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Abstract

We analyze a family of methods for statisti-
cal causal inference from sample under the so-
called Additive Noise Model. While most work
on the subject has concentrated on establishing
the soundness of the Additive Noise Model, the
statistical consistency of the resulting inference
methods has received little attention. We derive
general conditions under which the given fam-
ily of inference methods consistently infers the
causal direction in a nonparametric setting.

1. Introduction

Drawing causal conclusions for a set of observed variables
given a sample from their joint distribution is a fundamen-
tal problem in science. Conditional-independence-based
methods (Pearl, 2000; Spirtes et al., 2000) estimate a set of
directed acyclic graphs, all entailing the same conditional
independences, from the data. However, these methods can
not distinguish between two graphs that entail the same
set of conditional independences, the so-called Markov
equivalent graphs. Consider for example the case of only
two observed dependent random variables. Conditional-
independence-based methods can not recover the causal
graph since X — Y and Y — X are Markov equiva-
lent. An elegant basis for causal graphs is the framework
of structural causal models (SCMs) (Pearl, 2000), where
every observable is a function of its parents and an unob-
served independent noise term. This allows us to formulate
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an assumption on function classes which lets us infer the
causal direction in two-variable case.

A special case of SCMs is the Causal Additive Noise Model
(CAM) (Shimizu et al., 2006; Hoyer et al., 2009; Tillman
et al., 2009; Peters et al., 2011a;b) which is given as fol-
lows: given two random variables X and Y, X is assumed
to cause Y if (i) Y can be obtained as a function of X plus
a noise term independent of X, but (ii) X cannot be ob-
tained as a function of Y plus independent noise, then we
infer that X causes Y. In this case, where (i) and (ii) hold
simultaneously, the CAM is termed identifiable.

Initial work on the CAM focused on establishing its the-
oretical soundness, i.e. understanding the class of distri-
butions Px y for which the CAM is identifiable, i.e. for
which (i) and (ii) hold simultaneously. Early work by
(Shimizu et al., 2006) showed that the CAM is identifi-
able when the functional relationship Y = f(X) + n is
linear, provided the independent noise 7 is not Gaussian.
Later, Hoyer et al. (2009), Zhang & Hyvirinen (2009) and
Peters et al. (2011a) showed that the CAM is identifiable
more generally even if f is nonlinear, the main technical
requirements being that the marginals Px, and P, are ab-
solutely continuous on R, with P, having support R. Note
that Zhang & Hyvirinen (2009) also introduces a gener-
alization of the CAM termed post-nonlinear models. Fur-
ther work by Peters et al. (2011b) showed how to reduce
causal inference for a network of multiple variables under
the CAM to the case of two variables X and Y discussed
so far, by properly extending the conditions (i) and (ii) to
conditional distributions instead of marginals. Thus, the
soundness of the CAM being established by these various
works, the next natural question is to understand the sta-
tistical behavior of the resulting estimation procedures on
finite samples.
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Current insights into this last question are mostly empirical.
Various works (Shimizu et al., 2006; Hoyer et al., 2009;
Peters et al., 201 1a) have successfully validated procedures
based on the CAM (outlined in Section 1.1 below) on a
mix of artificial and real-world datasets where the causal
structure to be inferred is clear. However, on the theoreti-
cal side, it remains unclear whether these procedures can
infer causality from samples in general situations where
the CAM is identifiable. In the particular case where the
functional relation between X and Y is linear, Hyvérinen
et al. (2008) proposed a successful method shown to be
consistent. Two recent Arxived results, Biihlmann et al.
(2013); Nowzohour & Biihlmann (2013), show the consis-
tency of maximum log-likelihood approaches to causal in-
ference under the multi-variable network extension of Pe-
ters et al. (2011b).

While consistency has been shown for particular proce-
dures, in this paper we are rather interested in general con-
ditions under which common approaches, with various al-
gorithmic instantiations, are consistent. We derive both al-
gorithmic and distributional conditions for statistical con-
sistency in general situations where the CAM is identifi-
able. The present work focuses on the case of two real
variables, allowing us to focus on the inherent difficulties
of achieving consistency with the common algorithmic ap-
proaches. These difficulties, described in Section 1.2 have
to do with estimating the degree of independence between
noise and input, while the noise is itself estimated from the
input and hence is inherently dependent on the input.

1.1. Inference Methods Under the Additive Noise
Model

Causal inference methods under the Additive Noise Model
typically follow the meta-procedure below. Assume f and
g are the best functional fits under some risk, respectively
Y~ f(X)and X ~ g(Y):

Fit Y as a function f(X), obtain the residuals
ny,y = Y — f(X), fit X as a function g(Y"),
obtain the residuals nx,, = X — g(Y'), decide
X = Yifnyy L Xbutny , L Y,decideY —
X if the reverse holds true, abstain otherwise.

Instantiations thus vary in the regression procedures em-
ployed for function fitting, and in the independence mea-
sures employed. Our analysis concerns procedures em-
ploying an entropy-based independence measure, which is
cheaper than usual independence tests. These procedures
vary in the regression and entropy estimators employed.
They are presented in detail in Section 3.

1.2. Towards Consistency: Main Difficulties

Assume (i) and (ii) hold so that X causes Y under the
CAM. We want to detect this from sufficiently large finite
samples. This is consistency in a rough sense.

Establishing consistency of the above meta-procedure faces
many subtle difficulties. The above outlined algorithmic
approach consists of four interdependent statistical esti-
mation tasks, namely two regression problems and two
independence-tests. Considered separately, the consistency
of such estimation tasks is well understood, but in the
present context the success of the independence tests is
contingent on successful regression.

The main difficulty is that although we are observing X
and Y, we are not observing the residuals 7y, s and 7x 4,
but empirical approximations 7y, s, and 1x 4, obtained by
estimating f and g as f,, and g,, on a sample of size n.

For now, consider just detecting that ny y, f unknown,
is independent from X. A good estimator f, will en-
sure that f,, and f are close, usually in an Lo sense (i.e.
E x |fo(X) — f(X)|*> = 0). Hence ny.;, is close to ny. s,
but unfortunately this does not imply that ny ¢, 1L X if
ny,; L X. In fact it is easy to construct r.v.’s A, B,C
suchthat A L B, |B — C| < ¢, for arbitrary €, but C [ A.
Thus, the estimate 77y, 7, might be close to 1y, ¢, yet it might
still appear dependent on X even if 7y y is not. Complicat-
ing matters further, 7y, ., and ny,; would only be close in
an average sense (instead of close for every value of X)
since f,, and f are typically only close in an average sense
(e.g. close in Lo).

Now consider the full causal discovery, i.e. consider also
detecting that nx 4, depends on Y. To achieve consistency,
the independence test employed must detect more depen-
dence between 1x 4. and Y than between 7y,y, and X.
This will depend on how the particular independence test is
influenced by errors in the particular regression procedures
employed, and the relative rates at which these various pro-
cedures converge.

As previously mentioned, we will consider a family of
independence-tests based on comparing sums of entropies.
We will handle the above difficulties and derive conditions
for consistency by first understanding how the various es-
timated entropies converge as a function of regression con-
vergence (Lo convergence).

We do not consider the question of finite-sample conver-
gence rates for causal estimation under the CAM. In fact,
it is not even clear whether it is generally possible to es-
tablish such rates. This is because it is generally possible
that the Bayes best fits f(z) = E[Y]|z] is smooth while
g(y) = E[X]y] is not even continuous; yet it is well known
that without smoothness or similar structural conditions, ar-
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bitrarily bad rates of convergence are possible in regression
(see e.g. (Gyorfi et al., 2002), Theorem 3.1).

However, along the way of deriving consistency, we ana-
lyze the convergence of various quantities, which appear
to affect the finite-sample behavior of the meta-procedure.
In particular the tails of the additive noise and the richness
of the regression algorithms seem to have a strong effect
on convergence. This is verified in controlled simulations.
The theoretical details are discussed in Section 4.

2. Preliminaries
2.1. Setup and Notation

We let H and I denote respectively differential entropy, and
mutual information (Cover et al., 1994). Given a density p
we will at times use the (abuse of) notation H(p) when a
r.v. is unspecified.

The distribution of a r.v. Z is denoted P, and its density
when it exists is denoted p.

Throughout the analysis we will be concerned with residu-
als from regression fits. We use the following notation.

Definition 1. For a function f : R — R, we consider either
of theresiduals: 0y, ; 2 Y — f(X) andnx s = X — f(Y).

The Causal Additive Noise Model is captured as follows:
Definition 2 (CAM). Givenrv.s X,Y, afunction f : R —
R and a r.v. n, we write X Lo,y if the following holds:

(i) Pxy is generated as X ~ Px, andY = f(X) +n,
where the noise r.v. n has 0 mean and n L X;

(ii) forany g : R~ R, nx,, = X — g(Y) depends on Y.

We write X — Y when f and n are clear from context.

3. Causal Inference Procedures
3.1. Main Intuition

Lemma 1. Consider any absolutely continuous joint-
distribution Pxy on X,Y € R. For any two functions
f,9:R— R we have

H(X)+H(nys) = HY)+ H(nx g)
—{I(nx.:Y) = (v, X)} -
Proof. By the chain rule of differential entropy we have
H(X,Y) = H(X) + H(Y|X) = H(X) + H(ny,7|X)
= H(X) + H(ny.g) = I(ny,5, X), similarly
H(X,Y)=H(Y)+ H(nxg) = I(nx4,Y)-

Equate the two r.h.s above and rearrange. O

Note that whenever ny, s, L X, we have I(ny s, X) = 0.
Therefore, by the above lemma, if v, 7, . X then C'xy £
H(X)+H (ny,s) is smaller than Cy x £ H(Y)+H(nx.q)-
This yields a measure of independence which is relatively
cheap to estimate. In particular the test depends only on
the marginal distributions of the r.v.’s X, Y and functional
residuals, and does not involve estimating joint distribu-
tions or conditionals, as is implicit in most independence
tests. We analyze a family of procedures based on this idea.
This family is given in the next subsection.

3.2. Meta-Algorithm

Let {(X;,Y;))}] = {(z1,v1),-..,(zn,yn)} be a finite
sample drawn from Py y. Let H, (X) and H,(Y) be re-
spective estimators of H(X ) and H (Y') based on the sam-

ple {(X;, Y;)}].

We consider the following family of inference procedures:

Given an ii.d sample {(X;,Y;)}] from Px v, let fp
be returned by an algorithm which fits Y as f,, (X') and
gn be returned by an algorithm which fits X as g, (Y").
Let H,, denote an entropy estimator. Given a threshold

n—o0
parameter 7, —— 0:
Decide X — Y if
Hn(X) + Hn(My,f,) + ™0 < Ho(Y) + Hn(1x,9,)-
Decide Y — X if
H,(Y) 4+ Hn(nx,9,) +Tn < Ho(X) + Ho(ny1,,)-

Abstain otherwise.

The analysis in this paper is carried with respect to the
Ly p, and Ly p, functional norms defined as follows.

Definition 3. For f : R — R, and a measure 1 on R, the
. 1/2

Ly, normis given as || f||, , = (f, F®)*du(t)) .

We assume the internal procedures f,,, g,,, H, have the fol-

lowing consistency properties.

Assumption 1. The internal procedures are consistent:

e Suppose EY? < oco. Let f(x) = E[Y|x]. Then
P
1fn = fllo, py =0

e Suppose EX? < oo. Let g(y) = E[X|y]. Then
P
lgn — gll5,p, — 0.

e Suppose Z has bounded variance, and has continuous
density py such that 3T,C > 0, > 1, V|[t| >

T, pz(t) < C|t|™%. Then |H,(Z) — H(Z)| £ 0.

Many common nonparametric regression procedures (e.g.
kernel, k-NN, Kernel-SVM, spline regressors) are consis-
tent in the above sense (Gyorfi et al., 2002). Also the con-
sistency of a variety of entropy estimators (e.g. plug-in en-
tropy estimators) is well established (Beirlant et al., 1997).
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Figure 1. Plots of the difference between the complexity measures (Cy x — C'xy) for coupled and decoupled-estimation in various
scenarios. Simulated data is generated as Y = bX® 4+ X 4+ 5. X is sampled from a uniform distribution on the open interval
(—2.5,2.5), while 7 is sampled as |[N|? - sign(N) where AV is a standard normal. b controls the strength of the nonlinearity of the
function and ¢ controls the non-Gaussianity of the noise: ¢ = 1 gives a Gaussian, while ¢ > 1 and ¢ < 1 produces super-Gaussian and
sub-Gaussian distributions, respectively. For entropy estimation we employ a resubstitution estimate using a kernel density estimator
tuned against log-likelihood (Beirlant et al., 1997) and for regression estimator we use kernel regression (KR). For every combination of
the parameters, each experiment was repeated 10 times, and average results for (C'y x — C'xy) are reported along with standard deviation
across repetitions. Plot (a): increasing kernel bandwidth of regressor geometrically (by factors of [ = 1.5), i.e. decreasing richness of
the algorithm. When the capacity of the regression algorithm is too large, the variance of the causal inference is large for coupled-
estimation (due to overfitting) but remains low for decoupled-estimation. Plot (b): increasing sample size (bandwidth of KR tuned by
cross-validation). For tuned bandwidth, the variance of the causal inference is only due to the sample size, so the coupled-estimation
(which estimates everything on a larger sample) becomes the better procedure. Plot (c): increasing g, i.e. the tail of the noise is made
sharper (KR tuned by cross-validation). For faster decreasing tail of the noise, the causal inference becomes better. The experiments
of Figures (b) and (c) were repeated using kernel ridge regression (KRR) tuned by cross-validation (see supplementary appendix). For

properly tuned parameters, the selection of regression method does not seem to matter for the causal inference results.

4. Technical overview of results

We consider the following two versions of the above meta-
procedure. The analysis (Section 5) is divided accordingly.

Definition 4 (Decoupled-estimation). f, and g, are
learned on half of the sample {(X;,Y;)}, and the
H, (nv,,) and Hy, (nx g, ) are learned on the other half of
the sample (w.l.o.g. assume n is even). H,(X) and H,,(Y")
could be learned on either half or on the entire sample.

Definition 5 (Coupled-estimation). All f,, g, and en-
tropies H,, are learned on the entire sample {(X;,Y;)}}

Our most general consistency result (Theorem 1, Section
5.1) concerns decoupled-estimation. By decoupling regres-
sion and entropy estimations, we reduce the potential of
overfitting, during entropy estimation, the generalization
error of regression. This generalization error could be large
if the regression algorithms are too rich (e.g. ERM over
large functional classes). Our simulations show that, when
the regression algorithm is too rich, the variance of the
causal inference is large for coupled-estimation but remains
low for decoupled-estimation (Fig. 1(a)). By decreasing
the richness of the class (simulated by increasing the ker-
nel bandwidth for a kernel regressor) the source of variance
shifts to the sample size, and coupled-estimation (which es-
timates everything on a larger sample) becomes the better
procedure and tends to converge faster (Fig. 1(b)).

For the consistency result of Theorem 1 we make no as-
sumption on the richness of the regression algorithms, but
simply assume that they converge in Ly (Assumption 1).
The main technicality is to then show that entropies of
residuals are locally continuous relative to the Lo metric
in both causal and anticausal directions.

For coupled-estimation, the main difficulty is the follow-
ing. Even though the entropy estimators are consistent for
a fixed distribution, the distribution of the residuals change
with f,, and g,,, thus with every random sample (this prob-
lem is alleviated by decoupling the estimation). However,
if the richness of the regression algorithms is controlled, in
other words if the set of potential f,, and g,, is not too rich,
then the entropy estimate for residuals might converge. We
show in Theorem 2 (Section 5.2) that if we employ kernel
regressors with properly chosen bandwidths, and kernel-
based entropy estimators with sufficiently smooth kernels,
then the resulting method is consistent for causal inference.

Both consistency results of Theorem 1 and Theorem 2 rely

on tail assumptions on the additive noise 77 (where X ELIN
Y). We assume an exponentially decreasing tail for the
more difficult case of coupled-estimation, but need only a
mild assumption of polynomially decreasing tail in the case
of decoupled-estimation. Note that it is common to assume
that 1 has Gaussian tail, and our assumptions are milder in
that respect.
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Interestingly, our analysis for Theorem 1 suggests that con-
vergence of causal inference is likely faster if the noise 7
has faster decreasing tail (see Lemma 3). This is verified in
our simulations where we vary the tail of n (Fig. 1(c)).

S. Analysis
5.1. Consistency for Decoupled-estimation

In this section we establish a general consistency result for
the meta-procedure above. The main technicality consists
of relating differential entropy of residuals to the Ly-norms
of residuals (i.e. to the error made in function estimation).
We henceforth let 2 denote the Lebesgue measure.

The analysis in this section uses the following polynomial
tail assumption on 7. We note that Assumption 2 satisfies
the idenfiability conditions of (Zhang & Hyvérinen, 2009).

Assumption 2 (Tail). Pxy is generated as follows:

x Iy for some bounded function f, with bounded
derivative on R. Px has bounded support, and both Px
and P, have densities px, p, with bounded derivatives on
R. Furthermore, we assume 1 has bounded variance, and
Dy, satisfies, for some T' > 0, C' > 0, and oo > 1:

VIt >T, py(t) <Clt", (1)
Note that, since the unknown target functions are assumed
bounded, any consistent regressor can be appropriately

truncated while maintaining consistency. We therefore
have the following technical assumption on the regressors.

Assumption 3. The regression procedures return bounded
Junctions: 1imy, ;o0 max {[| fn ()]l » l[gn ()]l } < 00.
Theorem 1 (General consistency for decoupled-estima-

tion). Suppose X f—”) Y for some f,n, and Px y satisfies
the tail Assumption 2. Suppose f,, gn, and H,, are con-
sistent procedures satisfying Assumption 1 and 3. Let the
meta-algorithm be decoupled as in Definition 4.

Then the probability of correctly deciding X — Y goes to
lasn — oo.

To prove the theorem, we have to understand how the es-
timated entropies converge as a function of the Lo error
in regression estimation. We will proceed by bounding the
distance between the densities py,, , and p,, ., of the resid-
uals of functions f and f’ in terms of the Lo distance be-
tween f and f’ (Lemma 3); this will then be used to bound
the difference in the entropy of such residuals.

Given Assumption 2, the following lemma establishes
some useful properties of the distribution Px y and of the
distribution of certain residuals. It is easy to verify that un-
der our assumptions, all distributions under consideration
in the lemma are absolutely continuous.

Lemma 2 (Properties of induced densities). Suppose Px y
satisfies Assumption 2 for some f,n, and o > 1. We then
have the following: (i) px.y has a bounded gradient on R,
(ii) consider functions f', g : R — R and suppose sup | f'|
and sup |g| are at most Ty for some Ty, then there exists
T’ > 0 depending on Ty, and C' > 0 such thatV [t| > T’

{pX,Y('v t)7pX,Y(ta ')7p77y,f/ (t)apnxﬂ (t)} S C/ |t|_a .

In particular, the above holds for g(y) = E [X|Y = y).

The next lemma relates the density of residuals to the Lo
distance between functions. Notice, as discussed in Sec-
tion 4, that the Lemma suggests that the densities of resid-
uals converge faster the sharper the tails of the noise 7: the
larger «, the sharper the bounds are in terms of the Lo dis-
tance between functions.

Lemma 3 (Density of residuals w.r.t. Lo distance). Sup-
pose the joint distribution Px y satisfies Assumption 2 for
some f,n and o > 1. Let g(y) = E[X|Y = y]. Consider
functions f',g' : R — R. There exist a constant C" such
that for || f — f'll, p, and (respectively) |lg — g'l|5 p, suf-
ficiently small,

" , (a—1)/2«
up [y (0) = (0] < O (I = Sl )

" , (a—1)/2c¢
$up [P (6) = P, (0] < € (9" = gl ) -

teR

Proof. We start by bounding the difference between
Py, (t) and py_ , (t). We note that the same ideas can
be used to bound the difference between p,, ,(t) and
Pnx.,(t), since X and Y are interchangeable in the analysis
from this point on. This is because what follows does not
depend on how Px y is generated, just on the properties of
the induced distributions as stated in Lemma 2.

We will partition the space R as follows. First, let R-. de-

note the set {x f (@) = (@) >/ =

2,Px}' We

define the following interval i/ C R: let 7’ be defined as in
Lemma 2, and 7 > T"; we have U = [T, 7].

For any ¢ € R we have by writing residual densities in
terms of the joint px y (as in the proof of Lemma 2 in
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supplementary appendix) that |p; , (t) — py (t)‘

/R (pxy (@t + F(2)) — pxy (@t + f(z)) de

< / (pxy(z,t+ f'(z)) — pxy(x, t + f(x))) dx
R\D
2)
+ / pxy (@t + F(@) — pxy (et + f(2))] do
U\R>
3)
+ / (pxy (@t + £(2)) — pxy (@, t + f(z))) da|.
R
“4)

To bound the first term (2), let y,. denote either of ¢ + f/(z)
ort + f(x), we have by Lemma 2 that
/

—(a—1)

)

/ PX,Y(Lyx)dIS/ C'x~%dx <

- a—1

so that the first term (2) is at most 2%7'_(‘“—1).

To bound the second term (3) we recall that px y has a
bounded gradient on R? (Lemma 2). Therefore there exists
Cy such that for every z,y,e € R, px y(z,y + €) differs
from px y(x,y) by at most Cy - |e|. It follows that the
second term (3) is at most

/L{\R> Co|f(z) = f(2)| dz <27 - Co\/IIf = f'llg,py -

The third term (4) is equal to

IP(X €eR.,Y =t+ f(X)) -
P(X eR.,Y =t+ f(X))| < Px(R>).

We next bound Px (R) while noting that [|f — f'|l, p.
couldbe 0. Lete > || f — f'||, p, - By Markov’s inequality,

1f = f'lli py
Je

1f = F'llo.py

<

Thus, consider a sequence of € — ||f — f’[[, p, , by Fa-

tou’s lemma we have Px (R>) < \/|lf — f'lly py -

Combining the above analysis we have that

Px {If(X) = f'(X)| > Ve}

IN

F—(a=1)

Py i (1) = Py (t)| <2—

+ (1 +27-Co)\/IIf = Flla.py -

Now, for || f — f'[l, p, sufficiently small, we can pick 7 =

—1/2c
) <||f — lez,PX) to get the result.

As previously noted we can use the same ideas as above
to similarly bound ‘pnx,g/ (t) = Pnx., (t)’ forallt € R. It
suffices to interchange X and Y in the above analysis. [J

Lemma 4. Let pq, po be two densities such that there exist
T,C > land a > 1, for all [t| > T, max;ep pi(t) <
C [t|™“. Suppose sup,cp |p1(t) — p2(t)| < € for some € <
min {1/72,1/(3e)} satisfying the further condition: Vt >
1/y/€, t©*=D/2 > Int. We then have for € sufficiently small

4C
[H(p1) = H(p2)| < 18VeIn(1/3¢) + —— @D/,

Proof. For simplicity of notation in what follows, let
T 2 1/ye. Let U = [-7,7] and let Ups =
{t € U,pa(t) > 2¢}. Define y(u) = —ulnu for u > 0,
and v(0) = 0. We will use the fact that for the function
~(+) is increasing on [0, 1/e]. We have

Hpy) = / ROLE /M o)

+ /u RGO
1
S/R\u ’Y(pl(t))dt+ L2> pl(t) In pl(t) dt
U Uss) - 7(36), )

since for ¢ € U \ Us> we have p1(t) < pa(t) + € < 3e <
1/e.

To bound the first term of (5), notice that
o0 o0
/ Y(pa(t)) dt < / —Ct™*In (Ct~*) dt

< / Cat™“Intdt

< /Oo Cot=(@TD/2 g4

< 20 (a2
T a-—1

b

hence we have fR\L{ v(pi(t)) dt < C'7= for C', o/ > 0.
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Next we bound the second term of (5) as follows:

1
/ub’“(” Ok

o PO B — /a0
N elnpz(t; —ar

<HE)+ | ) O
o[ nta

<H)+ | a1+ 26/ 1)

+ X (Uszs) - y(e)
< H(pz) + 2% (Uss) - € + X (Uzs) - y(e).

Combining all the above, we have
H(py) <H(p2) + 3% (U) -~v(3e) + C'7~*

=H(py) + 18y/eln(1/3¢) + C'e*' /2.

Notice that p; and ps are interchangeable in the above ar-
gument. The result therefore follows. O

We are now ready to prove the main theorem.

Proof of Theorem 1
Let f(x)
HX)+H(nyy)+8 < HY)+H(nxygy), (6)

L2 E[Y|z] and g(y) £ E[X|y]. By Lemma 1,

for some € > 0.

Thus we detect the right direction X — Y if all quantities
(a) |Hn (77Y7.fn) - H (nY,f)" (b) |Hn (nX,gn) - H (77Y7g)|v
(©) |Ho(X) — H(X)|, and (d) |H,(Y) — H(Y)|, are at
most e.

By assumption, (c) and (d) both tend to O in probability.
The quantities (a) and (b) are handled as follows. We only
show the argument for (a), as the argument for (b) is the
same. We have:

[Hn (v1,) = H (v, )| < [Hn (v.7,.) = H (1v,5,,)]

+[H (nv,f,) — H (v, 1)l -

Now H,, (ny,y, ) is consistent for f,, fixed (it easy to check
that P, , satisfies the necessary conditions provided f, is

bounded) and f;, is learned on an independent sample from
P
H (ny.5,)] = 0.

H,, we have |H, (nvs,) —

P
f||2,PX — 0
(t) = Py, (0)] L, 0; this in turn im-
P
—H (ny,z)| — 0.

By Lemma 3, convergence of f, i.e. || fn —

implies sup,

plies by Lemma 4 that |H (ny,y, )

Thus all quantities (a)-(d) are at most € with probability
going to 1. O

5.2. Coupled Regression and Residual-entropy
Estimation

Here we consider a coupled version of the meta-algorithm
where f,, and g,, are kernel regressors. This is described in
the next subsection.

5.2.1. KERNEL INSTANTIATION OF THE
META-ALGORITHM

Regression: Although any kernel that is 0 outside a
bounded region will work for the regression, we focus here
(for simplicity) on the particular case where f,, and g,, are
box-kernel regressors defined as follows (interchange X
and Y to obtain g, (y)):

1 n
fnlz) = 725@1{\)(,—1\@}, )
Ng,h "
where n, 5, = |i : |X; — x| < h|, for a bandwidth h.

Entropy estimation: Given a sequence € = {¢;};_,,and a
bandwidth o, define p,, . as follows:

1 - Eift
netzi K )
el =5 2 (% )

d
where /K duK(u) < 00,
and K (u) = 0 for |u| > 1.
Let €y, = Y; — fn(Xz) and €EX,i = Xz — gn(K) The

residual entropy estimators are defined as:

H, (77Y,fn) £H (pn,ey) and H,, (77X,gn) £H (Prex) -
3

5.2.2. CONSISTENCY RESULT FOR
COUPLED-ESTIMATION

We abuse notation and use h and o to denote the bandwidth
parameters used to estimate either f,, and H,, (ny,y, ), or g,
and Hy, (nx,g4,). We make the distinction clear whenever
needed.

The consistency result depends on the following quantities
bounded in Lemma 5.

Definition 6 (Expected average excess risk). Define
Ro(fn) & E 3300 |fa(Xi) — f(X0)| and similarly
R ( )éE Zz 1‘gn< z)_g(YVi)l'
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We assume in this section that the noise 7 has exponentially
decreasing tail:

Definition 7. A rv. Z has exponentially decreasing
tail if there exists C,C’ > 0 such that for all t >
0, P(|Z-EZ|>t)<Ce “.

The following consistency theorem hinges on properly
choosing the bandwidths parameters h and o. Essentially
we want to choose h such that regression estimation is con-
sistent, and we want to choose o so as not to overfit re-
gression error. If the bandwidth o is too small relative to
regression error (captured by R,,), then the entropy estima-
tor (for the residual entropy) is only fitting this error. The
conditions on ¢ in the Theorem are mainly to ensure that o
is not too small relative to regression error R,,.

Theorem 2 (Coupled estimation). Suppose X Iy for
some f,n, and suppose Px y satisfies Assumption 2, and
1 has exponentially decreasing tail. Let f,, g,, and H,, be
defined as in Section 5.2.1, and let both H,,(X) and H,,(Y")
be consistent as in Assumption 1.

Suppose that :

(i) For learning f,, and H,, (nyy,), we use h = cyn™ for
someci > 0and0 < a < 1, and 0 = con™" for some
ca>0and0 < B <min{(1—a)/4,a/2}.

(ii) For learning g, and H,, (nx g4, ), h satisfies h — 0
and nh — oo, and o satisfies o — 0, no — oo, and
0= QRy(gn) ") for some 0 < v < 1/2.

Then the probability of correctly detecting X — Y goes to
1lasn — oo.

The theorem relies on Lemma 5 which bounds the errors
R, for both f,, and g,,. Suppose X ELN Y, then if f is
smooth or continuously differentiable, R,,(f,,) — 0, and in
fact we can obtain finite rates of convergence for R, (f5),
thus yielding advice on setting 0. The second part of the
Lemma corresponds to this situation.

However, as mentioned earlier in the paper introduction, a
smooth f does not ensure that g(y) = g(X|y) is smooth or
even continuous, so we do not have rates for R, (g,). We
can nonetheless show that R,,(g,) would generally con-
verge to 0, which is sufficient for there to be proper settings
for o (i.e. o larger than the error, but also tending to 0).

We note that the r.v.’s X and Y are interchangeable in this
lemma since it does not assume X — Y. The proof is
given in the supplemental appendix.

Lemma 5. Let f,, be defined asin (7). Let f(x) = E[Y]|z].
Suppose (i) EY? < oo and that f is bounded; h — 0 and

nh — oo. Then B L S0 | £,(X) — F(X0)| 222 0.

Suppose further (ii) that Px has bounded support and that
f is continuously differentiable; h = cin™¢ for some ¢; >
Oand 0 < a < 1.

Then we have E %L MU (XG) — F(Xa)] < con™P, for
BE=min{(1 —a)/2,al.

We can now prove the theorem of this section.

Proof of Theorem 2

Letéy; 2 Y~ f(X;) and €x,i £ X,;—g(Y;). Note that, un-
der our conditions on ¢ both H (p,, ¢, ) and H (p, ¢, ) are
respectively consistent estimators of H (ny, ) = H(n) and
H (nx,q) (seee.g. (Beirlant et al., 1997)). For any two den-
sities p, p’ we write |p — p’| to denote sup, |p(t) — p’'(t)].

Given the assumption that K has bounded derivative on R,
there exists a constant cx such that

1 n
|pn,€y 7pn,ey| S % . ( Z ‘fn(Xz) - f(XZ))

n <
1=1
CKR f
- E |pn,Ey _pn76y‘1/2 S %7 and
- 1 n
prex — oenl < 2 (23 1gu (%) — g%
=1
CKR g
- E |pn,€x _pn,ex|1/2 < n( n)
o
1/2

Thus by Lemma 5, we have E |pnzy — Pnoexl —
0, which in turn implies by Markov’s inequality that

|Pnex — Priex| i) 0. Now since Px has bounded sup-

port, both p, ., and p, ¢, have bounded support, and

hence by Lemma 4 we have |H (pe, , ) — H (pey,)]| R

0. Hence we also have |H,, (x,4,,) — H(nx.g)| 0.

Again by Lemma 5, we have that, for n suffi-
ciently large, E |p,.¢, —pn,q,|1/2 < Cn=P/2 for some
C > 0. Therefore by Markov’s inequality, we have
P (|pn,€y - pn,ey| > ﬁniﬂﬂl)
exponential tail assumption on the noise, all Y; samples
are contained in a region of size C’logn with probabil-
ity at least 1/n. Thus, since K is supported in [—1, 1], both
Pn,zx and p, o, are 0 outside a region of size C”' logn.
Let T be as in Lemma 4; for all n sufficiently large,
VCn=B/* < 1/(C"logn)? = 1/T2. Tt follows by
Lemma 4 that |H (pe, ;) — H (pey, )| %, 0, and hence

that |[H,, (ny,,.) — H(ny,p)| = 0.

— 0. Now, under the

The rest of the proof is similar to that of Theorem 1 by
calling on Lemma 1 and using the consistency of H,,(X)
and H,(Y). O
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6. Final Remarks

We derived the first consistency results for an existing fam-
ily of procedures for causal inference under the Additive
Noise Model. We obtained mild algorithmic requirements,
and various distributional tail conditions which guarantee
consistency. The present work focuses on the case of two
r.v.s X and Y, which captures the inherent difficulties of
consistency. We believe however that the insights devel-
oped should extend to the case of random vectors under
corresponding tail conditions. The details however are left
for future work.

Another interesting multivariate situation is that of a causal
network of r.v.s. as in Peters et al. (2011b) dicussed ear-
lier. Extending our consistency results to this particular
multivariate case would primarily consist of extending our
distributional tail conditions to the tails of distributions re-
sulting from conditioning on appropriate sets of variables
in the network. This is however a non-trivial extension as it
involves, e.g. for the convergence of conditional entropies,
some additional integration steps that have to be carefully
worked out.

A possible future direction of investigation is to understand
under what conditions finite sample rates can be obtained
for such procedures. For reasons explained earlier, we do
not believe that this is possible without less general distri-
butional assumptions.
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A. Omitted figures from Section 4

Some addtional experimental results were omitted in the
main paper for space, and are given in Figure 3.

B. Omitted Proofs: Section 5.1

Proof of Lemma 2. Note that, by assumption, both px and
Py, are bounded. For any z,y € R, we have

pxy (@,y) = px(2)  pyia(y) = px () - pyly — ().
)
therefore %vay(ag y) is given by
d d
o Px (@) poly = f(2)) — *f( ) - ——py(y — f(2)).
It is clear that sup, , %pxy(:c,y) < o0o. Similarly

sup,, , %px’y(:ﬁ, y) < oo. Also, since p, is bounded, we
have from (9) that for |¢| sufficiently large, px y (t,y) =0
independent of y. Also, since f and px are bounded,
we have, independent of x, that for |¢| sufficiently large,
px,y(z,t) < C't~* for some C’ > 0.

Next the density of the residual ny ¢ of a function f is
easily obtained as follows for any ¢ € R.

Pav 0= [ x(@) prialt+ F@)da
Z/RPX,Y(%t‘Ff/(x))dx (10)
- / px (@) - palt + f(2) — () da-

Thus if f’ is bounded, there exists 7" > 0 such that for
[t] > T7,

Py (1) S CT 7 / px(z)dz = C"|t|™,
R

where « is the same as for the bound on p,, from the as-
sumption.

We have similarly for any function g that,

P = [ () px (e (0) dy
:/Rpx,y(tJrg(y),y) dy. (1D
:/Rpx(Hg(y))~pn(y—f(t+g(y)))dy~

If g is bounded, then for ¢ sufficiently large, px (t+g(y)) =
0 for all y so py , (t) = 0. O

C. Omitted Proofs: Section 5.2

We denote the random n-samples as X" £ {X;}] and
Y™ £ {Y;}], throughout this section.

We bound R, (f,) and R,,(g,) in Lemma 5 which makes
use of Lemma 6. We note that the r.v.’s X and Y are in-
terchangeable in the two lemmas 5 and 6, since they do not
assume X — Y.

Lemma 6 ((Gyorfi et al., 2002)). For any positive | :
R — R such that E f < oo, there exists co such that

Exxn {ﬁ ZXi:\Xi—X|<h f(Xi)} < ¢oE f(X).

Proof of Lemma 5. We simply have to show that
E LS fa(X0) — F(X))P 2222 0 since by Holder's

inequality and Jensen’s inequalities, for any ¢, (-),

B 2 lon(X)| <B [ 3 6nC
s\/lEiZI%(X

For assumption (i), pick any e > 0. We will show that
for n sufficiently large, the above expectation is at most
(7 + 3co)e, where ¢ is as in Lemma 6. The further claim
of assumption (ii) will be obtained along the way.

First condition on X", fixing x = X, for some X,
and taking expectation with respect to the randomness
in Y* £ {Y;}]. We have by a standard bias-variance
decomposition (see e. % (Gyorfi et al., 2002)) that

Eynixn |fn(z) = f(2)]
2
Na,h |X —z|<h
(12)

for some C' depending on the variance of Y.

We start with a bound on the first term of (12). Pick an
interval S such that Px(R\ S) <.

Consider an (h/2)-cover Z of S such that for every z € S,
the interval [z — h/2,z + h/2] is contained in S. We
can pick such a Z of size at most 2X(S)/h. Note that
forany z € [z — h/2,2 + h/2], ngp > nuppe =
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Figure 3. Plot (a): same experiment as Fig. 1(b) but using KRR. Plot (b): same experiment as Fig. 1(c) but using KRR. For properly
tuned parameters, the selection of regression method does not seem to matter for the causal inference results.

{X;: |z — X;| < h/2}|. We then have
o2 A= 1qx, 1y,
n; X n &y, ({X@S}—F {X1¢S})
1< C
w2 ey T Zl{xz%}
g=t ol =1
< —Z 3

nx;,h
2€Z X;i:|z—X;|<h/2 ih

S*ZO Nz h/2

Nz h/2

121
n Lot XES)

Therefore by taking expectation over X" and letting nh
sufficiently large, we have

E- ZAxf

Under assumption (ii), pick S larger than the support of
Px, we have by the same equation above that for large n

1 — 20
E-Y Ay <

LZ(S)JFPX(R\S) < 2.

5(8) _

2C - %(S)
nh '

clnl—a

We now turn to the second term of (12). Under assumption
(ii) the function f is Lipschitz continuous and we therefore
have for some constant cf that A, < cfh? = cren™2°.
Combining with the bound on A, gives the result for as-
sumption (i).

For assumption (i) we proceed as follows. It is well known
that bounded uniformly continuous functions are dense in
Ly p, for any Px. Therefore let f be a bounded uniformly

< +/e. Since

- - 2
h = h(n) — 0, we have SUP|; o/ <h ‘f(:c) — f(z")
for n sufficiently large. The second term of the r.h.s. of

continuous function such that H f —f H
2,PX

< €

the above equation (12) can then be bounded as follows. If
ng,p = 1, then B, = 0. Otherwise, if n, ; > 1, we have

5 o
= (Jrcx) - Fex)
+|e6) - )] + | - )
<3¢+ |f(a) - f(a)|
S e - Fo)|
hx; Zel<n
<3e + (n?’h +1> |F(@) = 1)
e Y -l

| Xj—z|<h,X;#x

Therefore taking expectation over X", and applying
Lemma 6 to the second term above for x = X, we have

E By, <3¢+ 28 x |f(X) - £(X)|
+360E x )f(x —f(X)’Q (5 + 3cq)
sothat E L 3. By, < (5+ 3cp)e. O



