A′
<, their integrated risk is

∑
A′∈A′

<

∫
A′
‖fn,A(x)− f(x)‖2 µ(dx) ≤

∑
A′∈A′

<

∆2
Y ·µ(A′) ≤ 7∆2

Y · |A′| · V + ln(4/δ′)

n
. (3)

Now for the integration over A′
>. Each cell A′ ∈ A′

> holds exactly the same data points as
its counterpart A ∈ A; thus fn,A and fn,A′ coincide on A′. We first apply (1), and then use
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Lemmas 10 and 11 to assert that with probability at least 1− δ′ over the choice of Y,∑
A′∈A′

>

∫
A′
‖fn,A(x)− f(x)‖2 µ(dx)

=
∑

A′∈A′
>

∫
A′
‖fn,A′(x)− f(x)‖2 µ(dx)

≤
∑

A′∈A′
>

2λ2∆2 (A′) · µ(A′) +
∑

A′∈A′
>

2∆2
Y ·

2 + ln(|A′| /δ′)
nµn(A′)

· µ(A′)

≤
∑

A′∈A′
>

2λ2∆2 (A′) · 7µn(A
′) +

∑
A′∈A′

>

2∆2
Y ·

2 + ln(|A′| /δ′)
nµn(A′)

· 7µn(A
′)

≤ 14λ2
∑

A′∈A′
>

µn(A
′)∆2 (A′) + 14∆2

Y |A′| · 2 + ln(|A′| /δ′)
n

. (4)

We can simplify ln |A′| to O(logn) since the tree has at most n leaves. By combining the
bounds in (3) and (4), and absorbing various constants into a single Co, we get

‖fn,A − f‖2 ≤ Co

(
∆2

Y |A|
log2 n+ log n loglog 1/δ′ + log(1/δ′)

n
+ λ2

∑
A′∈A′

µn(A
′)∆2 (A′)

)
.

To finish up, we call on lemma 12 to bound the summation on the right, and then take a
union bound over the ≤ log 2n possible partitions A = Ai.

4. Risk of final regressor fn
.
= fn,A∗

Recall that the adaptiveRPtree procedure starts with a partition A0 that has a single
cell containing all the data, and then grows the tree to get increasingly finer partitions
A1,A2, . . ., where the data diameter of each Ai is half that of Ai−1. Recall also that the
diameter decrease rate, denoted k, is defined to be the maximum increase in tree depth
during each of these individual growth spurts.

The tree is not grown indefinitely. To see this, note that the implementation of coreRPtree
ensures that all cells at some level down the hierarchy would eventually have a single data
point in them (see remark 21). In other words, ∆n

(
Ai
)
= 0 eventually, at which point

either of the two stopping criteria would hold.

Once the tree is constructed, a partition A∗ = Ai is chosen and a regressor is built on it.
We now bound the excess risk of fn

.
= fn,A∗ in terms of the diameter decrease rate achieved

during adaptiveRPtree.

To get some insight into the form of the final risk bound, pretend for a moment that
∆X , ∆Y , and λ are all 1. Consider a partition A induced by the tree. If ∆n(A) = ζ,
we would expect that the data diameter has been halved roughly log(1/ζ) times. Since
each halving grows the tree by ≤ k levels, A has depth at most k log(1/ζ) in the tree,
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implying also that |A| ≤ (1/ζ)k. Plugging these values into the bound of Lemma 16,

we get ‖fn,A − f‖2 . ζ−k/n + ζ2. Setting ζ = n−1/(2+k) then gives the optimal bound

‖fn,A∗ − f‖2 . n−2/(2+k).

In the analysis, a few basic facts will repeatedly be used. First, because such successive
partition halves the data diameter,

∆n(Ai) ≤ 2−i∆n(A0). (5)

Second, by definition of diameter decrease rate, each halving grows the tree by ≤ k levels:

level
(
Ai
)
≤ ki. (6)

4.1. Risk bound for cross-validation option

For the cross-validation option, we begin by arguing that the tree contains at least one
good partition Ai, such that both ∆n(Ai) and |Ai| are reasonably small. The shrinkage in
diameter, ∆n(Ai)/∆n(A0), is roughly

ζ
.
=

(
∆2

Y
λ2∆2

X
· α(n)

n

)1/(2+k)

(recall α(n) = (log2 n) log log(n/δ) + log(1/δ).) The analysis requires an unusual, albeit
benign, lower bound on the number of samples, n, the purpose of which is to ensure that
n2 exceeds both (1/ζ)k and (1/ζ)2+d.

Lemma 17 (Existence of a good pruning). Suppose adaptiveRPtree is run with the cross-
validation option, and yields a sequence of partitions A0,A1, . . . with a diameter decrease
rate of k. Define

ζ
.
=

(
∆2

Y
λ2∆2

X
· α(n)

n

)1/(2+k)

If n ≥ max
{
α(n), λ2∆2

X /∆2
Y , α(n)∆

2
Y/λ

2∆2
X
}
, then there exists i ≥ 0 such that ∆n

(
Ai
)
≤

2ζ ·∆n (X ) and
∣∣Ai
∣∣ ≤ (1/ζ)k.

Proof. Consider the largest i at which level
(
Ai
)
< k log(1/ζ). Then |Ai| ≤ (1/ζ)k. In

bounding ∆n(Ai), there are two cases to consider.

Case 1: Ai+1 is part of the tree. Then its level is ≥ k log(1/ζ), implying that i+1 ≥ log(1/ζ)
(by (6)) and therefore that i ≥ log(1/2ζ), whereupon (by (5)) ∆n(Ai) ≤ 2ζ∆n(A0).

Case 2: Ai+1 is not part of the tree; that is, Ai satisfies one of the two stopping criteria. The
lower bound on n ensures that level

(
Ai
)
< k log(1/ζ) ≤ 2 logn. Therefore ∆n(Ai) = 0.

Next, we argue that cross-validation will find a partition that isn’t too much worse than the
Ai of Lemma 17.
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Lemma 18. There exists an absolute constant C (independent of d and µ), such that the
following holds. Under the hypotheses of Lemma 17, with probability at least 1− 2δ/3 over
(X,Y) and the randomness in the algorithm, the excess risk of the final regressor is bounded
by

‖fn − f‖2 ≤ C · (λ∆X )
2k/(2+k)

(
∆2

Y ·
α(n)

n

)2/(2+k)

+ 2∆2
Y

√
log log n+ log 4/δ

2n
.

Proof. Let Ai and ζ be as in Lemma 17. By applying Lemma 16 and then Lemma 17, we
have with probability at least 1− δ/3 that∥∥fn,Ai − f

∥∥2 ≤ C1

(
∆2

Y
∣∣Ai
∣∣ α(n)

n
+ λ2

(
∆2

n

(
Ai
)
+ n−4/(2+d)∆2

X

))
≤ C1

(
∆2

Y · ζ−kα(n)

n
+ 5λ2ζ2∆2

X

)
≤ C2λ

2∆2
X ζ2.

To analyze the cross validation phase, we fix the partitions Aj obtained by adaptiveRPtree;
there at most log 2n of these. Applying McDiarmid’s inequality to the empirical risk, we
see that with probability at least 1− δ/3 over the choice of (X′,Y′), each Aj satisfies

∣∣R (fn,Aj

)
−R′

n

(
fn,Aj

)∣∣ ≤ ∆2
Y

√
ln(log 2n) + ln 3/δ

2n
.

Thus if fn
.
= fn,A∗ is the empirical risk minimizer,

‖fn − f‖2 ≤ C2λ
2∆2

X ζ2 + 2∆2
Y

√
log logn+ log 4/δ

2n

with probability at least 1− 2δ/3.

4.2. Risk bound for automatic stopping option

The automatic criterion stops growing the tree as soon as

∆2
n

(
Ai
)

∆2
n (A0)

≤ α(n)

n
2level(A

i),

at which point either Ai or Ai−1 is chosen as the final partition A∗. The shrinkage in
diameter is expected to be roughly a factor of

ζ
.
=

(
α(n)

n

)1/(2+k)

,

corresponding to a depth of k log(1/ζ) in the tree. In particular, if level
(
Ai
)
≥ k log(1/ζ)

then the stopping criterion holds, because then i ≥ level
(
Ai
)
/k ≥ log(1/ζ) (recall (6)) and

∆n(Ai) ≤ 2−i∆n(A0) ≤ ζ∆n(A0) (recall (5)), whereupon

∆2
n

(
Ai
)

∆2
n (A0)

≤ ζ2 =
α(n)

n

(
1

ζ

)k

≤ α(n)

n
2level(A

i).
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Lemma 19 (Properties of A∗). Suppose the automatic stopping option is used, and that

adaptiveRPtree attains a diameter decrease rate of k on X. Define ζ
.
=
(

α(n)
n

)1/(2+k)

and

assume n ≥ α(n). Then, the final partition A∗ retained for regression satisfies(
α(n)

n
· |A∗|+∆2

n (A∗)

)
≤
(
4∆2

n (X ) + 1
)
ζ2.

Proof. LetA0,A1, . . . be the partitions found by adaptiveRPtree, and suppose the stopping
criterion holds for Ai. We consider two cases:

Case 1: level
(
Ai
)
≤ k log(1/ζ). Then |Ai| ≤ (1/ζ)k and by the stopping condition

∆2
n

(
Ai
)

∆2
n (A0)

≤ α(n)

n
2level(A

i) ≤ α(n)

n

(
1

ζ

)k

= ζ2.

Case 2: level
(
Ai
)
> k log(1/ζ). Then ki ≥ level

(
Ai
)
≥ k log(1/ζ), implying that i − 1 ≥

log(1/2ζ), whereupon ∆n(Ai−1) ≤ 2ζ∆n(A0) (recall (5)). Moreover, since the stopping
condition doesn’t hold for Ai−1 we have (by the discussion preceding the lemma) that
level

(
Ai−1

)
< k log(1/ζ).

In either case at least one of Ai and Ai−1 has size at most (1/ζ)k and diameter at most
2ζ ·∆n(A0). It follows that

min
j∈{i−1, i}

(
α(n)

n
·
∣∣Aj
∣∣+∆2

n

(
Aj
))
≤ α(n)

n
· ζ−k + 4ζ2 ·∆2

n (X ) =
(
4∆2

n (X ) + 1
)
ζ2,

which concludes the argument.

Lemma 20. There exists an absolute constant C (independent of d and µ), such that the
following holds. Suppose the automatic stopping option is used and that adaptiveRPtree
achieves a diameter decrease rate of k ≥ d on X. With probability at least 1 − δ/3 over
(X,Y) and the randomness in the algorithm, the excess risk of the regressor is bounded by

‖fn − f‖2 ≤ C ·
(
∆2

Y + λ2
)
(∆2

X + 1) ·
(
α(n)

n

)2/(2+k)

.

Proof. For n ≤ α(n), the bound on the excess risk holds vacuously. We assume henceforth

that n > α(n). Let ζ
.
=
(

α(n)
n

)1/(2+k)

. By first applying Lemma 16 then Lemma 19, we

have with probability at least 1− δ that

‖fn,A∗ − f‖2 ≤ C1

(
∆2

Y |A∗| α(n)
n

+ λ2
(
∆2

n (A∗) + n−4/(2+d)∆2
X

))
≤ C1

(
∆2

Y + λ2
)(
|A∗| α(n)

n
+
(
∆2

n (A∗) + n−4/(2+d)∆2
X

))
≤ C1

(
∆2

Y + λ2
) ((

4∆2
X + 1

)
ζ2 + ζ2∆2

X
)

≤ C
(
∆2

Y + λ2
) (

∆2
X + 1

)
ζ2,

which concludes the argument.
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5. The coreRPtree procedure and diameter decrease rates

5.1. The coreRPtree procedure

Procedure basicRPtree(A0 ⊂ X , ∆)

A0 ← {A0};
for i← 1 to ∞ do

if ∆n (Ai−1) ≤ ∆ and i is odd then
return;

end

Choose a random direction v ∼ N
(
0, 1

D ID
)
;

Choose a random τ ∼ U [−1, 1] · 6√
D
∆n(A0);

foreach cell A ∈ Ai−1 do
if i is odd then

t← median{z>v : z ∈ X ∩A0}+ τ ; // Noisy splits

else
t← median{z>v : z ∈ X ∩A}; // Median splits

end

Aleft ← {x ∈ A, x>v ≤ t};
Aright ← A \Aleft;
if (Aleft ∩X) and (Aright ∩X) are both nonempty then

(children of A)← Aleft, Aright ;
end

end
Ai ← partition of A0 defined by the leaves of the current tree;

end

Procedure coreRPtree(A ⊂ X , ∆, δ)

Call basicRPtree(A,∆) log (3n/δ) times and return the shortest tree.

In a random projection (RP) tree [DF08], each cell is split by a random hyperplane; specif-
ically, a random direction is chosen from the surface of the unit sphere, and then the cell is
split along that direction, at the median plus a small random perturbation. As a result of
this perturbation, the two halves of the cell might not contain an equal number of points,
and, in some cases, might be severely imbalanced. In our present setting, we need to get a
handle on the data diameters of individual cells – which the RP tree split gives us – but also
on the depth of the tree, since this relates to the complexity of the cells (see Lemma 15).
To control this latter quantity, we alternate the RP split with another type of bisection that
splits exactly at the median. Thus, if the tree is grown to l levels, we are assured that each
cell contains at most a 2−l/2 fraction of the original data set; hence the overall depth of the
tree must be O(log n).

Another complication associated with the RP tree is that the rapid decrease in diameters is
assured only with a certain probability. The procedure coreRPtree boosts this probability
by calling basicRPtree multiple times in parallel, and picking the shortest tree obtained.
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Remark 21. Given the implementation of coreRPtree, the tree returned by adaptiveRPtree
has the following properties:

• The number of data points in a cell (node) at level i is at most half the number
contained in its ancestor at level i−2. Taking rounding effects into consideration, this
means that by level 2(1 + log n), each cell will contain at most one point. Thus the
entire tree built by adaptiveRPtree has depth at most 2 log 2n.

• By construction, each node contains at least one data point. Therefore, there are at
most n leaves and n− 1 internal nodes.

• Since the tree has height at most 2 log 2n = log 4n2, a total of at most 8n2 log(3n/δ)
random directions are required to build the entire tree.

5.2. Worst case decrease rates

In this section we consider worst case bounds for the diameter decrease rates achieved by
coreRPtree on data sets of low intrinsic dimension. The following theorem, which is based
upon Lemma 9 of [DF08], gives the basic bound we will rely upon.

Theorem 22. There is an absolute constant C ′ for which the following holds. Let A ⊂ RD

and suppose A ∩X has doubling dimension d. Then with probability at least 1/2 over the
randomization within the algorithm, basicRPtree(A,∆n (A) /2) returns a tree of depth at
most C ′d log d.

Proof idea. The proof is a direct consequence of Lemma 9 of [DF08] applied to the “noisy”
splits at alternating levels in procedure basicRPtree.

Let r = ∆n(A)/512
√
d and consider an r-cover of A; now consider pairs of balls B = B(z, r),

B′ = B(z′, r), where z, z′ are in the cover and ‖z − z′‖ ≥ 1
2∆n(A) − 2r. Notice that

basicRPtree stops if for all such pairs, no leaf of the tree contains points from both B ∩X
and B′ ∩X.

Fix such a pair B and B′. By Lemma 9 of [DF08], every “noisy” split has a constant
probability of separating B ∩X and B′ ∩X. Thus, the probability that some cell at level
i contains points from both B ∩X and B′ ∩X goes down exponentially with i. A union
bound over at most (O(d)d) such pairs yields the theorem.

Corollary 23. Let C ′ be as in Theorem 22. Suppose X has doubling dimension d and
fix X ⊂ X . With probability at least 1 − δ/3 over the randomness in the algorithm,
adaptiveRPtree attains a diameter decrease rate k ≤ C ′d log d on X.

Proof. The procedure adaptiveRPtree grows the tree in blocks: it starts with a single node
(cell) that contains all of X and then repeatedly expands one of its current leaf nodes A
into the subtree that is generated by the call coreRPtree(A,∆n(A), 2).

Consider any such A. Since X has doubling dimension d, so does A ∩ X ⊂ X ; we can
therefore apply Theorem 22. Procedure coreRPtree calls basicRPtree log (3n/δ) times

25



Figure 4: Hilbert space filling curve: the dimension depends on the scale at which the set is examined.
Image obtained from [DF08].

and returns the smallest tree; thus the probability that this tree has depth > C ′d log d is at
most δ/(3n).

How many nodes A are expanded in this way? Any A with data diameter zero (for instance,
containing just one point) is untouched by coreRPtree; on the other hand, any A with
nonzero diameter will certainly get expanded (on account of the median split, if nothing
else). Thus coreRPtree is invoked at most once on each internal node of the tree. There
are at most n leaf nodes and thus at most n− 1 internal nodes. A union bound over them
yields an overall probability of failure at most δ/3.

6. Extensions

We have demonstrated a tree regressor that performs well in scenarios where the data space
X ⊂ RD has low doubling dimension d � D. In such cases, the integrated excess risk is
roughly of the form n−2/(2+k) for k = O(d log d), and has no dependence on the ambient
dimension D. But this still leaves room for improvement: is there an efficient tree-based
regressor that achieves the optimal rate, n−2/(2+d)?

Some very recent work [Kpo09] uses kernel regression to achieve this rate in general metric
spaces. Moreover, in that paper the usual O(n) evaluation time of kernel methods is reduced
to O(2d log n) using a special tree data structure. This is a significant improvement, though
slower than the O(logn) evaluation time of a tree regressor.

Another set of open questions concerns the data model. doubling dimension is fairly general
while at the same time being amenable to analysis. However, it has some shortcomings
that motivate exploration into alternative notions of intrinsic dimension. First of all, it
is natural to allow the dimensionality of a data set to depend on the scale at which it is
being examined. The set in Figure 4, for instance, looks two-dimensional from a distance
but one-dimensional when restricted to smaller neighborhoods. And realistically, at even
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smaller neighborhood sizes, it would be full-dimensional because of white noise. At the very
least, we would like to be able to handle data sets that have low intrinsic dimension only
when restricted to neighborhoods of a certain radius. In the Appendix, we show how to
extend our results to such a setting.

A second shortcoming of doubling dimension is that it seems difficult to efficiently estimate
for a given data set. Although our algorithm doesn’t need to know the intrinsic dimension,
it would be nice to have some concrete reassurance that this quantity is small for a wide
range of data. Is there a notion of dimension that is empirically verifiable, and fairly general,
and powerful enough to be the key exponent in risk bounds for nonparametric methods?
One recent proposal is the local covariance dimension [DF08, VKD09], but regression risk
has not yet been analyzed in terms of it.
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Appendix A. On the adaptivity of an axis-parallel splitting rule

In this section we show that if the input space X is a subset of [−1, 1]D of doubling dimen-
sion d, then a dyadic tree regressor (Figure 1(a)) achieves a convergence rate of the form
O(n−2/(2+d)), but with a leading constant that is exponential in D.

The dyadic tree starts with a single cell corresponding to all of [−1, 1]D, and then grows
one level at a time. In each such expansion, a particular coordinate direction is chosen and
every current leaf cell is bisected at its midpoint along that coordinate. There is flexibility
in how the coordinate direction is chosen; a common choice is to simply cycle through the
D coordinates. The final level of the tree defines a partition A of [−1, 1]D, and a regressor
fn,A is obtained by averaging the Y values in each cell A ∈ A.
Unlike an RP tree, the dyadic tree is not data-dependent. In such cases, a generic risk bound
applies. If the cells of A have diameter ≤ ζ, and if AX is the subset of cells intersecting X ,
then it is implicit, for instance, in the proof of Theorem 4.3 of [GKKW02], that

E ‖fn,A − f‖2 ≤ C

(
∆2

Y
|AX |
n

+ λ2ζ2
)
. (A.1)

The result in this section is obtained by noticing that most cells of A will be empty if X has
doubling dimension much smaller than D. Think for instance of X as a line curving slowly
through the cube [−1, 1]D.

Theorem 24. There are absolute constants C1, C2, and C3 for which the following holds.
Consider an input space X ⊂ [−1, 1]D of diameter 1 and doubling dimension d. Let A be a
dyadic partition where each cell has diameter ζ < 1, that is, cells have side lengths ζ/

√
D.

If ζ = C1

(
∆2

Y · 2C3D logD/(λ2n)
)1/(2+d)

, we have

E ‖fn,A − f‖2 ≤ C2λ
2d/(2+d)

(
∆2

Y · 2C3D logD

n

)2/(2+d)

.

Proof. Let AX ⊂ A be the cells of A that intersect X . We’ll first show that |AX | ≤
2O(D logD)(1/ζ)d. By the doubling assumption, X has a (ζ/2)-cover of size N ≤ (2/ζ)d; call
it {zi}N1 ⊂ X . Now consider the (closed) balls B(zi, ζ). By a triangle inequality, the center
of each hypercube A ∈ AX is contained in some ball B(zi, ζ) (the center of each A is within
ζ/2 of all x ∈ A ∩ X and each such x is within ζ/2 of some zi). Therefore, if M is the
maximum number of such centers in a single ball B(zi, ζ), then |AX | ≤M ·N .

To boundM , notice that the centers of the hypercubes A ∈ AX are at least ζ/
√
D away from

each other. In other words, the centers contained in any B(zi, ζ) form a (ζ/
√
D)-packing of

it. By a standard duality, any r-packing of a space is of size at most that of the minimum
(r/2)-cover of the space. In this case the ball B(zi, ζ) ⊂ RD has a minimum (ζ/2

√
D)-cover

of size at most (2
√
D)coD (recall from Lemma 2 that RD has doubling dimension ≤ coD for

some constant co < 3).

Thus |AX | ≤M ·N ≤ 2C3D logD(1/ζ)d (for some constant C3) and we conclude by plugging
this value into (A.1).
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Appendix B. A more general setting

Finally, we consider a more general setting where the space X ⊂ RD has low doubling
dimension d � D only in sufficiently small neighborhoods (as in Figure 4). In this case,
an RP tree might initially decrease diameter slowly; but when its cells are small enough,
further splits will rapidly decrease diameter. We will show that the higher dimensionality
of large regions of space do not tremendously affect the final excess risk, provided n is large
enough for the tree to arrive at well populated regions of sufficiently small diameter.

Appendix B.1. Result for the general case

The next definition of decrease rate is made more general by allowing for a good rate k to
be attained only later down the tree; in other words we allow for speedups to occur only
in smaller regions of X , of diameter at most 2r < ∆X . The algorithm remains unchanged
except that we now need α(n) ≥

(
log2 n

)
log log(n/δ) + log(Nr/δ), where Nr is the size of

a minimal r-cover of X . Note that Nr ≤ (∆X /r)
O(D)

.

Definition 25. Given a sample X, we say that adaptiveRPtree attains a diameter de-
crease rate of (k, γ) on X, for k ≥ d and γ ≤ n

α(n) , if the following holds:

adaptiveRPtree arrives at an intermediate partition Aiγ ,
∣∣Aiγ

∣∣ = γ, such that any subse-
quent call to coreRPtree(A,∆n (A) /2, δ) over cells A with ancestor in Aiγ , returns a tree
rooted at A of height at most k.

Theorem 26. Assume that for every ball B ∈ RD of radius r, B∩X has doubling dimension
d. There exist constants C, C ′ independent of d and µ, and C ′′ = C ′′(µ, r) such that the
following holds.

Suppose the cross-validation option is used with α(n) ≥
(
log2 n

)
log log(n/δ) + log(Nr/δ).

Assume n ≥ max
{
(λ∆X /∆Y)

2
, C ′′α(n)

}
. With probability at least 1 − δ, the algorithm

attains a diameter decrease rate of (k, γ) where k ≤ C ′d log d and γ ≤ C ′′, and the excess
risk of the regressor satisfies

‖fn − f‖2 ≤ C · (λ∆X )
2k/(2+k)

(
∆2

Y · γ · α(n)
n

)2/(2+k)

+ 2∆2
Y

√
ln log n6 + ln 1/δ

2n
.

Appendix B.2. Proof of theorem 26

The proof of theorem 26 closely mirrors that of theorem 9. We’ll therefore only show the
key lemmas whose statement change. We assume in what follows that the cross-validation
option is used.

The proof proceeds also by first bounding the risks in terms of the observed diameter
decrease rate (lemma 30 of section Appendix B.2.1), and then bounding the worst case
decrease rates (lemma 32 of section Appendix B.2.2).
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Appendix B.2.1. Risk bound in terms of observed diameter decrease rate

Lemma 27 (Mass of cells of A′). With probability at least 1−δ′ over X and the randomness
in the algorithm, we have for all partitions A = A0,A1, . . . found by adaptiveRPtree, for
all A′ ∈ A′ that

µ(A′) ≤ µn(A
′) + 2

√
µn(A′)

V + ln(4/δ′)

n
+ 4
V + ln(4/δ′)

n
, where (B.1)

V ≤ O (log n(logn+ loglog(1/δ)) + logNr) .

Proof. Follow the outline of lemma 15, the only difference being that the bound on |B|
introduces the term Nr.

Lemma 28 (Excess risk). There exists a constant C1 independent of d and µ such that the
following holds with probability at least 1−δ/3 over the choice of (X,Y) and the randomness
in the algorithm.

Let α(n) ≥
(
log2 n

)
log log(n/δ) + log(Nr/δ). Let Ai be the final partition reached by

adaptiveRPtree. For all partitions A ∈
{
Aj
}i
j=0

, we have

‖fn,A − f‖2 ≤ C1

(
∆2

Y |A|
α(n)

n
+ λ2

(
∆2

n (A) + n−4/(2+d)∆2
X

))
.

Proof. The proof is identical to that of lemma 16, using lemma 27 in place of lemma 15.

Lemma 29 (Existence of a good pruning). Suppose the cross-validation option is used, and
adaptiveRPtree attains a diameter decrease rate of (k, γ) on X. Let α(n) ≥

(
log2 n

)
log log(n/δ)+

log(Nr/δ), and ζ
.
=
(

∆2
Y ·γ·α(n)
λ2∆2

X ·n

)1/(2+k)

. Finally, assume

n ≥ max
{
(λ∆X /∆Y)

2
, γ · α(n)

}
. Then there exists an RPtree partition A such that

|A| ≤ γ · ζ−k and ∆n (A) ≤ 2ζ ·∆n (X ).

Proof. Follow the outline of lemma 17, while noticing that now we have for all i ≥ 1,
level

(
Ai
)
≤ ki+ log γ and ∆n

(
Ai
)
≤ 2−i∆n (X ).

Lemma 30. There exists a constant C independent of d and µ such that the following holds
with probability at least 1− 2δ/3 over (X,Y) and the randomness in the algorithm.

Suppose the cross-validation option is used, and adaptiveRPtree attains a diameter de-
crease rate of (k, γ) on X. Let α(n) ≥

(
log2 n

)
log log(n/δ) + log(Nr/δ), and assume

n ≥ max
{
(λ∆X /∆Y)

2
, γ · α(n)

}
. The excess risk of the regressor is then bounded as

‖fn − f‖2 ≤ C · (λ∆X )
2k/(2+k)

(
∆2

Y · γ · α(n)
n

)2/(2+k)

+ 2∆2
Y

√
ln log n6 + ln 1/δ

2n
.

Proof. Follow the outline of lemma 18.
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Appendix B.2.2. Worst case decrease rates

Lemma 31. Assume that for every ball B ∈ RD of radius r, B∩X has doubling dimension
d and consider the tree built by adaptiveRPtree. There exists a constant C ′′ = C ′′(µ, r),
such that with probability at least 1 − δ/3 over the randomness in the algorithm, we have
∆n(A) ≤ r for all cells A of the tree at level at least logC ′′.

Proof outline. This is a consequence of the fact that X has finite doubling dimension at
most O(D). By theorem 22 and the fact that basicRPtree is called multiple times to boost
the probability of obtaining a small tree (see proof of corollary 23) we have the following:
with probability at least 1− δ/3, and independently of the distribution, it takes at most a
constant number of levels to get the data diameter within the cells below r.

The number of levels needed for each particular distribution is therefore just a constant.

Lemma 32. Assume that for every ball B ∈ RD of radius r, B∩X has doubling dimension
d. There exist constants C independent of X and d, and C ′′ = C ′′(µ, r), such that with
probability at least 1 − δ/3, the algorithm attains a diameter decrease rate of (k, γ) where
k ≤ C ′d log d and γ ≤ C ′′.

Proof. This results from lemma 31 and theorem 22.
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