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EPIGRAPH

I see a pattern, but my imagination cannot picture the maker of that pattern. I

see a clock, but I cannot envision the clockmaker. The human mind is unable to

conceive of the four dimensions, so how can it conceive of a God, before whom a

thousand years and a thousand dimensions are as one? —Albert Einstein.
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ABSTRACT OF THE DISSERTATION

The curse of dimension in nonparametric regression

by

Samory Kpotufe

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Sanjoy Dasgupta, Chair

We consider the problem of nonparametric regression, consisting of learning

an arbitrary mapping f : X → Y from a data set of (X,Y ) pairs in which the Y

values are corrupted by noise of mean zero. This statistical task is known to be

subject to a so-called “curse of dimension”: if X ⊂ R
D, and if the only smoothness

assumption on f is that it satisfies a Lipschitz condition, it is known that any

estimator based on n data points will have an error rate (risk) of Ω(n−2/(2+D)). In

other words a data size exponential in D is required to approximate f , which is

unfeasible even for relatively small D.

Fortunately, high-dimensional data often has low-intrinsic complexity (e.g.

manifold data, sparse data) and some nonparametric regressors perform better
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in such situations. This dissertation presents and analyzes various fast regres-

sors that escape the curse of dimension in situations where data has low-intrinsic

complexity. These nonparametric regressors, namely tree and tree-kernel-hybrid

regressors, have strong theoretical guarantees which are verifiable on a wide range

of real-world data.
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Chapter 1

Introduction

1.1 Nonparametric regression

Given a set of data points (X,Y ), where Y = f(X) + noise (of mean zero),

is it possible to infer the unknown function f? This is the statistical problem of re-

gression (illustrated in Figure 1.1). This problem is of increasing importance today:

due to the tremendous growth of information technology, there is a growing need

for procedures that can automatically extract patterns from information databases

that are prohibitively large for humans to handle. One of the fundamental ways

for dealing with this “pattern-recognition” task is regression estimation. Formally,

given n data pairs (X,Y ) we want to construct a function fn (the regressor) which

approximates f .

The following simple examples are meant to give a sense of the wide prac-

tical relevance of the regression problem.

Example 1 (Marketing). A company is interested in predicting the amount of

profit (Y ) it gains by marketing a certain product to particular customers (X),

where each customer is described by a list of attributes such as income, age, lo-

cation, etc. Given data collected from n previous customers, it builds a model

Y = fn(X) that is used to assess the potential profits on future customers with

similar attributes.

Example 2 (Epidemiology). A United Nations epidemiologist is tasked with as-

1
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Figure 1.1: Regression data Y = f(X) + noise, f(·) shown in blue.

sessing the spread (Y ) of a new virus in some part (X) of the world, where parts

of the world are described by attributes such as poverty level, sanitation level, age

spread, etc. To accomplish the task, the epidemiologist examines historical data on

the spread of similar viruses, and builds a model Y = fn(X) that is used to predict

the number of people that might be affected if no action is taken.

Example 3 (Robot Learning). The field of Robot Learning aims to develop robotic

tools that can learn to perform new tasks. For example, in obstacle avoidance, a

set of obstacles is presented to a robotic vehicle, which is then shown how to avoid

it. Next time it sees a similar obstacle it should be able to avoid it on its own.

Here the X variable consists of descriptive features of an obstacle. The Y value is

the path to be taken to avoid the obstacle.

Another example is that of learning robot dynamics. Suppose we want to

derive the right amount of force to apply in various places of a robotic arm to

move it from a state to the other, where each state describes the physical position,

speed and acceleration of the arm joints. Here experts can be called on to analyze

the arm and derive the right dynamics equations. This might be time consuming

and expensive. A cheaper alternative is to train the robotic arm as follows. The

X variable is the description of the current state and the desired state. The Y
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variable is a description of the various forces to apply. Some initial experiments

are ran where various forces are applied and the movements from one state to the

next are recorded. Using this data, a model Y = fn(X) of the dynamics is built

which can now be used to move the arm in the future.

Example 4 (Farming). A farmer is interested in predicting the crop yield (Y ) in

various parcels (X) of land, where each parcel is described by its mineral contents.

The farmer collects data over the years from which he builds a model Y = fn(X)

that enables him to better predict crop yields in subsequent years.

Depending on the application domain, one might have some knowledge

about the form of the function f being estimated. For instance, we might know

that f is linear in X, i.e. f(X) = b·X for some unknown parameter b, or that f can

be well approximated by such a linear function. The regression task then consists

of estimating the parameter b, and this easily done with a bit of linear algebra

(see e.g. [DHS01]). Unfortunately there is often little or no a priori information

about f in practice, and therefore no parametric form might be assumed. This

motivates the development of nonparametric regression procedures that can infer

fairly arbitrary functions f from data. Formally, we say that a regression approach

is nonparametric if it only assumes that the function f belongs to some infinite

dimensional class. In contrast, the set of linear functions is a vector space of finite

dimension coinciding with that of X.

1.1.1 Estimation error

Given the goal of approximating f with the regressor fn, we have to agree

on a notion of approximation error. But first we need a bit of formalism.

The data (X,Y)
.
= {(Xi, Yi)}ni=1 are assumed to be drawn i.i.d from a

distribution over a joint input-output space X ×Y . The input space X is usually

assumed to be a subset of R
D, i.e. X is a vector of D features (attributes in the

above examples). The output space Y is assumed to be a subset of R
D′

, and is a

random vector satisfying E [Y |X = x] = f(x), i.e. Y = f(X) + η where the noise

vector η has mean 0 ∈ R
D′

.
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Suppose g : X → Y is some estimate of f . We define its l2 pointwise

risk at x ∈ X to be R(g, x)
.
= EY |X=x ‖Y − g(x)‖2 and its integrated risk to be

R(g)
.
= EX R(g,X). Standard manipulations show that

R(g, x) = R(f, x) + ‖g(x)− f(x)‖2

∴ R(g) = R(f) + EX ‖g(X)− f(X)‖2 .

Thus, the pointwise excess risk of g(x) over f(x) is simply ‖f(x)− g(x)‖2. We are

interested in the integrated excess risk of the regressor fn, namely

‖fn − f‖2 .
= R(fn)−R(f) = EX ‖fn(X)− f(X)‖2 . (1.1)

The excess risk decomposes nicely into bias and variance terms, which will

be useful in a lot of the analysis in this dissertation by allowing us to focus on

these terms separately. Let fn(x) be any regression estimate and define

f̃(x)
.
= E

Y|X
fn(x),

that is the conditional expectation of the estimate, for X fixed. A bit of algebra

yields the decomposition:

E
Y|X
‖fn(x)− f(x)‖2 = E

Y|X

∥∥∥fn(x)− f̃n(x)
∥∥∥

2

+
∥∥∥f̃n(x)− f(x)

∥∥∥
2

. (1.2)

The excess risk (1.1) will be our notion of error of fn relative to f . It is well

known that there exists universally consistent regressors such as kernel regressors,

i.e. ‖fn − f‖ → 01. However, in practice we are more interested in assessing

the number of samples required for a good estimate, in other words, we need to

characterize the rate at which ‖fn − f‖ goes to 0 relative to n. This is where we

encounter the curse of dimension.

1.2 Curse of dimension

In order to guarantee that a regressor fn converges to f at a reasonable

rate, we need f to be reasonably smooth2. A common smoothness assumption,

1The limit is to be understood in the wide sense of convergence of random variables. Con-
sistency can be shown under mild conditions such as boundedness of X and bounded second
moment for Y (see e.g. [GKKW02])

2If f is allowed to be arbitrary, then the convergence rate of fn to f can be arbitrarily slow,
i.e. for any sequence {an}, an → 0, there exists an f and a distribution on X × Y such that
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which we use throughout this dissertation, is that f is Lipschitz, i.e. there exists

λ unknown such that ∀x, x′, ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖. Under this assumption,

a number of regressors can be shown to satisfy

EX,Y ‖fn − f‖2 ≤ O(n−2/(2+D)),

where D is the dimension of the input space X . This is for instance the rate for

kernel regressors, k-NN regressors, and tree-based regressors [GKKW02]. This is

quite a slow rate since it implies that we need a sample size n exponential in D in

order to approximate f . Unfortunately, D is often so high (say D > 30) in modern

applications that n > 2D is impractical.

In order to get an intuition as to the reason for such a rate, consider that

nonparametric approaches such as the aforementioned operate by approximating

the target function locally (on its domain X ) by simpler functions. There is neces-

sarily some local errors and these errors aggregate globally. Thus to approximate

the entire function well, we need to do well in most local areas. Suppose for in-

stance that the target function is well approximated by constants in regions of

radius at most 0 < r < 1. In how many ways can we divide up the domain X into

smaller regions of radius at most r? If X is D-dimensional then the smallest such

partition is of size O(r−D). We will need data points to fall into each such region

if we hope to do well locally everywhere. In other words, we will need a data size

exponential in D.

Unfortunately it turns out this is the best we can hope for no matter the

regression approach, a grim fact formalized in Theorem 5 below. The minimax

rates established by the theorem were first obtained by Stone in [Sto80, Sto82].

Theorem 5 (Paraphrasing Theorem 3.2 of [GKKW02]). Let Dλ be the class of

distributions of (X,Y ) such that f : [0, 1]D 7→ R is λ-Lipschitz, X is uniformly

distributed on [0, 1]D, Y = f(X) + η, where η ∼ N (0, 1) and X is independent of

η. Then there exists C > 0 independent of λ such that

lim
n→∞

inf
fn

sup
D(X,Y )∈Dλ

‖fn − f‖2
λ2d/(2+d)n−2/(2+d)

> C,

limn→∞ EX,Y ‖fn − f‖2 /an > 1 (see [GKKW02]).
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where the inf is taken over all regressors fn (viewed as maps from the sample space

(X × Y)n to the set of functions from [0, 1]D 7→ R) and the sup is taken over

data-distributions in Dλ.

Notice that a similar statement is automatically implied for any class of

distributions containing Dλ. Thus this theorem paints a rather gloomy picture for

nonparametric regression in high-dimensional spaces. Fortunately there is hope

in the fact that, in practice, many high-dimensional datasets actually lie near a

subspace of lower-complexity than indicated by the dimension D. This is discussed

in the following section.

1.3 Intrinsic dimension

The curse of dimension would appear to rule out nonparametric approaches

for the increasingly high-dimensional data sets that arise in modern applications.

In image retrieval, or text classification, or genomic analysis, for instance, the

number of features, or dimensions, of X can easily grow to tens of thousands,

or more. However, in many of these cases, it is believed that the dimensionality

is large only in the superficial sense of there being many coordinates, whereas

the true degrees of freedom are much smaller in number. This might occur, for

example, because of strong dependencies between the features and/or because some

features might be irrelevant. In this sense a high-dimensional dataset might have

low intrinsic dimension. For the time being, we use the term “intrinsic dimension”

informally to describe the inherent complexity of a dataset. In Chapter 2 we present

various formalisms that capture this notion. For now, let us go over a few examples

of datasets whose inherent complexity is far lower than indicated by their ambient

dimension.

Example 6 (Linear data). A classical example of a high-dimensional dataset

with low-intrinsic dimension is that of a dataset X ⊂ R
D that lies near a d-

dimensional affine subspace (d < D). In this case Principal Component Analysis

(PCA [DHS01]) can be used to re-map X into R
d while preserving most informa-

tion.
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Example 7 (Sparse data). This is a situation where each vector x ∈ X ⊂ R
D has

at most d ≪ D non-zero coordinates. Consider for instance a dataset consisting

of black and white images of handwritten digits. Although each image is described

by many pixels, few pixels are black in each (these are the nonzero coordinates),

in other words the number of pixels D is an overestimate of the true complexity of

the data.

Another example of sparse data arises in document classification. The most

common way of representing a document is as a vector with one coordinate per

word, which describes whether or not that word appears in the document (or the

number of times the word appears, or some function thereof). The dimensionality

D is therefore the size of the vocabulary, which is typically in the tens of thousands.

However, any given document only contains a few hundred (or so) words, and thus

most of its vector is zero: it is sparse. In a sense, the intrinsic dimension d of the

data is the average number of non-zero entries, which is much smaller than D.

Example 8 (Manifold data). A speech signal is typically represented by a high-

dimensional time series: the signal is broken into overlapping windows, and a

variety of filters is applied within each window. Even richer representations can

be obtained by using more filters, or by concatenating vectors corresponding to

consecutive windows. In this way, the dimensionality D can be made arbitrarily

high. However, the physical system can alternatively be described by just a few

(d ≪ D) parameters specifying the configuration of the speaker’s vocal apparatus.

These are the true degrees of freedom of the data, and as they vary, the high-

dimensional representation traces out a d-dimensional submanifold of R
D. It is

generally believed that sensory data generated from physical structures with few

degrees of freedom appear high-dimensional while conforming to a low-dimensional

manifold structure.

Many methods have been developed to handle the case where data lies

near a manifold. These methods, termed manifold learning, consist of embedding

the nonlinear data into a lower dimensional space while preserving key properties

such as interpoint distances [RS00, BN03, TSL00]. Manifold learning might be

used as a preprocessing step to regression. However the approach does not easily
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yield theoretical guarantees in a distribution-free regression setting. Our interest is

in circumventing the embedding step and automatically adapting to low intrinsic

dimension while operating in the original space R
D.

1.4 Overview of results and related work

How do we benefit from situations where high-dimensional data has low-

intrinsic dimension? As mentioned earlier, the common approach is to remap the

data into a lower-dimensional space and perform regression in this space. If the

data lies near a linear-subspace then PCA might be used to remap it. Otherwise

if it lies near a manifold, non-linear embedding techniques from manifold learning

might be used. If instead the data is more complex, e.g. a collection of manifolds as

is the case with sparse data, it is no longer clear how to properly reduce dimension.

Thus the embedding approach is limited to datasets that have a certain degree of

regularity. Unfortunately, even in cases where the data has enough regularity

(e.g. it lies on a smooth manifold), the embedding approach does not easily yield

theoretical guarantees for regression. In Chapter 3 we discuss the various reasons

for this lack of guarantees, most important of which being that manifold learning

techniques generally do not embed the whole data space X , but only embed the

training data X.

Our interest is in circumventing the embedding step and automatically

adapting to low intrinsic dimension while operating in the original space R
D. Adap-

tivity to intrinsic dimension is the main subject of this dissertation, and it refers

to the ability of a regressor to operate in R
D while achieving a convergence rate

that depends just on the intrinsic dimension of the data.

We investigate and compare various formalisms of intrinsic dimension in

Chapter 2, and we develop a simple estimator which we use to verify that many

high-dimensional real-world data do have low-intrinsic dimension. Some of the

formal notions of intrinsic dimension presented in Chapter 2 are broad enough

to capture the many different situations discussed earlier such as sparse data and

manifold data. In this dissertation we work primarily with one such broad notion



9

called the Assouad dimension, and we demonstrate several efficient regressors that

are adaptive to intrinsic dimension.

Here we emphasize efficiency in contrast with more traditional regressors

such as kernel and k-NN regressors. Kernel regression was recently shown to be

adaptive (Bikel and Li [BL06]), while there is evidence that k-NN (k Nearest

Neighbor) regression might also be adaptive (Kulkarni and Posner [KP95] 3, also

see Chapter 3). These traditional methods can be expensive in practice. Either

kernel weights must be computed at many training points, resulting in an Ω(n)

evaluation time, or the kn nearest neighbors of a query point must be located, where

kn is optimally chosen as a root of n [GKKW02]. This sort of time complexity can

be a burden in practice considering that nonparametric regression usually depends

upon large data sizes n for accuracy. Hence the appeal for adaptive regressors that

are efficient, as in operating in O(log n) time.

Natural candidates for efficient adaptive regressors are tree-based regressors.

A tree-based regressor works by building a hierarchical partition (the tree) of the

space X and learns simple functions such as constants in the leaf cells of the

tree. An attractive property of this estimator is that fn(x) can be evaluated by

simply navigating down to the leaf containing x, which takes time proportional

to the height of the tree, often just O(log n). This computational efficiency, and

an overall ease of use, have motivated a variety of tree partition methods such as

CART, dyadic trees, and k-d trees [GN05, SN06a, DGL96a], but none of these had

been shown to adapt to intrinsic dimension in its regression risk.

In Chapter 4 we introduce tree-based regression in general and we argue that

a tree-based regressor is adaptive to intrinsic dimension if it decreases the diameter

of data within its cells at a fast rate that depends on this dimension. First, the link

between data diameter decrease rate and the performance of a tree-based regressor

is established empirically on real-world datasets. Then, building on earlier work

of Dasgupta and Freund [DF08a], we establish the rate at which various trees

decrease data diameter in terms of (intrinsic) dimension. Many (unusual) trees

3The cited work does not directly treat the problem of adaptivity but expresses the conver-
gence rate of Nearest Neighbor regression (k = 1) in terms of the box dimension, which is a
known measure of intrinsic dimension.
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are guaranteed to decrease diameter at a fast rate when data is intrinsically low-

dimensional, but more common methods such as dyadic trees and k-d trees can be

shown not to have such guarantees.

In Chapter 5 we formalize the intuition developed earlier in Chapter 4,

namely that fast data diameter decrease implies good regression rates for tree-

based regressors. Data diameters are unstable quantities, i.e. might vary a lot from

sample to sample. Thus they present a unique difficulty for regression analysis.

We develop novel techniques to relate data diameters to the bias of a tree-based

estimator. These techniques apply generally although in Chapter 4 we focus our

analysis on a particular tree, the Random Projection tree (RP tree), a randomized

variant of k-d trees first analyzed by Dasgupta and Freund in the context of vector

quantization [DF08a]. We show that, given data from a space X ⊂ R
D of Assouad

dimension d, an RP tree regressor attains an excess risk of O(n−2/(2+k)) where

k = O(d log d) describes the rate at which RP tree decreases data diameter.

Another family of efficient adaptive regressors covered in this dissertation

is that of tree-kernel hybrids which combine aspects of both tree-based and kernel

regressors. The motivation for this family of methods is that, while adaptive tree-

based regressors perform well relative to non-adaptive tree methods, they still lag

relative to the regression accuracy of kernel methods, as seen both in practice and

in the achievable theoretical bounds. The excess risk of a kernel regressor in terms

of Assouad dimension is O(n−2/(2+d)) while the rate for an RP tree for example

is O(n−2/(2+Cd log d)). We show in Chapter 6 that by combining elements of both

tree-based and kernel regression, we can achieve regression accuracy comparable to

that of kernel regression while maintaining most of the time efficiency of tree-based

regression. In particular, if X has Assouad dimension d, some tree-kernel hybrids

achieve an excess risk of O(n−2/(2+d)) with a time complexity of C log n where

C depends on d. These tree-kernel hybrids offer many other parctical benefits

discussed in Chapter 6. In particular, a very appealing aspect of these regressors is

that they provide tunable parameters that allow the practitioner to attain tradeoffs

between time-efficiency and accuracy as appropriate for their application.
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1.5 Open questions and extensions

1.5.1 Higher order smoothness assumptions

Suppose we knew the regression function f satisfies higher order smooth-

ness conditions than mere Lipschitz conditions. For instance f might be p times

differentiable (p > 1 an integer) with all partial derivatives of order p bounded.

It is well known that the minimax regression rates in this case are of the form

n−2p/(2p+D) [GKKW02]. To attain this rate, one has to learn a polynomial of de-

gree p − 1 in the neighborhood of the query x as opposed to learning a simple

constant as is the case with the methods presented in this dissertation. We would

expect adaptive rates to then take the form n−2p/(2p+d) where d is an appropriate

notion of intrinsic dimension.

It turns out that the techniques used to establish adaptive rates in this

dissertation can be extended to higher order smoothness assumptions using higher

order local polynomials for the regression estimates. This is because higher order

smoothness assumptions only affect the form of the bias of the estimator, and the

variance maintains the same form. As we will see throughout the dissertation, the

(intrinsic) dimension mainly appears in the estimator’s variance (for the estimators

considered here). In this sense, we believe that most of the discussion in this

dissertation also provides insight into regression with higher order polynomials.

1.5.2 More practical notions of dimension

The notions of intrinsic dimension used in this work are meant to capture

the worst-case intrinsic complexity over any subset of the space X (see Chapter 2).

However, it is conceivable that while some data set might be high dimensional in

some parts of space, it could have low intrinsic dimension in other parts of space.

The situation can be even more complex: the intrinsic dimension of the data might

depend not only on the region of space but also on the scale at which the data

is being examined; furthermore the intrinsic dimension in some region of space

might not be relevant if this region has low mass under the data distribution. How

do we formalize these ideas, and can we develop regression procedures that can
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identify these situations and benefit from them? These questions require further

investigation.



Chapter 2

Intrinsic dimension

There are many ways to formalize intrinsic dimension. We aim to work

with as broad a notion as possible which captures the various scenarios discussed

in the introduction where high-dimensional data has low intrinsic complexity.

In this dissertation we work primarily with a notion called the Assouad

dimension, which is defined for any set of data points in R
D (or in fact, in any

metric space). What makes it particularly attractive is that it generalizes both the

notion of manifold dimension and that of sparsity, while at the same time being

amenable to the kinds of analysis that arise in algorithm design. There exist many

other related notions and we overview some of them in the following section.

Before diving into formal notions of intrinsic dimension, we need to famil-

iarize ourselves with the following definitions which will come in handy throughout

this dissertation.

Definition 9. (Covers, packings, and nets)

– Q ⊂ A is an r-cover of A ⊂ R
D if for all x ∈ A, there exists i ∈ [n], such

that ‖x− q‖ < r.

– Q ⊂ A is an r-packing if for all q, q′ ∈ Q, ‖q − q′‖ ≥ r.

– Q ⊂ A is an r-net of A ⊂ R
D if it is an r-cover and an r-packing.

We will sometimes talk about the covering of a set by balls. This is simply

to say that the set is in the union of these balls.

13
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(a) 22 squares (b) 23 cubes

Figure 2.1: A hypercube in R
d can be covered by 2d hypercubes of half the side

length.

Figure 2.1 serves to give an intuition about how the above definitions are

useful in formalizing intrinsic dimension. Consider a natural two-dimensional ob-

ject such as a square. A square can be covered by 4 = 22 squares of half its side

length. Similarly, a cube can be covered by 8 = 23 cubes of half its side length.

Notice that the exponent always corresponds to the natural dimension of the ob-

ject. Many of the formalisms of intrinsic dimension in the following sections will

consider the way in which the space can be covered by balls of small radius. No-

tions such as packing and nets are related and yield crude bounds on cover sizes,

as stated in the following lemma.

Lemma 10. Let r > 0. The size of an r-net of a set A is at least the size of an

r-cover of A (by definition), and at most the size of an r/2-cover of A.

Proof. Let Q and Q′ be respectively an r-net and a minimal r/2-cover of A.

Consider the set of open balls of radius r/2 centered at points in Q′. Each of these

balls contains at most one point from Q since these points are at least r-apart and

the balls have diameter less than r. However, each point in Q′ is in one of these

balls since they cover A. It follows that |Q| ≤ Q′.

2.1 Formalisms of intrinsic dimension

The question of characterizing the intrinsic dimension of a data space X
has aroused keen interest in many different scientific communities, and has given
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(a) Sparse data set. (b) 2-dimensional manifold.

Figure 2.2: Examples of data with low Assouad dimension.

rise to a variety of definitions. Here are four of the most successful such notions,

arranged in decreasing order of generality:

• Covering dimension

• Assouad dimension

• Manifold dimension

• Affine dimension

The most general is the covering dimension:

Definition 11 (Covering or box dimension). The smallest d for which there is a

constant C > 0 such that for any ǫ > 0, X has an ǫ-cover of size C(1/ǫ)d.

This notion lies at the heart of much of empirical process theory. Although

it permits many kinds of analysis and is wonderfully general, for our purposes it

falls short on one count: for nonparametric estimators, we often need small covering

numbers for X , but also for individual neighborhoods of X . Thus we would like

this same covering condition (with the same constant C) to hold for all L2-balls in

X . This additional stipulation yields the Assouad dimension:

Definition 12 (Assouad or doubling dimension). The smallest d such that for any

(Euclidean) ball B ⊂ R
D, X ∩B can be covered by 2d balls of half the radius.
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At the bottom end of the spectrum is the affine dimension, which is simply

the smallest d such that X is contained in a d-dimensional affine subspace of R
D.

It is a tall order to expect this to be smaller than D, although we may hope that

X lies close to such a subspace. A more general hope is that X lies on (or close

to) a d-dimensional Riemannian submanifold of R
D. The manifold assumption

is clearly more general since If X has an affine dimension of d, it certainly has

manifold dimension at most d.

Similarly, low Assouad dimension implies small covering numbers:

Lemma 13. If X has diameter C and Assouad dimension d, then for any ǫ > 0,

it has an ǫ-cover of size at most (2C/ǫ)d.

Proof. Applying the doubling condition recursively, X can be covered by one ball

of radius C, 2d balls of radius C/2, 22d balls of radius C/4, and so on.

The only nontrivial containment result is that if X is a d-dimensional Rie-

mannian submanifold with bounded curvature, then sufficiently small neighbor-

hoods of X (where this neighborhood radius depends on the curvature) have As-

souad dimension O(d). This result (see Lemma 14 of Section 2.2) is formalized and

proved in [DF08b]. This result requires a clean formulation of curvature. [NSW06]

has recently suggested formulation in which the curvature is captured by a single

value which they call the condition number of the manifold. Similar notions have

earlier been used in the computational geometry literature [AB98].

Lemma 14. [DF08a] If a d-dimensional Riemannian submanifold of R
D has

bounded condition number τ < ∞, then its neighborhoods of radius < 1/τ have

Assouad dimension O(d).

The containment is strict: there is a substantial gap between manifolds of

bounded curvature and sets of low Assouad dimension, on account of the smooth-

ness properties of the former. This divide is not just a technicality but has impor-

tant algorithmic implications. For instance, a variant of the Johnson Lindenstrauss

lemma states that when a d-dimensional manifold (of bounded curvature) is pro-

jected onto a random subspace of dimension O(d/ǫ2), then all interpoint distances
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are preserved within 1 ± ǫ factor [BW07], [Cla07]. This does not hold for sets

of Assouad dimension d [IN07]. In fact, the Assouad dimension, and hence the

covering dimension, capture the complexity of more general sets with less regular-

ity than a smooth manifold. For instance X might be made up of many pieces

of low-intrinsic dimension with no structural restriction. For instance a set of n

points can always be covered by n balls, and therefore has Assouad dimension at

most log n (where the logarithm is taken base two). Also a sparse dataset can be

viewed as a finite collection of hyperplanes and thus has low Assouad dimension.

We have the following two lemmas.

Lemma 15. Suppose sets S1, . . . , Sn each have Assouad dimension ≤ d. Then

S1 ∪ · · · ∪ Sn has Assouad dimension at most d + log n.

Proof. Pick any ball B; by hypothesis B∩Si can be covered by 2d balls of half the

radius. Therefore B ∩ (S1 ∪ · · · ∪ Sn) can be covered by n · 2d such balls.

Lemma 16. Suppose that S ⊂ R
D is k-sparse: that is, each point in S has at most

k nonzero coordinates. Then S has Assouad dimension at most cok + k log D.

Proof. S is contained within the union of
(

D
k

)
≤ Dk subspaces of dimension k:

pick which k coordinates, out of D, will be nonzero, and consider the subspace in

which the remaining coordinates are forced to zero. It is well known (see [Cla05])

that each of these subspaces has Assouad dimension at most cok. Lemma 15 then

bounds the increase in dimension from taking the union of the subspaces.

2.2 Intrinsic dimension of real-world data

As mentioned earlier, most of the theoretical guarantees in this dissertation

will be given in terms of intrinsic dimension, most often Assouad dimension. We

therefore need to make sure that these sorts of notions developed in the last section

actually capture the complexity of real-world data. Unfortunately, quantities such

as covering and doubling dimension are hard to estimate on data. This is because

they require estimating the smallest r-covers for given r’s which itself is a difficult

problem. The size of the minimum r-cover of a set A is (by definition) bounded
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by the size of an r-net of this set which is easily obtained by farthest-first traversal

(see Chapter 6). However this can yield a poor estimate as it is just a coarse

upper-bound.

Given the difficulty in estimating covering and Assouad dimensions of real-

world data, we instead relate these notions to other verifiable properties of data

such as local flatness. In the previous section we have related the Assouad dimen-

sion to that of manifolds and other geometrical structures which are locally flat.

Here we present a formalism for local flatness (called covariance dimension) which

is verifiable real-world datasets. The following notion of local flatness is borrowed

from similar definitions in [DF08a].

Definition 17. Let µ be any measure over R
D and let S be its covariance matrix.

We say that µ has covariance dimension (d, ǫ) if the largest d eigenvalues of S

account for (1 − ǫ) fraction of its trace. That is, if the eigenvalues of S are λ1 ≥
λ2 ≥ · · · ≥ λD, then

λ1 + · · ·+ λd ≥ (1− ǫ)(λ1 + · · ·+ λD).

A distribution has covariance dimension (d, ǫ) if all but an ǫ fraction of

its variance is concentrated in a d-dimensional affine subspace. Equivalently, the

projection of the distribution onto this subspace leads to at most an ǫ total loss in

squared distances. It is, in general, too much to hope that an entire data distribu-

tion would have low covariance dimension. But we might hope that this property

holds locally; or more precisely, that all (or most) sufficiently-small neighborhoods

have low covariance dimension. At this stage, we could make this definition more

complicated by quantifying the “most” or “sufficiently small” (as [DF08b] did to

some extent), but it will turn out that we don’t need to do this in order to state

the results in this dissertation, so we leave things as they are.

Intuitively, the local covariance condition lies somewhere between manifold

dimension and Assouad dimension, although it is more general in that it merely

requires points to be close to a locally flat set, rather than exactly on it.

Covariance dimension is an intuitive notion, and recalls standard constructs

in statistics such as mixtures of factor analyzers. It is instructive to see how it
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might be estimated from samples, and whether there is evidence that many data

sets do exhibit local flatness as formalized by the covariance dimension.

First let’s set our expectations properly. Even if data truly lies near a

low-dimensional manifold structure, this property would only be apparent at a

certain scale, that is, when considering neighborhoods whose radii lie within an

appropriate range. For larger neighborhoods, the data set might seem slightly

higher dimensional: the union of a slew of local low-dimensional subspaces. And

for smaller neighborhoods, all we would see is pure noise, and the data set would

seem full-dimensional.

Thus we will empirically estimate covariance dimension at different reso-

lutions. First, we determine the diameter ∆ of the dataset X by computing the

maximum interpoint distance, and we choose multiple values r ∈ [0, ∆] as our

different scales (radii). For each such radius r, and each data point point x ∈ X,

we compute the covariance matrix of the data points lying in the ball B(x, r), and

we determine (using a standard eigenvalue computation) how many dimensions

suffice for capturing a (1− ǫ) fraction of the variance. In our experiments, we try

ǫ = 0.1 and 0.01. We then take the dimension at scale r (call it d(r)) to be average

of all these values (over x).

How can we ascertain that our estimate d(r) is indicative of the underlying

covariance dimension at resolution r? If the balls B(x, r) are so small as to contain

very few data points, then the estimate d(r) is not reliable. Thus we also keep track

of n(r), the average number of data points within the balls B(x, r) (averaged over

x). Roughly, we can expect d(r) to be a reliable estimate if n(r) is an order of

magnitude larger than d(r).

Results

Figure 2.3 plots d(r) against r for several data sets. The numerical anno-

tations on each curve represent the values n(r). Loosely speaking, the larger the

ratio n(r)/d(r), the higher our confidence in the estimate.

Noisy swiss-roll: This is a noisy version of the ever-popular “swiss roll”

(depicted below). In small neighborhoods, it is noise that dominates, and thus the
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Figure 2.3: Local Covariance Dimension Estimates for Various Datasets. We
fix ǫ and we report the average intrinsic dimension estimates for balls of varying
radii centered at the data points. The bold line shows the dimension estimate as a
function of radius, with dashed lines giving standard deviations over the different
balls for each radius. The numeric annotations are average numbers of datapoints
falling in balls of the specified radius.
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data appear full-dimensional. In larger neighborhoods, the two-dimensional struc-

ture emerges: notice that the neighborhoods have very large numbers of points, so

that we can feel very confident about the estimate of the local covariances. In even

larger neighborhoods, we capture a significant chunk of the swiss roll and again

revert to three dimensions.

Rotating teapot: This consists of images of a rotating teapot, each 30×50

pixels in size. Thus the ambient dimension D is 1500, although the points lie close

to a one-dimensional manifold. Some of the images are shown below along with a

2-dimensional PCA of the dataset which clearly shows the 1-dimensional manifold

structure. The intrinsic dimension experiments clearly identifies a low-dimensional

structure at a small scale, although in the figure, the d(r) values seem to be 3 or

4 rather than 1, but in any case much lower than D.

Robotic arm: The data consists of noisy measurements from 12 sensors

placed on a robotic arm with two joints. Thus the ambient dimension is 12, but

there are only two underlying degrees of freedom. The estimate d(r) is on average

close to 2.

OCR: This is the MNIST OCR dataset of handwritten digits, where we

just pick the subset of handwritten “1”. Each datapoint is a 28× 28 pixels image

and so the ambient dimension D is 784. However, the intrinsic dimensionality

according to the estimates is between 20 and 30.

ASL: This is the Australian Sign Language time-series dataset from UCI

Machine Learning Repository [Kad02] where we just pick out the subset for the

“love” sign. The time series in this dataset are obtained from sensors on a glove.

After some processing, the ambient dimension is 22, however we estimate low

intrinsic dimension of between 3 and 5.
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TIMIT: This is the popular TIMIT dataset of speech frames, which con-

tains recordings of 600 speakers reading text; each recording is then broken up

into 25 milliseconds windows each corresponding to a spoken phoneme. Standard

Mel-frequency cepstal coefficients (MFCC) are then computed on each window to

obtain a 39 dimensional vector. Here we pick the subset of “aw” phoneme. Al-

though the ambient dimension is 39, we estimate the intrinsic dimension at around

10.

Portions of this chapter appear in:

– N. Verma, S. Kpotufe, S. Dasgupta, “Which spatial partition trees are adaptive

to intrinsic dimension?”, Uncertainty in Artificial Intelligence, 2009.



Chapter 3

Traditional solutions to the curse

of dimension

Traditional solutions to the curse of dimension involve either preprocessing

the data by reducing its dimension, or operating an adaptive regressor such as

kernel methods in the original space. We investigate these two approaches in the

following sections.

3.1 Dimensionality reduction

A simple approach to the curse of dimension is to reduce dimension by

remapping the data space X to a lower-dimensional space Z and then perform

regression in this final space (Figure 3.1). One of the earliest forms of dimen-

R
D

φ(X ) = Z

R
d

Z

X

Figure 3.1: Embedding: X ⊂ R
D gets remapped to Z ⊂ R

d, where we assume
d ≪ D. Regression can then be performed in the space Z provided the entire
space Z (as opposed to just the training data) gets remapped.

23
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sionality reduction technique is PCA [DGL96a] which consists of remapping the

data X ⊂ R
D to a subset Z of the subspace spanned by its top d principal com-

ponents. This preserves most interpoint distances if the data is close to linear,

i.e. the variance of the data in the subspace of R
D orthogonal to Z is negligible.

Unfortunately, this cannot be expected in general, and although data might be

intrinsically low-dimensional, it might lie near a non-linear manifold. This realiza-

tion has motivated a wide body of work termed manifold learning which seeks to

transform data from R
D to a lower-dimensional space while preserving important

structure; key early results are [RS00, TSL00, BN03]. The type of structure be-

ing preserved varies with the procedures and it is not clear a priori whether such

structures are the relevant information to be preserved for regression. Next we

look at a few early examples to give the reader an idea of structures that manifold

learning algorithms aim to preserve.

The Local Linear Embedding (LLE) method of Roweis and Saul [RS00]

seeks to preserve local linearity, i.e.. if each point in a small set of nearby points

can be expressed as a linear combination of the others (this would happen in

small regions of a manifold) then they should be mapped to a set of points that

can similarly be expressed as a linear combination of each other using the same

weights. The Isomap method of TenenBaum et. al [TSL00] seeks to preserve

geodesic distances, i.e. the distance between points in the lower-dimensional space

should correspond to the geodesic distances of their image on the manifold. The

Laplacian Eigenmaps of Belkin and Niyogi aims to preserve local information,

i.e. nearby points should be mapped to nearby points. This is probably most

directly related to the types of information useful in nonparametric classification

and regression, as many learning methods are based on the assumption that nearby

X points have similar Y values (e.g. the Lipschitz assumptions on the regression

function f discussed earlier in the introduction).

The main problem however in using these methods as a preprocessing step to

regression is that they typically only map the training data to a new space and don’t

automatically provide a map for the entire space X . In other words, when we get

a new query point x, we do not know where to map it in the new low-dimensional
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space so we cannot perform regression in this new space. This problem has spurred

the development of new methods called out-of-sample extensions algorithms (e.g.

[BPV+03]) which, given a new sample X, seek to predict its embedding Z from

pairs {(Xi, Zi)}ni=1 of initial samples and their embeddings by a manifold learning

procedure. Unfortunately, this prediction task itself operates on X ⊂ R
D and is

thus subject to the curse of dimension.

Perhaps for the above reasons, there exist no result in our knowledge that

guarantees good regression risks for a procedure consisting of manifold learning

followed by regression in the low-dimensional space. In the next section we inves-

tigate some simple distance preserving conditions under which a dimensionality

reduction technique will yield good guarantees while used as a preprocessing step

to regression.

3.1.1 Guaranteed regression rates after dimensionality re-

duction

Consider a dimensionality reduction technique φ : X 7→ R
d where X ⊂ R

D,

and d ≤ D. Let Z be the image of X under φ. Assume that φ preserves distance,

i.e. there exists 0 < ǫ < 1 such that ∀x, x′ ∈ X

(1− ǫ) ‖x− x′‖ ≤ ‖φ(x)− φ(x′)‖ ≤ (1 + ǫ) ‖x− x′‖ . (3.1)

Notice that the above imply that φ is a bijection from X to Z. If a dimensionality

reduction method preserves distance in this way, then it can be used to preprocess

data for regression and yields guaranteed regression rates that depend just on the

dimension d of the embedding space Z. This follows easily as explained below.

Suppose the regression function f satisfy a Lipschitz condition of the form

∀x, x′ ∈ X , ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖ .

Now let

g(z)
.
= E[Y |z] = E[f(φ−1(z)) + η|z] = f(φ−1(z)),

be the regression function over the new space Z. Then for all z, z′ ∈ Z, g satisfies
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the Lipschitz condition

‖g(z)− g(z′)‖ =
∥∥f(φ−1(z))− f(φ−1(z′))

∥∥

≤λ
∥∥φ−1(z)− φ−1(z′))

∥∥

≤ λ

1− ǫ
‖z − z′‖ .

Now let gn be a regressor in R
d such that if the regression function g is

λ′-Lipschitz, gn satisfies

E ‖gn − g‖2 ≤ C ·∆2d/(2+d)
Z

(
∆2

Y
λ′2n

)2/(2+d)

,

where ∆Z is the diameter of Z. Note that most common regressors such as tree-

based, kernel, k-NN regressors satisfy this property1 (see e.g. [GKKW02]). Let

fn(x)
.
= gn(φ(x)) be the regressor obtained by learning gn on a transformed sample

{(Zi, Yi)}ni=1 = {(φ(Xi), Yi)}ni=1. We automatically have:

E ‖fn − f‖2 = E
X,Y,X

‖fn(X)− f(X)‖2

= E
X,Y,X

‖gn(φ(X))− g(φ(X))‖2

= E ‖gn − g‖2

≤C · ((1 + ǫ)∆X )2d/(2+d)

(
∆2

Y
(λ/(1− ǫ))2n

)2/(2+d)

.

The obvious question now is whether there exists dimensionality reduction

methods that preserve distance as in (3.1) for the entire data space X (as opposed

to just a sample from X ). The only results we know with this sort of guarantee

are those of [BW07], and [Cla07] where φ is a random projection operator. It

is shown in these results that if X is a d-dimensional manifold, then a random

projection to R
k preserves distances with distortion (1± ǫ) distortion as in (3.1),

provided k = O((d/ǫ2) log(V τ−1ǫ−1)) where V is the volume of the manifold and

τ is a quantity (called the condition number) that describes the curvature of the

1These are so-called oracle bounds that hold under the optimal parameter setting of the
algorithm, e.g. the optimal bandwidth setting for a kernel regressor, which unfortunately is
unknown. However, a good parameter setting can be found in practice through cross-validation
and the resulting risk bound is only slightly worse than the optimal (see e.g. [LW07]).
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manifold. As previously mentioned in Chapter 2 this sort of result does not hold

for general data sets of low intrinsic dimension (e.g. Assouad dimension) as it

requires a fair amount of geometric regularity.

3.2 Known adaptive regressors

In this section we discuss kernel regression and k-NN regression. As men-

tioned in the introduction, kernel regression is known to be adaptive [BL06] to

intrinsic dimension, while there is strong evidence that k-NN might also be. Un-

fortunately, both these regression approaches can be expensive in practice since,

for any new prediction, they require time consuming searches through the training

data.

The efficient adaptive methods that are the main subjects of this disserta-

tion all guarantee an O(log n) time complexity, where the O notation might hide

constants that depend on the intrinsic dimension of the data.

3.2.1 Kernel regression

A kernel regression estimate fn(x) is obtained by averaging the Y values of

sample points according to how close they are to the query x. That is, it takes the

form fn(x) =
∑n

i=1 wi(x)Yi where the weight wi(x) is defined via a kernel function.

The analysis in this section is restricted to the following types of kernels:

Definition 18 (Admissible kernels). The kernel K : [0,∞) 7→ [0,∞) is a nonin-

creasing function that is highest and positive at 0, and is 0 on [1,∞).

Examples of such kernels are the naive kernel K(u) = 1 [u < 1], the triangle

kernel K(u) = (1 − u)+, and the popular Epanechnikov kernel K(u) = 3
4
(1 −

u2)+. This definition excludes the Gaussian kernel K(u) = e−u2

but the analysis

in this section still gives us insight about regression with this kernel since its

approximately satisfies the above conditions: it is non increasing and its value is

approximately 0 for u sufficiently large.
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Fix a kernel K, and a bandwidth parameter h > 0. The kernel weights are

defined as

wi(x) =
K(‖x−Xi‖ /h)∑n

j=1 K(‖x−Xj‖ /h)
,

provided the ball B(x, h) contains sample points from X = {Xi}ni=1 (so that the

weights in the denominator are not all 0), otherwise wi is undefined and we just

set the estimate fn(x) to some value in the range of Y , say Ȳ the average Y value

in the dataset.

In the naive implementation of kernel regression, evaluation takes time Ω(n)

since weights have to be computed for all points. However there exist many heuris-

tics which generally combine fast proximity search procedures with other elaborate

methods for approximating the kernel weights (see e.g. [LG08, AMS97]). These

heuristics do not guarantee a better time complexity since this depends on the

distribution of training points around the query point. For example, assuming

that the regression function is Lipschitz, the optimal bandwidth for kernel regres-

sion is of the form h ≈ n−1/(2+d) (see Theorem 21 below), and we would expect

O(nhd) ≈ n2/(2+d) points in the ball B(x, h). In other words a time complexity

better than a root of n is impossible.

The adaptivity of kernel regression to intrinsic dimension was shown re-

cently by Bikel and Li in [BL06] where they establish the asymptotic pointwise

risk2 of such a regressor in terms of manifold dimension. In this section we present

a simple finite sample analysis of the integrated excess risk and show that kernel

regression is adaptive to Assouad dimension, which as argued in Chapter 2 is a

more general notion of intrinsic dimension. We will later rely on insights from this

analysis to derive and understand tree-kernel hybrids procedures in Chapter 6, an

important subject of this dissertation.

We’ll proceed by bounding the bias and variance separately in the follow-

ing two lemmas, and then combining these bounds in Theorem 21. We note

that, to simplify notation we will often use the shorthand K(x, x′, h) to denote

K(‖x− x′‖ /h).

Lemma 19 (Variance at x). Fix X, and let 0 < h < ∆2
X . Consider x ∈ X such

2This commonly refers to the pointwise risk (at a point x) for large data sizes n.
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that X ∩B(x, h/2) 6= ∅. We have

E
Y|X

∥∥∥fn(x)− f̃n(x)
∥∥∥

2

≤ 2K(0)σ2
Y

K(1/2) · nµn (B(x, h/2))
.

Proof. It is easily verified that, for independent random vectors vi with expectation

0, E ‖∑i vi‖2 =
∑

i E ‖vi‖2. We apply this fact twice in the inequalities below,

given that, conditioned on X and Q ⊂ X, the Yi values are mutually independent.

We have

E
Y|X

∥∥∥fn(x)− f̃n(x)
∥∥∥

2

= E
Y|X

∥∥∥∥∥∥

∑

i∈[n]

wi(x)

(
Y − E

Y|X
Y

)∥∥∥∥∥∥

2

≤
∑

i∈[n]

w2
i (x) E

Y|X

∥∥∥∥Y − E
Y|X

Y

∥∥∥∥
2

=
∑

i∈[n]

w2
i (x)σ2

Y

≤
(

max
i∈[n]

wi(x)σ2
Y

)∑

i∈[n]

wi = max
i∈[n]

wi(x)σ2
Y

= max
i∈[n]

K(x, xi, h)σ2
Y∑

j∈[n] K(x, xj, h)

≤ K(0)σ2
Y∑

j∈[n] K(x, xj, h)
. (3.2)

To bound the fraction in (3.2), we lower-bound the denominator as:

∑

i∈[n]

K(x, xi, h) ≥
∑

xi∈B(x,h/2)∩X

K(x, xi, h)

≥
∑

xi∈B(x,h/2)∩X

K (1/2) = K (1/2) · nµn(B(x, h/2)).

Plug this last inequality into (3.2) and conclude.

Lemma 20 (Bias at x). Fix X, and let 0 < h < ∆2
X . Consider x ∈ X such that

X ∩B(x, h) 6= ∅. We have

∥∥∥f̃n(x)− f(x)
∥∥∥

2

≤ λ2h2.
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Proof. We have

∥∥∥f̃n(x)− f(x)
∥∥∥

2

=

∥∥∥∥∥∥

∑

i∈[n]

wi(x) (f(Xi)− f(x))

∥∥∥∥∥∥

2

≤
∑

i∈[n]

wi(x) ‖f(Xi)− f(x)‖2

≤
∑

i∈[n]

wi(x)λ2h2 = λ2h2

where the first inequality is obtained from a Jensen’s inequality on the norm square.

Theorem 21. Assume the data space X has Assouad dimension d. There exists

C > 0 depending on d and K(0)/K(1/2), such that for any 0 < h < ∆2
X , the

kernel regressor fn = fn(h) satisfies

E
(X,Y)

‖fn − f‖2 ≤ C
∆2

Y (∆X/h)d

n
+ λ2h2.

Thus for h = C ′∆
d/(2+d)
X

(
∆2

Y

λ2n

)1/(2+d)

we have

E
(X,Y)

‖fn − f‖2 ≤ C ′′∆
2d/(2+d)
X

(
∆2

Y
λ2n

)2/(2+d)

.

Proof. Applying Fubini’s theorem, the expected excess risk, E(X,Y) ‖fn − f‖2, can

be written as

E
X

E
(X,Y)

‖fn(X)− f(X)‖2 (1 [µn(B(X, h/2)) > 0] + 1 [µn(B(X, h/2)) = 0]) .

By lemmas 19 and 20, and (1.2), we have for X = x fixed,

E
(X,Y)

‖fn(x)− f(x)‖2 1 [µn(B(x, h/2)) > 0]

≤ C1 E
X

[
σ2

Y 1 [µn(B(x, h/2)) > 0]

nµn(B(x, h/2))

]
+ λ2h2

≤ C1

(
2σ2

Y

nµ(B(x, h/2))

)
+ λ2h2 (3.3)



31

where for the last inequality we used the fact that (see lemma 4.1 of [GKKW02])

for a binomial b(n, p),

E

[
1 [b(n, p) > 0]

b(n, p)

]
≤ 2

np
.

For the case where B(x, h/2) is empty, we have

E
(X,Y)

‖fn(x)− f(x)‖2 1 [µn(B(x, h/4)) = 0]

≤ ∆2
Y E

X
1 [µn(B(x, h/2)) = 0] = ∆2

Y (1− µ(B(x, h/2))n

≤ ∆2
Ye−nµ(B(x,h/2)) ≤ ∆2

Y
nµ(B(x, h/2))

. (3.4)

Combining (3.4) and (3.3), we can then bound the expected excess risk as

E
(X,Y)

‖fn − f‖2 ≤ (C1 + 1)∆2
Y

n
E
X

[
1

µ(B(X, h/2))

]
+ λ2h2. (3.5)

The expectation on the r.h.s is bounded using a standard covering argument (see

e.g. [GKKW02]). Let {zi}N1 be an h
4
-cover of X . Notice that for any zi, x ∈

B(zi, h/4) implies B(x, h/2) ⊃ B(zi, h/4). We therefore have

E
X

[
1

µ(B(X, h/2))

]
≤

N∑

i=1

E
X

[
1 [X ∈ B(zi, h/4)]

µ(B(X, h/2))

]

≤
N∑

i=1

E
X

[
1 [X ∈ B(zi, h/4)]

µ(B(zi, h/4))

]

= N ≤ C2

(
∆X
h

)d

, where C2 depends just on d.

In the above theorem, the optimal bandwidth is expressed in terms of quan-

tities such as d that we do not generally know. How to properly set the bandwidth

is the subject of many works (e.g. [Sta89, CA91, DvdL05]) and it is not clear

whether we can always get close to the optimal bandwidth. However, in practice

one just employs cross-validation over a range of bandwidth settings. If this range

contains a setting that is close to the optimal then simple concentration bounds

tell us that the resulting regressor will have an excess risk in the same order as

that in the theorem. For example, disregarding other terms, we can insure that
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the range contains bandwidths of the form n−1/(2+d) simply by trying all possible

values of d (see e.g. [LW07]). The resulting risk will be optimal in its dependence

on the dimension although it can worsen in terms of the other variables such as λ.

3.2.2 k-NN regression

A k-NN regression estimate fn(x) is obtained by averaging the Y values of

the k nearest neighbors of the query x in the sample X. Let X(i)(x) and Y(i)(x)

denote the i’th nearest neighbor and its corresponding Y value. We have

fn(x) =
1

k

k∑

i=1

Y(i)(x).

Evaluation consists of finding all the k nearest neighbors and so it takes

time at least Ω(k). Unfortunately, to insure good regression rates, k has to be

chosen large as a root of n [GKKW02], and this can be expensive considering that

nonparametric regression in general requires large data sizes n.

We now turn to the question of adaptivity. For the case k = 1, Kulkarni

and Posner [KP95] show that E ‖fn − f‖2 converges to R(f) at a rate that depend

just on the covering dimension of X . Unfortunately 1-NN is not consistent as for

consistency we need k to grow with n (see [GKKW02]).

The adaptivity of k-NN to intrinsic dimension is an open problem. However

we list this method in this Section on adaptive procedures as there are reasons to

believe that they are indeed adaptive (at least in their asymptotic rates). One

simple such reason is that locally at a point x, they behave like a kernel regressor

with a naive kernel, using a bandwidth h corresponding to the radius of the smallest

ball around x of mass k/n. We hope to formalize this intuition and close the

question of adaptivity of k-NN regression to intrinsic dimension.



Chapter 4

Tree-based regressors and data

diameters

A tree-based regression scheme takes as input a data set of n pairs (X,Y ),

with X ∈ R
D, and then works (typically) in two phases.

1. It builds a tree T each of whose nodes corresponds to a cell (region) of R
D.

The root node is all of R
D; and each internal node’s cell is the disjoint union

of the cells of its two children.

2. It prunes the trees to some T ′, and fits a simple (constant, or at rate contin-

uous) function to the data in each leaf of T ′.

The cells corresponding to the leaves of T ′ are a partition of R
D, and the

collection of these local estimates, one per cell, form a piecewise continuous

function fn.

An attractive property of this estimator is that fn(x) can be evaluated by simply

navigating down to the leaf containing x, which takes time proportional to the

height of the tree, often just O(log n). This computational efficiency, and an overall

ease of use, have motivated a variety of tree partition methods (Figure 4.1) such

as CART, dyadic trees, and k-d trees [GN05, SN06a, DGL96a], but none of these

has been shown to adapt to intrinsic dimension in its regression risk.

33
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(a) Dyadic tree (b) k-d tree (c) RP tree

Figure 4.1: Spatial partitioning induced by various splitting rules. Two levels
of the tree are shown for each. For the dyadic tree, each region is split at the
midpoint along a coordinate direction. The k-d tree splits at (or near) the median
of the (projected) data along a coordinate direction. The RP tree split at (or near)
the median of the (projected) data along a random direction.

In this chapter, we investigate the adaptivity of tree methods to intrinsic

dimension. First we tie adaptivity to the speed at which the diameter of the data

in each cell of a tree decreases as one goes from the root down to the leaves. We will

see empirically that trees that decrease this data diameter quickly tend to yield

better regressors. We then investigate the rate at which various trees decrease

data diameter as a function of the intrinsic diameter of the data space. Later in

Chapter 5 we show a formal link between the risk of a tree-based regressor and the

rate at which it decrease the diameter of data within it cells.

4.1 Spatial partition trees

Spatial partition trees conform to a simple template:
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Procedure PartitionTree(dataset A ⊂ X)
if |A| ≤ MinSize then

return leaf

end

else
(Aleft, Aright)← SplitAccordingToSomeRule(A)

LeftTree← PartitionTree(Aleft)

RightTree← PartitionTree(Aright)

end

return (LeftTree, RightTree)

Different types of trees are distinguished by their splitting criteria. Here

are some common varieties:

• Dyadic tree: Pick a coordinate direction and splits the data at the mid-

point along that direction. One generally cycles through all the coordinates

as one moves down the tree.

• k-D tree: Pick a coordinate direction and splits the data at the median

along that direction. One often chooses the coordinate with largest spread.

• Random Projection (RP) tree: Split the data at the median along a

random direction chosen from the surface of the unit sphere.

• Principal Direction (PD or PCA) tree: Split at the median along the

principal eigenvector of the covariance matrix.

• Two Means (2M) tree: Pick the direction spanned by the centroids of the

2-means solution, and split the data as per the cluster assignment.

4.2 Bias-Variance tradeoff: standard intuition

Based on the training set, we will construct a partition A of X (or more

precisely, of R
D, since X is unknown), and we will estimate f , in a piecewise

manner, as the average Y value in each cell of this partition (or some arbitrary
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value if no point falls in the cell). It is standard to decompose the error of the

estimator into two parts.

bias ≡ in expectation, how well does the average Y approximate f?

variance ≡ how unstable is the average Y within a cell?

Traditionally, the analysis of bias is based on the physical diameters of cells

A ∈ A,

∆(A)
.
= max

x,x′∈A
‖x− x′‖

(see, for instance, [GN05, SN06a, DGL96a]). Suppose ∆(A) is small, then if the

query point x falls in A, we know x is close to all the data within A, and we can

therefore expect that f(x) should be close to the Y values of data within A. Thus,

bias can be controlled by making sure cells have small physical diameter so that

f itself does not vary much within a cell. However, such cells are typically found

deep down the tree and likely contain very few points. In other words, cells A with

small ∆(A) tend to yield high variance estimates. However cells A with a lot of

data in them tend to be found higher up the tree and therefore have large ∆(A),

implying large bias.

The most crucial aspect of tree-based regression is how to pick a good

partition A in the tree that allows a good tradeoff between bias and variance. The

standard intuition is therefore to pick a partition somewhere mid-level in the tree so

that the cell diameters are sufficiently small and the cells still contain a reasonable

number of points. This intuition works fine for a lot of common partition rules

such as dyadic trees and k-d trees. However, for splitting rules such as RP tree, PD

tree, the cells are irregular polytopes whose physical diameters are hard to assess,

and worse, whose physical diameters might not decrease at all. A new approach is

therefore needed, and is the subject of Section 4.3 below.
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Figure 4.2: Bias-Variance tradeoff. The query point is shown in blue. The
left partition yields a high bias estimator, while the right partition yields a high
variance estimator, we therefore might settle for the tradeoff offered by the middle
partition.

4.3 Bias-Variance tradeoff: new intuition

4.3.1 Data-diameter

The generalization behavior of a spatial partitioning has traditionally been

analyzed in terms of the physical diameter of the individual cells (see, for in-

stance, [DGL96b, SN06b]). But this kind of diameter is hard to analyze for general

convex cells. Instead we consider more flexible notions that measure the diameter

of data within the cell. We will later show that such measures are sufficient for

giving generalization bounds for the regression risk.

data diam.

cell diameter

avg. data diam.

Cell of a Partition Tree

Figure 4.3: Various Notions of Diameter

For any cell A, we will use two types of data diameter: the maximum

distance between data points in A, denoted ∆n(A), and the average interpoint

distance among data in A, denoted ∆n,a(A) (Figure 4.3).
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Let X = {X1, . . . , Xn} be a data set drawn from X , and let µn be the

empirical distribution that assigns equal weight to each of these points. Consider

a collection A of disjoint subsets A of X . For each such cell A, we can look at

its maximum (data) diameter as well as its average (data) diameter; these are,

respectively,

∆n(A)
.
= max

x,x′∈A∩X
‖x− x′‖

∆n,a(A)
.
=

1

(nµn(A))

(
∑

x,x′∈A∩X

‖x− x′‖2
)1/2

(for the latter it turns out to be a big convenience to use squared Euclidean dis-

tance.) We can also average these quantities all over cells A ∈ A:

∆n(A)
.
=

(∑
A∈A µn(A)∆2

n (A)∑
A∈A µn(A)

)1/2

∆n,a(A)
.
=

(∑
A∈A µn(A)∆2

n,a (A)∑
A∈A µn(A)

)1/2

.

As mentioned before, physical cell diameters may not decrease at all with

some partitioning rules such as RP tree, but the data diameter is bound to decrease

whenever the rule insures that the number of points per cell goes down at some

steady rate.

4.3.2 Diameter-decrease rate and adaptivity to intrinsic di-

mension

In this work, we build upon the new intuition that, for good bias-variance

tradeoff, we just need data diameter (under any of the above formalisms) to de-

crease quickly from the root down. This way, the tree would contain partitions

which have cells containing many points (good variance) and whose data diame-

ters are also small (which, as we will see, implies good bias). This intuition checks

out against real-world data. In Figure 4.4 we see the general trend that the tree

methods that decrease data diameter (∆n(·), and ∆n,a(·)) fastest, also produce the

best regressors at all levels.
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Figure 4.4: Data diameter decrease rates vs regression errors for various tree
methods on two datasets. We report for each level of the tree, the average data
diameter (∆n(A) and ∆n,a(A)) for the partition A defined by the cells at that level.
The reported regression error (for the regressor defined over the same partition A)
is the l2 risk evaluated on a test sample. The observed trend is that the tree
methods that decrease data diameter fastest also attain better regression risk.
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In the experiments of Figure 4.4 we implement the trees as follows: dyadic

trees – fix a permutation and cycle through the coordinates, k-D trees – determine

the spread over each coordinate by computing the coordinate vise diameter and

picking the coordinate with maximum diameter, RP trees – pick the direction that

results in the largest diameter decrease from a bag of 20 random directions, PD

trees – pick the principal direction in accordance to the data falling in each node

of the tree, 2M trees – solve 2-means via the Lloyd’s method and pick the direction

spanned by the centroids of the 2-means solution.

As it turns out, some tree methods decrease data diameter at a rate that

depend on the intrinsic dimension of the data. In other words, if the data has low

intrinsic dimension, some tree methods achieve better data diameter decrease rates,

and hence, given the observed trend, attain better regression risks. In the next

sections we establish the rate at which various tree methods decrease data diameter.

We follow this by an analysis of the RP tree method (Chapter 5) where we formally

link the diameter decrease rate to the regression risk of the tree estimator.

4.4 Data diameter decrease rates: low covari-

ance dimension

4.4.1 Irregular splitting rules

This section considers the RPTree, PDtree, and 2Mtree splitting rules. The

nonrectangular partitions created by these trees turn out to be adaptive to the local

dimension of the data: the decrease in average diameter resulting from a given

split depends just on the eigenspectrum of the data in the local neighborhood,

irrespective of the ambient dimension. In all the lemmas below, the covariance

dimension is defined under the empirical distribution µn.

For the analysis, we consider a slight variant of these trees, in which an

alternative type of split is used whenever the data in the cell has outliers (here,

points that are much farther away from the mean than the typical distance-from-

mean).
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Procedure split(region A ⊂ X)
if ∆2

n (A) ≥ c ·∆2
n,a (A) then

//SPLIT BY DISTANCE: remove outliers.

Aleft ← {x ∈ A, ‖x− νn,A‖ ≤ median{‖z − νn,A‖ : z ∈ X ∩ A}};
end

else
//SPLIT BY PROJECTION: no outliers.

Choose a unit direction v ∈ R
D and a threshold t ∈ R.

Aleft ← {x ∈ A, x · v ≤ t};
end

Aright ← A \ Aleft;

The distance split is common to all three rules, and serves to remove outliers.

It is guaranteed to reduce maximum data diameter by a constant fraction:

Lemma 22 (Lemma 12 of [DF08b]). Suppose ∆2
n (A) > c ·∆2

n,a (A), so that A is

split by distance under any instantiation of procedure split. Let A = {A1, A2} be

the resulting split. We have

∆2
n (A) ≤

(
1

2
+

2

c

)
∆2

n (A) .

We consider the three instantiations of procedure split in the following

three sections, and we bound the decrease in diameter after a single split in terms

of the local spectrum of the data.

RPtree

For RPtree, the direction v is picked randomly, and the threshold t is the

median of the projected data.

The diameter decrease after a split depends just on the parameter d of the

local covariance dimension, for ǫ sufficiently small.

Lemma 23 (Theorem 4 of [DF08b]). There exist constants 0 < c1, c2 < 1 with the

following property. Suppose ∆2
n (A) ≤ c ·∆2

n,a (A), so that A is split by projection

into A = {A1, A2} using the RPtree split. If A ∩ X has covariance dimension
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(d, c1), then

E
[
∆2

n,a (A)
]

< (1− c2/d)∆2
n,a (A) ,

where the expectation is over the choice of direction.

PDtree

For PDtree, the direction v is chosen to be the principal eigenvector of the

covariance matrix of the data, and the threshold t is the median of the projected

data.

The diameter decrease after a split depends on the local spectrum of the

data. Let A be the current cell being split, and suppose the covariance matrix of

the data in A has eigenvalues λ1 ≥ · · · ≥ λD. If the covariance dimension of A is

(d, ǫ), define

k
.
=

1

λ1

d∑

i=1

λi, (4.1)

By definition, k ≤ d.

The diameter decrease after the split depends on k2, the worst case being

when the data distribution in the cell has heavy tails (example omitted for want of

space). In the absence of heavy tails (condition (4.2)), we obtain a faster diameter

decrease rate that depends just on k. This condition holds for any logconcave dis-

tribution (such as a Gaussian or uniform distribution), for instance. The decrease

rate of k could be much better than d in situations where the first eigenvalue is

dominant; and thus in such situations PD trees could do a lot better than RP

trees.

Lemma 24. There exist constants 0 < c1, c2 < 1 with the following property.

Suppose ∆2
n (A) ≤ c ·∆2

n,a (A), so that A is split by projection into A = {A1, A2}
using the PDtree split. If A ∩X has covariance dimension (d, c1), then

∆2
n,a (A) < (1− c2/k

2)∆2
n,a (A) ,

where k is as defined in (4.1).

If in addition the empirical distribution on A ∩X satisfies (for any s ∈ R

and some c0 ≥ 1)

EA[(X · v − s)2] ≤ c0 (EA[X · v − s])2 (4.2)
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we obtain a faster decrease where

∆2
n,a (A) < (1− c2/k)∆2

n,a (A) .

Proof. The argument is based on the following fact which holds for any bi-partiton

A = {A1, A2} of A (see lemma 15 of [DF08b]):

∆2
n,a (A)−∆2

n,a (A) = 2µ(A1) · µ(A2) ‖νn,A1
− νn,A2

‖2 .

We start with the first part of the statement with no assumption on the

data distribution. Let x̃ ∈ R be the projection of x ∈ A ∩ X to the principal

direction. WLOG assume that the median on the principal direction is 0. Notice

that

‖νn,A1
− νn,A2

‖ ≥ E [x̃ |x̃ > 0]− E [x̃ |x̃ ≤ 0]

≥ max {E [x̃ |x̃ > 0] ,−E [x̃ |x̃ ≤ 0]}

where the expectation is over x chosen uniformly at random from A ∩ X. The

claim is therefore shown by bounding the r.h.s below by O(∆a(A)/k and applying

equation (4.3).

We have E [x̃2] ≥ λ1, so either E [x̃2|x̃ > 0] or E [x̃2|x̃ ≤ 0] is greater than

λ1. Assume WLOG that it is the former. Let m̃ = max{x̃ > 0}. We have that

λ1 ≤ E
[
x̃2|x̃ > 0

]
≤ E [x̃ |x̃ > 0] m̃,

and since m̃2 ≤ c∆2
n,a (A), we get

E [x̃ |x̃ > 0] ≥ λ1

∆a(A)
√

c
.

Now, by the assumption on covariance dimension,

λ1 =

∑d
i=1 λi

k
≥ (1− c1)

∑D
i=1 λi

k
= (1− c1)

∆2
n,a (A)

2k
.

We therefore have (for appropriate choice of c1) that

E [x̃ |x̃ > 0] ≥ ∆a(A)/4k
√

c,
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which concludes the argument for the first part.

For the second part, assumption (4.2) yields

E [x̃ |x̃ > 0]− E [x̃ |x̃ ≤ 0] = 2E |x̃| ≥ 2

√
E |x̃|2

c0

≥ 2

√
λ1

c0

= 2

√
∆2

n,a (A)

4c0k
.

We finish up by appealing to equation (4.3).

2Mtree

For 2Mtree, the direction v = νn,A1
− νn,A2

where A = {A1, A2} is the

bisection of A that minimizes the 2-means cost. The threshold t is the half point

between the two means.

The 2-means cost can be written as

∑

i∈[2]

∑

x∈Ai∩X

‖x− νn,Ai
‖2 =

n

2
∆2

n,a (A) .

Thus, the 2Mtree (assuming an exact solver) minimizes ∆2
n,a (A). In other words,

it decreases diameter at least as fast as RPtree and PDtree. Note however that,

since these are greedy procedures, the decrease in diameter over multiple levels

may not be superior to the decrease attained with the other procedures.

Lemma 25. Suppose ∆2
n (A) ≤ c · ∆2

n,a (A), so that A is split by projection into

A = {A1, A2} using the 2Mtree split. There exists constants 0 < c1, c2 < 1 with

the following property. Assume A ∩X has covariance dimension (d, c1). We then

have

∆2
n,a (A) < (1− c2/d

′)∆2
n,a (A) ,

where d′ ≤ min{d, k2} for general distributions, and d′ is at most k for distributions

satisfying (4.2).

Diameter Decrease Over Multiple Levels

The diameter decrease parameters d, k2, k, d′ in lemmas 23, 24, 25 above are

a function of the covariance dimension of the data in the cell A being split. The
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covariance dimensions of the cells may vary over the course of the splits implying

that the decrease rates may vary. However, we can bound the overall diameter

decrease rate over multiple levels of the tree in terms of the worst case rate attained

over levels.

Lemma 26 (Diameter decrease over multiple levels). Suppose a partition tree is

built by calling split recursively (under any instantiation). Assume furthermore

that every node A ⊂ X of the tree satisfies the following: let A = {A1, A2} represent

the child nodes of A, we have for some constants 0 < c1, c2 < 1 and κ ≤ D that

(i) If A is split by distance, ∆2
n (A) < c1∆

2
n (A).

(ii) If A is split by projection, E
[
∆2

n,a (A)
]

< (1− c2/κ)∆2
n,a (A).

Then, there exists a constant C such that the following holds: let Al be the partition

of X defined by the nodes at level l, we have

E
[
∆2

n,a (Al)
]
≤ E

[
∆2

n (Al)
]
≤ 1

2⌊l/Cκ⌋∆
2
n (X ) .

In all the above, the expectation is over the randomness in the algorithm for

X fixed.

Proof. Fix X. Consider the r.v. X drawn uniformly from X. Let the r.v.s Ai =

Ai(X), i = 0 · · · l denote the cell to which X belongs at level i in the tree. Define

I(Ai)
.
= 1

[
∆2

n (Ai) ≤ c∆2
n,a (Ai)

]
.

Let Al be the partition of X defined by the nodes at level l, we’ll first show

that E [∆2
n (Al)] ≤ 1

2
∆2

n (X ) for l = Cκ for some constant C. We point out that

E [∆2
n (Al)] = E [∆2

n (Al)] where the last expectation is over the randomness in the

algorithm and the choice of X.

To bound E [∆2
n (Al)], note that one of the following events must hold:

(a) ∃ 0 ≤ i1 < · · · < im < l, m ≥ l
2
, I
(
Aij

)
= 0

(b) ∃ 0 ≤ i1 < · · · < im < l, m ≥ l
2
, I
(
Aij

)
= 1
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Let’s first condition on event (a). We have

E
[
∆2

n (Al)
]
≤ E

[
∆2

n (Aim+1)
]

= E
[
E
[
∆2

n (Aim+1) |Aim

]]
,

and since by the assumption, E [∆2
n (Aim+1) |Aim ] ≤ c1∆

2
n (Aim) we get that

E
[
∆2

n (Al)
]
≤ c1E

[
∆2

n (Aim)
]
.

Applying the same argument recursively on ij, j = m, (m− 1), . . . , 1, we obtain

E
[
∆2

n (Al)
]
≤ cm

1 · E
[
∆2

n (Ai1)
]
≤ c

l/2
1 ∆2

n (X ) .

Now condition on event (b). Using the fact that E
[
∆2

n,a (Ai)
]

is non-

increasing in i (see [DF08b]), we can apply a similar recursive argument as above

to obtain that E
[
∆2

n,a (Aim)
]
≤ (1− c2/κ)m−1

E
[
∆2

n,a (Ai1)
]
. It follows that

E
[
∆2

n (Al)
]
≤ E

[
∆2

n (Am)
]
≤ cE

[
∆2

n,a (Am)
]

≤ c
(
1− c2

κ

)l/2−1

∆2
n (X ) .

Thus, in either case we have

E
[
∆2

n (Al)
]
≤ max

{
c
l/2
1 , c (1− c2/κ)l/2−1

}
·∆2

n (X )

and we can verify that there exists C such that the r.h.s above is at most 1
2
∆2

n (X )

for l ≤ Cκ. Thus, we can repeat the argument over every Cκ levels to obtain the

statement of the lemma.

So if every split decreases average diameter at a rate controlled by κ as de-

fined above, then it takes at most O(κ log(1/ε)) levels to decrease average diameter

down to an ε fraction of the original diameter of the data. Combined with lemmas

23, 24, 25, we see that the three rules considered will decrease diameter at a fast

rate whenever the covariance dimensions in local regions are small.

4.4.2 Axis parallel splitting rules

It was shown in [DF08b] that axis-parallel splitting rules do not always

adapt to data that is intrinsically low-dimensional. They exhibit a data set in R
D
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that has low Assouad dimension O(log D), and where k-d trees (and also, it can

be shown, dyadic trees) require D levels to halve the data diameter.

The adaptivity of axis-parallel rules to covariance dimension is unclear. But

they are guaranteed to decrease diameter at a rate depending on D. The following

result states that it takes at most O(D(log D) log(1/ε)) levels to decrease average

diameter to an ε fraction of the original data diameter.

Lemma 27. Suppose a partition tree is built using either k-d tree or dyadic tree by

cycling through the coordinates. Let Al be the partition of X defined by the nodes

at level l. Then we have

∆2
n,a (Al) ≤ ∆2

n (Al) ≤
D

2⌊l/D⌋∆
2
n (X ).

Proof. We assume that the procedure builds the tree by cycling through the coor-

dinates (a single coordinate is used at each level).

Suppose a cell A is split into A = {A1, A2} along some coordinate ei. Then

the average diameter along coordinate i decreases under either split satisfies

1

µ(A)

(
µ(A1)∆

2
n (A1 · ei) + µ(A2)∆

2
n (A2 · ei)

)
≤ 1

2
∆2

n (A · ei) .

To see this, notice that the masses of the resulting cells are halved under

k-d tree splits (we assume that n is a power of 2), while the diameters are halved

under the dyadic tree splits.

We can derive an upper bound on the diameter decrease rate over multiple

levels as follows. Let X ∼ U(X), and let Al be the cell to which X̃ belongs at

level l ≥ 0 in the tree (built by either procedure). Let l ≥ 1, if we condition on

the event that the split at level l − 1 is along coordinate i, we have by the above

argument that

EX

[
∆2

n (Al · ei)
]
≤ 1

2
EX

[
∆2

n (Al−1 · ei)
]
.

No matter the coordinate used for the previous split, we always have

EX

[
∆2

n (Al · ei)
]
≤ EX

[
∆2

n (Al−1 · ei)
]
,
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and it follows that after a multiple of D levels we have

EX

[
∆2

n (Al · ei)
]
≤ 1

2l/D
∆2

n (X · ei),

for all i ∈ [D]. Summing over all coordinates, we then get

EX

[
∆2

n (Al)
]
≤ EX

[
D∑

i

∆2
n (Al · ei)

]
≤ D

2l/D
∆(X ).

To conclude, notice that EX [∆2
n (Al)] is exactly ∆2

n (Al) where Al is the

partition defined by the nodes at level l.

4.5 Data diameter decrease rates: low Assouad

dimension

4.5.1 Limitations of axis-parallel rules

Consider the data space,

S =
⋃

i6=j

{tei ± εej : −1 ≤ t ≤ 1}, i, j ∈ [D],

where ei is the unit vector in the ith coordinate direction, and ε > 0 is some small

constant serving as noise. S is an extreme case of a (noisy) sparse data set: each

point has at most two nonzero coordinates, and one such coordinates is ε close to

zero.

It is not hard to see that tree structures with axis-parallel splits (such as k-d

trees and dyadic trees) would require at least D levels to halve the diameter of S;
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that is, any tree with fewer levels would contain leaf cells of diameter greater than

one. Thus halving the diameter would require 2D data points, which is prohibitive

for large D.

However, by using a richer class of splits, cell size can be decreased a lot

quicker. By Lemma 15, S has Assouad dimension d ≤ O(log D), and it is shown

in [DF08a] that an RP tree halves the diameter in just O(d log d) levels, no matter

the distribution over the data space. A version of this result is presented below in

the next section.

This example suggests that, depending on the distribution µ on X , regres-

sion based on axis-parallel cells might require a data size (n) exponential in D in

order to attain low risk, whereas regression based on RP splits might do better,

requiring resources that depend just on the intrinsic dimension d. However, there

is an interesting subtlety. We show in Theorem 50 (Appendix) that the excess risk

of a dyadic tree regressor depends on D only in the form of a leading constant 2D,

and not in the exponent of n. That is, for n ≥ 2D, the risk looks like O
(
n−2/(2+d)

)
.

This is a curse of dimension that emerges in a finite-sample analysis but not nec-

essarily in an asymptotic analysis. All our results on RP tree regression in this

paper are finite-sample convergence rates which depend just on d even for small n.

4.5.2 Decrease rate for the RP tree

Here we work with a modified version of the RP tree called basicRPtree.

It takes as input a region A0 ⊂ X , and ∆ > 0, and (using a dataset X drawn from

X ) builds a tree rooted at A0 whose leaves form a partition A of A0 such that

∆n(A) < ∆. We will soon bound the height of this tree in terms of the Assouad

dimension of X .

In a random projection (RP) tree [DF08a], each cell is split by a random

hyperplane; specifically, a random direction is chosen from the surface of the unit

sphere, and then the cell is split along that direction, at the median plus a small

random perturbation. As a result of this perturbation, the two halves of the

cell might not contain an equal number of points, and, in some cases, might be

severely imbalanced. To keep the tree balanced (which insures that its has height
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Procedure basicRPtree(A0 ⊂ X , ∆)

A0 ← {A0};
for i← 1 to ∞ do

if ∆n (Ai−1) ≤ ∆ and i is odd then
return;

end

Choose a random direction v ∼ N
(
0, 1

D
ID

)
;

Choose a random τ ∼ U [−1, 1] · 6√
D

∆n(A0);

foreach cell A ∈ Ai−1 do

if i is odd then

t← median{z⊤v : z ∈ X ∩ A0}+ τ ; // Noisy splits

else

t← median{z⊤v : z ∈ X ∩ A}; // Median splits

end

Aleft ← {x ∈ A, x⊤v ≤ t};
Aright ← A \ Aleft;

if (Aleft ∩X) and (Aright ∩X) are both nonempty then
(children of A)← Aleft, Aright ;

end

end

Ai ← partition of A0 defined by the leaves of the current tree;

end
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at most O(log n)) we alternate the RP split with another type of bisection that

splits exactly at the median. Thus, if the tree is grown to l levels, we are assured

that each cell contains at most a 2−l/2 fraction of the original data set; hence the

overall depth of the tree must be O(log n).

Lemma 28. There is an absolute constant C ′ for which the following holds. Let

A ⊂ R
D and suppose A ∩X has Assouad dimension d. Then with probability at

least 1/2 over the randomization within the algorithm,

basicRPtree(A, ∆n (A) /2) returns a tree of depth at most C ′d log d.

Proof. The proof is a direct consequence of Lemma 9 of [DF08a] applied to the

“noisy” splits at alternating levels in procedure basicRPtree.

Lemma 9 of [DF08a] states the following:

Let r = ∆n(A)/512
√

d and consider an r-cover of A; now consider
pairs of balls B = B(z, r), B′ = B(z′, r), where z, z′ are in the cover and
‖z − z′‖ ≥ 1

2
∆n(A)−2r. Every “noisy” split has a constant probability

of separating B ∩X and B′ ∩X.

Notice that basicRPtree stops if for all such pairs, no leaf of the tree

contains points from both B ∩X and B′ ∩X.

Fix such a pair B and B′. By Lemma 9 of [DF08a], the probability that

some cell at level i contains points from both B ∩ X and B′ ∩ X goes down

exponentially with i. A union bound over at most (O(d)d) such pairs yields the

statement of our lemma.

Portions of this chapter appear in:

– N. Verma, S. Kpotufe, S. Dasgupta, “Which spatial partition trees are adaptive

to intrinsic dimension?”, Uncertainty in Artificial Intelligence, 2009.



Chapter 5

Adaptive regression rates for the

RPtree

In this chapter we analyze the recently-proposed random projection tree (RP

tree), which uses random hyperplanes to partition space (Figure 4.1(c)). Previous

work has analyzed RP trees for unsupervised learning, and established that they are

adaptive to intrinsic dimension when used in this way [DF08a, GLZ08, VKD09].

Here we explore their use in regression and show formally that, because they

decrease the diameter of the data within their cells quickly, they have risk that

depend just on the intrinsic dimension of data, namely on the Assouad dimension.

The results in this chapter validate the intuition of the previous chapter (Chapter

4) that fast data diameter decrease rate imply good regression risk, and more

importantly, adaptive rates.

We develop novel tools for the analysis of bias. As previously mentioned,

the bias of a tree estimator is typically analyzed in terms of the physical diameter of

its cells (see, for instance, Chapter 20 of [DGL96a]). However, this can be worked

out only when the cells have simple shapes like hyper-rectangles. For example,

the cells of an RP tree are irregular convex polytopes, and their diameters might

not systematically decrease while moving down the tree. What we do instead is

to track the diameter of the data within each cell, and we develop new techniques

to relate these empirical data diameters to the estimator’s bias. Our method

takes the focus away from the cells’ physical diameters, opening the door to richer

52
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partitioning rules with nontrivial cell structure.

5.1 Detailed overview of results

5.1.1 Building the regression tree

A tree-based regressor works in two phases.

1. The data space is split into some partition A.

2. A regressor is learned as a piecewise continuous function over the cells of A.

In this work we’ll consider a piecewise constant regressor over A, defined as follows:

for any x ∈ X , let A(x) be the cell of A to which x belongs, and set

fn,A(x)
.
=

∑n
i=1 Yi · 1 [Xi ∈ A(x)]

n · µn(A(x))

if µn(A(x)) > 0 (that is, if the cell A(x) contains at least one training point). If

A(x) ∩X is empty, then a default setting fn,A(x) = yo is used instead, for some

yo ∈ Y . We will often refer to the final regressor as fn when the partition A used

for the estimate is clear from context.

The first phase of the regression algorithm implicitly builds a tree, each of

whose nodes corresponds to a region of R
D. Each node has two children whose

regions are a partition of its own. We will also associate each such cell A with the

data points A ∩X that happen to fall in it.

All the splitting is done by random hyperplanes, and thus each cell is a

convex region of R
D. The precise details are given in Procedure basicRPtree

of Section 4.5.2. In order to boost the probability that this procedure returns a

short tree, we call it repeatedly in Procedure coreRPtree. This last procedure is

the key subroutine for our main tree building procedure called adaptiveRPtree.

Procedure coreRPtree operates as follows (via calls to basicRPtree):

• It takes as input a region A ⊂ R
D (or more precisely, the data points that

fall in this region).
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Procedure adaptiveRPtree(sample X ⊂ R
D, 0 < δ < 1)

A0 ← R
D;

for i← 1 to ∞ do

foreach cell A ∈ Ai−1 do
(subtree rooted at A) ← coreRPtree (A, ∆n(A)/2, δ);

end

Ai ← partition of R
D defined by the leaves of the current tree;

level (Ai)← maxA∈Ai level (A) ; // level = depth in tree

// There are two options for stopping and returning a

partition.

Option 1: Cross-validation

if ∆n (Ai) = 0 or level (Ai) ≥ 2 log n then
Define R′

n(·) as the empirical risk on a validation sample

(X′,Y′) of size n;

A∗ ← argmin
A∈{A0,...,Ai}

R′
n(fn,A);

return fn
.
= fn,A∗ ;

end

Option 2: Automatic stopping

α(n)←
(
log2 n

)
log log(n/δ) + log(1/δ);

if ∆2
n (Ai) ≤ ∆2

n (A0) · (α(n)/n) · 2level(Ai) then

A∗ ← argmin
A∈{Ai−1,Ai}

(
α(n)

n
· |A|+ ∆2

n (A)

)
;

return fn
.
= fn,A∗ ;

end

end

Procedure coreRPtree(A ⊂ X , ∆, δ)
Call basicRPtree(A, ∆) (see Section 4.5.2) log (3n/δ) times and

return the shortest tree.
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• By recursive splits, it builds a tree whose root corresponds to A and whose

leaves form a partition of A, call it A, such that ∆n(A) ≤ ∆n(A)/2.

• If A has zero diameter (for instance, if it contains one point), then the proce-

dure leaves it untouched. Otherwise, a tree is returned whose leaves contain

at most ⌈|A ∩X|/2⌉ points.

The main tree building algorithm is Procedure adaptiveRPtree. It starts

with a single node A0 for all of R
D, and then grows a tree in measured steps. At

each stage, the current set of leaves constitute a partition Ai of R
D, whose cells

have diameter ∆n(Ai) ≤ 2−i∆n(RD). Then the subroutine coreRPtree is called

on each leaf to yield an even finer partition Ai+1.

This process is stopped when each cell of the current partition is sufficiently

small that the bias is controlled, but also has sufficiently many data points in it

that the variance is controlled. How can the right stopping point be identified?

We present two options.

1. Automatic stopping. We return a partition as soon as the data diameters of

cells are small enough relative to tree size.

2. Cross-validation. Here, we grow a large tree and then prune it using a sep-

arate validation sample (X′,Y′), also of size n, drawn from the same under-

lying distribution. To prune, an intermediate partition Ai is chosen which

minimizes the empirical risk

R′
n(g)

.
=

1

n

∑

i∈[n]

‖Y ′
i − g(X ′

i)‖2 .

The automatic stopping option requires no validation sample and is computation-

ally faster. As we’ll see, its risk bound is only slightly worse than that of the

cross-validation option.

Regardless of which stopping rule is employed, it follows from the properties

of coreRPtree that the final tree has height at most 2 log 2n and the number of

partitions Ai generated is at most log 2n. These are important properties which

we emphasize in the following remark.
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Remark 29. Given the implementation of coreRPtree, the tree returned by pro-

cedure adaptiveRPtree has the following properties:

• The number of data points in a cell (node) at level i is at most half the

number contained in its ancestor at level i− 2. Taking rounding effects into

consideration, this means that by level 2(1 + log n), each cell will contain at

most one point. Thus the entire tree built by adaptiveRPtree has depth at

most 2 log 2n.

• By construction, each node contains at least one data point. Therefore, there

are at most n leaves and n− 1 internal nodes.

• Since the tree has height at most 2 log 2n = log 4n2, a total of at most

8n2 log(3n/δ) random directions are required to build the entire tree.

5.1.2 Main Results

The excess risk of the tree-based regressor can be expressed in terms of

the rate at which diameters decrease from the root down. We have the following

definition.

Definition 30. Given a sample X, we say that coreRPtree attains a diameter

decrease rate of k on X for k ≥ d, if every call to it in the second loop of the main

procedure adaptiveRPtree returns a tree of depth at most k.

The main theorem below builds upon the following result which establishes

the diameter decrease rate attained by the algorithm.

Lemma 31 (Corollary to Lemma 28). Let C ′ be as in Lemma 28. Suppose X has

Assouad dimension d and fix X ⊂ X . With probability at least 1 − δ/3 over the

randomness in the algorithm, adaptiveRPtree attains a diameter decrease rate

k ≤ C ′d log d on X.

Proof. The procedure adaptiveRPtree grows the tree in blocks: it starts with a

single node (cell) that contains all of X and then repeatedly expands one of its cur-

rent leaf nodes A into the subtree produced by the call coreRPtree(A, ∆n(A), 2).
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Consider any such A. Since X has Assouad dimension d, so does A∩X ⊂ X ;

we can therefore apply Lemma 28. Procedure coreRPtree calls basicRPtree

log (3n/δ) times and returns the smallest tree; thus the probability that this tree

has depth > C ′d log d is at most δ/(3n).

How many nodes A are expanded in this way? Any A with data diameter

zero (for instance, containing just one point) is untouched by coreRPtree; on the

other hand, any A with nonzero diameter will certainly get expanded (on account

of the median split, if nothing else). Thus coreRPtree is invoked at most once on

each internal node of the tree. There are at most n leaf nodes and thus at most

n − 1 internal nodes. A union bound over them yields an overall probability of

failure at most δ/3.

The following is the main result of this chapter.

Theorem 32. Assume that X has Assouad dimension d. There exist constants

C, C ′ independent of d and µ(X ), such that the following hold. Pick any δ > 0

and define

α(n)
.
=
(
log2 n

)
log log(n/δ) + log(1/δ).

With probability at least 1− δ:

(a) coreRPtree attains a diameter decrease rate of k ≤ C ′d log d.

(b) If the automatic stopping option is used, the excess risk of the regressor is

‖fn − f‖2 ≤ C ·
(
∆2

Y + λ2
)
(∆2

X + 1) ·
(

α(n)

n

)2/(2+k)

.

(c) If the cross-validation option is used and

n ≥ max
{
α(n), λ2∆2

X/∆2
Y , α(n)∆2

Y/λ2∆2
X
}

,

then the excess risk of the regressor is

‖fn − f‖2 ≤ C · (λ∆X )2k/(2+k)

(
∆2

Y · α(n)

n

)2/(2+k)

+ 2∆2
Y

√
log log n + log 8/δ

2n
.
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The two stopping options yield similar bounds in terms of the dependence

on n and d; however the cross-validation bound has a better dependence on λ, ∆X ,

and ∆Y .

In section 5.2, we lay out the key tools for the rest of the analysis, culmi-

nating in a risk bound in terms of data diameter. In section 5.3, we investigate

the two stopping rules, and bound the excess risk of the final regressor in terms of

the observed diameter decrease rate.

The algorithm takes an input a permissible failure probability δ. There are

three sources of failure, and we apportion each of them a δ/3 probability: failure

to build a tree with the desired height and diameter decrease rate; an (X,Y)

sampling failure in which either the empirical masses of cells do not accurately

represent their true masses or the y-values within cells have non-representative

averages; and an (X′,Y′) sampling failure in the cross-validation step.

Parts (a), (b), and (c) of Theorem 32 result from Lemma 31, Lemma 43,

and Lemma 41 respectively.

5.2 Risk bound for fn,A

In this section we develop the necessary tools to bound the excess risk of

fn,A, where A is an RP tree partition, that is, A is defined by the leaves of the

tree returned by adaptiveRPtree.

5.2.1 Generic decomposition of pointwise excess risk

We start the analysis with a standard decomposition of the excess risk into

bias and variance terms. Let A be any partition of X , on which the regressor fn,A

is defined. Recall that we denote by A(x) the cell of A containing x.

A useful intermediary between fn,A and the target f is the following function

on X :

f̃n,A(x)
.
=

∑n
i=1 f(Xi)1 [Xi ∈ A(x)]

nµn(A(x))
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if µn(A(x)) 6= 0; otherwise f̃n,A(x) = yo ∈ Y . Notice that f̃n,A(x) is just the condi-

tional expectation of the estimate given X fixed. Both fn,A and f̃n,A are constant

within any cell A ∈ A; we will therefore overload notation and occasionally write

these quantities as fn,A(A) and f̃n,A(A), respectively.

Similar to the decomposition of the expected excess risk in (1.2), the point-

wise excess risk at x can be bounded as

‖fn,A(x)− f(x)‖2 ≤
(∥∥∥fn,A(x)− f̃n,A(x)

∥∥∥+
∥∥∥f̃n,A(x)− f(x)

∥∥∥
)2

≤ 2
∥∥∥fn,A(A(x))− f̃n,A(A(x))

∥∥∥
2

︸ ︷︷ ︸
variance

+ 2
∥∥∥f̃n,A(x)− f(x)

∥∥∥
2

︸ ︷︷ ︸
bias2

. (5.1)

In the next two lemmas, we separately bound the variance and the bias.

Lemma 33 (Variance). Fix any partition A and a sample X = {X1, . . . , Xn} ⊂ X .

Suppose the Yi are now drawn according to their conditional distribution given Xi.

Pick any δ > 0. Then with probability at least 1 − δ, for every cell A ∈ A with

µn(A) > 0: ∥∥∥fn,A(A)− f̃n,A(A)
∥∥∥

2

≤ ∆2
Y ·

2 + ln(|A| /δ)
nµn(A)

.

Proof. For any cell A ∈ A, let I(A) = {1 ≤ i ≤ n : Xi ∈ A} be the indices of

points falling in that cell. Then µn(A) = |I(A)|/n, and

∥∥∥fn(A)− f̃n(A)
∥∥∥ =

∥∥∥∥
1

|I(A)|
∑

i∈I(A)

(Yi − f(Xi))

∥∥∥∥.

Changing any single Yi value alters this expression by at most ∆Y/|I(A)|. We

can therefore use McDiarmid’s inequality to assert that with probability at least

1− δ/|A| over the choice of the Yi’s,

∥∥∥fn(A)− f̃n(A)
∥∥∥ ≤ E

∥∥∥fn(A)− f̃n(A)
∥∥∥+ ∆Y ·

√
ln(|A| /δ)
2|I(A)| .
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The expectation can be bounded as follows:

E

∥∥∥fn(A)− f̃n(A)
∥∥∥ ≤

(
E

∥∥∥fn(A)− f̃n(A)
∥∥∥

2
)1/2

=
1

|I(A)|


E

∥∥∥∥
∑

i∈I(A)

(Yi − f(Xi))

∥∥∥∥
2



1/2

=
1

|I(A)|



∑

i∈I(A)

E ‖Yi − f(Xi)‖2



1/2

≤ 1

|I(A)|
(
|I(A)|∆2

Y
)1/2

=
∆Y√
|I(A)|

.

The first line uses Jensen’s inequality. The third uses the fact that the vectors

vi = Yi − f(Xi) are independent random vectors with zero expectation, so that

E ‖∑i vi‖2 =
∑

i E ‖vi‖2.
We conclude with a union bound over all nonempty A ∈ A.

Lemma 34 (Bias). Fix any partition A and any set of n points X = {Xi}ni=1 ⊂ X .

For any x ∈ X with µn(A(x)) > 0,

∥∥∥f̃n,A(x)− f(x)
∥∥∥ ≤ λ ·∆ (A(x)) .

Proof. Let A = A(x), so that

∥∥∥f̃n,A(x)− f(x)
∥∥∥ =

∥∥∥∥
∑n

i=1(f(Xi)− f(x))1 [Xi ∈ A]

nµn(A)

∥∥∥∥

≤
∑n

i=1 ‖f(Xi)− f(x)‖1 [Xi ∈ A]

nµn(A)

≤
∑n

i=1 λ ‖Xi − x‖1 [Xi ∈ A]

nµn(A)
≤ λ ·∆ (A) ,

where the second inequality uses the Lipschitz condition on f(·).

What we have at this point is a fairly standard bias-variance decomposition

of the risk. It contains two quantities that non-trivial to bound in our context: the

empirical weights of cells, µn(A); and, more importantly, their physical diameters

∆(A).
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(a) Cover B (b) Partition A (c) Partition A′

Figure 5.1: We start with a cover B of X with balls of different size; then, we see
the data and obtain a partition A; and finally we substitute A with an alternate
partition A′, by intersecting the cells of A with balls of B.

To relate the empirical masses µn(A) to their true values µ(A), we could

use a uniform large deviation bound. A naive such bound would involve terms in

D, since each cell is an intersection of hyperplanes. To avoid such a dependency,

we make heavy use of the fact that the directions of the hyperplanes are chosen at

random, independent of the data points, and that the data are consulted only to

determine the displacements of the boundaries along these directions.

The bigger challenge is to handle cell diameters. The bound on bias involves

the physical diameters ∆(A) of cells, and these might not decrease gracefully down

the tree. So we create an alternate partition A′ with the following properties:

• Each cell of A is the union of two cells of A′.

• Every cell in A′ is either void of data points (and thus has low probability

under µ and can be disregarded) or else has a physical diameter that is

roughly the same as its data diameter.

This construction lets us upper-bound the bias in terms of the data diameters

∆n(A) of cells, which are easier to quantify and to control.

5.2.2 An alternate partition

Although the algorithm works with a partition A built from recursive hy-

perplane splits, and the regressor is defined using this partition, for purposes of the

analysis only we will also consider an alternate, related partition A′. This A′ will
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be designed so that fn,A′ is equivalent to fn,A on most of X , but has the advantage

that its cells are well-behaved as explained at the end of the previous section.

A′ is obtained by intersecting the cells of A with balls or complements-of-

balls from a fixed, pre-defined collection B (Figure 5.1). Specifically, let Bi be a

cover of X by balls of radius ∆X/2i. Take a variety of scales: i = 0, 1, 2, . . . , I =

⌊log n2/(2+d)⌋. Then B is the union of all these balls of different sizes, blown up by

a factor of 4:

B =
I⋃

i=0

{4B : B ∈ Bi}.

at The partition A′ is created by replacing each cell A ∈ A by two cells

A′
1, A

′
2 as follows:

• If A ∩X = ∅, then set A′
1 = A and A′

2 = ∅.

• Otherwise, set i = min{I, ⌈log(∆X/∆n(A))⌉}; we’ll find a ball B ∈ Bi such

that A ∩X is contained in 4B. To this end, pick any x ∈ A ∩X, and pick

the ball B ∈ Bi whose center z is closest to x. Then A ∩X ⊂ 4B because

∀x′ ∈ A ∩X,

‖z − x′‖ ≤ ‖z − x‖+ ‖x− x′‖
≤ 2−i∆X + ∆n (A)

≤ 2−i∆X + 2−(i−1)∆X ≤ 4 · 2−i∆X

(using the fact that i− 1 ≤ log(∆X/∆n(A)), whereby ∆n(A) ≤ 2−(i−1)∆X ).

Define A′
1 = A ∩ 4B and A′

2 = A \ A′
1.

A′ is the collection of all such A′
1, A

′
2, over A ∈ A. What makes this refined

partition valuable is that the average physical diameter of its cells can be upper-

bounded by the empirical data diameters of cells in A.

Lemma 35 (Diameters of A′). Let A be a partition of X and define A′ as above.

Then ∑

A′∈A′

µn(A′)∆2(A′) ≤ 64∆2
n (A) + 256n−4/(2+d)∆2

X .
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Proof. Pick any cell A ∈ A for which A∩X 6= ∅. This cell is broken into two pieces

in A′: a set A′
1 with µn(A′

1) = µn(A) and a set A′
2 with µn(A′

2) = 0. Specifically,

A′
1 = A∩4B, where B is a ball of radius 2−i∆X , for i = min{I, ⌈log(∆X/∆n(A))⌉}.

It follows that A′
1 has diameter at most 8 · 2−i∆X ≤ 8 max{2−I∆X , ∆n(A)}.

This bound makes it natural to divide the cells of A into two groups: A+ =

{A ∈ A : ∆n (A) > 2−I∆X}; and A \ A+. Then

∑

A′∈A′

µn(A′)∆2(A′) =
∑

A∈A+

µn(A)∆2(A′
1) +

∑

A∈A\A+

µn(A)∆2(A′
1)

≤
∑

A∈A+

64µn(A)∆2
n (A) +

∑

A∈A\A+

64µn(A)2−2I∆2
X

≤ 64∆2
n (A) + 256n−4/(2+d)∆2

X .

5.2.3 Bounding the empirical masses of cells

In order to bound the integrated excess risk, we will need the empirical

masses of cells, µn(A′), to be close to their true masses, µ(A′). In particular, this

will allow us to disregard cells that are empty of data since they will have little

effect on the integrated excess risk.

The uniform convergence bounds we use are based on the following stan-

dard notion of shatter coefficient, which describes the complexity of a (potentially

infinite) collection of subsets of R
D. In our case, each such subset is a cell.

Definition 36. Let n be some positive integer, and let C be a class of subsets of

R
D. The n-shatter coefficient of C, denoted S (C, n), is the largest possible size of

a collection of sets obtained by intersecting sets of C with a sample X of size n.

That is,

S (C, n)
.
= max

|X|=n
|{C ∩X : C ∈ C}| .

For example, suppose D = 1 and C is the set of all half lines, that is,

intervals of the form (−∞, t] or [t, +∞). For any set of n distinct points X =

{x1, . . . , xn} where (without loss of generality) x1 < · · · < xn, the intersection
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of these points with half lines consists of all subsets of the form {x1, . . . , xi} or

{xi, . . . , xn}. Therefore S (C, n) = 2n.

The following theorem of Vapnik and Chervonenkis gives uniform rates of

convergence for empirical masses over a class C, using the 2n-shattering coefficient

of C.

Lemma 37 (Relative VC bounds [VC71]). Let C be a class of subsets of R
D.

Pick any δ > 0. Suppose a sample of size n is drawn independently at random

from a distribution µ over R
D, with resulting empirical distribution µn. Then with

probability at least 1− δ over the choice of sample, all C ∈ C satisfy

µ(C) ≤ µn(C) + 2

√
µn(C)

lnS (C, 2n) + ln(4/δ)

n
+ 4

lnS (C, 2n) + ln(4/δ)

n
.

where S (C, 2n) is the 2n-shatter coefficient of C.

Recall that in our algorithm, we use the data sample X to generate a tree

that contains various candidate partitions Ai, and that eventually one of these

partitions is chosen, and a regressor is defined on it. We would like to argue that

for any A = Ai, the empirical mass of each cell of A′ is close to its true mass. How

should the class C in lemma 37 be defined?

Since the tree has height at most 2 log 2n (remark 29 of Section 5.1.1) and

the splits are by hyperplanes, one option is to let C consist of all convex sets that

are intersections of at most 2 log 2n halfspaces and a ball in B or the complement

of such a ball. This works, but yields a class whose complexity depends on the

ambient dimension D. Instead, we exploit the fact that the random directions of

the hyperplanes used in the tree can be chosen before seeing X (removing that

source of randomness), whereas their displacements depend on the random sample

X. We can thus define a class of lower complexity independent of D.

Lemma 38 (Masses of cells of A′). There is a constant C0 such that the following

holds. Pick any δ > 0. With probability at least 1 − δ over the choice of X and

the randomness in the algorithm, we have that for any partition A = Ai generated
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during the construction of the tree, every cell A′ ∈ A′ satisfies

µ(A′) ≤ µn(A′) + 2

√
µn(A′)

V + ln(4/δ)

n
+ 4
V + ln(4/δ)

n
, where (5.2)

V ≤ C0 log n(log n + loglog(1/δ)).

Proof. Suppose without loss of generality that during the construction of the tree,

all random directions (for hyperplane splits) are picked from a fixed collection P
without replacement. How big should P be so that there are enough directions to

choose from? The implementation of coreRPtree ensures that |P| ≤ 8n2 log (3n/δ)

is sufficient (see remark 29 of section 5.1.1). Now fix such a collection P and letHP

be the class of half spaces of R
D defined by hyperplanes normal to the directions

in P . For any tree partition A, each cell of A is the intersection of at most 2 log 2n

elements of HP since the tree is guaranteed to have height at most 2 log 2n (remark

29). Each cell of A′ is the intersection of a ball or the complement of a ball in B
with a cell of A.

All such cells therefore belong to the following class of subsets of R
D:

C =

{
h : h = h0 ∩

(
2 log 2n⋂

l=1

hl

)
, h0 or hC

0 is in B, hl ∈ HP

}
.

We now proceed to bounding S (C, 2n), the 2n-shatter coefficient of C.
Given 2n sample points and a direction v ∈ P, there are at most 4n possible

intersections of the sample with halfspaces normal to v. Therefore

S (C, 2n) ≤ 2 |B| (4n |P|+ 1)2 log 2n

≤ 2 |B|
(
32n3 log (3n/δ) + 1

)2 log 2n
.

Since X has Assouad dimension d, we have |B| ≤∑I
i=0 2di ≤ 2n2d/(2+d). The proof

is completed by letting V = logS (C, 2n) for P fixed, and then appealing to Lemma

37.
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5.2.4 A bound on the integrated excess risk in terms of

data diameters

Lemma 39 (Integrated excess risk). There exists a constant C1 independent of d

and µ such that the following holds. Define α(n)
.
=
(
log2 n

)
loglog(1/δ)+ log(1/δ).

With probability at least 1 − δ/3 over the choice of (X,Y) and the randomness

in the algorithm, for all partitions A = Ai obtained during the execution of

adaptiveRPtree,

‖fn,A − f‖2 ≤ C1

(
∆2

Y |A|
α(n)

n
+ λ2

(
∆2

n (A) + n−4/(2+d)∆2
X
))

.

Proof. Define δ′ = δ/(6 log 2n). By Lemma 38 we have that with probability at

least 1−δ′ over the randomness in the algorithm and the choice of X, equation (5.2)

— with δ′ substituted for δ — holds for all cells A′ ∈ A′, where A = Ai is any

partition obtained during the construction of the tree and V ≤ C0 log n(log n +

loglog(1/δ′)). Let’s assume that this condition holds, and fix X. Henceforth we

will randomize only over the choice of Y.

Pick any partition A = Ai obtained by adaptiveRPtree. The integrated

excess risk can be decomposed over A′ as follows:

‖fn,A − f‖2 =
∑

A′∈A′

∫

A′

‖fn,A(x)− f(x)‖2 µ(dx).

We next divide the cells of A′ into two groups: those of significant mass, whose bias

and variance must be controlled, and those of negligible mass, whose contribution

to the overall risk can be ignored even if it is the worst possible. Specifically, set

A′
>

.
=

{
A′ ∈ A′, µn(A′) ≥ V + ln(4/δ′)

n

}
, and A′

<
.
= A′ \ A′

>.

From equation (5.2), every A′ ∈ A′
> satisfies µ(A′) ≤ 7µn(A′) while every A′ ∈ A′

<

has µ(A′) ≤ 7(V + ln(4/δ′))/n.

Given this upper bound on the masses of cells in A′
<, their integrated risk
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is

∑

A′∈A′
<

∫

A′

‖fn,A(x)− f(x)‖2 µ(dx) ≤
∑

A′∈A′
<

∆2
Y · µ(A′)

≤ 7∆2
Y · |A′| · V + ln(4/δ′)

n
. (5.3)

Now for the integration over A′
>. Each cell A′ ∈ A′

> holds exactly the same

data points as its counterpart A ∈ A; thus fn,A and fn,A′ coincide on A′. We first

apply (5.1), and then use Lemmas 33 and 34 to assert that with probability at

least 1− δ′ over the choice of Y,

∑

A′∈A′
>

∫

A′

‖fn,A(x)− f(x)‖2 µ(dx)

=
∑

A′∈A′
>

∫

A′

‖fn,A′(x)− f(x)‖2 µ(dx)

≤
∑

A′∈A′
>

2λ2∆2 (A′) · µ(A′) +
∑

A′∈A′
>

2∆2
Y ·

2 + ln(|A′| /δ′)
nµn(A′)

· µ(A′)

≤
∑

A′∈A′
>

2λ2∆2 (A′) · 7µn(A′) +
∑

A′∈A′
>

2∆2
Y ·

2 + ln(|A′| /δ′)
nµn(A′)

· 7µn(A′)

≤ 14λ2
∑

A′∈A′
>

µn(A′)∆2 (A′) + 14∆2
Y |A′| · 2 + ln(|A′| /δ′)

n
. (5.4)

We can simplify ln |A′| to O(log n) since the tree has at most n leaves. By com-

bining the bounds in (5.3) and (5.4), and absorbing various constants into a single

Co, we get

‖fn,A − f‖2 ≤ Co

(
∆2

Y |A|
log2 n + log n loglog 1/δ′ + log(1/δ′)

n

+ λ2
∑

A′∈A′

µn(A′)∆2 (A′)

)
.

To finish up, we call on lemma 35 to bound the summation on the right, and then

take a union bound over the ≤ log 2n possible partitions A = Ai.
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5.3 Risk of final regressor fn
.
= fn,A∗

Recall that the adaptiveRPtree procedure starts with a partition A0 that

has a single cell containing all the data, and then grows the tree to get increasingly

finer partitions A1,A2, . . ., where the data diameter of each Ai is half that of

Ai−1. Recall also that the diameter decrease rate, denoted k, is defined to be the

maximum increase in tree depth during each of these individual growth spurts.

The tree is not grown indefinitely. To see this, note that the implementa-

tion of coreRPtree ensures that all cells at some level down the hierarchy would

eventually have a single data point in them (see remark 29). In other words,

∆n (Ai) = 0 eventually, at which point either of the two stopping criteria would

hold.

Once the tree is constructed, a partition A∗ = Ai is chosen and a regressor

is built on it. We now bound the excess risk of fn
.
= fn,A∗ in terms of the diameter

decrease rate achieved during adaptiveRPtree.

To get some insight into the form of the final risk bound, pretend for a

moment that ∆X , ∆Y , and λ are all 1. Consider a partition A induced by the tree.

If ∆n(A) = ζ, we would expect that the data diameter has been halved roughly

log(1/ζ) times. Since each halving grows the tree by ≤ k levels, A has depth

at most k log(1/ζ) in the tree, implying also that |A| ≤ (1/ζ)k. Plugging these

values into the bound of Lemma 39, we get ‖fn,A − f‖2 . ζ−k/n + ζ2. Setting

ζ = n−1/(2+k) then gives the optimal bound ‖fn,A∗ − f‖2 . n−2/(2+k).

In the analysis, a few basic facts will repeatedly be used. First, because

such successive partition halves the data diameter,

∆n(Ai) ≤ 2−i∆n(A0). (5.5)

Second, by definition of diameter decrease rate, each halving grows the tree by ≤ k

levels:

level
(
Ai
)
≤ ki. (5.6)
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5.3.1 Risk bound for cross-validation option

For the cross-validation option, we begin by arguing that the tree contains

at least one good partition Ai, such that both ∆n(Ai) and |Ai| are reasonably

small. The shrinkage in diameter, ∆n(Ai)/∆n(A0), is roughly

ζ
.
=

(
∆2

Y
λ2∆2

X
· α(n)

n

)1/(2+k)

(recall α(n) = (log2 n) log log(n/δ) + log(1/δ).) The analysis requires an unusual,

albeit benign, lower bound on the number of samples n, the purpose of which is

to ensure that n2 exceeds both (1/ζ)k and (1/ζ)2+d.

Lemma 40 (Existence of a good pruning). Suppose adaptiveRPtree is run with

the cross-validation option, and yields a sequence of partitions A0,A1, . . . with a

diameter decrease rate of k. Define

ζ
.
=

(
∆2

Y
λ2∆2

X
· α(n)

n

)1/(2+k)

If n ≥ max
{
α(n), λ2∆2

X/∆2
Y , α(n)∆2

Y/λ2∆2
X
}
, then there exists i ≥ 0 such that

∆n (Ai) ≤ 2ζ ·∆n (X ) and |Ai| ≤ (1/ζ)k.

Proof. Consider the largest i at which level (Ai) < k log(1/ζ). Then |Ai| ≤ (1/ζ)k.

In bounding ∆n(Ai), there are two cases to consider.

Case 1: Ai+1 is part of the tree. Then its level is ≥ k log(1/ζ), implying

that i + 1 ≥ log(1/ζ) (by (5.6)) and therefore that i ≥ log(1/2ζ), whereupon (by

(5.5)) ∆n(Ai) ≤ 2ζ∆n(A0).

Case 2: Ai+1 is not part of the tree; that is, Ai satisfies the stopping criteria,

i.e. either ∆n(Ai) = 0 or level (Ai) ≥ 2 log n. The lower bound on n ensures that

level (Ai) < k log(1/ζ) ≤ 2 log n. Therefore ∆n(Ai) = 0.

Next, we argue that cross-validation will find a partition that isn’t too much

worse than the Ai of Lemma 40.

Lemma 41. There exists an absolute constant C (independent of d and µ), such

that the following holds. Under the hypotheses of Lemma 40, with probability at
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least 1− 2δ/3 over (X,Y) and the randomness in the algorithm, the excess risk of

the final regressor is bounded by

‖fn − f‖2 ≤ C · (λ∆X )2k/(2+k)

(
∆2

Y ·
α(n)

n

)2/(2+k)

+ 2∆2
Y

√
log log n + log 4/δ

2n
.

Proof. Let Ai and ζ be as in Lemma 40. By applying Lemma 39 and then Lemma

40, we have with probability at least 1− δ/3 that

∥∥fn,Ai − f
∥∥2 ≤ C1

(
∆2

Y
∣∣Ai
∣∣ α(n)

n
+ λ2

(
∆2

n

(
Ai
)

+ n−4/(2+d)∆2
X
))

≤ C1

(
∆2

Y · ζ−k α(n)

n
+ 5λ2ζ2∆2

X

)
≤ C2λ

2∆2
X ζ2.

To analyze the cross validation phase, we fix the partitions Aj obtained from

procedure adaptiveRPtree; there at most log 2n of these. Applying McDiarmid’s

inequality to the empirical risk, we see that with probability at least 1− δ/3 over

the choice of (X′,Y′), each Aj satisfies

∣∣R
(
fn,Aj

)
−R′

n

(
fn,Aj

)∣∣ ≤ ∆2
Y

√
ln(log 2n) + ln 3/δ

2n
.

Thus if fn
.
= fn,A∗ is the empirical risk minimizer,

‖fn − f‖2 ≤ C2λ
2∆2

X ζ2 + 2∆2
Y

√
log log n + log 4/δ

2n

with probability at least 1− 2δ/3.

5.3.2 Risk bound for automatic stopping option

The automatic criterion stops growing the tree as soon as

∆2
n (Ai)

∆2
n (A0)

≤ α(n)

n
2level(Ai),

at which point either Ai or Ai−1 is chosen as the final partition A∗. The shrinkage

in diameter is expected to be roughly a factor of

ζ
.
=

(
α(n)

n

)1/(2+k)

,
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corresponding to a depth of k log(1/ζ) in the tree. In particular, if level (Ai) ≥
k log(1/ζ) then the stopping criterion holds, because then i ≥ level (Ai) /k ≥
log(1/ζ) (recall (5.6)) and ∆n(Ai) ≤ 2−i∆n(A0) ≤ ζ∆n(A0) (recall (5.5)), where-

upon
∆2

n (Ai)

∆2
n (A0)

≤ ζ2 =
α(n)

n

(
1

ζ

)k

≤ α(n)

n
2level(Ai).

Lemma 42 (Properties of A∗). Suppose the automatic stopping option is used,

and that adaptiveRPtree attains a diameter decrease rate of k on X. Define

ζ
.
=
(

α(n)
n

)1/(2+k)

and assume n ≥ α(n). Then, the final partition A∗ retained for

regression satisfies
(

α(n)

n
· |A∗|+ ∆2

n (A∗)

)
≤
(
4∆2

n (X ) + 1
)
ζ2.

Proof. Let A0,A1, . . . be the partitions found by adaptiveRPtree, and suppose

the stopping criterion holds for Ai. We consider two cases:

Case 1: level (Ai) ≤ k log(1/ζ). Then |Ai| ≤ (1/ζ)k and by the stopping

condition

∆2
n (Ai)

∆2
n (A0)

≤ α(n)

n
2level(Ai) ≤ α(n)

n

(
1

ζ

)k

= ζ2.

Case 2: level (Ai) > k log(1/ζ). Then ki ≥ level (Ai) ≥ k log(1/ζ), implying

that i−1 ≥ log(1/2ζ), whereupon ∆n(Ai−1) ≤ 2ζ∆n(A0) (recall (5.5)). Moreover,

since the stopping condition doesn’t hold for Ai−1 we have (by the discussion

preceding the lemma) that level (Ai−1) < k log(1/ζ).

In either case at least one of Ai and Ai−1 has size at most (1/ζ)k and

diameter at most 2ζ ·∆n(A0). It follows that

min
j∈{i−1, i}

(
α(n)

n
·
∣∣Aj
∣∣+ ∆2

n

(
Aj
))

≤ α(n)

n
· ζ−k + 4ζ2 ·∆2

n (X )

=
(
4∆2

n (X ) + 1
)
ζ2,

which concludes the argument.

Lemma 43. There exists an absolute constant C (independent of d and µ), such

that the following holds. Suppose the automatic stopping option is used and that

adaptiveRPtree achieves a diameter decrease rate of k ≥ d on X. With probability
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Figure 5.2: Hilbert space filling curve: the dimension depends on the scale at
which the set is examined. Image obtained from [DF08a].

at least 1− δ/3 over (X,Y) and the randomness in the algorithm, the excess risk

of the regressor is bounded by

‖fn − f‖2 ≤ C ·
(
∆2

Y + λ2
)
(∆2

X + 1) ·
(

α(n)

n

)2/(2+k)

.

Proof. For n ≤ α(n), the bound on the excess risk holds vacuously. We assume

henceforth that n > α(n). Let ζ
.
=
(

α(n)
n

)1/(2+k)

. By first applying Lemma 39

then Lemma 42, we have with probability at least 1− δ that

‖fn,A∗ − f‖2 ≤ C1

(
∆2

Y |A∗| α(n)

n
+ λ2

(
∆2

n (A∗) + n−4/(2+d)∆2
X
))

≤ C1

(
∆2

Y + λ2
)(
|A∗| α(n)

n
+
(
∆2

n (A∗) + n−4/(2+d)∆2
X
))

≤ C1

(
∆2

Y + λ2
) ((

4∆2
X + 1

)
ζ2 + ζ2∆2

X
)

≤ C
(
∆2

Y + λ2
) (

∆2
X + 1

)
ζ2,

which concludes the argument.

5.4 Final remarks

We have demonstrated a tree regressor that performs well in scenarios where

the data space X ⊂ R
D has low Assouad dimension d ≪ D. In such cases, the
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integrated excess risk is roughly of the form n−2/(2+k) for k = O(d log d), and

has no dependence on the ambient dimension D. But this still leaves room for

improvement: is there an efficient tree-based regressor that achieves the optimal

rate, n−2/(2+d)?

We show in Chapter 6 that tree-kernel hybrid methods achieve this rate in

general metric spaces. Moreover, in that chapter the usual O(n) evaluation time of

kernel methods is reduced to O(2d log n) using a special tree data structure. This

is a significant improvement, though slower than the O(log n) evaluation time of a

tree regressor.

Another set of open questions concerns the data model. Assouad dimension

is fairly general while at the same time being amenable to analysis. However, it has

some shortcomings that motivate exploration into alternative notions of intrinsic

dimension. First of all, it is natural to allow the dimensionality of a data set to

depend on the scale at which it is being examined. The set in Figure 5.2, for in-

stance, looks two-dimensional from a distance but one-dimensional when restricted

to smaller neighborhoods. And realistically, at even smaller neighborhood sizes,

it would be full-dimensional because of white noise. At the very least, we would

like to be able to handle data sets that have low intrinsic dimension only when

restricted to neighborhoods of a certain radius. In the Appendix, we show how to

extend our results to such a setting.

Finally we emphasize the fact that our results in this chapter are obtained

for relatively small n. As previously mentioned, (see Section 4.5.1) it is possible

that a regression method attains rates that are adaptive to intrinsic dimension for

large n (see e.g. Theorem 50 of the Appendix concerning dyadic trees), but this is

not helpful in practice since large data sizes (n) is exactly what we want to avoid.

Most of this chapter appear in:

– S. Kpotufe, S. Dasgupta, “A tree-based regressor that adapts to intrinsic di-

mension”, Journal of Computer and System Sciences, Special Issue on Learning

Theory, (Invited Submission).



Chapter 6

Tree-kernel hybrid regressors

Tree-based regression and kernel regression are two popular approaches to

nonparametric regression, each with its benefits and drawbacks. The main benefit

of tree-based regression is that the regression estimate can be computed fast in

time O(log n), where n is the training sample size. Kernel regression has worse

evaluation time of Ω(n) but often yields better estimates than tree-based methods

[Tor97, Bre96].

Can we combine aspects of tree-based and kernel regression in order to

guarantee prediction performance comparable to that of kernel regression and a

fast computation time as in tree-based regression? A simple hybrid approach

considered here is to start with a partition of the input space as in tree-based

methods, and use a kernel to average regression estimates from many cells of the

partition. The estimate from each cell is weighted according to the distance from

the query x to some center point of the cell (Figure 6.1).

The choice of center points is crucial if we want to guarantee both improved

prediction performance over tree-methods and improved time performance over

kernel methods. In this chapter we lay down a set of theoretical principles to help

guide these choices, and we discuss many other practical benefits of tree-kernel

hybrids.

How do we choose partition centers so as to attain good prediction perfor-

mance comparable to kernel methods? We start by examining the theoretical rates

at which kernel methods converge to the regression function. Suppose the input

74
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data X lies in a space X ⊂ R
D of low intrinsic dimension as is often the case with

modern data (e.g. manifold, sparse data). Kernel methods attain convergence

rates of the form n−1/O(d) ([BL06], see also Chapter 3), where d is some notion of

intrinsic dimension such as the Assouad dimension. Tree-based methods, however,

typically have convergence rates of the form n−1/O(D) even in cases where the data

is intrinsically low-dimensional [GKKW02, Kpo09]. The results of Chapter 5 on

RPtree regression alleviate this problem, but the dependence on intrinsic dimen-

sion is still not optimal as in the case of kernel approaches. We show in Section

6.1.1 that if the centers are chosen sufficiently close to the data relative to the

kernel bandwidth, tree-kernel hybrids achieve a rate of the form n−1/O(d) as good

as that of kernel regression.

In order to guarantee an O(log n) prediction time, the centers are also

required to be sufficiently far from each other relative to the kernel bandwidth.

Here the O notation hides constants that depend on the intrinsic dimension of the

input data.

We provide two detailed instantiations of these ideas in Section 6.2. This

is followed by a practical discussion of the various benefits of tree-kernel hybrids

(Section 6.3). Specifically, in addition to providing a good time-quality trade-

off, tree-kernel hybrids yield smooth models which are useful in domains such as

robotic control; they provide the flexibility of selecting the bandwidth parameter

locally in order to adapt to different regression complexities in different regions

of space; finally, they facilitate global bandwidth selection in that the building

process is itself informative about the location of the optimal bandwidth on the

real line. Throughout the discussion in Section 6.3, these benefits are highlighted

with empirical evaluations in the application domains of vision, robotic control,

and out-of-sample extension for MDS embeddings.

6.1 Intuition behind tree-kernel hybrids

We are now ready to discuss the two main goals of tree-kernel hybrids,

namely improved estimates and good evaluation time.
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Figure 6.1: Tree-kernel hybrids at a high level: given a bandwidth h > 0, the
estimate fn(x) is a weighted average of the Y contributions of the cells whose
centers (gray points) fall in the ball B(x, h). The kernel is assumed to assign 0
weight outside of B(x, h).

6.1.1 Achieving good estimation quality

In order to understand how to choose cell centers to guarantee good estima-

tion quality for tree-kernel hybrids, we start by looking at the sources of complexity

for nonparametric regression.

Many variables contribute to the complexity of nonparametric regression,

more precisely, to the excess risk ‖fn − f‖2 of the regressor fn. The three most

important variables identified in the literature are the smoothness of the regression

function f(x) = E [Y |x], the Y -variance σ2
Y = E

[
‖Y − f(x)‖2 |x

]
, and the dimen-

sionality D of the input space X . Suppose for example that f is λ-lipschitz1, then

any regressor fn has error rate ‖fn − f‖2 no better than (σ2
Y /λ2n)

2/(2+D)
[Sto82].

Clearly, the dimension has the most radical effect on the quality of estimates. With

kernel regressors, D in the above rate can be replaced by d ≪ D, where d is the

doubling dimension (see Chapter 3). It is therefore not surprising that kernel re-

gressors, being adaptive to intrinsic dimension, tend to yield better estimates than

tree-based regressors.

Adaptivity to intrinsic dimension

Here we would like to understand how dimensionality affects the expected

risk E ‖fn − f‖2 of a regressor fn. It is well known that this error is the sum of

the variance of fn and its square bias [GKKW02]. The dimensionality of the input

1∀x, x′ ∈ X , ‖f(x)− f(x′)‖ ≤ λ ‖x− x′‖.
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space affects the variance of tree-based and kernel regressors differently. Under-

standing this will provide good intuition towards designing tree-kernel hybrids.

First, let’s look at the variance of a tree-based regressor. Let var (fn(x))

denote the variance of the estimate at x, i.e. var (fn(x))
.
= E ‖fn(x)− E [fn(x)]‖2,

where the randomness is over the sampling of Y for X fixed. The integrated

variance
∫
X var (fn(x)) dµ(x) of a tree-based estimator defined over a partition A

has the form |A|σ2
Y /n [GKKW02], where |A| is the number of cells in A. Suppose

the diameter of data within a cell is h, and that the space X has diameter 1. Then

under classical partitioning procedures (e.g. k-d trees, dyadic trees) |A| could be

as large as h−D even when the data has low intrinsic dimension ([DF08a], see also

Chapter 4). Remember however that some recently analyzed procedures such as

the Random Partitioning (RP) tree alleviate this problem: RPtree yields partitions

of size just h−O(d log d) where d is the doubling dimension of X ([DF08a], also covered

in Chapter 4). However, we would ideally want |A| to be just C · h−d since we

know a partition of such size exists (apply the definition of doubling dimension

recursively).

There is a sense in which kernel regression can be viewed as operating over

such a partition of size at most C · h−d. If two points x and x′ are close, their

regression estimates must also be close since the two balls B(x, h) and B(x′, h)

contain nearly the same samples. In other words most balls are equivalent up to

small differences in the estimates they yield, and technically, this equivalence class

forms an implicit cover of the space. This point can be gleaned from the proof of

Theorem 21 of Chapter 3. We make the point more concrete below.

Let fn,h(·) be a kernel regressor using a bandwidth parameter h, and for

simplicity let the kernel be a box kernel, i.e. fn,h(x) just averages the Y values

of the points in B(x, h). Let Z = {zi}N1 be a minimal h/2-cover of X of size

N ≤ C ·h−d where d is the doubling dimension of X . The kernel regressor fn,h acts

approximately like a tree-based regressor fn,AZ
operating on the Voronoi partition

AZ defined by the centers in Z. This can be seen by considering the biases and

variances of these two regressors. First, both have bias O(h). Next, we consider

the variance var (fn,h(x)) at x, given the randomness in sampling X and Y. This
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variance is of the form σ2
Y / (n · µ(B(x, h))) [GKKW02], where µ is the marginal

measure over X . This is at most σ2
Y / (n · µ(B(z(x), h/2))) where z(x) is the closest

center in Z to x (notice that B(z(x), h/2) ⊂ B(x, h)). Therefore, the integrated

variance of fn,h(·) is at most

∫

X

σ2
Y

n · µ(B(z(x), h
2
))

dµ(x) ≤
∑

z∈Z

∫

B(z,h/2)

σ2
Y

n · µ(B(z, h
2
))

dµ(x)

=
Nσ2

Y

n
=
|AZ |σ2

Y

n
≤ C · h−dσ2

Y

n
,

where the r.h.s is just the integrated variance of fn,AZ
. Thus, what makes kernel

regression adaptive to intrinsic dimension is that the set of balls B(x, h) form an

equivalence class which implicitly covers the space in a near-optimal fashion.

Similarly, with tree-kernel hybrids we want most balls B(x, h) to be equiv-

alent up to small differences in the estimates they yield. Now however, if centers

are far from the points they represent, then close-by centers can contribute very

different Y values. In such a case, two close points x and x′ might get quite differ-

ent estimates because the balls B(x, h) and B(x′, h) contain different centers with

very different Y contributions. If instead the centers form an O(h)-cover of the

training data X, then we can expect as before that the set of balls B(x, h) form

an implicit cover of small size relative to d. We have the following lemma.

Lemma 44. Consider a partition A of X , and denote by QA a set of centers for

the cells of A. For q ∈ QA, let nq denote the number of training points from X

falling in the cell of A corresponding to q and let Ȳq denote the average Y value

in this cell. Let the kernel K(u) be a non increasing function of u ∈ [0,∞); K is

positive on u ∈ [0, 1), maximal at u = 0, and is 0 for u ≥ 1. Given a bandwidth

h > 0, define a tree-kernel hybrid regressor as

fn(x) =
∑

q∈QA

wq(x)Ȳq, where (6.1)

wq =
nq(K(‖x− q‖ /h) + ǫ)∑

q′∈QA
nq′(K(‖x− q′‖ /h) + ǫ)

,

where the positive constant ǫ ≤ K(1/2)/n2 ensures the ratio is well defined. As-

sume the regression function f is λ-lipschitz. Then, provided QA is an (h/4)-cover
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of the sample X, we have

E
(X,Y),X

‖fn(X)− f(X)‖2 ≤ C
σ2

Y · (h/∆X )−d

n
+ 2λ2h2,

where d is the doubling dimension of X , ∆X is its diameter, and the constant C

depends just on K(·) and d.

As a corollary, if h ≈ n−1/(2+d) then the convergence rate is of the order of

n−2/(2+d). This result is proved in Section 6.4.

6.1.2 Maintaining a fast evaluation time

Evaluating a tree-kernel hybrid regressor at a point x has time complexity

lower-bounded by the number of cell centers that fall in B(x, h) and how fast we

can identify these centers. To ensure that not too many such centers fall in B(x, h)

we just need to maintain the centers far apart. More precisely, given a bandwidth

h, we use a partition of the space such that the centers are αh apart, α ∈ (0, 1),

i.e. the centers form an αh-packing. This ensures that the number of centers in

B(x, h) are at most a constant that depends on α and the intrinsic dimension of

the space, no matter the position of x. This is emphasized in the following lemma.

Lemma 45. Suppose X has doubling dimension d. Let Q be a set of centers

forming an αh-packing, α ∈ (0, 1). Then maxx∈X |Q ∩B(x, h)| ≤ (4/α)d.

Proof. It is well known that an r-packing Q has size at most that of an r/2-cover of

the space [Cla05]. Now applying the definition of doubling dimension recursively

yields the lemma.

Now it’s left to make sure that Q∩B(x, h) can be identified quickly. Suppose

we can quickly find a point q ∈ Q such that ‖x− q‖ ≤ O(h). Then by a simple

triangle inequality we can see that Q ∩ B(x, h) is entirely contained in a ball

B(q, O(h)) ∩Q around q. We therefore only have to compute weights for points

falling in this ball around q. This is made fast by identifying such balls around

every q ∈ Q before estimation time.



80

Notice that, by Lemma 45 above, B(q, O(h))∩Q has bounded size independent of

n. We just have to find such a q close to x in O(log n) time. This is made clear in

the implementation details of the following section.

6.2 Implementation details: Two types of tree-

kernel hybrids

By Lemma 44 and Lemma 45 above, we want the centers to be both an αh-

cover of X (for accuracy) and an αh-packing (for speed), i.e. an αh-net of X, where

α ∈ (0, 1) is assumed fixed. The first type of hybrids follows these propositions

closely and operates on r-nets Qr of X. The other type only uses approximate

r-nets of X obtained by merging the cells of a tree.

Algorithm 6: Building an r-net over points {xi}
Input: points {xi}, r.

Initialize Qr ← {x1}.
Define ‖xi −Qr‖ .

= minxj∈Qr ‖xi − xj‖.
while max{xi} ‖xi −Qr‖ ≥ r do

Add x
.
= argmax{xi} ‖xi −Qr‖ to Qr.

end while

Return: r-net Qr.

6.2.1 Tree-kernel hybrids using r-nets

Here we construct r-nets Qr at different scales r ∈ {∆X/ci}O(log n)
i=0 , 1 < c ≤ 2

(see Procedure 1). Each Qr is the set of centers of the Voronoi partition it induces,
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i.e. q ∈ Qr is the center of the set {x ∈ X : ‖x− q‖ ≤ ‖x− q′‖ , q′ ∈ Qr} (ties

are handled whichever way is appropriate). Data points in X are thus assigned to

centers in Qr. For each q ∈ Qr we define nq as the number of points assigned to q,

and we let Ȳq be the average Y value of these points. The estimate fn(x) is then

obtained as in Procedure 2.

Algorithm 7: Tree-kernel hybrids via r-nets

Input: {Qr} for r ∈ {∆X/ci}O(log n)
i=0 , h, the query point x.

r ← largest r ∈ {∆X/ci}O(log n)
i=0 s.t. r ≤ αh.

q ← argmin
q′∈Qr

‖x− q′‖.

Qq ← {Qr ∩B(q, 4r/α)}. // pre-computed

Define Ȳ
.
= 1

n

∑

yi∈Y

yi. // pre-computed

Return:

fn(x)←
∑

q∈Qq
nqK(‖x− q‖/h)Ȳq + ǫnȲ

∑
q′∈Qq

nq′K(‖x− q′‖/h) + ǫn
.

For fast estimation we have to quickly find the closest q ∈ Qr to x (see

discussion in Section 6.1.2). Observe that finding the closest q can be done using

a generic nearest neighbor (NN) search procedure such as the cover-tree or the

navigating-net [BKL06, KL04]. These NN procedures guarantee to return q in

time 2O(d) log |Qr| ≤ 2O(d) log n, where d is the doubling dimension of the data.

Combined with the evaluation over Qq, the whole evaluation is guaranteed to take

time at most 2O(d) log n by Lemma 45, for small values of α. We can see from

Lemma 44 that values of α around 1/4 are sensible and this is also empirically

supported (see Section 6.3).

In light of Lemma 44 we can expect tree-kernel hybrids using r-nets to be

competitive with kernel regression in terms of the quality of estimates. We will see

that this also holds empirically.
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6.2.2 Tree-kernel hybrids using cell merging procedure

The cell merging procedure described here emphasizes evaluation time while

the above r-nets method emphasizes accuracy. Interestingly, cell merging can be

applied to any partitioning tree method.

Using your favorite partitioning procedure, build a hierarchy of nested par-

titions {Ai}O(log n)
i=0 of the input space X . For each partition A in the hierarchy,

we define a hybrid regressor as follows. Start with a set of centers {ai} over the

cells of A (here we use the mean X value in each cell). Informed by Lemma 44,

we would want these centers to form an approximate r-cover of the sample X, for

some r. We can for instance let r be the average distance between points in a cell

(as in Procedure 3). Now, in order to apply Lemma 45 and ensure fast estimation,

we need the cell centers to form an r-packing, however some centers might be too

close to each other. We therefore apply the following cell merging procedure:

Build an r-net QA ⊂ {ai} of the centers {ai}, as in Procedure 1. Merge
cell i with cell j if aj = argminq∈QA

‖ai − q‖.

For each q ∈ QA let nq be the total number of points assigned to q after the merge,

and let Ȳq be the average Y value of these points. The hybrid regressor is now

defined as in Procedure 3.

The center ax in Procedure 3 is found in O(log n) time by traversing the

tree. Finding q is then a simple lookup. Thus, applying Lemma 45 we see that

estimation time is O(log n+2O(d)) in the worst case (again we treat α as a constant

since sensible settings are around 1/4). The conditions of Lemma 44 are now only

loosely met since the centers now only form an approximate cover of the data.

We will see however that the estimates from these types of hybrid regressors are

superior in quality to those obtained using the corresponding tree-based regressors

on various datasets.

6.3 Practical benefits of tree-kernel hybrids

In this section we discuss various practical benefits of tree-kernel hybrids,

namely time-accuracy tradeoff, local bandwidth selection, smoothness, and auto-
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Algorithm 8: Tree-kernel hybrids via cell merging

Input: tree {Ai}i, level j, query point x.

Define r2 .
= 1

2
maxA∈Aj

∑
Xi,Xj∈A ‖Xi −Xj‖2.

h← r/α.

Let QAj be an r-net over centers of Aj.

ax ← center of the cell of Aj to which x belongs.

q ← argmin
q′∈Q

Aj

‖ax − q′‖.

Qq ← {QAj ∩B(q, 2r/α)}. // pre-computed

Define Ȳ
.
= 1

n

∑

yi∈Y

yi.

Return:

fn(x)←
∑

q∈Qq
nqK(‖x− q‖/h)Ȳq + ǫnȲ

∑
q′∈Qq

nq′K(‖x− q′‖/h) + nǫ
.

matic bandwidth range selection. These various benefits are illustrated through

empirical evaluations on datasets chosen from the following real-world application

domains: vision, robotic control, and out-of-sample extension for MDS embed-

dings.

6.3.1 Tradeoff between estimation time and accuracy

Here we showcase the effectiveness of tree-kernel hybrids on two prediction

tasks. The first task is taken from the computer vision domain. Given 30 × 50-

pixels images of a rotating teapot, the goal is to predict the angle of orientation

(which is corrupted by Gaussian noise of variance 1). The second task is taken

from robotic controls. The goal here is to learn the inverse dynamics for the

movement of a robotic arm. That is, we want to predict the torque required to

move a robotic arm to a given state, where each state is a 21-dimensional vector of

position, velocity and acceleration [VS00, RW06]. Different torques are applied at

7 joint positions, but we only predict the first torque value in our experiments. In

a basic experiment we draw a test sample, and draw training samples of different

sizes. This basic experiment is repeated several times and the average error and
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time over all tests are reported. We use a test size of 180 points for the teapots

experiments, and a test size of 360 points for the robotic torque.

For baseline comparisons, we use a fast implementation of kernel regression:

a cover-tree [BKL06] is used to quickly identify B(x, h) ∩X. The same cover-tree

implementation is used for the r-nets-hybrids. In all the implementations we use

a triangle kernel i.e. K(u) = (1− |u|)+. We also compare against k-d tree and RP

tree regression as baseline for time performance. For every k-d tree split we pick

the coordinate (out of D) with maximum variance. For RPtree, we simply pick

a random direction. We note that one can improve on this procedure by picking

the best direction out of many random directions (as done in the experiments of

Chapter 4), but picking a single direction is sufficient for the purpose of the current

experiment, namely showing that cell-merging hybrids improve on the estimates

from the original trees.

For performance evaluations we report the root mean squared error (RMSE)

on a test sample; for the tree-based regressors we report the minimum error over all

tree levels, for the tree-kernel hybrids we report the minimum error over all levels

and over a linear sweep of 100 bandwidth choices ranging from the diameter of the

training sample down to the minimum interpoint distance; for kernel regression, the

minimum error over the same bandwidth sweep is reported. For time performance

we just report the average wall clock time on test evaluations. Results are reported

in Figure 6.2.

Tradeoff under global bandwidth

The r-nets-hybrids (left column of Figure 6.2) perform as well as kernel

regression for α = 0.25 while consistently achieving better time. For larger values of

α, the centers in Qαh are further from the data and are therefore poorer surrogates

so prediction performance decreases; however these centers are far enough apart

that fewer of them fall in the ball B(x, h) so evaluation is faster.

The cell-merging-hybrids (center and right column of Figure 6.2) do not

perform as well as the r-nets because they don’t cover the space as well, being

limited by the initial partition tree they are built upon. However they consistently
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Figure 6.2: Performance vs. time for tree-kernel hybrids. First column shows
the results for r-nets-hybrids. The next two columns are cell-merge-hybrids built
using k-d trees and RP trees respectively.
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perform better than the initial partition tree while attaining comparable evaluation

time.

Improved accuracy with local bandwidths

In order to adapt to different regression complexities in different regions of

space, we did the following: pick a level of the initial tree (level 2 in our experi-

ments), and use a different bandwidth in each region defined by the partition at

that level. Note that this is a much cheaper alternative to the local bandwidth

methods for kernel regression, since these methods typically require the bandwidth

parameter to be determined at evaluation time [Sta89]; in our case the local band-

widths can be pre-learned and saved for later evaluations. We can see that (Figure

6.2 center and right columns) using local bandwidth further improves the qual-

ity of estimates of the cell-merging-hybrids while approximately maintaining the

evaluation time.

6.3.2 Smoothness of the learned function

For certain applications, we want the regressor to output a smooth function

over the input domain. For instance in the torque prediction task for robotic

arm, it is undesirable to have wildly varying torque values for close-by states as

this could damage the physical machinery. Even though kernel methods output

smooth functions, they are too slow especially for real-time tasks such as robotic

control. The r-nets-hybrids provide a fast and smooth alternative. While the cell-

merging-hybrids improve over the smoothness of the initial tree method they build

upon, they are only smooth over regions of high density. Figure 6.3 shows predicted

torque values for various methods as the input is varied over a line segment between

the farthest two sample points. Observe that the cell-merging-hybrid produces a

smooth curve only at the interior of the line as we pass through dense regions.
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Figure 6.3: Predicted torque values over the line segment {x1 + t(x2 − x1)}, 0 <
t < 1, where x1, x2 are the farthest two sample points.

6.3.3 Automatic bandwidth range selection

The sizes of the r-nets used in tree-kernel hybrids are informative about the

location of the optimal bandwidth parameter on the real line. This is evident when

one observes that intrinsic dimension is defined in terms of cover sizes (Chapter

2), and that this dimension is the most important factor in the optimal bandwidth

(see discussion of Lemma 44). Remember that from Lemma 44 the MSE of these

estimators breaks down into variance and bias terms as

C
σ2

Y · (h/∆X )−d

n
+ 2λ2h2, (6.2)

and is minimized by setting h∗ ≈ (σ2
Y /λ2n)

−1/(2+d)
, corresponding to the point

where the variance and bias terms are essentially equal. Given our implementa-

tion of r-nets-hybrids, we aim to reduce the search space over h by automatically

inferring a small range containing good settings of h.

We use the following heuristic: first, since we typically don’t know the

parameters in (6.2), we instead work with the simpler equation |Qh| /n+h2, know-

ing that |Qh| ≤ C · (h/∆X )−d (see proof of Lemma 45); now notice that as one

varies h from ∆X down to 0, the variance term |Qh| /n starts out smaller than h2

(for large n) and at some point (hopefully corresponding to good settings of h),

the variance term becomes larger than the bias term h2. Given candidate values

h ∈ {∆X/ci}∞i=0, we just return the interval between the first h1 where the variance

term becomes smaller than the bias term and the last h2 for which the variance

term is larger. This sort of heuristic is not new [Kpo09] and it can be shown that
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Figure 6.4: Predicted bandwidth intervals for MDS out-of-sample extension.

the interval [h1, h2] must contain values in the order of h∗, provided σ2
Y and λ are

bounded.

An application area where we can expect σ2
Y and λ to be small is that

of out-of-sample extension for embeddings. Here we view the embedding of data

points into some Euclidean space as a mapping f corrupted by noise. The task

of out-of-sample extension is to predict the embedding of future points using the

embeddings of previous training points. The embedding method used here is the

classical Multidimensional Scaling (MDS). If the embedding is stable, which is

desirable, then σ2
Y is small; also λ in this case quantifies how much interpoint

distances are distorted by the embedding, and therefore can be expected to be

small since MDS attempts to preserve distances.

The heuristic works remarkably well in our experiments (see Figure 6.4).

We report the RMSE (after re-alignment of eigenvectors - see e.g. [BPV+03]) for

various values of h and various training sizes for two datasets. The datasets are the

popular Swiss-roll dataset [BPV+03] and the aset400 music similarity dataset with

MFCC kernel [ML09]. The automatic-range returned for the optimal bandwidth

typically includes the optimal value, hence reducing the search-space for h over

the line. Here the r-nets are built at scales r ∈ {∆X/ci}O(log n)
i=0 , c = 1.1.
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6.4 Analysis

In this section we go over the analysis that leads to the statement of Lemma

44. We first analyze the risk for a fixed choice of h, then we give guarantees for a

simple cross-validation procedure for choosing a good h. We note that the analysis

in this section also holds for any metric space X , with the Assouad dimension

defined the usual way using the given metric instead of the Euclidean metric.

6.4.1 Risk bound for h fixed

Throughout this section we assume 0 < h < ∆X and we let Q = Qh/4. We’ll

bound the risk for fn,Q for any fixed choice of h. The results in this section only

require the fact that Q is a cover of the data and thus preserves local information.

We’ll proceed by bounding the bias and variance separately in the following

two lemmas, and then combining these bounds in Lemma 44. We let µ denote the

marginal measure over X and µn denote the corresponding empirical measure. As

before we let f̃n,Q(x)
.
= EY|X fn,Q(x) denote the conditional expectation of the

estimate given X fixed. We will often use the shorthand notation K(x, x′, h) to

denote K(‖x− x′‖ /h).

Lemma 46 (Variance at x). Fix the sample X, let Q be an h
4
-cover of X, and

0 < h < ∆X . Consider x ∈ X such that X ∩ (B(x, h/4)) 6= ∅. We have

E
Y|X

∥∥∥fn,Q(x)− f̃n,Q(x)
∥∥∥

2

≤ 2K(0)σ2
Y

K(1/2) · nµn (B(x, h/4))
.

Proof. It is easily verified that, for independent random vectors vi with expectation

0, E ‖∑i vi‖2 =
∑

i E ‖vi‖2. We apply this fact twice in the inequalities below,

given that, conditioned on X and Q ⊂ X, the Yi values are mutually independent
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and so are the Ȳq values. We have

E
Y|X

∥∥∥fn,Q(x)− f̃n,Q(x)
∥∥∥

2

= E
Y|X

∥∥∥∥∥
∑

q∈Q

wq(x)

(
Ȳq − E

Y|X
Ȳq

)∥∥∥∥∥

2

≤
∑

q∈Q

w2
q(x) E

Y|X

∥∥∥∥Ȳq − E
Y|X

Ȳq

∥∥∥∥
2

=
∑

q∈Q

w2
q(x) E

Y|X

∥∥∥∥∥∥

∑

i:Xi∈X(q)

1

nq

(
Yi − E

Y|X
Yi

)∥∥∥∥∥∥

2

≤
∑

q∈Q

w2
q(x)

∑

i:Xi∈X(q)

1

nq

E
Y|X

∥∥∥∥Yi − E
Y|X

Yi

∥∥∥∥
2

=
∑

q∈Q

w2
q(x)

σ2
Y

nq

≤
(

max
q∈Q

{
wq(x)

σ2
Y

nq

})∑

q∈Q

wq

= max
q∈Q

{
wq(x)

σ2
Y

nq

}

= max
q∈Q

(K(x, q, h) + ǫ)σ2
Y∑

q′∈Q nq′(K(x, q′, h) + ǫ)

≤ 2K(0)σ2
Y∑

q∈Q nqK(x, q, h)
. (6.3)

To bound the fraction in (6.3), we lower-bound the denominator as:

∑

q∈Q

nqK(x, q, h) ≥
∑

q:‖x−q‖≤h/2

nqK(x, q, h)

≥
∑

q:‖x−q‖≤h/2

nqK (1/2) ≥ K (1/2) nµn(B(x, h/4)).

The last inequality follows by remarking that, since Q is an h
4
-cover of X, the ball

B(x, h/4) can only contain points from ∪q:‖x−q‖≤h/2X(q). Plug this last inequality

into (6.3) and conclude.

Lemma 47 (Bias at x). As before, fix X, let Q be an h
4
-cover of X, and 0 < h <

∆X . Consider x ∈ X such that X ∩ (B(x, h/4)) 6= ∅. We have

∥∥∥f̃n,Q(x)− f(x)
∥∥∥

2

≤ 2λ2h2 +
∆2

Y
n

.
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Proof. We have

∥∥∥f̃n,Q(x)− f(x)
∥∥∥

2

=

∥∥∥∥∥∥

∑

q∈Q

wq(x)

nq

∑

Xi∈X(q)

(f(Xi)− f(x))

∥∥∥∥∥∥

2

≤
∑

q∈Q

wq(x)

nq

∑

Xi∈X(q)

‖f(Xi)− f(x)‖2 ,

where we just applied Jensen’s inequality on the norm square. We bound the r.h.s

by breaking the summation over two subsets of Q as follows.

∑

q:‖x−q‖<h

wq(x)

nq

∑

Xi∈X(q)

‖f(Xi)− f(x)‖2 ≤
∑

q:‖x−q‖<h

wq(x)

nq

∑

Xi∈X(q)

λ2 ‖Xi − x‖2

≤
∑

q:‖x−q‖<h

wq(x)

nq

∑

Xi∈X(q)

λ2 (‖x− q‖+ ‖q −Xi‖)2

≤
∑

q:‖x−q‖<h

wq(x)

nq

∑

Xi∈X(q)

25

16
λ2h2 ≤ 2λ2h2.

Next, we have

∑

q:‖x−q‖≥h

wq(x)

nq

∑

Xi∈X(q)

‖f(Xi)− f(x)‖2 ≤
∑

q:‖x−q‖≥h

wq(x)∆2
Y

=
∆2

Y
∑

q:‖x−q‖≥h nqǫ∑

q:‖x−q‖≥h

nqǫ +
∑

q:‖x−q‖<h

nq (K(x, q, h) + ǫ)

= ∆2
Y


1 +

∑
q:‖x−q‖<h nq (K(x, q, h) + ǫ)

∑

q:‖x−q‖≥h

nqǫ




−1

≤ ∆2
Y

(
1 +

K(1/2)∑
q:‖x−q‖≥h nqǫ

)−1

≤ ∆2
Y

(
1 +

K(1/2)

nǫ

)−1

≤ ∆2
Y

1 + n
,

where the second inequality is due to the fact that, since µn(B(x, h/4)) > 0, the

set B(x, h/2) ∩Q cannot be empty (remember that Q is an h
4
-cover of X). This

concludes the argument.
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Proof of Lemma 44

Applying Fubini’s theorem, the expected excess risk, E(X,Y) ‖fn,Q − f‖2, can be

written as

E
X

E
(X,Y)

‖fn,Q(X)− f(X)‖2 (1 [µn(B(X, h/4)) > 0] + 1 [µn(B(X, h/4)) = 0]) .

By lemmas 46 and 47 we have for X = x fixed,

E
(X,Y)

‖fn,Q(x)− f(x)‖2 1 [µn(B(x, h/4)) > 0]

≤ C1 E
X

[
∆2

Y1 [µn(B(x, h/4)) > 0]

nµn(B(x, h/4))

]
+ 2λ2h2 +

∆2
Y

n

≤ C1

(
2∆2

Y
nµ(B(x, h/4))

)
+ 2λ2h2 +

∆2
Y

n
, (6.4)

where for the last inequality we used the fact that (see lemma 4.1 of [GKKW02])

for a binomial b(n, p),

E

[
1 [b(n, p) > 0]

b(n, p)

]
≤ 2

np
.

For the case where B(x, h/4) is empty, we have

E
(X,Y)

‖fn,Q(x)− f(x)‖2 1 [µn(B(x, h/4)) = 0] ≤ ∆2
Y E

X
1 [µn(B(x, h/4)) = 0]

= ∆2
Y (1− µ(B(x, h/4))n ≤ ∆2

Ye−nµ(B(x,h/4)) ≤ ∆2
Y

nµ(B(x, h/4))
. (6.5)

Combining (6.5) and (6.4) into the excess risk as in equation (1.2), we get

E
(X,Y)

‖fn,Q − f‖2 ≤ 3C1∆
2
Y

n
E
X

[
1

µ(B(X, h/4))

]
+ 2λ2h2 +

∆2
Y

n
. (6.6)

The expectation on the r.h.s is bounded using a standard covering argument (see

e.g. [GKKW02]). Let {zi}N1 be an h
8
-cover of X . Notice that for any zi, x ∈

B(zi, h/8) implies B(x, h/4) ⊃ B(zi, h/8). We therefore have

E
X

[
1

µ(B(X, h/4))

]
≤

N∑

i=1

E
X

[
1 [X ∈ B(zi, h/8)]

µ(B(X, h/4))

]

≤
N∑

i=1

E
X

[
1 [X ∈ B(zi, h/8)]

µ(B(zi, h/8))

]

= N ≤ C2

(
∆X
h

)d

, where C2 depends just on d.
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We conclude by combining the above with (6.6) to obtain

E
(X,Y)

‖fn,Q − f‖2 ≤ 3C1C2∆
2
Y

n(h/∆X )d
+ 2λ2h2 +

∆2
Y

n
.

�

6.4.2 Choosing a good h by empirical risk minimization

In this section, we analyze the following simple procedure for choosing a

good h:

Define H
.
= {∆X/2i}⌈log n⌉

0 . For every h ∈ H, pick the r-net Qh/4 over
the sample (X,Y), and let fn,Qh/4

be as previously defined (equation
6.1). Draw a new sample (X′,Y′) of size n. For every h ∈ H, test
fn,Qh/4

on (X′,Y′); let the empirical risk be minimized at ho, i.e. ho
.
=

argminh∈H
1
n

∑n
i=1

∥∥∥fn,Qh/4
(X ′

i)− Y ′
i

∥∥∥
2

.

Return fn,Qho/4
as the final regressor.

Corollary 48 (Follows from Lemma 44). Let n ≥ max

(
9,
(

∆Y

λ∆X

)2

,
(

λ∆X

∆Y

)2
)

.

The final regressor selected satisfies

E

∥∥∥fn,Qho/4
− f

∥∥∥
2

≤ C (λ∆X )2d/(2+d)

(
∆2

Y
n

)2/(2+d)

+ 3∆2
Y

√
ln(n log n)

n
,

where C depends on the Assouad dimension d and on K(0)/K(1/2).

Proof. Let h̃ = C3

(
∆

d/(2+d)
X

(
∆2

Y

λ2n

)1/(2+d)
)
∈ H. We note that n is lower bounded

so that such an h̃ is in H. We have by Lemma 44 that for h̃,

E
X,Y

∥∥∥fn,Qh̃/4
− f

∥∥∥
2

≤ C0 (λ∆X )2d/(2+d)

(
∆2

Y
n

)2/(2+d)

.

Applying McDiarmid’s to the empirical risk followed by a union bound over H, we

have that, with probability at least 1 − 1/
√

n over the choice of (X′,Y′), for all

h ∈ H
∣∣∣∣∣ E
X,Y

∥∥∥fn,Qh/4
(X)− Y

∥∥∥
2

− 1

n

n∑

i=0

∥∥∥fn,Qh/4
(X ′

i)− Y ′
i

∥∥∥
∣∣∣∣∣ ≤ ∆2

Y

√
ln(|H|√n)

n
.
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It follows that

E
X,Y

∥∥∥fn,Qho/4
(X)− Y

∥∥∥
2

≤ E
X,Y

∥∥∥fn,Qh̃/4
(X)− Y

∥∥∥
2

+ 2∆2
Y

√
ln(|H|√n)

n
,

which by (1.1) implies

∥∥∥fn,Qho/4
− f

∥∥∥
2

≤
∥∥∥fn,Qh̃/4

− f
∥∥∥

2

+ 2∆2
Y

√
ln(|H|√n)

n
.

Take the expectation (given the randomness in the two samples) over this last

inequality and conclude.

6.5 A fast implementation of r-nets-hybrids

In this section we show how to modify the cover-tree procedure of [BKL06]

to enable fast evaluation of fn,Qh/4
for any h ∈ H

.
= {∆X/2i}I1, I = ⌈log n⌉.

The cover-tree performs proximity search by navigating a hierarchy of nested

r-nets of X. The navigating-nets of [KL04] implement the same basic idea. They

require additional book-keeping to enable range queries of the form X∩B(x, h), for

a query point x. Here we need to perform range searches of the form Qh/4∩B(x, h)

and our book-keeping will therefore be different from [KL04]. Note that, for each

h and Qh/4, one could use a generic range search procedure such as [KL04] with

the data in Qh/4 as input, but this requires building a separate data structure for

each h, which is expensive. We use a single data structure.

6.5.1 The hierarchy of nets

Consider an ordering
{
X(i)

}n

1
of the data points obtained as follows: X(1)

and X(2) are the farthest points in X; inductively for 2 < i < n, X(i) in X is the

farthest point from
{
X(1), . . . , X(i−1)

}
, where the distance to a set is defined as the

minimum distance to a point in the set. defined as the minimum distance between

points in the sets. In other words,
{
X(i)

}n

1
is built by starting with the farthest two

points in X, and inductively picking the farthest point from the current sequence.

For r ∈ {∆X/2i}I+2
0 , define Qr =

{
X(1), . . . , X(i)

}
where i ≥ 1 is the highest

index such that
∥∥X(i) −

{
X(1), . . . , X(i−1)

}∥∥ ≥ r. Notice that, by construction, Qr

is an r-net of X.
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X(1) X(2) X(3) X(4) X(5) X(6) X(1) X(2) X(3) X(4) X(5) X(6)

Figure 6.5: The r-nets (rows of left subfigure) are implicit to an ordering of the
data. They define a parent-child relationship implemented by the neighborhood
graph (right), the structure traversed for fast evaluation.

6.5.2 Data structure

The data structure consists of an acyclic directed graph, and range sets

defined below.

Neighborhood graph: The nodes of the graph are the
{
X(i)

}n

1
, and the

edges are given by the following parent-child relationship: starting at r = ∆X/2,

the parent of each node in Qr \Q2r is the point it is closest to in Q2r. The graph

is implemented by maintaining an ordered list of children for each node, where

the order is given by the children’s appearance in the sequence
{
X(i)

}n

1
. These

relationships are depicted in Figure 6.5.

These ordered lists of children are used to implement the nextChildren

operation defined iteratively as follows. Given Q ⊂
{
X(i)

}n

1
, let visited children

denote any child of q ∈ Q that a previous call to nextChildren has already

returned. The call nextChildren (Q) returns children of q ∈ Q that have not

yet been visited, starting with the unvisited child with lowest index in
{
X(i)

}n

1
,

say X(i), and returning all unvisited children in Qr, the first net containing X(i),

i.e. X(i) ∈ Qr \Q2r ; r is also returned. The children returned are then marked

off as visited. The time complexity of this routine is just the number of children

returned.

Range sets: For each node X(i) and each r ∈ {∆X/2i}∞0 , we maintain a

set of neighbors of X(i) in Qr defined as R(i),r
.
=
{
q ∈ Qr :

∥∥X(i) − q
∥∥ ≤ 8r

}
.
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Procedure evaluate(x, h)
Q← Q∆X

.

repeat
(Q′, r)← nextChildren (Q).

Q′′ ← Q ∪Q′.

if r < h/4 or Q′ = ∅ then // We reached past Qh/4.

X(i) ← argminq∈Q ‖x− q‖; // Closest point to x in Qh/4.

Q← R(i),h/4 ∩B(x, h); // Search in a range of 2h around

X(i).

Break loop.

if ‖x−Q′′‖ ≥ h + 2r then // The set Qh/4 ∩B(x, h) is empty.

Q← ∅.
Break loop.

Q← {q ∈ Q′′, ‖x− q‖ < ‖x−Q′′‖+ 2r}.
until . . . ;

//At this point Q = Qh/4 ∩B(x, h).

Define Ȳ
.
= 1

n

∑

yi∈Y

yi.

return

fn,Qh/4
(x)←

∑
q∈Q nq(K(x, q, h))Ȳq + ǫnȲ
∑

q∈Q nq(K(x, q, h)) + ǫn
;
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6.5.3 Evaluation

The evaluation procedure consists of quickly identifying the closest point

X(i) to x in Qh/4 and then searching in the range of X(i) for the points in Qh/4 ∩
B(x, h). The identification of X(i) is done by going down the levels of nested

nets, and discarding those points (and their descendants) that are certain to be

farther to x than X(i) (we will argue that “‖x−Q′′‖ + 2r” is an upper-bound on
∥∥x−X(i)

∥∥). Also, if x is far enough from all points at the current level (second

if-clause), we can safely stop early because B(x, h) is unlikely to contain points

from Qh/4 (we’ll see that points in Qh/4 are all within 2r of their ancestor at the

current level).

Lemma 49. The call to procedure evaluate (x,h) correctly evaluates fn,Qh/4
(x)

and has time complexity C log (∆X/h) + log n where C is at most 28d.

Proof. We first show that the algorithm correctly returns fn,Qαh
(x), and we then

argue its run time.

Correctness of evaluate. The procedure works by first finding the clos-

est point to x in Qh/4, say X(i), followed by the identification of all nodes in
(
R(i),h/4 ∩B(x, h)

)
=
(
Qh/4 ∩B(x, h)

)
(see the first if-clause). We just have to

show that this closest point X(i) is correctly identified.

We’ll argue the following loop invariant I: at the beginning of the loop,

X(i) is either in Q′′ = Q ∪Q′ or is a descendant of a node in Q′. Let’s consider

some iteration where I holds (it certainly does in the first iteration).

If the first if-clause is entered, then Q is contained in Qh/4 but Q′ is not,

so X(i) must be in Q and we correctly return.

Suppose the first if-clause is not entered. Now let X(j) be the ancestor in

Q′ of X(i) or let it be X(i) itself if it’s in Q′′. Let r be as defined in evaluate, we

have
∥∥X(i) −X(j)

∥∥ <
∑∞

k=0 r/2k = 2r by going down the parent-child relations. It

follows that

‖x−Q′′‖ ≤
∥∥x−X(j)

∥∥ ≤
∥∥x−X(i)

∥∥+
∥∥X(i) −X(j)

∥∥ <
∥∥x−X(i)

∥∥+ 2r.

In other words, we have
∥∥x−X(i)

∥∥ > ‖x−Q′′‖− 2r. Thus, if the second if-clause
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is entered, we necessarily have
∥∥x−X(i)

∥∥ > h, i.e. B(x, h) ∩ Qh/4 = ∅ and we

correctly return.

Now assume none of the if-clauses is entered. Let X(j) ∈ Q′′ be any of the

points removed from Q′′ to obtain the next Q. Let X(k) be a child of X(j) that

has not yet been visited, or a descendant of such a child. If neither such X(j) or

X(k) is X(i) then, by definition, I must hold at the next iteration. We sure have

X(j) 6= X(i) since
∥∥x−X(j)

∥∥ ≥ ‖x−Q′′‖+2r ≥
∥∥x−X(i)

∥∥+2r. Now notice that,

by the same argument as above,
∥∥X(j) −X(k)

∥∥ <
∑∞

k=0 r/2k = 2r. We thus have
∥∥x−X(k)

∥∥ >
∥∥x−X(j)

∥∥− 2r ≥
∥∥x−X(i)

∥∥ so we know X(j) 6= X(i).

Runtime of evaluate. Starting from Q∆X
, a different net Qr is reached at

every iteration, and the loop stops when we reach past Qh/4. Therefore the loop

is entered at most log (∆X/h/4) times. In each iteration, most of the work is done

parsing through Q′′, besides time spent for the range search in the last iteration.

So the total runtime is O (log (∆X/h/4) ·max |Q′′|) + range search time. We just

need to bound max |Q′′| ≤ max |Q|+ max |Q′| and the range search time.

The following fact (see e.g. Lemma 4.1 of [Cla05]) will come in handy:

consider r1 and r2 such that r1/r2 is a power of 2, and let B ⊂ X be a ball of

radius r1; since X has Assouad dimension d, the smallest r2-cover of B is of size at

most (r1/r2)
d, and the largest r2-packing of B is of size at most (r1/r2)

2d. This is

true for any metric space, and therefore holds for X which is of Assouad dimension

at most d by inclusion in X .

Let Q′ ⊂ Qr so that Q ⊂ Q2r at the beginning of some iteration. Let

q ∈ Q, the children of q in Q′ are not in Q2r and therefore are all within 2r of Q;

since these children an r-packing of B(q, 2r), there are at most 22d of them. Thus,

max |Q′| ≤ 22d max |Q|.
Initially Q = Q∆X

so we have |Q| ≤ 22d since Q∆X
is a ∆X -packing of

X ⊂ B
(
X(1), 2∆X

)
. At the end of each iteration we have Q ⊂ B(x, ‖x−Q′′‖+2r).

Now ‖x−Q′′‖ ≤ h + 2r ≤ 4r + 2r since the if-clauses were not entered if we got

to the end of the iteration. Thus, Q is an r-packing of B(x, 8r), and therefore

max |Q| ≤ 28d.

To finish, the range search around X(i) takes time
∣∣R(i),h/4

∣∣ ≤ 28d since
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R(i),h/4 is an h
4
-packing of B

(
X(i), 2h

)
.



Appendix A

A.1 On the adaptivity of an axis-parallel split-

ting rule

In this section we show that if the input space X is a subset of [−1, 1]D

of Assouad dimension d, then a dyadic tree regressor (Figure 4.1(a)) achieves a

convergence rate of the form O(n−2/(2+d)), but with a leading constant that is

exponential in D.

The dyadic tree starts with a single cell corresponding to all of [−1, 1]D, and

then grows one level at a time. In each such expansion, a particular coordinate

direction is chosen and every current leaf cell is bisected at its midpoint along

that coordinate. There is flexibility in how the coordinate direction is chosen; a

common choice is to simply cycle through the D coordinates. The final level of the

tree defines a partition A of [−1, 1]D, and a regressor fn,A is obtained by averaging

the Y values in each cell A ∈ A.

Unlike an RP tree, the dyadic tree is not data-dependent. In such cases,

a generic risk bound applies. If the cells of A have diameter ≤ ζ, and if AX is

the subset of cells intersecting X , then it is implicit, for instance, in the proof of

Theorem 4.3 of [GKKW02], that

E ‖fn,A − f‖2 ≤ C

(
∆2

Y
|AX |

n
+ λ2ζ2

)
. (A.1)

The result in this section is obtained by noticing that most cells of A will

be empty if X has Assouad dimension much smaller than D. Think for instance

100
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of X as a line curving slowly through the cube [−1, 1]D.

Theorem 50. There are absolute constants C1, C2, and C3 for which the following

holds. Consider an input space X ⊂ [−1, 1]D of diameter 1 and Assouad dimension

d. Let A be a dyadic partition where each cell has diameter ζ < 1, that is, cells

have side lengths ζ/
√

D. If ζ = C1

(
∆2

Y · 2C3D log D/(λ2n)
)1/(2+d)

, we have

E ‖fn,A − f‖2 ≤ C2λ
2d/(2+d)

(
∆2

Y · 2C3D log D

n

)2/(2+d)

.

Proof. Let AX ⊂ A be the cells of A that intersect X . We’ll first show that

|AX | ≤ 2O(D log D)(1/ζ)d. By the Assouad assumption, X has a (ζ/2)-cover of size

N ≤ (2/ζ)d; call it {zi}N1 ⊂ X . Now consider the (closed) balls B(zi, ζ). By a

triangle inequality, the center of each hypercube A ∈ AX is contained in some ball

B(zi, ζ) (the center of each A is within ζ/2 of all x ∈ A ∩ X and each such x is

within ζ/2 of some zi). Therefore, if M is the maximum number of such centers

in a single ball B(zi, ζ), then |AX | ≤M ·N .

To bound M , notice that the centers of the hypercubes A ∈ AX are at least

ζ/
√

D away from each other. In other words, the centers contained in any B(zi, ζ)

form a (ζ/
√

D)-packing of it. By a standard duality, any r-packing of a space is

of size at most that of the minimum (r/2)-cover of the space. In this case the ball

B(zi, ζ) ⊂ R
D has a minimum (ζ/2

√
D)-cover of size at most (2

√
D)coD (recall

discussion of Chapter 2) that R
D has Assouad dimension ≤ coD for some constant

co < 3).

Thus |AX | ≤ M · N ≤ 2C3D log D(1/ζ)d (for some constant C3) and we

conclude by plugging this value into (A.1).

A.2 A more general setting

Finally, we consider a more general setting where the space X ⊂ R
D has

low Assouad dimension d≪ D only in sufficiently small neighborhoods (as in Fig-

ure 5.2). In this case, an RP tree might initially decrease diameter slowly; but

when its cells are small enough, further splits will rapidly decrease diameter. We
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will show that the higher dimensionality of large regions of space do not tremen-

dously affect the final excess risk, provided n is large enough for the tree to arrive

at well populated regions of sufficiently small diameter.

A.2.1 Result for the general case

The next definition of decrease rate is made more general by allowing for

a good rate k to be attained only later down the tree; in other words we al-

low for speedups to occur only in smaller regions of X , of diameter at most

2r < ∆X . The algorithm remains unchanged except that we now need α(n) ≥
(
log2 n

)
log log(n/δ) + log(Nr/δ), where Nr is the size of a minimal r-cover of X .

Note that Nr ≤ (∆X/r)O(D).

Definition 51. Given a sample X, we say that adaptiveRPtree attains a diam-

eter decrease rate of (k, γ) on X, for k ≥ d and γ ≤ n
α(n)

, if the following holds:

adaptiveRPtree arrives at an intermediate partition Aiγ , |Aiγ | = γ, such that any

subsequent call to coreRPtree(A, ∆n (A) /2, δ) over cells A with ancestor in Aiγ ,

returns a tree rooted at A of height at most k.

Theorem 52. Assume that for every ball B ∈ R
D of radius r, B∩X has Assouad

dimension d. There exist constants C, C ′ independent of d and µ(X ), and C ′′ =

C ′′(µ(X ), r) such that the following holds.

Suppose the algorithm uses the cross-validation option with a setting of

α(n) ≥
(
log2 n

)
log log(n/δ)+log(Nr/δ). Assume n ≥ max

{
(λ∆X/∆Y)2 , C ′′α(n)

}
.

With probability at least 1 − δ, the algorithm attains a diameter decrease rate of

(k, γ) where k ≤ C ′d log d and γ ≤ C ′′, and the excess risk of the regressor satisfies

‖fn − f‖2 ≤ C · (λ∆X )2k/(2+k)

(
∆2

Y · γ · α(n)

n

)2/(2+k)

+ 2∆2
Y

√
ln log n6 + ln 1/δ

2n
.

A.2.2 Proof of theorem 52

The proof of theorem 52 closely mirrors that of theorem 32. We’ll therefore

only show the key lemmas whose statement change. We assume in what follows
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that the cross-validation option is used.

The proof proceeds also by first bounding the risks in terms of the observed

diameter decrease rate (lemma 56 of section A.2.2), and then bounding the worst

case decrease rates (lemma 58 of section A.2.2).

Risk bound in terms of observed diameter decrease rate

Lemma 53 (Mass of cells of A′). With probability at least 1− δ′ over X and the

randomness in the algorithm, we have for all partitions A = A0,A1, . . . found by

adaptiveRPtree, for all A′ ∈ A′ that

µ(A′) ≤ µn(A′) + 2

√
µn(A′)

V + ln(4/δ′)

n
+ 4
V + ln(4/δ′)

n
, where (A.2)

V ≤ O (log n(log n + loglog(1/δ)) + logNr) .

Proof. Follow the outline of lemma 38, the only difference being that the bound

on |B| introduces the term Nr.

Lemma 54 (Excess risk). There exists a constant C1 independent of d and µ(X )

such that the following holds with probability at least 1 − δ/3 over the choice of

(X,Y) and the randomness in the algorithm.

Let α(n) ≥
(
log2 n

)
log log(n/δ) + log(Nr/δ). Let Ai be the final partition

reached by adaptiveRPtree. For all partitions A ∈ {Aj}ij=0, we have

‖fn,A − f‖2 ≤ C1

(
∆2

Y |A|
α(n)

n
+ λ2

(
∆2

n (A) + n−4/(2+d)∆2
X
))

.

Proof. The proof is identical to that of lemma 39, using lemma 53 in place of

lemma 38.

Lemma 55 (Existence of a good pruning). Suppose the cross-validation option

is used, and adaptiveRPtree attains a diameter decrease rate of (k, γ) on X.

Let α(n) ≥
(
log2 n

)
log log(n/δ) + log(Nr/δ), and ζ

.
=
(

∆2
Y
·γ·α(n)

λ2∆2
X
·n

)1/(2+k)

. Finally,

assume

n ≥ max
{
(λ∆X/∆Y)2 , γ · α(n)

}
. Then there exists an RPtree partition A such

that |A| ≤ γ · ζ−k and ∆n (A) ≤ 2ζ ·∆n (X ).
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Proof. Follow the outline of lemma 40, while noticing that now we have for all

i ≥ 1, level (Ai) ≤ ki + log γ and ∆n (Ai) ≤ 2−i∆n (X ).

Lemma 56. There exists a constant C independent of d and µ(X ) such that the

following holds with probability at least 1− 2δ/3 over (X,Y) and the randomness

in the algorithm.

Suppose the cross-validation option is used, and adaptiveRPtree attains a

diameter decrease rate of (k, γ) on X. Let α(n) ≥
(
log2 n

)
log log(n/δ)+log(Nr/δ),

and assume n ≥ max
{
(λ∆X/∆Y)2 , γ · α(n)

}
. The excess risk of the regressor is

then bounded as

‖fn − f‖2 ≤ C · (λ∆X )2k/(2+k)

(
∆2

Y · γ · α(n)

n

)2/(2+k)

+ 2∆2
Y

√
ln log n6 + ln 1/δ

2n
.

Proof. Follow the outline of lemma 41.

Worst case decrease rates

Lemma 57. Assume that for every ball B ∈ R
D of radius r, B∩X has Assouad di-

mension d and consider the tree built by adaptiveRPtree. There exists a constant

C ′′ = C ′′(µ(X ), r), such that with probability at least 1− δ/3 over the randomness

in the algorithm, we have ∆n(A) ≤ r for all cells A of the tree at level at least

log C ′′.

Proof outline. This is a consequence of the fact that X has finite Assouad dimen-

sion at most O(D). By theorem 28 and the fact that basicRPtree is called multiple

times to boost the probability of obtaining a small tree (see proof of Lemma 31)

we have the following: with probability at least 1− δ/3, and independently of the

distribution, it takes at most a constant number of levels to get the data diameter

within the cells below r.

The number of levels needed for each particular distribution is therefore

just a constant.

Lemma 58. Assume that for every ball B ∈ R
D of radius r, B ∩ X has As-

souad dimension d. There exist constants C independent of X and d, and C ′′ =
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C ′′(µ(X ), r), such that with probability at least 1 − δ/3, the algorithm attains a

diameter decrease rate of (k, γ) where k ≤ C ′d log d and γ ≤ C ′′.

Proof. This results from Lemma 57 and Theorem 28.

Most of the appendix appear in:

– S. Kpotufe, S. Dasgupta, “A tree-based regressor that adapts to intrinsic di-

mension”, Journal of Computer and System Sciences, Special Issue on Learning

Theory, (Invited Submission).
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