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Abstract

Density-ratio estimation (i.e. estimating f =
fQ/fP for two unknown distributions Q and P )
has proved useful in many Machine Learning
tasks, e.g., risk-calibration in transfer-learning,
two-sample tests, and also useful in common tech-
niques such importance sampling and bias correc-
tion. While there are many important analyses of
this estimation problem, the present paper derives
convergence rates in other practical settings that
are less understood, namely, extensions of tradi-
tional Lipschitz smoothness conditions, and com-
mon high-dimensional settings with structured
data (e.g. manifold data, sparse data).

Various interesting facts, which hold in earlier
settings, are shown to extend to these settings.
Namely, (1) optimal rates depend only on the
smoothness of the ratio f , and not on the densi-
ties fQ, fP , supporting the belief that plugging in
estimates for fQ, fP is suboptimal; (2) optimal
rates depend only on the intrinsic dimension of
data, i.e. this problem – unlike density estimation
– escapes the curse of dimension.

We further show that near-optimal rates are attain-
able by estimators tuned from data alone, i.e. with
no prior distributional information. This last fact
is of special interest in unsupervised settings such
as this one, where only oracle rates seem to be
known, i.e., rates which assume critical distribu-
tional information usually unavailable in practice.

1 INTRODUCTION

Density ratios, i.e. the ratio f = fQ/fP of two densities fP
and fQ, are ubiquitous in Machine Learning applications.
For instance, they naturally appear in two-sample testing
problems [1, 2], outlier detection [3], and estimation of
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divergence functionals [4, 5, 6]. More recently, they appear
as a corner-piece of much work in transfer-learning [7, 8]
where the goal is to recalibrate a risk functional over some
target Q by using data from P . The key idea is that the risk
EQ l (for some loss l) which is to be approximated from
sample, is easily rewritten as EP l · f , which is useful if
we have more data from P . Similar uses of density-ratios
appear more generally in importance sampling and bias
correction where an integral EQ g is to be approximated
using samples from some P ≈ Q (see e.g. [9, 10]). Thus
various estimators of f exist [11, 4, 12, 13, 14], usually
derived and analyzed under the assumption that f belongs
to a Reproducing Kernel Hilbert Space (RKHS).

This paper aims to yield further insights on the inherent
difficulty of density-ratio estimation by considering other
practical settings that are currently less understood. In par-
ticular, while previous analyses yield important insights for
functions in an RKHS, here we consider common Lipschitz
conditions and their Hölder extensions, encoding how fast
a function varies over its domain. Furthermore, we con-
sider practical situations where high-dimensional data in
RD actually lies on a structured subspace of lower dimen-
sion, e.g. data on a manifold or sparse data; the aim here
is to elucidate the effect of data dimension on estimation
rates, which manifestly also affects the downstream tasks.
Finally, we are particularly interested in which rates are
achievable given no prior distributional information, i.e.,
whether an estimator tuned from data alone can still achieve
optimal rates (which typically assume optimal tuning). This
last question is of special importance in unsupervised (or
semisupervised) settings such as this one, where there is
little useful information – relative to supervised settings –
towards tuning procedures. Data-driven tuning in fact has
received much attention in the literature on density-ratios,
but with no theoretical guarantees to our knowledge.

Results. Many interesting facts, which hold in the RKHS
setting (under various risk measures), are shown to hold
more generally in these somewhat more complex settings:

• Optimal rates (under L1,P risk) depend only on the
smoothness of the ratio f = fQ/fP , and not on fQ nor
fP , supporting the belief that plugging in estimates for
the densities fQ, fP is suboptimal.
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• Optimal rates depend only on the intrinsic dimension of
data, i.e., this problem – unlike density estimation – es-
capes the curse of dimension when the high-dimensional
data is structured.

Unlike in previous work, we further show that near-optimal
rates are attainable by estimators tuned from data alone, i.e.,
with no prior distributional information. This is the most
involved part of the analysis. We consider a sample-based
tuning approach which relies on a stability criteria akin to so-
called Lepski’s methods (used in kernel density estimation
[15, 16]). The present difficulties have to do with the lack
of ground-truth (Q, P , smoothness, intrinsic dimension, are
all unknown) and the fact that the risk measures – e.g. ‖f̂ −
f‖1,P – involve ill-bounded ratios that are not empirically
stable. The analysis is made possible through a sequence
of truncated empirical metrics, of independent technical
interest, that form stable approximations to key components
of the risks.

Paper outline. We discuss our results in more detail in
Section 2, along with relevant prior work. The analysis starts
in Section 3 with some preliminary setup and specification
of the simple estimator used for upper-bounds. Our L1,P

oracles rates are then presented and discussed in Section
4.1, while results on data-driven choice of r are presented
in Section 4.2. Analyses of the main theorems are covered
in Section 5, with some proofs relegated to the appendix.

2 DETAILED OVERVIEW AND PRIOR
WORK

Estimating a density-ratio f = fQ/fP , is a difficult non-
parametric problem which contains density-estimation as
a special case (the case P ≡ Lebesgue). Lower-bounds on
density estimation therefore automatically apply. Hence,
to understand attainable rates, we can restrict attention to
upper-bounds (on any suitable estimator), provided these
match known lower-bounds for the choice setting.

The work of [4] establishes general rates, in Hellinger dis-
tance, in terms of bracketing entropy for generic function
classes F ; the estimator involves penalized empirical risk
minimization (P-ERM) over the class F . While P-ERM
is not feasible for general F , [4] shows how to instanti-
ate the procedure when F is an RKHS (via the so-called
kernel trick). Similar P-ERM over an RKHS is performed
in [13, 14], where estimation rates are established in L2,P ,
under different penalization approaches. Thus, so far, upper-
bounds for actual estimators seem only known for P-ERM
approaches over an RKHS.

While RKHS are quite general, they encode strong smooth-
ness conditions (e.g., Sobolev classes are RKHS only when
the smoothness index is higher than D/2) which do not
capture less smooth functions such as Lipschitz or Hölder
[17, 18]. In other words, rates for an RKHS do not carry over

to these other smoothness classes, nor are the rates meaning-
fully comparable (as they involve different characterizations
of smoothness). Furthermore, for our upper-bounds for Lip-
schitz classes, the P-ERM procedure is no longer feasible;
however we will see that a simple local averaging procedure
(described below) is sufficient to capture the minimax rates
under these settings. Finally, as previously discussed, we
are particularly interested in common situations where the
data is not full-dimensional in RD; in particular, we assume
a generic metric space (X , ρ) where the ratio f remains
well-defined by simply letting Q absolutely continuous w.r.t.
P (which is in fact also needed in the full-dimensional case,
if f is to be well-defined).

In these general settings, we focus on L1,P as it seems natu-
ral for density-estimation type problems, for instance in the
way it equates to total-variation [19]. Furthermore, it is eas-
ily shown that L1,P remains appropriate w.r.t. downstream
applications as it yields direct bounds on the target errors
in such applications (just as L2,P ). This is captured in the
following simple proposition.
Proposition 1. Consider the motivating problem of inte-
grating EQ g = EP g · f , where g is bounded. Let f̂ be
an estimate of the ratio f . Then the integration error in
substituting f̂ for f is bounded as:

EP g · (f̂ − f) ≤ |g|sup · EP |f̂ − f |
.
= |g|sup · ‖f̂ − f‖1,P .

Direct estimation. Our upper-bounds are established
via a simple local estimator suited to the local-nature of
our smoothness conditions. Namely, this estimator f̂(x)
is of the form Qn(B(x, r))/PN (B(x, r)), over a ρ-ball
B(x, r) ⊂ X , where Qn, PN denote empirical masses from
two samples XQ ∼ Q and XP ∼ P of sizes n and N . The
rates are in terms of the (first order) smoothness β of the un-
known ratio f = fQ/fP and do not involve the smoothness
of either density fQ or fP . In particular, this implies that
plugging in two different density estimators (i.e. estimate
f as f̂Q/f̂P ) can be suboptimal. To see this, consider for
instance the case where fQ = fP , i.e., f is constant and
thus infinitely smooth: estimating fQ = fP can be arbitrar-
ily difficult given lack of smoothness, however f is easy to
estimate (our rates in this case are of the parametric form
(n ∧N)−1/2 as β → ∞). This supports a common belief
(see e.g. [2]) that density-ratio estimation is easier than es-
timating either densities. Note however that both problems
are of the same complexity in a minimax sense, as shown in
the present analysis.

Structured data. Under a suitable notion of intrinsic di-
mension d of (X , ρ) (see Definition 2), our oracle L1,P rates
are then of the form (n ∧N)−β/(2β+d), where β captures
the smoothness of f (e.g., Hölder exponent, see Assump-
tion 1). In particular, when X is a structured subspace of
RD with d � D (e.g. a manifold, or sparse under some
unknown dictionary), the rates are significantly faster than
the high-dimensional worst-case (n ∧ N)−β/(2β+D). In
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contrast, Lebesgue-density estimation is ill-defined in such
favorable settings (distributions supported on structured X
are singular). We note that the estimator of [14] is also
shown to attain rates adaptive to d in the particular case
where data lives on a d-manifold in RD. However their
rates require knowledge of d in properly setting regulariza-
tion parameters. Avoiding such requirements is discussed
next.

Data driven tuning. We now turn to the more practical
question of picking hyperparameters (here r) from data, a
largely open problem in unsupervised settings, which we
aim to understand better. We note that the procedures of [20,
2, 13, 14] all provide nontrivial data-driven procedures, but
which are however not tied into their statistical guarantees.

We derive a data-driven procedure, by extending insights
from so-called Lepski’s method [15, 16] suited to adapt-
ing to unknown smoothness. Here we are interested in the
possibility of adapting to both unknown smoothness and,
most importantly for structured data, to unknown dimension.
The data-driven procedure then consists of properly balanc-
ing a sample-based surrogate for variance1 towards picking
an estimate which is stable to small changes in bandwidth
r. Obtaining high-probability finite sample rates are com-
plicated here by the fact that estimates (being ratios) are
potentially unbounded, and therefore might not concentrate.
The analysis therefore proceeds by introducing truncated es-
timators, along with a sequence of truncated (empirical) risk
surrogates, which do concentrate. We can then show that
the data-driven choice of r results in an estimate whose risk
nearly matches the oracle risk order of (n ∧N)−β/(2β+d);
both smoothness β and intrinsic d are a priori unknown.
The main assumptions are that we have access to a rough
upper-bound F on f (a mild assumption since F might be
obtained from a first pass estimate), and that the base mea-
sure P is upper-bounded in a sense that remains general.
The approach yields important insights on quantities that
most affect tuning choices for this problem.

3 PRELIMINARIES

3.1 Data and Distributions

We have access to two random samples XP ∼ PN and
XQ ∼ Qn, where Q and P are probability distributions on
(X , ρ), where ρ is some known metric. Furthermore Q is
absolutely continuous with respect to P , and we assume
w.l.o.g. that supp(P ) = X . Also we assume for simplicity
that X has diameter supx,x′ ρ (x, x′) = 1. We need the
following regularity condition for balls on X .

Definition 1 (Balls on X ). Let B(x, r) ,
{x′ ∈ X : ρ (x, x′) ≤ r} denote a ball under ρ. We

1“Variance" is used loosely since we’re bounding L1, so “stan-
dard deviation” might be more appropriate.

assume the class B , {B(x, r) : x ∈ X , r > 0} of all balls
has finite VC dimension at most VB.

Our goal is to estimate the Radon-Nikodym derivative of Q
w.r.t. P . We denote this derivative by f , which by definition
satisfies, for all measurable A ⊂ X :

Q(A) =

∫
A

f dP.

Remember that ifQ and P are both dominated by some base
measure σ on X , with respective densities fQ and fP w.r.t.
σ, then f =σ−a.e. fQ/fP , which justifies the density-ratio
terminology.

Interestingly, σ needs not be known; this implies in par-
ticular that X might be an unknown subspace of RD of
lower dimension d which we might adapt to. We adopt the
following notion of metric dimension.

Definition 2. The integer d is a covering dimension of
(X , ρ) if there exists C such that for any 0 < r ≤ 1, X has
an r-cover of size at most Cr−d.

This simple notion generalizes other notions of intrinsic
dimension such as doubling dimension common in Machine
Learning (see e.g. [21] for a nice overview), and the small-
est such d can be shown to tightly capture the dimension of
structured data, e.g., low-dimensional manifolds (under cur-
vature conditions), and sparse data (under a bounded-size
dictionary) [22].

We will express initial results in terms of the modulus of
continuity of the derivative f :

Definition 3 (Modulus of continuity of f ). For any x ∈ X
and r > 0, define

εf (x, r) = sup
x′∈B(x,r)

|f(x)− f(x′)| , and

εP,f (r)
.
= EP [εf (X, r)] .

Parts of the analysis requires more precision, so define

ε̂f (x, r) = sup
x′∈B(x,r)

f(x′)− f(x), and

ε̌f (x, r) = sup
x′∈B(x,r)

f(x)− f(x′).

We assume εP,f is bounded. The definitions capture the
smoothness of f in some generality which will prove useful.
Results under Hölder smoothness can then be obtained as
corollaries.

3.2 Basic Estimator

We start with the following basic estimates; the analysis
concerns the last estimator f̃r, while the other estimators
are related and serve to yield initial insights into f̃r. In the
second part of the paper we analyze (near-optimal) choices
of the bandwidth parameter r from data.
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Definition 4 (Estimates.). Let Qn, PN denote resp. empir-
ical distributions w.r.t. XQ and XP . Given a bandwidth
0 < r ≤ 1, define the following basic estimates:

fr(x) ,
Qn(B(x, r))

P (B(x, r))
, f̂r(x) ,

Qn(B(x, r))

PN (B(x, r))
,

and f̃r(x) = f̂r(x) · 1Er(x),where

Er(x) denotes the event {PN (B(x, r)) ≥ 72αm,B} , m =
n ∧N , αn0,B

.
= (VB ln 2n0 + ln(8/δ))/n0 for any integer

n0 (the quantity VB is given in Definition 1).

The estimator f̃r simply truncates f̂r in regions of low-
density, while f̂r differs from fr only in the normalization
by empirical mass PN rather than by the unknown P . We
will proceed in steps by first bounding fr then f̂r at a point
x. The reason for the truncation will then become apparent
as we establish high probability results for f̃r. Intuitively,
we have a confident estimate f̂r whenever Er(x) holds, i.e.
enough samples contributed to the estimate.

We note that, when X has general diameter ∆X (rather
than 1 as in our simplification), we will just use bandwidths
r = r0 ·∆X , 0 < r0 ≤ 1. The analysis trivially extends to
general diameter.

4 MAIN RESULTS

4.1 Rates for f̃r

Our first results (Theorem 1 and Corollary 1) aim to first
understand which rates are attainable given potential knowl-
edge of distributional parameters.

We consider an L1,P risk defined for any estimate f ′ as
‖f ′ − f‖1,P = EP |f ′(X)− f(X)| . The rates for any
f̃r, r ∈ (0, 1], are first obtained in terms of εP,f (r).

Theorem 1 (L1,P rates for f̃r). Define F̄ .
= ‖f‖2,P ≤

supx f(x). Let 0 < δ < 1. Let m = n∧N . For any integer
n0, let cn0,B

.
= (VB ln 2n0 + ln(8/δ)). With probability at

least 1− 2δ over the choice of XP and XQ, for all r > 0,

‖f̃r − f‖1,P ≤C
(
F̄

√
cN,B
N · rd

+

√
cn,B
n · rd

(
1 +

√
εP,f (r)

)
+ (F̄ ∨ 1)

cn,B
n · rd

+ F̄
cN,B
N · rd

)
+ 2εP,f (r) + F̄ δ,

for some C depending on X .

Letm = n∧N , the above rate is of the form
√

1/(m · rd)+
εP,f (r), and is simply given in enough detail to reflect the
contribution of the different samples XP and XQ.

Remark 1. The confidence parameter might be chosen
as O(n−C) for some constant C so the last term F̄ δ is
in fact of lower-order than other terms. The error term

F̄ δ is contributed by less-confident estimates f̃r(x) (where
1Er(x) = 0, i.e., B(x, r) is nearly empty), and in fact dis-
appears if we assume P is lower-bounded on X .
Remark 2. For the above theorem, we can actually relax
Er(x) in the definition of f̃r to hold when PN (B(x, r)) &
αN,B (rather than when PN (B(x, r)) & αm,B). The
stricter threshold is needed in Section 4.2 for sample-driven
choices of r, and ensures that the estimate is bounded for
small m.

One is also often interested in the limiting case of N →∞.
This corresponds essentially to rates on fr (P known, but
perhaps not d) and are given in the appendix.

When f is sufficiently smooth, for instance Lipschitz or
Hölder, we can minimize the above upper-bound over
choices of r > 0. This is done next.
Assumption 1 (Smoothness of f ). Let the derivative f
satisfy, for some λ, β > 0, the (relaxed) Hölder condition
εP,f (r) ≤ λrβ , ∀r ∈ (0, 1] (or all r ∈ (0, r0]).

The condition is clearly satisfied when f is (λ, β)-Hölder,
i.e. |f(x)− f(x′)| ≤ λρ (x, x′)

β . We note however that
this is first-order smoothness (appropriate to our first-order
estimates) and therefore is most interesting for 0 < β ≤ 1
(larger β hold for piecewise constant f , or atomic P ).

We have the following corollary under the above smoothness
condition. The rate is simply expressed in terms of m =
n ∧ N , the smallest sample size, with no requirement on
n/N .
Corollary 1 (Oracle rates). Assume the conditions of The-
orem 1. Let the derivative f satisfy Assumption 1, for
some λ, β > 0. Let f̃r denote the truncated estimator
of Theorem 1. Let m = n ∧N . There exists C0 =
C0(X ), C = C(X , F̄ ), m0 = m0(X , λ) such that the fol-
lowing holds. For all m ≥ m0, we have with probability
at least 1− 2δ over the choice of XQ and XP that, given

r = C0

(
log(mVB/δ)/(λ2m)

)β/(2β+d)
,

‖f̃r − f‖1,P ≤Cλd/(2β+d) ·
(

log(mVB/δ)

m

)β/(2β+d)
+ F̄ δ.

Proof. For m sufficiently large, log(mVB/δ)
m ≤ 1 and the

above r ≤ 1. We then have by Theorem 1 that for some
C1 = C1(F̄ ), with probability at least 1− 2δ,

‖f̃r − f‖1,P ≤ C1

√
log(mVB/δ)

m · rd
+ 2λrβ

+ C1

√
log(mVB/δ)

m · rd
√
λrβ + F̄ δ

≤Cλd/(2β+d) ·
(

log(mVB/δ)

m

)β/(2β+d)
+ F̄ δ.
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Remark 3 (Rate Optimality). The above rate matches (up
to log terms) known lower-bounds on L1 density estimation
for Hölder classes of densities over Rd [19], and is therefore
tight in this respect since our setting is more general.

The above results do not involve direct assumptions on den-
sities fP nor fQ, as the only relevant complexity is that of f .
Also, as previously discussed, if X were a subspace of RD,
then the dependence of the rates on the intrinsic dimension
d rather than on D, allows for fast rates for structured data
in high-dimensional settings. This is for instance of interest
in transfer-learning problems where much of the intended
applications involve high-dimensional, but structured data.
Examples are robot-control, spam filtering, brain-computer
interface, NLP, and more (see e.g. [23, 24] for detailed
overviews).

4.2 Data-driven Choice of r

The main question in this section is whether a procedure
that selects r based on the data can (nearly) achieve the
oracle rate of Theorem 1, with no a priori knowledge of
distributional parameters (d, λ, β). We show that this is the
case for the approach described below, which is based on a
stability type criteria.

We note that, a different approach, more akin to cross-
validation is possible. The main intuition, used for instance
in [20, 2, 13, 14] (and also [25] in the case of density-
estimation) is to decompose the L2

2,P risk ‖f̃r − f‖22,P
into terms ‖fr‖22,P and ‖fr‖1,Q independent of f , and esti-
mate these terms from data. However, this estimation error
is O(m−1/4) on the final L1,P error, at least using com-
mon concentration inequalities, and thus is too large for
our purpose since it can dominate the rate of Theorem 1
(the problem is in having to bound L1,P by L2,P ). This is
discussed further in the Appendix with a full-analysis of
the approach. In contrast, the approach described next is
directly designed around the L1,P error.

A stability type criteria

Our approach below extends insights from so-called Lep-
ski’s methods [16, 15], and proceeds from small values of r
to large, with the added computational benefit of early stop-
ping (with no need to evaluate the full range of r values).

Basic Lepski’s methods aim at adapting to the unknown
smoothness (λ, β) of a target f , however assuming a known
base measure P ≡ Lebesgue, and known dimension d. Such
knowledge informs the choice of a variance upper bound
(e.g. of the form 1/

√
mrd of Theorem 1) which can be

balanced with bias towards choosing a good r. The main
intuition is as follows.

Intuition. Suppose r∗, unknown, balances variance and

Figure 1: Data-driven choice of r: main intuition. (Left)
For r > 0, the error ‖f̃r − f‖1,P is bounded by the sum
of variance and bias terms σ(r), b(r), depending on d, λ, β
unknown. The choice r∗ balances such terms. (Right)
for any r < r′ < r∗, the variance term σ dominates so
the depicted balls (in L1,P ) all contain f , therefore must
intersect. The balls get smaller as r, r′ → r∗, so f̃r and
f̃r′ must get close (more stable estimates). Setting a proper
threshold requires a suitable data-driven surrogate for σ(r).

bias i.e. σ(r∗) ≈ b(r∗) where σ(r) and b(r) are variance
and bias terms respectively of the form 1/

√
mrd and λrβ ,

d, λ, β unknown. Then for smaller r ≤ r∗, we would have
‖f̃r − f‖1,P . σ(r) + b(r) . 2σ(r), hence for r′, r ≤ r∗,

‖f̃r − f̃r′‖1,P . 2(σ(r) + σ(r′)), (1)

decreasing as r, r′ → r∗. In other words, estimates f̃r get
more stable to changes in r as we increase r from 0 to r∗.
This is depicted in Figure 1.

Thus, we might increase r and check changes between f̃r
and any f̃r′ , r′ ≤ r till (1) no longer holds. At that point
we know r has gone past r∗ since changes in estimates have
increased. We can then return the last r for which (1) held
(w.r.t. other r′ ≤ r). The corresponding estimate f̃r can be
argued to not be too far from f̃r∗ which is of optimal rate
w.r.t. unknown smoothness (λ, β). This nice idea, inherent
in Lepski’s methods, however requires we know (1), i.e.,
that we can approximate L1,P and know the dimension d.

In contrast, here the base measure P is unknown, so are its
support X and dimension d. We therefore need an appropri-
ate surrogate for variance in terms of sample quantities. The
analysis provides a clue: for any confident estimate f̃r(x),
i.e. where Er(x) holds, the quantity 1/

√
mP (B(x, r)) (P

might be replaced by PN ) appears to control variance at
a point x. However, we have no useful such surrogate
when Er(x) fails. We will therefore separate integration
(in approximating L1,P ) over confident point-estimates and
non-confident ones. This involves introducing a series of
pseudo-metrics ∆M,r (defined on a validation sample of
size M ) that serve to compare confident estimates, and
which can be shown to be bounded by a variance surrogate
(truncated for the sake of concentration). The integration
over non-confident estimates is then handled separately by
showing that they occur (under the final choice of r) with
probability of order at most our target risk bound.
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The procedure requires an upper-bound F on f , which
might be obtained via a first pass estimate (see Proposition
2). The bound VB on VC dimension of B can be replaced
by O(D) for data in RD.

Procedure 1 (Stability):
SETUP. Let R .

=
{
ri

.
= 2−i

}k
i=0

, for some integer k,
denote values of r.

Assume a known upper-bound F ≥ supx f(x) (in fact
F needs only be valid w.h.p.). Let δ ∈ (0, 1), m .

=
N ∧ n, αm,B

.
= (VB ln 2m+ ln(8, δ))/m.

Let X′P ∼ PM denote a validation sample of size
M independent of XP . Let PM denote the empirical
distribution w.r.t. X′P .

Now, let Er(x) be the event PN (B(x, r)) ≥ 72αm,B,
and for any g, g′ : X 7→ R, r > 0, define the pseudo-
metrics ∆M,r (g, g′) = ‖(g − g′) · 1Er‖1,PM

.

Variance surrogate: êm,r(x) =

√
24αm,B

PN (B(x, r))
if Er(x)

else, êm,r(x) =
√

1/3.

Define εM,δ
.
= 15F

√
log(2k2/δ)/2M . Also define

γ(r)
.
= 8F‖êm,r‖1,PM

+ 2εM,δ .

PROCEDURE. For i = k − 1 to 0 do:
If ∃j > i s.t. ∆M,rj

(
f̃ri , f̃rj

)
> γ(ri)+γ(rj), return

r = ri+1, otherwise continue.
(If the loop ends without returning r, return r = r0).

The main theorem of this section requires in addition that P
be bounded in the following sense.

Assumption 2. P is upper-bounded, i.e. ∃C0 such that
∀0 < r ≤ 1, x ∈ X , P (B(x, r)) ≤ C0r

d.

The above is a rather mild assumption: it holds for instance
if P has an upper-bounded Lebesgue density on Rd (then
P (B(x, r)) ≤ c · vol (B(x, r)) ∝ rd), and more generally
if P has an upper-bounded density w.r.t. a volume measure
on a compact metric X of dimension d.

Theorem 2. Let the derivative f satisfy Assumption 1, for
some λ, β > 0, and supx f(x) <∞. Suppose Assumption
2 holds for P . Let m = n ∧N and let 0 < δ < 1. Define
F̄ = ‖f‖2,P as before. There exist m1 = m1(X , f), C1 =
C1(X , f) such that the following holds with probability at
least 1− 5δ over the choice of XP ,XQ and X′P .

Choose k = dlogme, and suppose m > m1. Let r be the

value returned by Procedure 1. We have

‖f̃r − f‖1,P ≤C1λ
d/(2β+d)

(
log(mVB/δ)

m

)β/(2β+d)
+ 32εM,δ + F̄ δ.

Thus, (provided M = Ω(m)) the procedure attains a rate
of nearly the same order as the oracle rate of Corollary 1,
with no a priori knowledge of (λ, β) nor d. However, if
VB is chosen as O(D), then m needs to be at least linear
in D, which is still benign w.r.t. non-adaptive exponential
rates in D. Thus, importantly, the analysis reveals key data-
dependent quantities that tightly control the choice of r.

As mentioned before, the upper-bound F required by the
procedure can be chosen from a first pass estimate. This is
stated in the following simple proposition whose proof is in
the appendix. Furthermore such an F picked from estimates
will not be too large (see Proposition 3). Thus, the overall
procedure can be made fully independent of distributional
unknowns.

Proposition 2. Suppose supx f(x) is attained at x0 ∈ X ,
and f is continuous in a neighborhood of x0. Let 0 < δ <
1. Suppose F is picked as 4 maxx∈XP ,r∈R, s.t. Er(x) f̃r(x).
Then, for m sufficiently large, w.p. at least 1− 3δ, we have
F ≥ supx f(x).

5 ANALYSIS OVERVIEW

In this section we go over important details of the main re-
sults. Some proofs are relegated to the appendix. The proof
of Theorem 1 and 2 both require the same starting lemmas.
These involve deriving pointwise bounds for fr, then f̂r,
which are then properly integrated to obtain Theorem 1,
whose proof is outlined in Section 5.3. Theorem 1 is then
proved in Section 5.4.

5.1 Pointwise Rates for fr

Our first lemma analyzes the behavior of the basic estimate
fr at a point x. In other words, if we knew P (assumed by
fr), what rate should be expected.

Lemma 1 (Rate for fr(x).). Let 0 < δ < 1. Define cn,B =
VB ln 2n + ln(8/δ), where B is the set of balls on X . We
have w.p. 1− δ, for all x ∈ X and r > 0,

fr(x)− f(x) ≤ε̂f (x, r) +

√
cn,B · (f(x) + ε̂f (x, r))

n · P (B(x, r))

+
cn,B

n · P (B(x, r))
, and
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f(x)− fr(x) ≤ε̌f (x, r) +

√
3cn,B · (f(x) + ε̂f (x, r))

n · P (B(x, r))

+
3cn,B

n · P (B(x, r))
.

Notice that ε̂f and ε̌f in the above bounds can be replaced
by (the less tight) modulus εf .

5.2 Pointwise Rates for f̂r

The following lemma relate the estimate f̂r, given two sam-
ples from P and Q respectively, to the estimate fr which
assumes knowledge of P . Rates for f̂r are then easily ob-
tained from the rates for fr established in Lemma 1.

Lemma 2 (f̂r(x) vs fr(x)). Let 0 < δ < 1. Fix the sample
XQ. Define cN,B = VB ln 2N + ln(8/δ), where B is the set
of balls on X . The following holds w.p. at least 1− δ (over
the choice of XP ), uniformly for all x ∈ X and r > 0.

If r satisfies PN (B(x, r)) ≥ 72cN,B/N , we have

f̂r(x) ≤ fr(x) ·
(

1 + 2

√
3cN,B

N · P (B(x, r))

+ 2
cN,B

N · P (B(x, r))

)
.

For any r > 0, we have

f̂r(x) ≥ fr(x) ·
(

1−
√

cN,B
N · P (B(x, r))

− cN,B
N · P (B(x, r))

)
.

5.3 Integrated Rates

As discussed earlier, the bounds on L1,P error for f̂r are
best when X ⊂ RD is of unknown lower-dimension d. The
pointwise errors from earlier lemmas contain 1/P ratios.
These ratios integrate out (via a covering argument) in terms
of the unknown intrinsic dimension d of X ≡ supp(P ).

Lemma 3 (Integrating (1/P ) on X ). Let d denote the cov-
ering dimension of X , and suppose X is bounded with
diameter 1. Let 0 < r ≤ 1, we have:

EP
[

1

P (B(X, r))

]
≤ Cr−d, for a constant C = C(X ).

Theorem 1 is then established by combining the above re-
sults with additional VC concentration bounds. The full
proof is given in the appendix. We outline the main ideas
below.

Proof outline for Theorem 1. Define

en,r(x) =
√

3cn,B
n·P (B(x,r)) , and eN,r(x) =

√
24cN,B

N ·P (B(x,r)) .

Using Lemmas 1 and 2, we can show that, w.p. at least
1− 2δ, the following holds for all x ∈ X satisfying Er(x):∣∣∣f̂r(x)− f(x)

∣∣∣ ≤ eN,r(x) · f(x)+

2

(
en,r(x) ·

√
(f(x) + εf (x, r)) + e2n,r(x) + εf (x, r)

)
.

(2)

Integrating over x ∈ X and using Lemma 3, we obtain that
EP
∣∣∣f̂r(X)− f(X)

∣∣∣ · 1Er(x) is at most

C · F̄ ·
√

cN,B
N · rd

+ 2

(
C

√
3cn,B
n · rd

(
1 +

√
εP,f (r)

)
+ C

3cn,B
n · rd

+ εP,f (r)

)
,

for some C depending on X . On the other hand, the integral
EP
∣∣∣f̃r(X)− f(X)

∣∣∣ · 1E{r (X) can be shown to be upper-
bounded over an r/2-cover Xr as:

EP f(X) · 1E{r (X) ≤ F̄ ·

(∑
x∈Xr

82αm,B

)
+ F̄ δ

≤ CF̄ · r−dαm,B + F̄ δ, (3)

for some C depending on X . Combining the two parts of
the integration yields the result.

5.4 Data-driven Choice of r

The following proposition is needed in justifying the form
of εM,δ in the procedure.

Proposition 3. Suppose supx f(x) ≤ F . Let 0 < δ < 1.
With probability at least 1− 2δ over XQ and XP , we have
maxi∈[k] supx f̃ri(x) ≤ 15F .

The lemma establishes that our variance surrogate is brack-
eted by functions of r of similar order.

Lemma 4 (Bracketing êm,r w.h.p.). Suppose Assumption 2
holds with some C0.
Define σ[(r)

.
= min

{√
1/3,

√
8αm,B/C0rd

}
, and

σ](r)
.
=
√

72Cαm,B/rd, where C is as defined in Lemma
3. With probability at least 1− 2δ over XP ,X

′
P , we have

∀r ∈ (0, 1],

σ[(r) ≤ ‖êm,r‖1,PM
≤ σ](r) +

√
3 log(2/δ)/M.

We are now ready to show the main result on the data-driven
choice of r.

Proof Outline for Theorem 2. By Lemma 4 above, w.h.p.,
the variance surrogate ‖êm,r‖1,PM

behaves as σ[(r) ≈
σ](r) = O(1/

√
mrd); from the analysis of Theorem 1
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it is evident that any r s.t. 1/
√
mrd ≈ λrβ would yield

an estimate of near-minimax order. Thus, the main idea
is to show that the value of r returned properly balances
‖êm,r‖1,PM

with the bias upper-bound λrβ .

Let r̂ denote the largest r ∈ R such that ‖êm,r‖1,PM
≥

2λrβ . It can be shown that rk ≤ r̂ < r0. Furthermore, for
any ri < rj ≤ r̂ ∈ R, we would argue (using in particular
(2)) that, w.h.p.,

∆M,ri

(
f̃ri , f̃rj

)
≤ ∆M,ri

(
f̃ri , f

)
+ ∆M,rj

(
f̃rj , f

)
≤ γ(ri) + γ(rj),

in other words, let r be returned by the procedure, we neces-
sarily have r ≥ r̂, hence γ(r) ≤ γ(r̂). Now, the return con-
dition did not hold at r, so ∆M,r̂

(
f̃r, f̃r̂

)
≤ γ(r)+γ(r̂) ≤

2γ(r̂) = O(σ](r̂)). Now, the risk of f̃r can be integrated
over two subsets of X defined by r̂, that is:

‖f̃r − f‖1,P = ‖(f̃r − f)1Er̂‖1,P + ‖(f̃r − f)1E{r̂ ‖1,P
(4)

The first term is close w.h.p. to

∆M,r̂

(
f̃r, f

)
≤ ∆M,r̂

(
f̃r, f̃r̂

)
+∆M,r̂

(
f̃r̂, f

)
≤ O(σ](r̂)).

The second term of (4) isO(αm,δ ·r̂−d) = O(σ](r̂)
2) by (3).

Finally we bound σ](r̂) . m−β/(2β+d), by showing that,
w.h.p., r̂ is close to an explicit value r̃ for which σ[(r̃) =
2λr̃β .

6 FINAL REMARKS

We have shown that important differences between density-
estimation and density-ratio estimation hold in general prac-
tical settings. In particular, density-ratio estimation gets con-
siderably easier for structured data of low-intrinsic dimen-
sion, and depends only on the smoothness of the ratio rather
than on the densities themselves. More general notions of
smoothness are possible, for instance higher-order Hölder
classes carefully defined over low-dimensional structures
X ; this would likely require more sophisticated estimators
and is left to further investigation.

As in density-estimation, oracle rates are nearly attain-
able through careful data-driven choice of hyperparameters
(bandwidth r), i.e., with no distributional knowledge. While
the data-driven procedure employed to establish this final
result is of a technical nature, it is implementable and yields
insights on important sample quantities involved in good
choices of r, namely the empirical PN -mass of balls on
the metric seem quite important for smoothing estimators
such as the one considered. Simulations on controlled data
(see Figure 2) also reveal that the procedure is quite sensi-
tive to initial estimates of an upper-bound F on supx f(x).
While we show a simple way of doing so in theory, deriving
proper initial estimates require further attention, especially
in smaller sample regimes.

Figure 2: Simulations on 2 sets of controlled data. In both cases
X = t · v, where t ∈ R and v ∝ (1, 2, . . . , D) is a fixed vector
in RD , N,n = 1000, test-size (from P ) = 2000. In each case
we show (1) a qualitative plot of estimates (dotted) against true
f (red line), and (2) the errors of every r ∈ R (dotted blue)
against the error for the data-driven choice of r (brown line). In
implementation we use M = N/2, and εM,δ =

√
1/M ; êm,r =

1/
√
mP (Br); for F we simply use the average estimated f out of

a first pass (where we use F = 1). This actually makes a difference
in the quality of results, while the setting of εM,δ does not seem
to matter much. The reported plots show typical results in these
controlled settings. We note that the estimates are however poor
(for any r) whenever Q is far from dominated by P , for instance
as simulated by 2 Gaussians (Q and P ) with far apart means. The
data used above is as follows: (Top 2 plots.) D = 20; for Q,
t ∼ 0.5(N (−4, 1)+N(4, 1)), while for P , t ∼ 0.5(N (−4, 4)+
N (4, 4)). (Bottom 2 plots) D = 30, for Q, t ∼ N (0, 1) while
for P , t ∼ 0.5(N (−2, 1) +N (2, 1)).
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A POINTWISE RESULTS

This section provides the proofs of the various pointwise
results needed for Theorems 1.

We start with the following concentration results.

Lemma 5 (Relative VC bounds [26]). Consider a collection
A of measurable subsets of X , of finite VC dimension VA.
Let 0 < δ < 1. Suppose a sample of size n is drawn i.i.d.
from a distribution ν over X . For A ∈ A, let νA denote
the mass of A under the distribution, and let νn,A denote its
empirical mass. Define αn,A = (VA ln 2n+ ln(8/δ)) /n.
Then with probability at least 1− δ over the sampling, all
A ∈ A satisfy

νA ≤ νn,A +
√
νn,A · αn,A + αn,A, and

νn,A ≤ νA +
√
νA · αn,A + αn,A.

We will often be interested in subsets A of X containing
at least a few points (of either XP or XQ). The following
corollary concerns such subsets and will prove useful in
much of the analysis.

Corollary 2. Let 0 < δ < 1. Under the same conditions as
Lemma 5, the following holds with probability at least 1− δ.
For any A ⊂ A satisfying νn,A ≥ 3αn,A, we have

νA − (
√

3νA · αn,A + αn,A) ≤ νn,A ≤ 3νA.

Proof of Corollary 2. By the second inequality in Lemma
5, whenever νA < αn,A we have w.p. ≥ 1− δ that νn,A <
3αn,A. Thus for any A satisfying νn,A ≥ 3αn,A, we have
νA ≥ αn,A. This in turn implies by the same inequality
that νn,A ≤ 3νA. It then follows from the first inequality
of Lemma 5 that, under the same event for all such large
A ∈ A, νA ≤ νn,A +

√
3νA · αn,A + αn,A.

The above corollary and the relative concentration bounds of
Lemma 5 (rather than the more common 1/

√
n VC bounds)

allows us to require mild conditions on the balls B(x, r)

involved in the estimates fr and f̂r, namely that the balls
contain just Ω(lnn) points rather than order

√
n points as

would seem to be required through the use of 1/
√
n bounds.

We are now ready to prove the first pointwise rate for fr and
then for f̂r.

Proof of Lemma 1. Let αn,B as given in Definition 4. By
the first inequality of Lemma 5 we have, with probability at

least 1− δ that, for all x ∈ X and r > 0, fr(x) is at most

1

P (B(x, r))

(
Q(B(x, r)) +

√
Q(B(x, r)) · αn,B + αn,B

)
=
Q(B(x, r))

P (B(x, r))
+

√
Q(B(x, r))

P (B(x, r))
·
√

αn,B
P (B(x, r))

+
αn,B

P (B(x, r))

≤ (f(x) + ε̂f (x, r)) +
√

(f(x) + ε̂f (x, r)) ·
√

αn,B
P (B(x, r))

+
αn,B

P (B(x, r))
,

where we used the fact that Q(B(x, r)) is given as∫
B(x,r)

f dP ≤ (f(x) + ε̂f (x, r)) · P (B(x, r)).

Now, by Corollary 2, we have w.p. at leat 1 − δ un-
der the same event as above, that for any r satisfying
Qn(B(x, r)) ≥ 3αn,B , fr(x) is at least

1

P (B(x, r))

(
Q(B(x, r))−

√
3Q(B(x, r)) · αn,B − αn,B

)
≥ (f(x)− ε̌f (x, r))−

√
(f(x) + ε̂f (x, r)) ·

√
3αn,B

P (B(x, r))

− αn,B
P (B(x, r))

,

where we use both inequalities

(f(x) + ε̂f (x, r))P (B(x, r)) ≥ Q(B(x, r)) =

∫
B(x,r)

f dP

≥ (f(x)− ε̌f (x, r))P (B(x, r)).

Finally, if Qn(B(x, r)) < 3αn,B , then, under the same
event as above, we have by Lemma 5, that fr(x) is at least

1

P (B(x, r))

(
Q(B(x, r))−

√
Qn(B(x, r)) · αn,B − αn,B

)
≥ (f(x)− ε̌f (x, r))− 3

αn,B
P (B(x, r))

.

Combining these various statements yields the lemma.

Proof of Lemma 2. Let αN,B as given in Definition 4. De-
fine eN,r(x) ,

√
3P (B(x, r)) · αN,B + αN,B, and sup-

pose PN (B(x, r)) ≥ 72αN,B. By Corollary 2, since
PN (B(x, r)) ≥ 72αN,B, we have w.p. at least 1− δ that

f̂r(x) ≤ Qn(B(x, r))

P (B(x, r))− eN,r(x)

= fr(x) ·
(

1− eN,r(x)

P (B(x, r))

)−1
≤ fr(x) ·

(
1 + 2

eN,r(x)

P (B(x, r))

)
,
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where the last inequality holds since, again by Corollary 2,
P (B(x, r)) ≥ 24αN,B, hence satisfies the quadratic equa-

tion P (B(x, r)) ≥ 2
(
6P (B(x, r)) · αN,B + 2α2

N,B
)1/2 ≥

2eN,r(x).

Now, let e′N,r(x) ,
√
P (B(x, r)) · αN,B + αN,B. By

Lemma 5, w.p. at least 1 − δ (under the same event of
Corollary 2), we have

f̂r(x) ≥ Qn(B(x, r))

P (B(x, r)) + e′N,r(x)

= fr(x) ·
(

1 +
e′N,r(x)

P (B(x, r))

)−1
≥ fr(x) ·

(
1−

e′N,r(x)

P (B(x, r))

)
.

Proof of Lemma 3. Let Xr denote an (r/2)-cover of X , of
size |Xr| ≤ Cr−d. For any x ∈ Xr, let and any x′ ∈
X where ∆M,x (x′,≤) r/2, we have B(Xr(x), r/2) ⊂
B(x, r). Thus for α = 1, EP

[
1

P (B(X,r))

]
is at most

∑
x∈Xr

EP
[

1

P (B(X, r))
· 1(X ∈ B(x, r/2))

]
≤
∑
x∈Xr

1

P (B(x, r/2))
· EP1(X ∈ B(x, r/2))

= |Xr| ≤ Cr−d.

B PROOF OF THEOREM 1

The full proof of the theorem is given below.

Proof of Theorem 1. Define en,r(x) =
√

3cn,B
n·P (B(x,r)) , and

eN,r(x) =
√

24cN,B
N ·P (B(x,r)) . Note that, by Corollary 2,

we have w.p. at least 1 − δ that under event Er(x),
P (B(x, r)) ≥ 24αN,B. Thus we have eN,r(x) ≤ 1, and
furthermore the bound in Lemma 2 yields

fr(x) · (1− eN,r(x)) ≤ f̂r(x) ≤ fr(x) · (1 + eN,r(x)).

Rearranging Lemmas 1 and 2, we have w.p. at least 1− 2δ
that, ∀x ∈ X s.t. Er(x) holds,∣∣∣f̂r(x)− f(x)

∣∣∣ ≤ eN,r(x) · f(x)+

2

(
en,r(x) ·

√
(f(x) + εf (x, r)) + e2n,r(x) + εf (x, r)

)
,

(5)

therefore, using Cauchy-Schwartz on product terms,
EP
∣∣∣f̃r(X)− f(X)

∣∣∣ · 1Er(X) is at most

F̄ · ‖eN,r‖2,P + 2

(
‖en,r‖2,P ·

√
‖f + εf (·, r)‖1,P

+ ‖en,r‖22,P + εP,f (r)

)
≤ F̄ · ‖eN,r‖2,P + 2

(
‖en,r‖2,P

(
1 +

√
εP,f (r)

)
+ ‖en,r‖22,P + εP,f (r)

)
Both ‖eN,r‖2,P and ‖en,r‖2,P are bounded via Lemma 3

to obtain that EP
∣∣∣f̃r(X)− f(X)

∣∣∣ · 1Er(x) is at most, for
some C depending on X ,

C · F̄ ·
√

cN,B
N · rd

+ 2

(
C

√
3cn,B
n · rd

(
1 +

√
εP,f (r)

)
+ C

3cn,B
n · rd

+ εP,f (r)

)
.

Now, to handle the case of E{r (X) we further consider the
event E(XP ) that, for all balls B ∈ B, P (B) ≤ PN (B) +√
PN (B)αN,B+αN,B. Under the event E(XP ), for anyX

such that E{r (X), we have P (B(X, r)) ≤ 82αm,B. Sim-
ilar to the proof of Lemma 3, consider an (r/2)-cover
Xr of X . For any x ∈ Xr, and X ∈ B(x, r/2), clearly
P (B(x, r/2)) ≤ P (B(X, r)).

The integral EP
∣∣∣f̃r(X)− f(X)

∣∣∣ · 1E{r (X) can then be
upper-bounded via Cauchy-Schwartz (first inequality), and
Lemma 5 (third inequality), and the above facts on Xr (last
inequality):

EP f(X) · 1E{r (X) ≤ F̄ · EP1E{r (X)

≤ F̄ ·
(
EP1[E{r (X), E(XP )] + EP1E{(XP )

)
≤ F̄ ·

∑
x∈Xr

∫
B(x,r/2)

1[E{r (x′), E(XP )] dP (x′) + F̄ · δ

≤ F̄ ·

(∑
x∈Xr

82αm,B

)
+ F̄ δ ≤ CF̄ · r−dαm,B + F̄ δ,

(6)

for some C depending on X .

C DATA-DRIVEN CHOICE OF r

In this section gives the proofs of the additional supporting
results for Theorem 2.

First, note that, since the base P is a probability measure, the
upper-bound F on f is greater than 1 (1 ≤

∫
f dP ≤ F ).
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Proof of Proposition 3. Let m = n ∧ N . By definition of
the tresholded estimate f̃r(x), for every x we only need
to consider r such that PN (B(x, r)) ≥ 72αm,B, in which
case we also have P (B(x, r)) ≥ 24αm,B with probability
at least 1 − δ (by Corollary 2). We then have by Lemma
1 that w.p. at least 1 − 2δ, fr(x) ≤ 3F (since f(x) +
ε̂f (x, r) ≤ F ). By Lemma 2 (under the same events), we
have f̃r(x) ≤ 5fr(x).

Proof of Lemma 4. By Corollary 2 and Assumption 2, with
probability at least 1− δ, PN (B(x, r)) ≤ 3P (B(x, r)) ≤
3C0r

d for all x s.t. Er(x). It follows that ‖êm,r‖1,PM
≥

min
{√

1/3,
√

8αm,B/C0rd
}

.
= σ[(r) since êm,r is so

bounded pointwise.

For the upper-bound, let ẽm,r(x) =
√

72αm,B/P (B(x, r))

if Er(x), and ẽm,r(x) =
√

1/3 otherwise. By Lemma
5, w.p. at least 1 − δ (under the same event as above),
P (B(x, r)) ≤ 3PN (B(x, r)) if Er(x); we therefore have
‖êm,r‖1,PM

≤ ‖ẽm,r‖1,PM
. Furthermore, by Corollary 2,

P (B(x, r)) ≥ 24αm,B if Er(x) so ẽm,r(x) ≤
√

3. Thus
with probability at least 1− 2δ, by a Hoeffding bound,

‖ẽm,r‖1,PM
≤ ‖ẽm,r‖1,P +

√
3 log(2/δ)/M.

Finally we relate ‖ẽm,r‖1,P to σ](r) as follows. By Lemma
5, w.p. at least 1 − δ (under the same events as above),
P (B(x, r)) ≤ 82αm,B for all x s.t. E{r (x). Therefore,
ẽm,r(x) ≤

√
72αm,B/P (B(x, r)) for all x. Combining

with Jensen’s followed by Lemma 3, we have

‖ẽm,r‖1,P ≤
√

72αm,B ·

√
EP

1

P (B(X, r))

≤
√

72αm,B ·
√
Crd,

Combine with the above and conclude.

We are now ready to prove the main result on stability-based
choice of bandwidth r.

Proof of Theorem 2. Fix XP and XQ. We first consider
only those x ∈ X for which Er(x) holds. We start with a
few simple concentration statements.

Define ∆P,r (g, g′)
.
= ‖(g − g′) · 1Er‖1,P . Assume the

conclusion of Proposition 3, so that the quantity
∣∣∣f̃ri − f ∣∣∣ ·

1Erj , i, j ∈ [k] is appropriately bounded by 15F . By Ho-
effding, followed by a union bound on all pairs i ∈ [k], we
have w.p. at least 1− δ over the choice of X′P that

sup
i,j∈[k]

∣∣∣∆M,rj

(
f̃ri , f

)
−∆P,rj

(
f̃ri , f

)∣∣∣ ≤ εM,δ. (7)

By Corollary 2, w.p. at least 1− δ, for any r > 0, for all x
such that Er(x) holds (this fact will be used repeatedly)

P (B(x, r)) ≥ PN (B(x, r))/3. (8)

Let em,r(x) =
√

24αm,B
P (B(x,r)) . By (8), w.p. at least 1 − δ,

under Er(x), P (B(x, r)) ≥ 24αm,B so em,r(x)1Er(x) ≤
1. Hence, by a Hoeffding bound we have w.p. at least 1− δ
over X′P that

|‖em,r · 1Er‖1,P − ‖em,r · 1Er‖1,PM
| ≤

√
log(2/δ)

2M
.

(9)

By equation (5) (in proving Theorem 1), we have w.p. at
least 1− 2δ that when Er(x) holds∣∣∣f̂r(x)− f(x)

∣∣∣ ≤ 2Fem,r(x) + 2e2m,r(x) + 2εf (x, r)

≤ 4Fem,r(x) + 2εf (x, r). (10)

Combining (9) and (10), we have w.p. at least 1− 3δ

‖(f̃r − f) · 1Er‖1,P ≤ 4F‖em,r · 1Er‖1,P + 2εP,f (r)

≤ 4F‖em,r · 1Er‖1,PM
+ 2λrβ + εM,δ

≤ 7F‖êm,r‖1,PM
+ 2λrβ + εM,δ

(11)

where the last inequality is again obtained by (8).

We next compare ‖êm,r‖1,PM
and 2λrβ (as functions of

r). From Lemma 4, σ[(r) ≤ ‖êm,r‖1,PM
w.p. at least

1 − 2δ. For m sufficiently large, σ[(rk) =
√

1/3 ≥
2λ(1/m)β ≥ 2λrβk . Thus for large enough m, ‖êm,r‖1,PM

is non-increasing in r, larger than 2λrβ at rk, and lower than
2λrβ at r0 = 1 (since ‖êm,r0‖1,PM

=
√

24αm,B < λ).

Therefore let r̂ denote the largest r ∈ R such that
‖êm,r‖1,PM

≥ 2λrβ . We have rk ≤ r̂ < r0. By defi-
nition, for any r ≤ r̂ we have by (11) and (7) that w.p. at
least 1− 5δ

∆M,r

(
f̃r, f

)
.
= ‖(f̃r − f) · 1Er‖1,PM

≤ 8F‖êm,r‖1,PM
+ 2εM,δ = γ(r).

It follows that, for any ri < rj ≤ r̂ ∈ R, we have

∆M,ri

(
f̃ri , f̃rj

)
≤ ∆M,ri

(
f̃ri , f

)
+ ∆M,ri

(
f̃rj , f

)
≤ ∆M,ri

(
f̃ri , f

)
+ ∆M,rj

(
f̃rj , f

)
≤ γ(ri) + γ(rj).

In other words, let r be returned by the procedure, we nec-
essarily have r ≥ r̂. Since the return condition did not hold
at r, we must have ∆M,r̂

(
f̃r, f̃r̂

)
≤ γ(r) + γ(r̂) ≤ 2γ(r̂).

Hence, by (7) and another triangle inequality we have

∆P,r̂

(
f̃r, f

)
≤ ∆M,r̂

(
f̃r, f̃r̂

)
+ ∆M,r̂

(
f̃r̂, f

)
+ εM,δ

≤ 3γ(r̂) + εM,δ

= 24F‖êm,r̂‖1,PM
+ 7εM,δ

≤ 24Fσ](r̂) + 31εM,δ,
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where σ](r) is as defined in Lemma 4. Using (6) (see Theo-
rem 1), we therefore have w.p. at least 1− 5δ

‖f̃r − f‖1,P = ∆P,r̂

(
f̃r, f

)
+ ‖(f̃r − f)1E{r̂ ‖1,P

≤ ∆P,r̂

(
f̃r, f

)
+ 15CF∞ · r̂−dαm,B + F̄ δ

≤ C1(σ](r̂) + σ2
] (r̂)) + 31εM,δ + F̄ δ,

(12)

for some C1 = C1(F∞,X ).

Finally we bound σ](r̂) as follows. Let r̃ satisfy σ[(r̃) =
2λr̃β . Now suppose 2r̂ < r̃. Then

‖êm,2r̂‖1,PM
≥ σ[(2r̂) ≥ σ[(r̃) = 2λr̃β > 2λ(2r̂)β ,

which is not possible by definition of r̂. Thus 2r̂ ≥ r̃, and it
follows that σ](r̂) ≤ σ](r̃/2).

To get an exact form for r̃, consider r0 = (24αm,B/C0)1/d,
the largest value or r so that σ[(r) =

√
1/3. We have

σ[(r0) =
√

1/3 > 2λrβ0 for m sufficiently large. Thus
r̃ > r0 (otherwise σ[(r̃) > 2λr̃β). It follows, by def-
inition of r0, that r̃ = (2αm,B/C0λ

2)1/(2β+d). Thus
σ](r̂) ≤ C2λ

d/(2β+d)α
β/(2β+d)
m,B , which is at most 1 for

large m. Now, combine with (12) and conclude.

C.1 Data-driven Upper-Bound on sup f

The upper-bound of Proposition 2 is obtained as follows.
We denote the weak law of large numbers by LLN in what
follows.

Proof of Proposition 2. Let’s denote f(x0) by f0, and let
m sufficiently large so we can pick 2r0 ∈ R such that
εf (x0, 2r0) ≤ f0/6. Also, by LLN, for m sufficiently large,
we have with probability at least 1 − δ, that B(x0, r0) ∩
XP contains a sample x. It is clear that we then have
B(x0, r0) ⊂ B(x, 2r0).

Let Er(x), as defined in Procedure 2, be the event that
PN (B(x, r)) ≥ 72αm,B; then, again by LLN, we have for
large enough m than Er0(x0) holds w.p. at least 1− δ, and
so E2r0(x) also holds. Therefore, by Lemma 2, f̃2r0(x) ≥
f2r0(x)/2 for large m. Now, by Lemma 1, we have for
such an x that f2r0(x) ≥ f(x) − εf (x, 2r0) − f0/6 ≥
5f0/6− εf (x, 2r0)− f0/6. Since f is assumed continuous
in a neighborhood of x0, we can pick r0 small enough so
that εf (x, 2r0) < f0/6 and we then get f2r0(x) ≥ f0/2 so
that 4f̃2r0(x) ≥ f0.

D CROSS-VALIDATION APPROACH

The main problem in finding a good parameter r is that the
objective ‖f̃r − f‖1,P is in terms of the unknown f . The
approach considered here, also used in [20, 2, 13, 14], relies

on the following insights (also described in [25] for the case
of density-estimation).

If f is upper-bounded, L1,P rates and L2,P rates differ in
these settings only by constants. It is therefore reasonable
to choose r to minimize L2,P : for any value of r,

‖f̃r − f‖22,P =

∫
f2 dP +

∫
f̃2r dP − 2

∫
f̃r · f dP

= ‖f‖22,P + ‖f̃r‖22,P − 2‖f̃r‖1,Q, (13)

so we only need to minimize ‖f̃r‖22,P − 2‖f̃r‖1,Q, which
we might approximate from samples from P and Q. This is
formalized in Procedure 1 below.

Procedure 2 (Cross-validation):
SETUP: Let R .

=
{
ri

.
= 2−i

}k
i=0

, for some integer k,
denote values of r.

Let X′P ∼ PM and X′Q ∼ QM denote validation
samples of size M independent of XP and XQ. Let
PM and QM denote resp. the empirical distributions
w.r.t. X′P and X′Q.

PROCEDURE: Return r = arg minr∈R ‖f̃r‖22,PM
−

2‖f̃r‖1,QM
.

From the above intuition, this approach should yield nearly
optimal rates provided the empirical norms concentrate
around their expectations, i.e., the corresponding norms un-
der P andQ. However, there is a difficulty: usual concentra-
tion inequalities do not apply directly, e.g., Chernoff bounds
require the integrands (f̃2r (x) and f̃r(x)) be bounded, how-
ever direct bounds on f̃r(x) are O(m) (since truncation
only happens when P (B(x, r)) . O(1/m), m = n ∧N ).
In other words, we will get a discrepancy of O(m2/

√
M)

between ‖f̃r‖22,PM
and ‖f̃r‖22,P , which is vacuous unless

M = Ω(m4), i.e., unless the validation sets are unreason-
ably large. It is desirable that the validation sets be of the
same size as the training, i.e. M = O(m).

Fortunately, if f is upper-bounded by some F , we can show
that, with high probability, the integrand f̃r(x) are bounded
by a multiple of F (Proposition 3). Combining with some
of the intermediary results used to establish Theorem 1, we
get the following result for the cross-validation choice of r.

Theorem 3. Let the derivative f satisfy Assumption 1, for
some λ, β > 0, and assume supx f(x) ≤ F < ∞. Let
m = n∧N and let 0 < δ < 1. There existm1 = m1(X , f),
C1 = C1(X , f) such that the following holds with proba-
bility at least 1− 5δ over the choice of XP ,XQ and X′P .

Choose k = dlogme, and suppose m > m1. Let r be the
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value returned by Procedure 2. We have

‖f̃r − f‖1,P ≤C1λ
d/(2β+d)

(
log(mVB/δ)

m

)β/(2β+d)
+ 30F

(
log(2k/δ)

2M

)1/4

+ Fδ.

Remark 4. The second term (of order M−1/4) on the r.h.s.
above dominates whenever d < 2β, and M = Θ(m).
This seems unavoidable (for this cross-validation approach)
since the second term tightly captures the concentration
of the empirical norms ‖f̃r‖22,PM

and ‖f̃r‖1,QM
. However

this is not a problem for sufficiently large d, and the cross-
validation approach works quite well in practice2 (see e.g.
[20, 2]).

We first need to establish an intermediary (oracle) L2,P

bound, under the additional assumption that f is bounded
(this was not needed for the L1,P bound of Theorem 1).

Theorem 4. Suppose f is Hölder, i.e., supx εf (x, r) ≤ λrβ
for some λ, β > 0, and furthermore that supx f(x) = F <
∞. Let 0 < δ < 1. Let m = n ∧ N . There exists C
depending on X such that, for m sufficiently large, we have
w.p. at least 1− 2δ, that for any r > 0,

‖f̃ − r‖22,P ≤ CF 2

√
3cm,B
m · rd

+ 8λ2r2β + F 2δ.

It follows that for some C0, C depending on X and F , pick-
ing r = C0

(
log(mVB/δ)/(λ2m)

)β/(2β+d)
,

‖f̃r − f‖22,P ≤Cλ2d/(2β+d) ·
(

log(mVB/δ)

m

)2β/(2β+d)

+ F 2δ.

Proof. The arguments, similar to that for Theorem 1, also
build on Lemmas 1 and 2. We will therefore refer back to
some of the earlier results of Theorem 1.

Define em,r(x) =
√

24cm,B
m·P (B(x,r)) . By Corollary 2, we have

w.p. at least 1 − δ that under event Er(x), P (B(x, r)) ≥
24αm,B, implying em,r(x) ≤ 1.

By (5), for m sufficiently large, we have w.p. at least 1− 2δ
that, ∀x ∈ X s.t. Er(x) holds,∣∣∣f̂r(x)− f(x)

∣∣∣2 ≤ (5em,r(x) · F + 2εf (x, r))
2

≤ 50F 2 · e2m,r(x) + 8εf (x, r)2,

≤ 50F 2 · e2m,r(x) + 8λ2r2β

2The cross-validation approach is applied to different estima-
tors in the cited work. The main arguments of our analysis easily
extend to any bounded estimator with bounded L2,P risk; the
second term remains.

therefore, bounding ‖em,r‖2,P via Lemma 3, we have

EP
∣∣∣f̃r(X)− f(X)

∣∣∣2 ·1Er(X) ≤ 50F 2‖em,r(x)‖22,P
+ 8λ2r2β

≤ CF 2

√
3cm,B
m · rd

+ 8λ2r2β , (14)

for some C depending on X .

Now, the case of E{r (X) is handled using the same
arguments as for (6). We have that the integral

EP
∣∣∣f̃r(X)− f(X)

∣∣∣2 · 1E{r (X) can be upper-bounded via
Lemma 5 (third inequality), and the above facts on Xr (last
inequality):

EP f2(X) · 1E{r (X) ≤ F 2 · EP1E{r (X)

≤ F 2 ·
(
EP1E{r (X), E(XP ) + EP1E{(XP )

)
≤ F 2

(∑
x∈Xr

∫
B(x,r/2)

1E{r (x′), E(XP ) dP (x′) + δ

)

≤ F 2

((∑
x∈Xr

82αm,B

)
+ δ

)
(15)

≤ CF 2 · r−dαm,B + F 2δ, (16)

for some C depending on X . Now combine (14) and (16)
to conclude.

We are now ready to prove the main result on the cross-
validation choice of bandwidth r.

Proof of Theorem 3. By Proposition 3, w.p. at least 1− 2δ
we have for all r ∈ R that supx f̃(x) ≤ 15F . It follows
by Chernoff bounds and a union bound over R that, w.p. at
least 1− 3δ,∣∣∣(‖f̃r‖22,PM

− 2‖f̃r‖1,QM

)
−
(
‖f̃r‖22,P − 2‖f̃r‖1,Q

)∣∣∣
≤ 450F 2

√
log(2k/δ)

2M
.

It follows by (13) that, for the value of r ∈ R returned by
the procedure, we have under the same event

‖f̃r − f‖21,P ≤ ‖f̃r − f‖22,P

≤ inf
r′∈R
‖f̃r′ − f‖22,P + 900F 2

√
log(2k/δ)

2M
.

Now, by Theorem 4, we can pick r0 ∈ R, r0 =

C0

(
log(mVB/δ)/(λ2m)

)β/(2β+d)
, such that w.p. ≥ 1−2δ

‖f̃r0 − f‖22,P ≤ Cλ2d/(2β+d) ·
(

log(mVB/δ)

m

)2β/(2β+d)

+ F 2δ.

Combine this last inequality with the previous one and con-
clude.
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