
1

Nearest-Neighbor Classification and Search
Sanjoy Dasgupta

Samory Kpotufe

Abstract

In both algorithmic analysis of nearest neighbor search and statistical rates of
convergence for nearest neighbor classification, the simplest worst-case bounds are
pessimistic and discouraging, and do not accurately reflect performance in practice.
In this chapter, we discuss some of the more refined types of analysis that have been
attempted, and argue that much remains to be done.

1.1 Introduction

Nearest neighbor search is a basic tool of information retrieval: given a new data
item (such as the medical record of a new patient, or the latest measurements from
a space mission), the task is to find the most similar items encountered in the past.
These help to place the new item in context, for instance to determine whether it
is something familiar that can be handled easily or something novel that demands
special attention. In particular, knowledge of the outcomes, or labels, of the nearest
neighbors can be used to predict an outcome for the new instance.

Nearest neighbor search raises both algorithmic and statistical questions. How
can the nearest neighbor(s) be found quickly? And what is the quality of predictions
made using these neighbors? These questions have been studied for many decades,
yet remain rich areas of research. A large part of the di�culty is that the simplest
worst-case bounds for these problems are so loose as to be meaningless, in the
sense that they provide little insight into the behavior observed in reality. Thus it
is of great interest to develop methods of analysis that are more refined, that gain
accuracy by taking the structure or distribution of data into account.

Nearest Neighbor Methods 5

1.2 The Algorithmic Problem of Nearest Neighbor Search

Given a set S of n points, the nearest neighbor (NN) of a query q is the point in
S that is closest to q under some distance function of interest. Finding the nearest
neighbor naively takes O(n) time, which can be a serious deterrent in many practical
settings with large n.1 To speed this up, can a data structure be built from S that
will permit subsequent queries q to be answered quickly?

For one-dimensional data, there is an easy solution: the data structure is simply
a sorted version of S, using which the nearest neighbor of any query can be found
in O(log n) time by binary search. But generalizing this to higher dimension is not
straightforward. An especially tricky case is when the points S and query q are all
chosen uniformly at random from the surface of the unit sphere in RD. If D � log n,
a simple calculation shows that all the points, including the query, will with high
probability lie at distance

p
2 ± o(1) from each other. Thus all points are just a

tiny bit further from q than its very nearest neighbor. It is hard to imagine what
kind of data structure might permit the nearest neighbor to quickly be identified
amid such miniscule di↵erences. In what follows, we will refer to this example as
the canonical bad case.

There are two ways to banish this nightmare scenario. The first is to be content
with a c-approximation to the nearest neighbor, for some small constant c: that is,
any point that is at most c times further away from q than its nearest neighbor.
For data distributed uniformly on a high-dimensional sphere, anything in S is then
an acceptable answer. The second recourse is to think of this particular example
as being pathological and unlikely to occur in practice, and to make assumptions
about the configuration of the data under which e�cient search is possible.

1.2.1 Hashing for approximate nearest neighbor search

A hugely popular and successful method for nearest neighbor search has been
locality-sensitive hashing (LSH), first introduced in the late 1990s (Indyk and Mot-
wani, 1998; Charikar, 2002; Andoni and Indyk, 2008). This is not a specific algo-
rithm but rather a framework for boosting the performance of simple randomized
hash functions. The most common instantiation, for data in RD, uses random linear
projections for hashing:

• A point x 2 RD is mapped to the integer b(u ·x)/bc, where u is a direction chosen
at random from the unit sphere and b is the bucket width.

• Takingm such mappings h1, . . . , hm, point x then gets stored in anm-dimensional
table at location (h1(x), . . . , hm(x)); the value of m can be thought of as O(log n),

1 This ignores the time taken to compute distances between points, which is O(d) in d-dimensional
Euclidean space, and can be a significant factor when d is large. There is quite a bit of work on
mitigating this, for instance using dimensionality reduction, but it is mostly orthogonal to our
discussion here and has less of the “beyond worst case” flavor.

6 S. Dasgupta and S. Kpotufe

but would in practice typically be tuned using a set of sample queries. Regardless
of m, the table can be stored in O(n) space using standard hashing techniques.

• A query q is answered by looking at all points falling at location (h1(q), . . . , hm(q))
and selecting the nearest neighbor amongst them.

The probability that this fails to return a c-approximate nearest neighbor can be
bounded; and by having multiple independently-built tables, the failure probability
can be made as small as desired.
For n data points in Euclidean space, LSH can be used to create a data structure

of size O(n1+1/c2) which is then subsequently able to answer c-approximate nearest
neighbor queries in time O(n1/c2) with failure probability that is an arbitrarily small
constant (Andoni and Indyk, 2008). For c = 2, this translates to space O(n5/4)
and query time O(n1/4). Numerous other variants of LSH have been developed,
some that handle other distance and similarity functions (Charikar, 2002; Datar
et al., 2004; Andoni et al., 2018), and some that adapt to the particular data
distribution (Andoni and Razenshteyn, 2015), but the Euclidean scheme described
above is a useful representative case.
A striking feature of the analysis of LSH is that all the problem-specific charac-

teristics that undoubtedly a↵ect the hardness of NN search—such as the dimension
of the data—are swept under the rug and a bound is given entirely in terms of the
number of points n and the approximation factor c. This factor itself is somewhat
hard to interpret because it means di↵erent things for di↵erent data sets. Take
c = 2, for example (values much smaller than this lead to unreasonably large data
structures): for some data sets, 2-approximation might yield points very close to
the true nearest neighbor and produce usually-correct classifications, while on other
data sets, 2-approximation might mean that the returned point is essentially a ran-
dom draw from the data set. In short, this guarantee is not inherently reassuring.
By way of example, here is a table showing the classification error rate of c-

approximate nearest neighbors, as a function of c, on the MNIST data set of hand-
written digits:

c 1.0 1.2 1.4 1.6 1.8 2.0

Error rate (%) 3.1 9.0 18.4 29.3 40.7 51.4

For each value of c, the error rate shown is that of a classifier that picks a random c-
approximate nearest neighbor and predicts with its label. In this case, even a small
value like c = 1.2 leads to a substantial degradation in classification performance
over the true nearest neighbor.
Having a bound that depends only on c is elegant, but the absence of other

relevant parameters makes it likely to be too loose to provide guidance on specific
data sets of interest. Looking back at the table for MNIST, we might be inclined
to believe that we need something like a c = 1.1 approximation and that LSH is

Nearest Neighbor Methods 7

function MakeTree(S)

If |S| < no: return (Leaf)

Rule = ChooseRule(S)

LeftTree = MakeTree({x 2 S : Rule(x) = true})
RightTree = MakeTree({x 2 S : Rule(x) = false})
return (Rule, LeftTree, RightTree)

function ChooseRule(S)

Choose a coordinate direction i

Rule(x) = (xi median({zi : z 2 S}))
return (Rule)

Figure 1.1 The k-d tree: example and pseudocode. In the example, the split at the root
of the tree is vertical, the two splits at the next level are horizontal, and the next four are
a mix of horizontal and vertical. A query point q is marked by a cross.

thus a bad choice because it will require close to quadratic space. But this is far
from the truth, which is that even with a much larger setting of c, the LSH scheme
described above typically returns the exact nearest neighbor on this data set.

Locality-sensitive hashing is a beautiful algorithmic framework that is highly
e↵ective in practice. But there is scope for improvement in its analysis. It would
be helpful to know the probability with which this data structure returns the exact
nearest neighbor, or perhaps one of the 1% closest neighbors. This would likely
depend upon the configuration of the data points, and it would be interesting to
understand what structural properties of the data make for e�cient search.

1.2.2 Tree structures for exact nearest neighbor search

There is an extensive literature on data structures for exact nearest neighbor search.
Perhaps the most widely-used of these is the k-d tree (Bentley, 1975), a partition
of RD into hyper-rectangular cells, based on a given set S ✓ RD of data points.
The root of the tree is a single cell corresponding to the entire space. A coordinate
direction is chosen, and the cell is split at the median of the data along this direction
(Figure 1.1). The process is then recursively invoked on the two newly created cells,
and continues until all leaf cells contain at most some predetermined number no of
points. When there are n data points, the depth of the tree is about log2(n/no).

Given a k-d tree built from data points S, there are two ways to answer a nearest
neighbor query q. The quick-and-dirty option is to move q down the tree to its
appropriate leaf cell, and then return the nearest neighbor in that cell. This defeatist
search takes time just O(no + log(n/no)), which is O(log n) for constant no. The
problem is that q’s nearest neighbor may well lie in a di↵erent cell, as is the case in
Figure 1.1. Consequently, the failure probability of this scheme (taken over a random

8 S. Dasgupta and S. Kpotufe

choice of queries, say) can be unacceptably high. The alternative is comprehensive

search, which uses geometric reasoning to decide which other leaf cells might also
need to be probed and always returns the true nearest neighbor, but in the worst
case can take O(n) time.

Popular prejudice holds that k-d tree performance—whether measured by the
success probability of defeatist search or the query time of comprehensive search—
deteriorates rapidly with dimension. This remains to be mathematically justified,
however. What would be especially interesting is to identify simple conditions on
high-dimensional data under which the k-d tree functions well.

Numerous variants of the k-d tree have been developed, attempting to compen-
sate for its perceived weaknesses. One notable such example is the principal compo-

nent analysis (PCA) tree (Sproull, 1991; McFee and Lanckriet, 2011), which splits
data along directions of largest variance rather than along individual coordinates.
Once again, the rigorous analysis of its query complexity remains an open problem,
although there have been some attempts in this direction (Abdullah et al., 2014).

In the 1980s and 1990s, a variety of tree structures were introduced that guar-
anteed running times proportional to log n but exponential in D; a survey can be
found in Clarkson (1999). Notice that this is in line with the canonical bad case
described above: in RD, it is possible to have 2D points that are roughly equidistant
from each other, and thus query times proportional to this are not surprising, in
the worst case. Interestingly, some of these data structures also work in arbitrary
metric spaces. More recent incarnations have tried to move past the pessimism of
these worst-case bounds by adapting to situations where the intrinsic dimension of
the data is low, even it if its apparent dimension is a lot higher. Before delving into
this work, we briefly discuss notions of dimension.

1.2.3 Notions of intrinsic dimension

Measures of intrinsic dimension have arisen in a variety of di↵erent fields (Cutler,
1993; Clarkson, 2005). The most common notions aim to either quantify the com-
plexity of a (data) space X , or that of a measure µ supported on X (usually the
data generating distribution). We now look at two such quantities which appear
most frequently in analyses of nearest neighbors methods.

For intuition behind the first such quantity, consider the fact that a d-dimensional
hypercube of side-length r can be covered by 2d hypercubes of side length r/2.

Definition 1.1 A metric space (X , ⇢) is said to have doubling dimension d if,
for all r > 0 and x 2 X , the ball B(x, r) can be covered by 2d balls of radius r/2.

Here are some common types of low-dimensional structure that are captured by
doubling dimension; see Dasgupta and Freund (2008) for further details.

Nearest Neighbor Methods 9

1. Any k-dimensional a�ne subspace X ✓ RD has doubling dimension cok, for
some absolute constant co.

2. Any set X ✓ RD in which each element has at most k nonzero coordinates
(that is, a sparse set) has doubling dimension at most cok + k logD. The same
holds when X is of arbitrary dimension but can be sparsely represented under
an unknown dictionary of size D, i.e., if there exist vectors {ai}Di=1 such that
any x 2 X is a linear combination of at most k of them.

3. Let M be a k-dimensional Riemannian submanifold in RD with reach ⌧ (this is
a measure of curvature: it means that every point at distance < ⌧ of M has a
unique nearest neighbor in M). Then every neighborhood of M of radius ⌧ has
doubling dimension O(k).

It is also worth remarking that if X , of doubling dimension d, is bounded (that is,
supx,x0 ⇢(x, x0) < 1), then for any r > 0, X can be covered by Cd · r�d balls of
radius r, for some constant Cd (Exercise 1.1). Any (X , ⇢) with this property is said
to have metric dimension d.
There is a similar-sounding notion, doubling measure, that attempts to capture

the intrinsic dimension of a measure (usually a probability measure) on a metric
space, by looking at how quickly the measure of a ball grows as its radius increases.

Definition 1.2 A measure µ on (X , ⇢) is said to be doubling with exponent
d, whenever for any x in the support of µ (henceforth denoted supp(µ)), and any
r > 0, we have µ(B(x, r)) 2d · µ(B(x, r/2)).

Unlike the doubling dimension, which depends only on the set X , this varies
according to the measure placed on X . The relationship between the two notions
is explored in Exercise 1.2.
Remark also that if (X , ⇢) with doubling measure µ is bounded, then for any

r > 0 and x 2 supp(µ), we have µ(B(x, r)) � Cdr
d for some constant Cd (Exercise

1.1). We then say that µ is homogeneous (on supp(µ)) with parameters (Cd, d).

1.2.4 Adaptivity to intrinsic dimension in nearest neighbor search

One way of going beyond the pessimism of worst-case analysis is to identify families
of instances that occur in practice and are also “easier” in the sense of admitting
better bounds. For nearest neighbor search, this enterprise has mostly focused on
analyzing data sets of low intrinsic dimension. The hope is that the exponential
dependence on dimension in worst-case bounds for exact nearest neighbor search
can be replaced by a similar dependence on intrinsic dimension, which might be
much smaller.
The excellent survey of Clarkson (2005) describes ways in which nearest neighbor

data structures can be made adaptive to di↵erent types of intrinsic dimension.
Perhaps the easiest assumption to work with is a finite-sample version of doubling

10 S. Dasgupta and S. Kpotufe

x2

0

1

2

3

depthx1

x4

x5

x3

x1

x2 x1

x1

x1x2x3 x4

x5

x5 x4

x5

x2

Figure 1.2 A cover tree for a data set of five points. From the structure of the tree we can
conclude, for instance, that x1, x2, x5 are all at distance � 1/2 from each other, since they
are all at depth 1, and that the distance between x2 and x3 is 1/4.

measure, which we now introduce. Suppose the data lie in a metric space X . We
say that a subset T ✓ X has expansion constant c if for any point p 2 X and any
radius r > 0, we have |T \ B(p, 2r)| c|T \ B(p, r)|. The assumption on the data
set S is that there exists a small c such that S[{q} has expansion constant at most
c for any query point q. The intrinsic dimension can then be viewed as log c.
One widely-used data structure that has been analyzed under this condition

is the cover tree (Beygelzimer et al., 2006), which can be used for exact nearest
neighbor search in any metric space. It works by maintaining a hierarchical covering
of the data set, which we will now describe in more detail. Say the data points are
x1, . . . , xn, and assume for simplicity that all interpoint distances are 1. Then
any point xi serves as a 1-cover of the entire set; take it to be the root of the tree.
The next level will consist of a subset of the xi’s that constitute a (1/2)-cover, and
the following level will be a (1/4)-cover, and so on. Given level j� 1, level j can be
built as follows: take all the points from level j � 1, and repeatedly add in a data
point that is not within distance 1/2j of those already chosen. The resulting cover
tree on data points x1, . . . , xn is a rooted infinite tree with the following properties.

• Each node of the tree is associated with one of the data points xi.
• If a node is associated with xi, then one of its children is also associated with xi.
• All nodes at depth j are at distance at least 1/2j from each other.
• Each node at depth j + 1 is within distance 1/2j of its parent (at depth j).

See Figure 1.2 for an example. In practice, there is no need to duplicate a node as
its own child, so the tree takes up O(n) space. Moreover, it is not hard to build the
tree on-line, adding one point at a time.

When a query q needs to be answered, it is moved down the tree, one level at a
time. At the jth level (call it Lj), geometric reasoning is used to identify a subset
of nodes Sj ✓ Lj whose descendants could possibly include the nearest neighbor of

Nearest Neighbor Methods 11

q; this is based on the distance from q to the closest point in Lj , combined with the
triangle inequality. At the next level, Lj+1, only the children of Sj are examined
and these are further restricted to a subset Sj+1, and so on. It turns out that with
expansion constant c, only |Sj | = O(poly(c)) nodes need to be considered at each
level, and the total time to find the exact nearest neighbor is O(poly(c) log n).

The cover tree is a popular and e↵ective data structure, especially for non-
Euclidean distance metrics. Its analysis, however, is marred by the brittleness of
the expansion constant assumption. To get a sense of this, observe that even data
in RD, under Euclidean distance, can have arbitrarily high c, unbounded by any
function of D. It is thus of interest to devise more reasonable conditions under
which to study this scheme.

A weaker and more realistic assumption on a data set is that it has low doubling
dimension d. In this case, there are data structures of size O(n) that either yield
a (1 + ✏)-approximate NN in time O(2O(d) log n + (1/✏)O(d)) (Krauthgamer and
Lee, 2004), or, when the query distribution matches the data distribution, yield the
correct NN in time O(2d log n) (Clarkson, 1999, 2005). We will discuss another such
data structure in more detail in the next section.

Adaptivity to doubling dimension is nontrivial: k-d trees, for instance, do not
have this property (Dasgupta and Sinha, 2015). This makes it technically inter-
esting and has led to quite a bit of computational geometry work around this
notion. However, it is really just one specialized way of moving beyond the worst
case in nearest neighbor search. The field of unsupervised learning has identified
many varieties of geometric structure that commonly exist in data. A few of these,
like manifold structure, are captured by intrinsic dimension; but many others, like
cluster structure, are not. Thus it would be useful to move beyond intrinsic dimen-
sion when positing structural “niceness” assumptions under which nearest neighbor
search can e�ciently be performed.

An alternative to bounding the query time of a nearest neighbor data structure in
terms of pre-specified geometric parameters like intrinsic dimension is to explicitly
characterize the types of data on which it is e�cient. Ideally, one would be able to
achieve tight, instance-specific results in this way. We now turn to such a scheme.

1.2.5 A randomized tree structure with instance-specific bounds

Locality-sensitive hashing has brought a simple and highly e↵ective paradigm to
the field of nearest neighbor search: design a data structure that is quick-and-dirty
and has nonzero probability of success on any instance; and then boost the success
probability by making multiple copies. We now discuss a way of bringing much the
same sensibility to k-d trees.

The random projection (RP) tree (Figure 1.3) injects two forms of randomness
into a k-d tree: (1) instead of splitting cells along coordinate axes, it picks split
directions uniformly at random from the unit sphere, and (2) instead of putting

12 S. Dasgupta and S. Kpotufe

function ChooseRule(S)

Pick U uniformly at random from the unit sphere

Pick � uniformly at random from [1/4, 3/4]

Let v = �-fractile point of the projection of S on U

Rule(x) = (x · U v)

return (Rule)

Figure 1.3 The random projection tree (RP tree): example and pseudocode. Again, a
sample query point is marked with a cross.

the split point exactly at the median, it is placed at a fractile chosen uniformly at
random from the range [1/4, 3/4].
The idea is to answer nearest neighbor queries using defeatist search on this

randomized tree structure, which takes time O((log(n/no)) + no), where no is an
upper bound on the number of data points in any leaf. For any data set x1, . . . , xn 2
RD and any query q 2 RD, the probability of not finding the nearest neighbor,
over the randomness in the data structure, can be bounded using an elementary
argument (Dasgupta and Sinha, 2015). The bound turns out to be proportional to
a simple function of the point configuration,

�(q, {x1, . . . , xn}) =
1

n

nX

i=2

kq � x(1)k
kq � x(i)k

,

where x(1), x(2), . . . denotes an ordering of the xi by increasing distance from q.
Let’s take a closer look at this potential function. If � is close to 1, then all the

points are roughly the same distance from q, and so we can expect that the NN
query is not easy to answer. This is what we get in the canonical bad case discussed
at the beginning of Section 1.2. On the other hand, if � is close to zero, then most
of the points are much further away than the nearest neighbor, so the latter should
be easy to identify. Thus the potential function is an intuitively reasonable measure
of the di�culty of an instance of nearest neighbor search.
It is not hard to give upper bounds on � in situations where the data has low

doubling measure or doubling dimension. This leads to the following results:

• When x1, . . . , xn are drawn i.i.d. from a doubling measure with exponent d,
the RP tree is able to answer arbitrary exact nearest neighbor queries in time
O(d)d+O(log n), with a probability of error that is an arbitrarily small constant.

• When the query q is exchangeable with the data x1, . . . , xn—that is, q is a random
draw from {x1, . . . , xn, q}—and they together form a set of bounded doubling
dimension, then a similar result holds, but with an additional dependence on the
aspect ratio of the data.

Nearest Neighbor Methods 13

These are close to the best results that have been obtained using other data struc-
tures. The failure probability is over the randomization in the tree structure and
can be reduced by building multiple trees to get an RP forest.

Although RP forests have been found e↵ective in practice (Hyvonen et al., 2016),
one would hope to do better by having trees that are still randomized—so that
error probability can be reduced by building a forest—but are more attuned to the
data, in much the same way that a single PCA tree is (in practice) superior to a
single RP tree. It is an interesting open problem to find a way of doing this that
both works well empirically and admits a clean analysis.

1.2.6 Wrap-up: analyzing nearest neighbor search algorithms

Nearest neighbor search has been the subject of algorithmic research since the 1970s,
and many data structures have been developed for it. Some of these, such as locality-
sensitive hash tables, k-d trees, and cover trees, are fairly easy to implement and
seem to be e↵ective in practice. But in order to understand their relative strengths
and weaknesses—to gauge, for instance, which might be preferable for a given type
of data—and to develop better algorithms, it is important to have ways of analyzing
these schemes. The current state-of-the-art is lacking in this regard.

For some data structures, such as the k-d tree, there is no characterization of the
types of data on which it works well. On others, there is analysis that is beautiful
but fails to give insight into when and why the scheme works; examples include the
bounds for LSH, which are given solely in terms of an approximation factor and are
thus very loose, and those for the cover tree, which are based upon a dimensionality
assumption that is brittle to the point of straining plausibility.

One good open problem is to identify other structural assumptions on data—
beyond low doubling dimension—that are likely to hold in many situations and that
make nearest neighbor search e�cient. A second is to pick any existing practical
nearest neighbor algorithm, and to rigorously formulate conditions on the data
under which it will work well.

1.3 Statistical Complexity of k-Nearest Neighbor
Classification

We now turn to a di↵erent aspect of nearest neighbor: its statistical performance
when used as a classification strategy. While statistical and computational questions
are fundamentally di↵erent, and in fact are studied in di↵erent communities—
machine learning and statistics on one hand, and algorithms on the other—we
will see that some of the same ideas were developed to capture notions of favorable
structure in data with similar upsides and downsides as discussed above.

Nearest neighbor classification is a form of nonparametric estimation: that is,

14 S. Dasgupta and S. Kpotufe

it is a prediction strategy whose complexity (e.g., size) is potentially unbounded,
and it is capable of modeling any decision boundary. The statistics community has
developed a standard framework for analyzing nonparametric estimators, and has
obtained basic bounds that provide some insights into general behavior.

1.3.1 The statistical learning framework

Let X be the space in which data lie, and Y the space of labels. We will assume for
simplicity that Y = {0, 1}. The standard model of statistical learning is that there
is some (unknown) underlying distribution PX,Y on X ⇥ Y from which all data—

past, present, and future—is drawn i.i.d. The training data {Xi, Yi}n1
i.i.d⇠ PX,Y is

useful precisely because it provides some information about PX,Y , and any model
we build is evaluated according to its performance on PX,Y .
A classifier is any function h : X ! Y. It can be evaluated by the 01-risk

R(h) = PX,Y (h(X) 6= Y) .

There need not exist any classifier with zero risk: consider any scenario with inherent
uncertainty, such as a medical prediction problem in which x is a patient’s medical
record and y is whether the person will su↵er a stroke in the next year. Formally,
this corresponds to cases in which the conditional distribution of Y given X = x,
denoted PY |x, assigns non-zero probability to both outcomes, 0 and 1.
Let ⌘(x) = PY |x(1) = [Y |x]; the 01-risk is minimized by the so-called Bayes

classifier which predicts the most likely label at each point x:

h
⇤(x)

.
= argmax

�
PY |x(1), PY |x(0)

= {⌘(x) � 1/2} .

We will henceforth evaluate any classifier h by how much its risk exceeds that of
h
⇤, the so-called excess-risk,

E(h) .
= R(h)�R(h⇤), depending on PX,Y .

Now consider any learning procedure that takes n data points sampled i.i.d. from
PX,Y and produces a classifier ĥn. The most basic condition we could demand of
this procedure is consistency : that as n grows to 1, the excess risk E(ĥn) goes
to zero. With this assured, the next order of business is to establish the rate of
convergence of the excess risk as a function of n and other problem parameters.
Because decision boundaries can be arbitrarily complex, it is well-known that

in nonparametric estimation there are no universal rates of convergence without
conditions on the data distribution (Devroye et al., 1997). But what are reason-
able assumptions to make on PX,Y ? Over the past few decades, a certain set of
assumptions has become entrenched in the statistics literature, perhaps more for
mathematical convenience than anything else, and has become the standard back-
drop for convergence rates. We will talk about these, about the resulting bounds

Nearest Neighbor Methods 15

and the estimators that achieve them, and about whether this theory provides an
adequate picture of when nearest neighbor classification works well.

1.3.2 Minimax optimality

We are interested in the limits of performance, assessed in terms of excess risk E(ĥ)
(as a function of sample size n) achievable by any procedure2 ĥ having little to no
information on the Bayes classifier h

⇤, i.e., little information on PX,Y . Assuming
PX,Y belongs to some class P, encoding information on h

⇤, performance limits are
captured by the minimax classification risk over P:

E⇤(P)
.
= inf

ĥ

sup
PX,Y 2P

Pn
X,Y

E(ĥ).

The sup denotes the worst-case excess risk over P achievable by any given ĥ. Any
classifier ĥ achieving excess risk O(E⇤) for all PX,Y 2 P is called minimax-optimal

for P. As a classical example, P .
= {PX,Y } corresponds to assuming X ⇢ D, while

⌘(x) is �-Lipschitz over X , i.e., |⌘(x)�⌘(x0)| �kx�x
0k, for some � > 0 – encoding

the hope that nearby points in X have similar Y values. Under these assumptions,
E⇤(P) is known to be of order n�1/(2+D); such rate is achieved for instance by k-NN
classification with a suitable choice of k / n

2/(2+D). Unfortunately, this is a rather
slow rate whenever D is large, since a number of samples n = ⌦

�
✏
�(2+D)

�
seems

required to achieve excess risk 0 < ✏ < 1, a curse of dimensionality. While this
rate is unavoidable in the worst-case over P, one would hope that there are more
favorable distributions PX,Y in P where procedures such as k-NN would do much
better. This is indeed the case and is the focus of the rest of this section.

1.3.3 Adaptive Rates versus Worst-case Rates

As in the above discussion, let P denote the class of all distributions PX,Y , with
marginal PX supported on X ⇢ D (X perhaps unknown), with �-Lipschitz re-

gression function ⌘(x). For simplicity, in the following discussion, we will let X be
bounded; hence, w.l.o.g., let supx,x02X kx� x

0k = 1.
Now note that, P contains – among other favorable distributions – subclasses

Pd of those distributions PX,Y such that X .
= supp(PX) (or PX itself) is of lower

intrinsic dimension d ⌧ D, where intrinsic dimension is formalized as any of the
concepts defined in Section 1.2.3. If we knew a priori that PX,Y 2 Pd ⇢ P, we
could do much better than the minimax rate E⇤(P) / n

�1/(2+D): this is immediate
to see when d stands for Euclidean dimension, i.e., X is an a�ne subspace of
dimension d, since as per the above discussion, we would then have E⇤(Pd) /
2 We often will not distinguish between the classification procedure ĥ, which maps data in Xn to a

classifier X ! Y, and the classifier that it returns. In other words, E(ĥ) is the excess risk of the

classifier returned by the procedure ĥ.

16 S. Dasgupta and S. Kpotufe

n
�1/(2+d) ⌧ n

�1/(2+D), which is achieved, e.g., by k-NN with k / n
2/(2+d). The

question is therefore whether such a better rate is achievable (i) under general
notions of intrinsic dimension d where X is nonlinear (e.g., a manifold of dimension
d that occupies much of D), and (ii) without the knowledge that PX,Y 2 Pd.
A classification procedure which (nearly) achieves the rates E⇤(Pd) simultaneously
for all Pd ⇢ P (i.e. under (ii) above) is called minimax adaptive over the collection
{Pd}dD, or colloquially, adaptive to intrinsic d.
In the sequel, we will show that this is indeed the case for k-NN for any of the

notions of intrinsic dimension d of Section 1.2.3, as it happens that key quantities
controlling performance – namely, typical distances to nearest neighbors – depend
only on d rather than on the ambient dimension D. To develop this theme, let us
first assume that PX is homogeneous on X with parameters (Cd, d), i.e., balls of
radius r have PX -mass at least Cdr

d (Section 1.2.3).
In this case we have the following theorem. Throughout we assume that the k-NN

estimate at any x is defined on exactly k n points, i.e., either there are no ties in
distances to x, or a deterministic rule is employed to break ties (e.g. pick the first
k ordered indices); we let kNN(x) be the retained set of k closest neighbors to x.
With this notation, k-NN classification is given by ĥ

.
= {⌘̂ � 1/2}, where

⌘̂(x)
.
=

1

k

X

Xi2kNN(x)

Yi. (1.1)

Theorem 1.3 Let PX be (Cd, d) homogeneous on bounded support X ⇢ D
, and

let ⌘(x) be �-Lipschitz. Let ĥ denote a k-NN estimate with k / n
2/(2+d)

. We have

E(ĥ) C

1p
k
+

✓
k

n

◆1/d
!

 C
0
n
�1/(2+d)

,

where the expectation is over the random draw of {Xi, Yi}ni=1, and C,C
0
depend on

Cd, d and �, but not on D.

Without further distributional assumption, the rate is tight as it matches the
minimax rate for distributions on d. The result is obtained by a reduction from
classification to regression, where we recall the fact that the Bayes classifier is given
by h

⇤ = {⌘ � 1/2}, ⌘(x) .
= [Y |x]. Hence, k-NN performance can be assessed

through how well ⌘̂ estimates the regression function ⌘. Let k⌘̂ � ⌘k1
.
= |⌘̂ � ⌘|:

Proposition 1.4 (Regression to Classification) E(ĥ) 2k⌘̂ � ⌘k1.

Proof Let X 6=
.
=
n
x 2 X : ĥ(x) 6= h(x)

o
, and notice that

E(ĥ) =
Z

X 6=

|PY |x(1)� PY |x(0)| dPX =

Z

X 6=

|2⌘(x)� 1| dPX ,

while, whenever ĥ 6= h, we necessarily have |⌘̂ � ⌘| � |⌘ � 1/2|.

Nearest Neighbor Methods 17

Now we aim to bound k⌘̂ � ⌘k1, one approach being to bound k⌘̂ � ⌘k1 by

k⌘̂ � ⌘k2
.
=
�

X |⌘̂(X)� ⌘(X)|2
�1/2

. We will first condition on X
.
= {Xi}ni=1 while

considering just the randomness in Y
.
= {Yi}ni=1. Let ⌘̃(x) denote the conditional

expectation Y|X⌘̂ = 1
k

P
Xi2kNN(x) ⌘(Xi). Clearly, ⌘̃ relates most directly to ⌘.

Using the fact that, for any random variable Z, [Z�c]2 = (Z� Z)2+(Z�c)2,
we have the following bias-variance decomposition:

Y|X|⌘̂(x)� ⌘(x)|2 = Y|X|⌘̂(x)� ⌘̃(x)|2
| {z }

Variance

+ |⌘̃(x)� ⌘(x)|2| {z }
Squared Bias

. (1.2)

Variance Bound. Using the independence of Yi values upon conditinoning, we have:

Y|X|⌘̂(x)� ⌘̃(x)|2 =
1

k2

X

Xi2kNN(x)

Var(Yi)
1

k
. (1.3)

Bias Bound. Given the Lipchitz assumption on ⌘, we have that

|⌘̃(x)� ⌘(x)| 1

k

X

Xi2kNN(x)

|⌘(Xi)� ⌘(x)| max
Xi2kNN(x)

�kXi � xk.

Nearest Neighbor Distances. Let rk(x)
.
= maxXi2kNN(x) kXi � xk denote the dis-

tance from x to its k-th closest neighbor in X. As it turns out, typical values of rk
depend on d rather than on the ambient dimension D. For intuition, notice that
the ball B(x, rk(x)) will likely have mass at most c · k

n
(since it has empirical mass

at least k

n
); we will therefore have the inequality c · k

n
� PX(B(x, rk(x))) � Cdr

d

k
(x)

(following from PX being (Cd, d) homogeneous), implying that rk(x) C
0
d

�
k

n

�1/d
.

This is formalized as follows.
Let r⇤

k
(x) = inf

�
1 � r > 0 : PX(B(x, r)) � 2 k

n

. First notice that we must have

PX(B(x, r⇤
k
(x))) � 2 k

n
(by continuity of PX over monotone sequences of events).

Also, since PX(B(x, 1
2r

⇤
k
(x))) < 2 k

n
, we must have that r⇤

k
(x) C

0
d

�
k

n

�1/d
. Now, we

just need to argue that rk(x) r
⇤
k
(x) with high probability, in other words, that the

ball B(x, r⇤
k
(x)) contains at least k points; this is certainly the case since empirical

masses of balls concentrate around their expectation. Namely, let PX,n denote the
empirical distribution induced by X, by a multiplicative Cherno↵ bound:
✓
PX,n(B(x, r⇤

k
(x))) <

k

n
 1

2
PX(B(x, r⇤

k
(x))

◆
 exp

⇢
�1

8
n · PX(B(x, r⇤

k
(x))

�

 exp

⇢
�k

4

�
 4

k
.

It follows that

X

⇥
r
2
k
(x)
⇤
 r

⇤2
k
(x) + (rk(x) > r

⇤
k
(x)) C

0
d

2
✓
k

n

◆2/d

+
4

k
. (1.4)

18 S. Dasgupta and S. Kpotufe

Combining (1.4) and (1.3) by invoking the bias-variance decomposition in (1.2),
and then taking expectation over X yields the result of Theorem 1.3.
Thus, k-NN classification achieves an excess risk that depends only on d ⌧ D

(for even nonlinear support X) provided k is set according to d. A loose-end is
therefore whether the parameter k can be set, optimally, without knowledge of d.

Data-driven Choice of k. The simplest approach is cross-validation, i.e., splitting
the sample into 2 (nearly) equal size independent subsamples, where one subsample
is used to define classifiers – corresponding to choices of k – and the other is used
to test their performance. W.l.o.g., assume both samples are of size n; define ĥk

as a classifier on subsample {Xi, Yi}ni=1 using the parameter choice k 2 [n] (ad-
mitting a choice of k / n

2/(2+d), for unknown d). Now, define the empirical risk
R

0
n
(hk)

.
= 1

n

P
i

{h(X 0
i
) 6= Y

0
i
} on validation sample {X 0

i
, Y

0
i
}n
i=1, and the choice

k̂
.
= argmink2[n] R

0
n
(ĥk). Let k⇤

.
= argmink2[n] R(ĥk); notice that

R(ĥ
k̂
) R(ĥk⇤) + 2max

k2[n]
|R(hk)�R

0
n
(hk)|.

Combining Cherno↵ and union bounds, we have that, with probability at least 1��:

max
k2[n]

|R(hk)�R
0
n
(hk)|

r
log(2n/�)

2n
, of lower order than n

�1/(2+d)
.

In other words, picking � = 1/n, we have with probability at least 1 � 1/n that

E(ĥ
k̂
) E(ĥk⇤) + 2

q
2 log(2n)

2n . Now, use the fact that E(ĥk⇤) mink2[n] E(ĥk):

Corollary 1.5 Under the assumptions of Theorem 1.3, the empirical k̂ satisfies

E(ĥ
k̂
) C

0
n
�1/(2+d)

.

Similar arguments as the above extend to more general settings, overviewed next.

General Metrics and Notions of Intrinsic Dimension. First, notice that the above
arguments extend directly to any metric space (X , ⇢) admitting a (Cd, d)-homogenous
measure PX . Also, we could have assumed PX to be doubling since it is then ho-
mogeneous (Section 1.2.3). Suppose instead we only assumed that (X , ⇢) has met-
ric dimension d (allowing spaces of doubling dimension d). The adaptive rate of
n
�1/(2+d) still holds. However, such a result requires a more refined analysis of k-

NN distances rk: while at any given point x, rk(x) might not scale with d, it can
be shown that rk(X) is of the order (k/n)1/d (by adapting a covering argument
of Györfi et al. (2006) to metric X), which is su�cient.

Smoothness Conditions on ⌘. The above arguments extend easily to the case where
⌘ is Hölder continuous, i.e., |⌘(x) � ⌘(x0)| �⇢

↵(x, x0) for some 0 < ↵ 1,� > 0;
we would instead obtain the minimax rate n

�1/(2+d/↵), attained by setting k /

Nearest Neighbor Methods 19

n
2/(2+d/↵) (or using k̂ as defined above). This is obtained by bounding the bias by

�r
↵

k
(x). Notice that the rate n

�1/(2+d/↵) worsens as ↵ ! 0, attesting to the fact
that classification is hardest when ⌘ changes too fast over X .

While Hölder or Lipschitz conditions on ⌘ capture the desired condition that Y
should not change too fast over X , they do not allow discontinuities in ⌘, which goes
against practical intuition in classification. One way to address this is to instead
assume that ⌘ is piecewise Hölder, or likely to be locally Hölder over X , appropri-
ately formalized (see e.g. (Urner et al., 2011; Willett et al., 2006)). More recently
Chaudhuri and Dasgupta (2014) formalized the intuition that, all that is needed
for k-NN success – irrespective of continuity of ⌘ – is that the average Y value in
a neighborhood of any x be close to ⌘(x) (the average Y at x), especially as the
PX -mass of the neighborhood gets small. This intuition is parametrized as follows:
for any set B ⇢ X , let ⌘(B) = [⌘ |B], then it is assumed that

8x 2 X , r > 0, |⌘(B(x, r))� ⌘(x)| C� · PX(B(x, r))� , for some C� , � > 0.

Intuitively, letting r = rk(x), we would have ⌘̃(x) ⇡ ⌘(B(x, r)), while PX(B(x, r)) ⇡
k/n, that is, the bias |⌘̃(x) � ⌘(x)| would be of order (k/n)� ; this together with a
variance of order 1/k yields an excess risk of order n�1/(2+�) by optimizing over k.

In particular, under our earlier Hölder conditions, it can be shown that � = ↵/d

holds. This more general condition therefore yields a similar bias bound of order
(k/n)↵/d, and recovers the above minimax rates.

Inhomogeneous data, and extensions of k-NN. The above distributional conditions,
while classical, do not account for spatial variations in PX,Y . For instance the
density of PX (e.g., with respect to Lebesgue on X = d) might vary significantly
over space; X might be made up of subregions Xi of varying intrinsic dimension di ⌧
D, and varying complexity in PY |X (e.g. ⌘ might satisfy di↵erent Hölder conditions
across Xi’s). The support X might be unbounded, allowing for far outliers. While
these situations might be common in practice, they have only now started receiving
theoretical attention. In particular, they are commonly handled by extensions of
k-NN such as local k-NN, where a local choice of k = k(x) is made at every x 2
X .While these procedures in essence have an infinite number of hyperparameters,
e.g. {k(x) : x 2 X}, they can be shown to generalize, i.e., attain nearly minimax
rates of convergence, even under data-driven choices of k(x) (see e.g., Kpotufe
(2011); Samworth et al. (2012); Gadat et al. (2016) for general treatments which
extend to weighted versions of k-NN prediction, under relaxations of traditional
assumptions on the marginal PX).

1.3.4 Low Noise Conditions and Fast Rates

Another favorable situation in classification is one where Y labels are deterministic
(or nearly so). In particular, suppose ⌘(x) has margin away from 1/2 at some point

20 S. Dasgupta and S. Kpotufe

x, i.e., |⌘(x) � 1/2| > ⌧ for some 0 < ⌧ < 1/2. Recall that the Bayes classifier
satisfies h

⇤(x) = {⌘(x) � 1/2}, while the k-NN estimate ĥ(x) = {⌘̂(x) � 1/2}
where ⌘̂ estimates ⌘. Thus, if |⌘̂(x) � ⌘(x)| ⌧ , we must have ĥ(x) = h

⇤(x), i.e.,
the excess risk at x is then 0.
Under the conditions of Theorem 1.3 above, for k / n

2/(2+d), and n su�ciently
large, we will have |⌘̂(x) � ⌘(x)| Cn

�1/(2+d) ⌧ with high probability: this
follows from |⌘̂(x)�⌘(x)| |⌘̂(x)� ⌘̃(x)|+ |⌘̃(x)�⌘(x)|, and bounding the variance
and bias terms in high probability (by order of (1/k) and (k/n)1/d), rather than in
expectation. As it turns out, such result holds uniformly over x 2 X : let 0 < � < 1,

sup
x

|⌘̂(x)� ⌘(x)| C

✓
log(n/�)

n

◆1/(2+d)
!

� 1� �. (1.5)

One way to obtain the above is to use uniform Vapnik-Chervonenkis (VC) concen-
tration arguments over the class of balls centered at x 2 X ; the constant C above
now also depends on the VC dimension of this class (see e.g. Kpotufe (2011)).
Now assume the so-calledMassart’s noise condition that 8x 2 X , |⌘(x)�1/2| > ⌧ .

It then follows from (1.5) that, if n is greater than some n0(⌧), there is high prob-
ability that E(ĥ) = 0, which is remarkable. This corresponds to an exponentially
fast rate in expectation, i.e., E(ĥ) �, for large n, provided � = !(e�n).
A common relaxation of Massart’s condition, is the so-called Tsybakov noise

condition which parametrizes the likelihood of having a margin ⌧ :

8 0 < ⌧ < 1/2, PX (x : |⌘(x)� 1/2| ⌧) C�⌧
�
, for some C� ,� > 0.

Now, define ⌧n,�
.
= C

⇣
log(n/�)

n

⌘1/(2+d)
< 1/2, for n su�ciently large. Under the

event of (1.5), the excess risk is 0 at all points in X>

.
= {x : |⌘(x)� 1/2| > ⌧n,�}.

Let X
.
= X \ X>. We therefore have that, with probability at least 1� �,

E(ĥ)
Z

X

2|⌘(x)� 1/2| dPX 2⌧n,� ·
Z

X

dPX 2C� · ⌧�+1
n,�

.

Thus, we have E(ĥ) C

⇣
log(n/�)

n

⌘(�+1)/(2+d)
+ �. In other words, the rate is

much faster than n
�1/(2+d) for large �. For example, let � = 1/n, and � � d/2, and

the rates are at most n�1/2.

Remark (Tension between parameters) Larger values of � > d only happen in
restricted situations where ⌘ crosses 1/2 outside of int(X), due to the fact that
the Lipschitz assumption on ⌘ prohibits sharp transitions from 1/2 (see Audibert
and Tsybakov (2007)). Such tension disappears for more general distributions that
homogeneous PX (which corresponds to so-called strong density conditions). How-
ever, assuming more general conditions on PX , e.g., only that it has support X of
metric dimension d, minimax rates are slower of the form n

�(�+1)/(2+d+�).

Nearest Neighbor Methods 21

Data Dependent Choice of k. It remains unclear whether a global choice of k, e.g.,
by cross-validation, achieves the above rates in terms of �. In particular the above
arguments required pointwise guarantees over x as in (1.5), while cross-validation
only yields guarantees on global error. However, suitable local choices of k = k(x),
e.g., by variants of so-called Lepski’s method, yield the above rates – up to log
terms – without prior knowledge of d or � (see e.g. Kpotufe and Martinet (2018)).

Multi-class Settings. In common classification problems, e.g., object detection, speech,
we are in fact dealing with a large number of classes. Therefore, let Y 2 {1, 2, . . . , L},
and for convenience consider the equivalent encoding Ỹ 2 {0, 1}L, with coordinate
Ỹl = {Y = l} . We can now let the regression function ⌘(x)

.
= [Ỹ |x], with cor-

responding k-NN estimate ⌘̂(x) = 1
k

P
Xi2kNN(x) Ỹi.

Now the Bayes classifier is given by h
⇤(x) = argmax l2[L] ⌘l(x), and similarly

obtain the k-NN classifier as ĥ(x) = argmax l2[L] ⌘̂l(x). Whether ĥ(x) 6= h
⇤(x) has

to do with how well ⌘̂(x) estimates ⌘(x), as a function of how it is to distinguish
the largest coordinate of ⌘(x) – say ⌘(1)(x) – from the second largest, say ⌘(2)(x).
Hence, a natural extension to the above noise conditions is as follows:

8 0 < ⌧ < 1/2, PX

�
x : ⌘(1)(x) ⌘(2)(x) + ⌧

�
 C�⌧

�
, for some C� ,� > 0.

The resulting rates are similar under Lipschitz conditions on ⌘ (albeit, with an
additional logL term in the rates; see e.g. Reeve and Brown (2018)).

1.3.5 Wrap-up: Statistical Complexity

We presented an overview of conditions, or parametrizations of data spaces, going
from worst-case to more favorable to statistical performance:

(a). Notions of dimension similar to those used in analyzing NN search algorithms.
These are not enough on their own, i.e., rates of convergence can be arbitrarily
slow even with this condition since ⌘ (or PY |X) can be arbitrarily complex.

(b). Lipschitz or Holder conditions on the smoothness of ⌘, together with (a), can
give bounds of the form n

�1/(2+d) that are adaptive to d ⌧ D for X 2 D.
(c). Massart/Tsybakov conditions on the “margin”: how much of ⌘ stays away from

1/2. Under these conditions, much better rates are possible, e.g., 1/
p
n.

Conditions (a) are sometimes verifiable, e.g. by appealing to manifold structure or
sparsity. But (b), and (c) can be hard to check in practice, although they might be
expected to approximately hold.

Together, the above conditions alleviate the worst-case nature of the minimax-
approach by identifying favorable distributional parameters. Yet, they are still not
refined enough, given that many predictors can be shown to be rate-optimal under
these conditions (e.g., k-NN, ✏-NN, various classification trees) but are observed to
achieve rather di↵erent performance in practice.

22 S. Dasgupta and S. Kpotufe

Tradeo↵s with Fast Search. It is interesting to note that the above analysis and
rates remain relevant – up to constants – whenever fast search methods return
approximate nearest neighbors, since in any case we only needed to bound nearest
neighbor distances approximately to obtain the above rates. However, changes in
constants matter in practice (c.f. the discussion of MNIST in Section 1.2.1), but
unfortunately are not captured by the type of analysis outlined above. There is also
a general need for statistical considerations in the design of fast search methods –
which largely involve decisions based on marginal X and do not take signal in Y

into account, e.g., how slowly labels Y change over X space.

1.4 Bibliographic Notes

References for algorithmic aspects of nearest neighbor search are mostly provided in
the main text. The article of Clarkson (1999) on nearest neighbor methods in metric
spaces is especially recommended, as is the survey of Cutler (1993) on notions of
dimension. For recent developments in locality-sensitive hashing, there is a webpage
maintained by Andoni, at https://www.mit.edu/~andoni/LSH/.
Universal consistency of nearest neighbor methods are first established in Fix and

Hodges (1951), Stone (1977), and Devroye et al. (1994) with recent generalizations
by Chaudhuri and Dasgupta (2014) and Hanneke et al. (2019) to metric spaces and
beyond. Early rates of convergence were given by Cover (1968), Wagner (1971), Fritz
(1975), Kulkarni and Posner (1995), and Gyorfi (1981). Various other predictors –
local in nature – can be shown to converge at rates adaptive to the unknown intrinsic
dimension of data, see e.g., Scott and Nowak (2006), Bickel and Li (2007), Kpotufe
and Dasgupta (2012), and Yang and Dunson (2016). Finally, a recent book of Chen
et al. (2018) gives a comprehensive theoretical survey of nearest neighbor methods.

References

Abdullah, A., Andoni, A., Kannan, R., and Krauthgamer, R. 2014. Spectral ap-
proaches to nearest neighbor search. In: 55th Annual Symposium on Founda-

tions of Computer Science.
Andoni, A., and Indyk, P. 2008. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Communications of the ACM, 51(1),
117–122.

Andoni, A., and Razenshteyn, I. 2015. Optimal Data-Dependent Hashing for Ap-
proximate Near Neighbors. In: ACM Symposium on Theory of Computing.

Andoni, A., Naor, A., Nikolov, A., Razenshteyn, I., and Waingarten, E. 2018. Data-
dependent hashing via nonlinear spectral gaps. In: ACM Symposium on Theory

of Computing.
Audibert, J.-Y., and Tsybakov, A.B. 2007. Fast learning rates for plug-in classifiers.

Ann. Statist., 35(2), 608–633.

Nearest Neighbor Methods 23

Bentley, J.L. 1975. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9), 509–517.

Beygelzimer, A., Kakade, S., and Langford, J. 2006. Cover trees for nearest neigh-
bor. In: Proceedings of the 23rd International Conference on Machine Learning.

Bickel, P.J., and Li, B. 2007. Local polynomial regression on unknown manifolds.
Pages 177–186 of: Complex datasets and inverse problems. Institute of Math-
ematical Statistics.

Charikar, M. 2002. Similarity estimation techniques from rounding algorithms.
Pages 380–388 of: Proceedings of the 34th ACM Symposium on Theory of Com-

puting.
Chaudhuri, K., and Dasgupta, S. 2014. Rates of convergence for nearest neighbor

classification. Pages 3437–3445 of: Advances in Neural Information Processing

Systems.
Chen, George H, Shah, Devavrat, et al. 2018. Explaining the success of nearest

neighbor methods in prediction. Foundations and Trends R� in Machine Learn-

ing, 10(5-6), 337–588.
Clarkson, K. 1999. Nearest neighbor queries in metric spaces. Discrete and Com-

putational Geometry, 22, 63–93.
Clarkson, K. 2005. Nearest-neighbor searching and metric space dimensions. In:

Nearest-Neighbor Methods for Learning and Vision: Theory and Practice. MIT
Press.

Cover, T.M. 1968. Rates of convergence for nearest neighbor procedures. In: Pro-
ceedings of The Hawaii International Conference on System Sciences.

Cutler, C. 1993. A review of the theory and estimation of fractal dimension. Pages
1–107 of: Tong, H. (ed), Dimension Estimation and Models. World Scientific.

Dasgupta, S., and Freund, Y. 2008. Random projection trees and low dimensional
manifolds. Pages 537–546 of: ACM Symposium on Theory of Computing.

Dasgupta, S., and Sinha, K. 2015. Randomized partition trees for nearest neighbor
search. Algorithmica, 72(1), 237–263.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. 2004. Locality-sensitive hash-
ing based on p-stable distributions. In: Proceedings of the Twentieth Annual

Symposium on Computational Geometry.
Devroye, L., Gyorfi, L., Krzyzak, A., Lugosi, G., et al. 1994. On the strong universal

consistency of nearest neighbor regression function estimates. The Annals of

Statistics, 22(3), 1371–1385.
Devroye, L., Gyorfi, L., and Lugosi, G. 1997. A Probabilistic Theory of Pattern

Recognition. Springer.
Fix, E., and Hodges, J. 1951. Discriminatory analysis, nonparametric discrimi-

nation. USAF School of Aviation Medicine, Randolph Field, Texas, Project

21-49-004, Report 4, Contract AD41(128)-31.
Fritz, J. 1975. Distribution-free exponential error bound for nearest neighbor pat-

tern classification. IEEE Transactions on Information Theory, 21(5), 552–557.
Gadat, Sébastien, Klein, Thierry, Marteau, Clément, et al. 2016. Classification in

general finite dimensional spaces with the k-nearest neighbor rule. The Annals

of Statistics, 44(3), 982–1009.
Gyorfi, L. 1981. The rate of convergence of kn-NN regression estimates and classi-

fication rules. IEEE Transactions on Information Theory, 27(3), 362–364.
Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. 2006. A distribution-free theory

of nonparametric regression. Springer Science & Business Media.

24 S. Dasgupta and S. Kpotufe

Hanneke, S., Kontorovich, A., Sabato, S., and Weiss, R. 2019. Universal Bayes
consistency in metric spaces. arXiv preprint arXiv:1906.09855.

Hyvonen, V., Pitkanen, T., Tasoulis, S., Jaasaari, E., Tuomainen, R., Wang, L.,
Corander, J., and Roos, T. 2016. Fast nearest neighbor search through sparse
random projections and voting. In: Proceedings of the 2016 IEEE International

Conference on Big Data.
Indyk, P., and Motwani, R. 1998. Approximate nearest neighbors: Towards re-

moving the curse of dimensionality. Pages 604–613 of: Proceedings of the 30th

Annual ACM Symposium on Theory of Computing.
Kpotufe, S. 2011. k-NN regression adapts to local intrinsic dimension. Pages 729–

737 of: Advances in Neural Information Processing Systems.
Kpotufe, S., and Dasgupta, S. 2012. A tree-based regressor that adapts to intrinsic

dimension. Journal of Computer and System Sciences, 78(5), 1496–1515.
Kpotufe, S., and Martinet, G. 2018. Marginal singularity, and the benefits of labels

in covariate-shift. arXiv preprint arXiv:1803.01833.
Krauthgamer, R., and Lee, J.R. 2004. Navigating nets: simple algorithms for prox-

imity search. In: ACM-SIAM Symposium on Discrete Algorithms.
Kulkarni, S., and Posner, S. 1995. Rates of convergence of nearest neighbor esti-

mation under arbitrary sampling. IEEE Transactions on Information Theory,
41(4), 1028–1039.

Luukkainen, J., and Saksman, E. 1998. Every complete doubling metric space
carries a doubling measure. Proceedings of the American Mathematical Society,
126(2), 531–534.

McFee, B., and Lanckriet, G. 2011. Large-scale music similarity search with spatial
trees. In: 12th Conference of the International Society for Music Retrieval.

Reeve, H.W.J., and Brown, G. 2018. Minimax rates for cost-sensitive learn-
ing on manifolds with approximate nearest neighbours. arXiv preprint

arXiv:1803.00310.
Saksman, E. 1999. Remarks on the nonexistence of doubling measures. Pages 155–

164 of: Annales-Academiae Scientiarum Fennicae Series A1 Mathematica, vol.
24. Academia Scientiarum Fennicae.

Samworth, Richard J, et al. 2012. Optimal weighted nearest neighbour classifiers.
The Annals of Statistics, 40(5), 2733–2763.

Scott, C., and Nowak, R.D. 2006. Minimax-optimal classification with dyadic de-
cision trees. IEEE Transactions on Information Theory, 52(4), 1335–1353.

Sproull, R.F. 1991. Refinements to nearest-neighbor searching in k-dimensional
trees. Algorithmica, 6(1), 579–589.

Stone, C.J. 1977. Consistent nonparametric regression. The Annals of Statistics,
595–620.

Urner, R., Shalev-Shwartz, S., and Ben-David, S. 2011. Access to unlabeled data
can speed up prediction time. Pages 641–648 of: Proceedings of the 28th Inter-

national Conference on Machine Learning (ICML-11).
Wagner, T.J. 1971. Convergence of the nearest neighbor rule. IEEE Transactions

on Information Theory, 17(5), 566–571.
Willett, R., Nowak, R., and Castro, R.M. 2006. Faster rates in regression via

active learning. Pages 179–186 of: Advances in Neural Information Processing

Systems.
Yang, Y., and Dunson, D.B. 2016. Bayesian manifold regression. The Annals of

Statistics, 44(2), 876–905.

Nearest Neighbor Methods 25

Exercises

1.1 Implications of doubling properties.

(a) Show that if (X , ⇢) is a bounded metric, with doubling dimension d, then
it has metric dimension d.

(b) Show that if µ is a doubling measure with exponent d on a bounded metric
(X , ⇢), then it is homogeneous (on its support) with parameters (Cd, d) for
some Cd.

1.2 Relation between doubling measures and metrics.

(a) Show that if there exists a doubling measure µ on the metric (X , ⇢) with
exponent d, then (X , ⇢) must be doubling, with doubling dimension O(d).
Hint: consider maximal packings of a ball by smaller balls.
The reverse is often true, i.e., every complete doubling metric admits a
doubling measure (Luukkainen and Saksman, 1998; Saksman, 1999).

(b) Show that if there exists a doubling measure µ on the metric (X , ⇢) with
exponent d, then (X , ⇢) has metric dimension d (in fact every ball B(x, r)
can be covered by Cd✏

�d balls of radius ✏r, 8✏ 2 (0, 1] and some constant
Cd independent of x and r).

1.3 Comprehensive search for k-d trees. Given a k-d tree built on a data set
S ⇢ RD and a query q, a comprehensive search begins by finding the nearest
point in the leaf cell containing q; call this point xo. It then expands its search
to other leaf cells that might potentially contain an even closer point: namely,
those that intersect the ball B(q, r), where r = kq � xok. Along the way, it
keeps updating its current-best nearest neighbor and search radius r, and is
guaranteed to return the true nearest neighbor. Flesh out an algorithm that
implements this logic via a suitable tree traversal.

1.4 ✏-NN classification.Under the assumptions of Theorem 1.3, let ✏ = Cn
�1/(2+d),

for some C > 0. Let ĥ(x) = {⌘̂(x) � 1/2}, where, for n✏(x)
.
= |X \B(x, ✏)|,

⌘̂(x) =
1

n✏(x)

X

Xi2B(x,✏)

Yi · {n✏(x) � 1} , 8x 2 supp(PX).

(a) Argue that Y|Xk⌘̂(x)�⌘(x)k2 1
n✏(x)

{n✏(x) � 1}+�✏
2+ {n✏(x) = 0}.

(b) Argue that X {n✏(x) = 0} C
0
/(nPX(B(x, ✏)) for suitable C,C

0.
(c) Using the fact that for a Binomial Z s.t. Z � 1, we have {Z�1}

Z
 3/ Z

(Lemma 4.1 of Györfi et al. (2006)), bound E(ĥ), and conclude that ĥ

achieves the same rates as derived for k-NN in Theorem 1.3.

