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Abstract

In regression problems over Rd, the unknown function f often varies more in
some coordinates than in others. We show that weighting each coordinate i with
the estimated norm of the ith derivative of f is an efficient way to significantly
improve the performance of distance-based regressors, e.g. kernel and k-NN re-
gressors. We propose a simple estimator of these derivative norms and prove its
consistency. Moreover, the proposed estimator is efficiently learned online.

1 Introduction

In regression problems over Rd, the unknown function f might vary more in some coordinates than
in others, even though all coordinates might be relevant. How much f varies with coordinate i can
be captured by the norm ‖f ′i‖1,µ = EX |f ′i(X)| of the ith derivative f ′i = e>i ∇f of f . A simple
way to take advantage of the information in ‖f ′i‖1,µ is to weight each coordinate proportionally to an
estimate of ‖f ′i‖1,µ. The intuition, detailed in Section 2, is that the resulting data space behaves as a
low-dimensional projection to coordinates with large norm ‖f ′i‖1,µ, while maintaining information
about all coordinates. We show that such weighting can be learned efficiently, both in batch-mode
and online, and can significantly improve the performance of distance-based regressors in real-world
applications. In this paper we focus on the distance-based methods of kernel and k-NN regression.

For distance-based methods, the weights can be incorporated into a distance function of the form
ρ(x, x′) =

√
(x− x′)>W(x− x′), where each element Wi of the diagonal matrix W is an esti-

mate of ‖f ′i‖1,µ. This is not metric learning [1, 2, 3, 4] where the best ρ is found by optimizing
over a sufficiently large space of possible metrics. Clearly metric learning can only yield better per-
formance, but the optimization over a larger space will result in heavier preprocessing time, often
O(n2) on datasets of size n. Yet, preprocessing time is especially important in many modern ap-
plications where both training and prediction are done online (e.g. robotics, finance, advertisement,
recommendation systems). Here we do not optimize over a space of metrics, but rather estimate a
single metric ρ based on the norms ‖f ′i‖1,µ. Our metric ρ is efficiently obtained, can be estimated
online, and still significantly improves the performance of distance-based regressors.

To estimate ‖f ′i‖1,µ, one does not need to estimate f ′i well everywhere, just well on average. While
many elaborate derivative estimators exist (see e.g. [5]), we have to keep in mind our need for
fast but consistent estimator of ‖f ′i‖1,µ. We propose a simple estimator Wi which averages the
differences along i of an estimator fn,h of f . More precisely (see Section 3) Wi has the form
En |fn,h(X + tei)− fn,h(X − tei)| /2t where En denotes the empirical expectation over a sample
{Xi}n1 . Wi can therefore be updated online at the cost of just two estimates of fn,h.

In this paper fn,h is a kernel estimator, although any regression method might be used in estimating
‖f ′i‖1,µ. We prove in Section 4 that, under mild conditions, Wi is a consistent estimator of the
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(a) SARCOS robot, joint 7. (b) Parkinson’s. (c) Telecom.

Figure 1: Typical gradient weights
{
Wi ≈ ‖f ′i‖1,µ

}
i∈[d]

for some real-world datasets.

unknown norm ‖f ′i‖1,µ. Moreover we prove finite sample convergence bounds to help guide the
practical tuning of the two parameters t and h.

Most related work

As we mentioned above, metric learning is closest in spirit to the gradient-weighting approach pre-
sented here, but our approach is different from metric learning in that we do not search a space
of possible metrics, but rather estimate a single metric based on gradients. This is far more time-
efficient and can be implemented in online applications which require fast preprocessing.

There exists many metric learning approaches, mostly for classification and few for regression (e.g.
[1, 2]). The approaches of [1, 2] for regression are meant for batch learning. Moreover [1] is limited
to Gaussian-kernel regression, and [2] is tuned to the particular problem of age estimation. For the
problem of classification, the metric-learning approaches of [3, 4] are meant for online applications,
but cannot be used in regression.

In the case of kernel regression and local polynomial regression, multiple bandwidths can be used,
one for each coordinate [6]. However, tuning d bandwidth parameters requires searching a d×d grid,
which is impractical even in batch mode. The method of [6] alleviates this problem, however only
in the particular case of local linear regression. Our method applies to any distance-based regressor.

Finally, the ideas presented here are related to recent notions of nonparametric sparsity where it is
assumed that the target function is well approximated by a sparse function, i.e. one which varies
little in most coordinates (e.g. [6], [7]). Here we do not need sparsity, instead we only need the
target function to vary in some coordinates more than in others. Our approach therefore works even
in cases where the target function is far from sparse.

2 Technical motivation

In this section, we motivate the approach by considering the ideal situation where Wi = ‖f ′i‖1,µ.
Let’s consider regression on (X , ρ), where the input space X ⊂ Rd is connected. The prediction
performance of a distance-based estimator (e.g. kernel or k-NN) is well known to be the sum of its
variance and its bias [8]. Regression on (X , ρ) decreases variance while keeping the bias controlled.

Regression variance decreases on (X , ρ): The variance of a distance based estimate fn(x) is in-
versely proportional to the number of samples (and hence the mass) in a neighborhood of x (see
e.g. [9]). Let’s therefore compare the masses of ρ-balls and Euclidean balls. Suppose some weights
largely dominate others, for instance in R2, let ‖f ′2‖1,µ � ‖f ′1‖1,µ. A ball Bρ in (X , ρ) then takes
the ellipsoidal shape below which we contrast with the dotted Euclidean ball inside.
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Relative to a Euclidean ball, a ballBρ of similar1 radius has more mass in the direction e1 in which f
varies least. This intuition is made more precise in Lemma 1 below, which is proved in the appendix.
Essentially, let R ⊂ [d] be the set of coordinates with larger weights Wi, then the mass of balls Bρ

behaves like the mass of balls in R|R|. Thus, effectively, regression in (X , ρ) has variance nearly as
small as that for regression in the lower-dimensional space R|R|.

Note that the assumptions on the marginal µ in the lemma statement are verified for instance when
µ has a continuous lower-bounded density on X . For simplicity we let (X , ‖·‖) have diameter 1.
Lemma 1 (Mass of ρ-balls). Consider any R ⊂ [d] such that maxi/∈R Wi < mini∈R Wi. Sup-
pose X ≡ 1√

d
[0, 1]d, and the marginal µ satisfies on (X , ‖·‖), for some C1, C2: ∀x ∈ X ,∀r >

0, C1r
d ≤ µ(B(x, r)) ≤ C2r

d. Let κ ,
√
maxi∈R Wi/mini∈R Wi, ε 6R , maxi/∈R Wi ·

√
d,

and let ρ(X ) , supx,x′∈X ρ(x, x
′).

Then for any ερ(X ) > 2ε 6R, µ(Bρ(x, ερ(X ))) ≥ C(2κ)−|R|ε|R|, where C is independent of ε.

Ideally we would want |R| � d and ε6R ≈ 0, which corresponds to a sparse metric.

Regression bias remains bounded on (X , ρ): The bias of distance-based regressors is controlled by
the smoothness of the unknown function f on (X , ρ), i.e. how much f might differ for two close
points. Turning back to our earlier example in R2, some points x′ that were originally far from x
along e1 might now be included in the estimate fn(x) on (X , ρ). Intuitively, this should not add bias
to the estimate since f does not vary much in e1. We have the following lemma.
Lemma 2 (Change in Lipschitz smoothness for f ). Suppose each derivative f ′i is bounded on X
by |f ′i |sup. Assume Wi > 0 whenever |f ′i |sup > 0. Denote by R the largest subset of [d] such that
|f ′i |sup > 0 for i ∈ R . We have for all x, x′ ∈ X ,

|f(x)− f(x′)| ≤

(∑
i∈R

|f ′i |sup√
Wi

)
ρ(x, x′).

Applying the above lemma with Wi = 1, we see that in the original Euclidean space, the variation
in f relative to distance between points x, x′, is of the order

∑
i∈R |f ′i |sup. This variation in f is now

increased in (X , ρ) by a factor of 1/ infi∈R

√
‖f ′i‖1,µ in the worst case. In this sense, the space

(X , ρ) maintains information about all relevant coordinates. In contrast, information is lost under a
projection of the data in the likely scenario that all or most coordinates are relevant.

Finally, note that if all weights were close, the space (X , ρ) is essentially equivalent to the original
(X , ‖·‖), and we likely neither gain nor loose in performance, as confirmed by experiments. How-
ever, we observed that in practice, even when all coordinates are relevant, the gradient-weights vary
sufficiently (Figure 1) to observe significant performance gains for distance-based regressors.

3 Estimating ‖f ′
i‖1,µ

In all that follows we are given n i.i.d samples (X,Y) = {(Xi, Yi)}ni=1, from some unknown
distribution with marginal µ. The marginal µ has support X ⊂ Rd while the output Y ∈ R.

The kernel estimate at x is defined using any kernel K(u), positive on [0, 1/2], and 0 for u > 1. If
B(x, h) ∩X = ∅, fn,h(x) = EnY , otherwise

fn,ρ̄,h(x) =
n∑

i=1

K(ρ̄(x,Xi)/h)∑n
j=1K(ρ̄(x,Xj)/h)

· Yi =
n∑

i=1

wi(x)Yi, (1)

for some metric ρ̄ and a bandwidth parameter h.

For the kernel regressor fn,h used to learn the metric ρ below, ρ̄ is the Euclidean metric. In the

analysis we assume the bandwidth for fn,h is set as h ≥
(
log2(n/δ)/n

)1/d
, given a confidence

1Accounting for the scale change induced by ρ on the space X .
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parameter 0 < δ < 1. In practice we would learn h by cross-validation, but for the analysis we only
need to know the existence of a good setting of h.

The metric is defined as

Wi , En
|fn,h(X + tei)− fn,h(X − tei)|

2t
· 1{An,i(X)} = En

[
∆t,ifn,h(X) · 1{An,i(X)}

]
, (2)

where An,i(X) is the event that enough samples contribute to the estimate ∆t,ifn,h(X). For the
consistency result, we assume the following setting:

An,i(X) ≡ min
s∈{−t,t}

µn(B(X + sei, h/2)) ≥ αn where αn , 2d ln 2n+ ln(4/δ)

n
.

4 Consistency of the estimator Wi of ‖f ′
i‖1,µ

4.1 Theoretical setup

4.1.1 Marginal µ

Without loss of generality we assume X has bounded diameter 1. The marginal is assumed to have
a continuous density on X and has mass everywhere on X : ∀x ∈ X ,∀h > 0, µ(B(x, h)) ≥ Cµh

d.
This is for instance the case if µ has a lower-bounded density on X . Under this assumption, for
samples X in dense regions, X ± tei is also likely to be in a dense region.

4.1.2 Regression function and noise

The output Y ∈ R is given as Y = f(X) + η(X), where Eη(X) = 0. We assume the following
general noise model: ∀δ > 0 there exists c > 0 such that supx∈X PY |X=x (|η(x)| > c) ≤ δ.

We denote by CY (δ) the infimum over all such c. For instance, suppose η(X) has exponentially
decreasing tail, then ∀δ > 0, CY (δ) ≤ O(ln 1/δ). A last assumption on the noise is that the
variance of (Y |X = x) is upper-bounded by a constant σ2

Y uniformly over all x ∈ X .

Define the τ -envelope of X as X+B(0, τ) , {z ∈ B(x, τ), x ∈ X}. We assume there exists τ such
that f is continuously differentiable on the τ -envelope X + B(0, τ). Furthermore, each derivative
f ′i(x) = e>i ∇f(x) is upper bounded on X + B(0, τ) by |f ′i |sup and is uniformly continuous on
X +B(0, τ) (this is automatically the case if the support X is compact).

4.1.3 Parameters varying with t

Our consistency results are expressed in terms of the following distributional quantities. For i ∈ [d],
define the (t, i)-boundary of X as ∂t,i(X ) , {x : {x+ tei, x− tei} * X}. The smaller the mass
µ(∂t,i(X )) at the boundary, the better we approximate ‖f ′i‖1,µ.

The second type of quantity is εt,i , supx∈X , s∈[−t,t] |f ′i(x)− f ′i(x+ sei)|.

Since µ has continuous density on X and ∇f is uniformly continuous on X +B(0, τ), we automat-
ically have µ(∂t,i(X ))

t→0−−−→ 0 and εt,i
t→0−−−→ 0.

4.2 Main theorem

Our main theorem bounds the error in estimating each norm ‖f ′i‖1,µ with Wi. The main technical
hurdles are in handling the various sample inter-dependencies introduced by both the estimates
fn,h(X) and the events An,i(X), and in analyzing the estimates at the boundary of X .
Theorem 1. Let t + h ≤ τ , and let 0 < δ < 1. There exist C = C(µ,K(·)) and N = N(µ) such
that the following holds with probability at least 1− 2δ. Define A(n) , Cd · log(n/δ) ·C2

Y (δ/2n) ·
σ2
Y / log

2(n/δ). Let n ≥ N , we have for all i ∈ [d]:∣∣∣Wi − ‖f ′i‖1,µ
∣∣∣ ≤ 1

t

√A(n)

nhd
+ h ·

∑
i∈[d]

|f ′i |sup

+ 2 |f ′i |sup

(√
ln 2d/δ

n
+ µ (∂t,i(X ))

)
+ εt,i.
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The bound suggest to set t in the order of h or larger. We need t to be small in order for µ (∂t,i(X ))
and εt,i to be small, but t need to be sufficiently large (relative to h) for the estimates fn,h(X + tei)
and fn,h(X − tei) to differ sufficiently so as to capture the variation in f along ei.

The theorem immediately implies consistency for t n→∞−−−−→ 0, h n→∞−−−−→ 0, h/t n→∞−−−−→ 0, and
(n/ logn)hdt2

n→∞−−−−→ ∞. This is satisfied for many settings, for example t ∝
√
h and h ∝ 1/ log n.

4.3 Proof of Theorem 1

The main difficulty in bounding
∣∣∣Wi − ‖f ′i‖1,µ

∣∣∣ is in circumventing certain depencies: both quanti-
ties fn,h(X) andAn,i(X) depend not just onX ∈ X, but on other samples in X, and thus introduce
inter-dependencies between the estimates ∆t,ifn,h(X) for different X ∈ X.

To handle these dependencies, we carefully decompose
∣∣∣Wi − ‖f ′i‖1,µ

∣∣∣, i ∈ [d], starting with:∣∣∣Wi − ‖f ′i‖1,µ
∣∣∣ ≤ |Wi − En |f ′i(X)||+

∣∣∣En |f ′i(X)| − ‖f ′i‖1,µ
∣∣∣ . (3)

The following simple lemma bounds the second term of (3).

Lemma 3. With probability at least 1− δ, we have for all i ∈ [d],∣∣∣En |f ′i(X)| − ‖f ′i‖1,µ
∣∣∣ ≤ |f ′i |sup ·

√
ln 2d/δ

n
.

Proof. Apply a Chernoff bound, and a union bound on i ∈ [d].

Now the first term of equation (3) can be further bounded as

|Wi − En |f ′i(X)|| ≤
∣∣Wi − En |f ′i(X)| · 1{An,i(X)}

∣∣+ En |f ′i(X)| · 1{Ān,i(X)}
≤
∣∣Wi − En |f ′i(X)| · 1{An,i(X)}

∣∣+ |f ′i |sup · En1{Ān,i(X)}. (4)

We will bound each term of (4) separately.

The next lemma bounds the second term of (4). It is proved in the appendix. The main technicality
in this lemma is that, for any X in the sample X, the event Ān,i(X) depends on other samples in X.

Lemma 4. Let ∂t,i(X ) be defined as in Section (4.1.3). For n ≥ n(µ), with probability at least
1− 2δ, we have for all i ∈ [d],

En1{Ān,i(X)} ≤
√

ln 2d/δ

n
+ µ (∂t,i(X )) .

It remains to bound
∣∣Wi − En |f ′i(X)| · 1{An,i(X)}

∣∣. To this end we need to bring in f through the
following quantities:

W̃i , En

[
|f(X + tei)− f(X − tei)|

2t
· 1{An,i(X)}

]
= En

[
∆t,if(X) · 1{An,i(X)}

]
and for any x ∈ X , define f̃n,h(x) , EY|Xfn,h(x) =

∑
i wi(x)f(xi).

The quantity W̃i is easily related to En |f ′i(X)| · 1{An,i(X)}. This is done in Lemma 5 below. The
quantity f̃n,h(x) is needed when relating Wi to W̃i.

Lemma 5. Define εt,i as in Section (4.1.3). With probability at least 1− δ, we have for all i ∈ [d],∣∣∣W̃i − En |f ′i(X)| · 1{An,i(X)}

∣∣∣ ≤ εt,i.
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Proof. We have f(x+ tei)− f(x− tei) =
∫ t

−t
f ′i(x+ sei) ds and therefore

2t (f ′i(x)− εt,i) ≤ f(x+ tei)− f(x− tei) ≤ 2t (f ′i(x) + εt,i) .

It follows that
∣∣ 1
2t |f(x+ tei)− f(x− tei)| − |f ′i(x)|

∣∣ ≤ εt,i, therefore∣∣∣W̃i − En |f ′i(X)| · 1{An,i(X)}

∣∣∣ ≤ En

∣∣∣∣ 12t |f(x+ tei)− f(x− tei)| − |f ′i(x)|
∣∣∣∣ ≤ εt,i.

It remains to relate Wi to W̃i. We have

2t
∣∣∣Wi − W̃i

∣∣∣ =2t
∣∣En(∆t,ifn,h(X)−∆t,if(X)) · 1{An,i(X)}

∣∣
≤2 max

s∈{−t,t}
En|fn,h(X + sei)− f(X + sei)| · 1{An,i(X)}

≤2 max
s∈{−t,t}

En

∣∣∣fn,h(X + sei)− f̃n,h(X + sei)
∣∣∣ · 1{An,i(X)} (5)

+ 2 max
s∈{−t,t}

En

∣∣∣f̃n,h(X + sei)− f(X + sei)
∣∣∣ · 1{An,i(X)}. (6)

We first handle the bias term (6) in the next lemma which is given in the appendix.

Lemma 6 (Bias). Let t+ h ≤ τ . We have for all i ∈ [d], and all s ∈ {t,−t}:

En

∣∣∣f̃n,h(X + sei)− f(X + sei)
∣∣∣ · 1{An,i(X)} ≤ h ·

∑
i∈[d]

|f ′i |sup .

The variance term in (5) is handled in the lemma below. The proof is given in the appendix.

Lemma 7 (Variance terms). There exist C = C(µ,K(·)) such that, with probability at least 1− 2δ,
we have for all i ∈ [d], and all s ∈ {−t, t}:

En

∣∣∣fn,h(X + sei)− f̃n,h(X + sei)
∣∣∣ · 1{An,i(X)} ≤

√
Cd · log(n/δ)C2

Y (δ/2n) · σ2
Y

n(h/2)d
.

The next lemma summarizes the above results:

Lemma 8. Let t + h ≤ τ and let 0 < δ < 1. There exist C = C(µ,K(·)) such that the following
holds with probability at least 1− 2δ. Define A(n) , Cd · log(n/δ) · C2

Y (δ/2n) · σ2
Y / log

2(n/δ).
We have

∣∣Wi − En |f ′i(X)| · 1{An,i(X)}
∣∣ ≤1

t

√A(n)

nhd
+ h ·

∑
i∈[d]

|f ′i |sup

+ εt,i.

Proof. Apply lemmas 5, 6 and 7, in combination with equations 5 and 6.

To complete the proof of Theorem 1, apply lemmas 8 and 3 in combination with equations 3 and 4.

5 Experiments

5.1 Data description

We present experiments on several real-world regression datasets. The first two datasets describe the
dynamics of 7 degrees of freedom of robotic arms, Barrett WAM and SARCOS [10, 11]. The input
points are 21-dimensional and correspond to samples of the positions, velocities, and accelerations
of the 7 joints. The output points correspond to the torque of each joint. The far joints (1, 5, 7)
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Barrett joint 1 Barrett joint 5 SARCOS joint 1 SARCOS joint 5 Housing
KR error 0.50 ± 0.02 0.50 ± 0.03 0.16 ± 0.02 0.14 ± 0.02 0.37 ±0.08
KR-ρ error 0.38± 0.03 0.35 ± 0.02 0.14 ± 0.02 0.12 ± 0.01 0.25 ±0.06
KR time 0.39 ± 0.02 0.37 ± 0.01 0.28 ± 0.05 0.23 ± 0.03 0.10 ±0.01
KR-ρ time 0.41 ± 0.03 0.38 ± 0.02 0.32 ± 0.05 0.23 ± 0.02 0.11 ±0.01

Concrete Strength Wine Quality Telecom Ailerons Parkinson’s
KR error 0.42 ± 0.05 0.75 ± 0.03 0.30±0.02 0.40±0.02 0.38±0.03
KR-ρ error 0.37 ± 0.03 0.75 ± 0.02 0.23±0.02 0.39±0.02 0.34±0.03
KR time 0.14 ± 0.02 0.19 ± 0.02 0.15±0.01 0.20±0.01 0.30±0.03
KR-ρ time 0.14 ± 0.01 0.19 ± 0.02 0.16±0.01 0.21±0.01 0.30±0.03

Barrett joint 1 Barrett joint 5 SARCOS joint 1 SARCOS joint 5 Housing
k-NN error 0.41 ± 0.02 0.40 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.28 ±0.09
k-NN-ρ error 0.29 ± 0.01 0.30 ± 0.02 0.07 ± 0.01 0.07 ± 0.01 0.22±0.06
k-NN time 0.21 ± 0.04 0.16 ± 0.03 0.13 ± 0.01 0.13 ± 0.01 0.08 ±0.01
k-NN-ρ time 0.13 ± 0.04 0.16 ± 0.03 0.14 ± 0.01 0.13 ± 0.01 0.08 ±0.01

Concrete Strength Wine Quality Telecom Ailerons Parkinson’s
k-NN error 0.40 ± 0.04 0.73 ± 0.04 0.13±0.02 0.37±0.01 0.22±0.01
k-NN-ρ error 0.38 ± 0.03 0.72 ± 0.03 0.17±0.02 0.34±0.01 0.20±0.01
k-NN time 0.10 ± 0.01 0.15 ± 0.01 0.16±0.02 0.12±0.01 0.14±0.01
k-NN-ρ time 0.11 ± 0.01 0.15 ± 0.01 0.15±0.01 0.11±0.01 0.15±0.01

Table 1: Normalized mean square prediction errors and average prediction time per point (in mil-
liseconds). The top two tables are for KR vs KR-ρ and the bottom two for k-NN vs k-NN-ρ.
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(a) SARCOS, joint 7, with KR
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(b) Ailerons with KR
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1000 2000 3000 4000 5000
0.005

0.01

0.015

0.02

0.025

number of training points

er
ro

r

 

 

k−NN error
k−NN−ρ error

(d) SARCOS, joint 7, with k-NN
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(e) Ailerons with k-NN
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Figure 2: Normalized mean square prediction error over 2000 points for varying training sizes.
Results are shown for k-NN and kernel regression (KR), with and without the metric ρ.

correspond to different regression problems and are the only results reported. Expectedly, results for
the other joints are similarly good.

The other datasets are taken from the UCI repository [12] and from [13]. The concrete strength
dataset (Concrete Strength) contains 8-dimensional input points, describing age and ingredients of
concrete, the output points are the compressive strength. The wine quality dataset (Wine Quality)
contains 11-dimensional input points corresponding to the physicochemistry of wine samples, the
output points are the wine quality. The ailerons dataset (Ailerons) is taken from the problem of flying
a F16 aircraft. The 5-dimensional input points describe the status of the aeroplane, while the goal is
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to predict the control action on the ailerons of the aircraft. The housing dataset (Housing) concerns
the task of predicting housing values in areas of Boston, the input points are 13-dimensional. The
Parkinson’s Telemonitoring dataset (Parkison’s) is used to predict the clinician’s Parkinson’s disease
symptom score using biomedical voice measurements represented by 21-dimensional input points.
We also consider a telecommunication problem (Telecom), wherein the 47-dimensional input points
and the output points describe the bandwidth usage in a network.

For all datasets we normalize each coordinate with its standard deviation from the training data.

5.2 Experimental setup

To learn the metric, we set h by cross-validation on half the training points, and we set t = h/2
for all datasets. Note that in practice we might want to also tune t in the range of h for even
better performance than reported here. The event An,i(X) is set to reject the gradient estimate
∆n,ifn,h(X) at X if no sample contributed to one the estimates fn,h(X ± tei).

In each experiment, we compare kernel regression in the euclidean metric space (KR) and in the
learned metric space (KR-ρ), where we use a box kernel for both. Similar comparisons are made
using k-NN and k-NN-ρ. All methods are implemented using a fast neighborhood search procedure,
namely the cover-tree of [14], and we also report the average prediction times so as to confirm that,
on average, time-performance is not affected by using the metric.

The parameter k in k-NN/k-NN-ρ, and the bandwidth in KR/KR-ρ are learned by cross-validation
on half of the training points. We try the same range of k (from 1 to 5 log n) for both k-NN and
k-NN-ρ. We try the same range of bandwidth/space-diameter (a grid of size 0.02 from 1 to 0.02 )
for both KR and KR-ρ: this is done efficiently by starting with a log search to detect a smaller range,
followed by a grid search on a smaller range.

Table 5 shows the normalized Mean Square Errors (nMSE) where the MSE on the test set is normal-
ized by variance of the test output. We use 1000 training points in the robotic datasets, 2000 training
points in the Telecom, Parkinson’s, Wine Quality, and Ailerons datasets, and 730 training points in
Concrete Strength, and 300 in Housing. We used 2000 test points in all of the problems, except for
Concrete, 300 points, and Housing, 200 points. Averages over 10 random experiments are reported.

For the larger datasets (SARCOS, Ailerons, Telecom) we also report the behavior of the algorithms,
with and without metric, as the training size n increases (Figure 2).

5.3 Discussion of results

From the results in Table 5 we see that virtually on all datasets the metric helps improve the perfor-
mance of the distance based-regressor even though we did not tune t to the particular problem (re-
member t = h/2 for all experiments). The only exceptions are for Wine Quality where the learned
weights are nearly uniform, and for Telecom with k-NN. We noticed that the Telecom dataset has
a lot of outliers and this probably explains the discrepancy, besides from the fact that we did not
attempt to tune t. Also notice that the error of k-NN is already low for small sample sizes, making
it harder to outperform. However, as shown in Figure 2, for larger training sizes k-NN-ρ gains on
k-NN. The rest of the results in Figure 2 where we vary n are self-descriptive: gradient weighting
clearly improves the performance of the distance-based regressors.

We also report the average prediction times in Table 5. We see that running the distance-based
methods with gradient weights does not affect estimation time. Last, remember that the metric can
be learned online at the cost of only 2d times the average kernel estimation time reported.

6 Final remarks

Gradient weighting is simple to implement, computationally efficient in batch-mode and online, and
most importantly improves the performance of distance-based regressors on real-world applications.
In our experiments, most or all coordinates of the data are relevant, yet some coordinates are more
important than others. This is sufficient for gradient weighting to yield gains in performance. We
believe there is yet room for improvement given the simplicity of our current method.
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Appendix

A Consistency lemmas

We need the following VC result.
Lemma 9 (Relative VC bounds [15]). Let 0 < δ < 1 and define αn = (2d ln 2n+ ln(4/δ)) /n.

Then with probability at least 1− δ over the choice of X, all balls B ∈ Rd satisfy

µ(B) ≤ µn(B) +
√
µn(B)αn + αn.

Proof of Lemma 4. Let Āi(X) denote the event that mins∈{−t,t} µ(B(X + sei, h/2)) < 3αn. By
Lemma 9, with probability at least 1− δ, ∀i ∈ [d], Ān,i(X) =⇒ Āi(X) so that En1{Ān,i(X)} ≤
En1{Āi(X)}.

Using a Chernoff bound, followed by a union bound on [d], we also have with probability at least
1− δ that En1{Āi(X)} ≤ E1{Āi(X)} +

√
ln(2d/δ)/n.

Finally, E1{Āi(X)} ≤ E
[
1{Āi(X)}|X ∈ X \ ∂t,i(X )

]
+ µ (∂t,i(X )). The first term is 0 for large

n. This is true since, for x ∈ X \∂t,i(X ), for all i ∈ [d] and s ∈ {−t, t}, x+sei ∈ X , and therefore
µ(B(x+ sei, h/2)) ≥ Cµ(h/2)

d ≥ 3αn for our setting of h (see Section 3).

Proof of Lemma 6. Let x = X + sei. For any Xi ∈ X, let vi denote the unit vector in direction
(Xi − x). We have∣∣∣f̃n,h(x)− f(x)

∣∣∣ ≤∑
i

wi(x) |f(Xi)− f(x)| =
∑
i

wi(x)

∣∣∣∣∣
∫ ‖Xi−x‖

0

v>i ∇f(x+ svi) ds

∣∣∣∣∣
≤
∑
i

wi(x) ‖Xi − x‖ · max
x′∈X+B(0,τ)

∥∥v>i ∇f(x′)∥∥ ≤ h ·
∑
i∈[d]

|f ′i |sup .

Multiply the l.h.s. by 1{An,i(X)}, take the empirical expectation and conclude.

The variance lemma is handled in way similar to an analysis of [9] on k-NN regression. The main
technicality here is that the number of points contributing to the estimate (and hence the variance) is
not a constant as with k-NN.

Proof of Lemma 7. Assume that An,i(X) is true, and fix x = X + sei. The following variance
bound is quickly obtained:

EY|X

∣∣∣fn,h(x)− f̃n,h(x)
∣∣∣2 ≤ σ2

Y ·
∑
i∈[n]

wi(x) ≤ σ2
Y ·max

i∈[n]
wi(x).

Let Yx denote the Y values of samples Xi ∈ B(x, h), and write ψ(Yx) ,
∣∣∣fn,h(x)− f̃n,h(x)

∣∣∣.
We next relate ψ(Yx) to the above variance.

Let Yδ denote the event that for all Yi ∈ Y, |Yi − f(Xi)| ≤ CY (δ/2n) · σY . By definition of
CY (δ/2n), the event Yδ happens with probability at least 1− δ/2 ≥ 1/2. We therefore have that

PY|X
(
ψ(Yx) > 2EY|Xψ(Yx) + ε

)
≤ PY|X

(
ψ(Yx) > EY|X,Yδ

ψ(Yx) + ε
)

≤ PY|X,Yδ

(
ψ(Yx) > EY|X,Yδ

ψ(Yx) + ε
)
+ δ/2.

Now, it can be verified that, by McDiarmid’s inequality, we have

PY|X,Yδ

(
ψ(Yx) > EY|X,Yδ

ψ(Yx) + ε
)
≤ exp

−2ε2/C2
Y (δ/2n) · σ2

Y

∑
i∈[n]

w2
i (x)

 .
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Notice that the number of possible sets Yx (over x ∈ X ) is at most the n-shattering number of balls
in Rd. By Sauer’s lemma we know this number is bounded by (2n)d+2. We therefore have by a
union bound that, with probability at least 1− δ, for all x ∈ X satisfying B(x, h/2) ∩X 6= ∅,

ψ(Yx) ≤ 2EY|Xψ(Yx) +

√
(d+ 2) · log(n/δ)C2

Y (δ/2n) · σ2
Y

∑
i∈[n]

w2
i (x)

≤ 2
(
EY|Xψ

2(Yx)
)1/2

+
√
(d+ 2) · log(n/δ)C2

Y (δ/2n) · σ2
Y ·max

i
wi(x)

≤
√
Cd · log(n/δ)C2

Y (δ/2n) · σ2
Y /nµn((B(x, h/2)),

where the second inequality is obtained by applying Jensen’s, and the last inequality is due to the
fact that the kernel weights are upper and lower-bounded on B(x, h/2).

Now by Lemma 9, with probability at least 1 − δ, for all X such that An,i(X) is true, we have
for all s ∈ {−t, t}, 3µn((B(x, h/2)) ≥ µ((B(x, h/2)) ≥ Cµ(h/2)

d. Integrate this into the above
inequality, take the empirical expectation and conclude.

B Properties of the metric space (X , ρ)

The following definitions are reused throughout the section. For any R ⊂ [d], define κ ,√
maxi∈R Wi/mini∈R Wi, and let ε6R , maxi/∈R Wi.

The next lemma is preliminary to establishing the mass of balls on (X , ρ) in Lemma 1.

Lemma 10. Suppose X ≡ 1√
d
[0, 1]d, and µ satisfies on (X , ‖·‖), for some C1, C2: ∀x ∈ X ,∀r >

0, C1r
d ≤ µ(B(x, r)) ≤ C2r

d. Note that this condition is satisfied for instance if µ has a
continuous lower-bounded density on X .

The above condition implies a sufficient condition for Lemma 1. That is, for any R ⊂ [d], and
pseudo-metric ‖x− x′‖R ,

√∑
i∈R(x

i − x′i)2, µ has the following doubling property over balls
BR in the pseudo-metric space (X , ‖·‖R) for some constant C:

∀x ∈ X ,∀r > 0,∀ε > 0, µ(BR(x, r)) ≤ Cε−|R| · µ(BR(x, εr)).

Proof. Fix x ∈ X and r > 0. It can be verified that BR(x, r) can be covered by Cr−(d−|R|)

Euclidean balls of radius r, for some C independent of r. Let B(z, r) denote the ball with the
largest mass in the cover. We then have by a union bound

µ(BR(x, r)) ≤ Cr−(d−|R|)µ(B(z, r)) ≤ Cr−(d−|R|) · C2r
d ≤ C · C2r

|R|.

Similarly, for some C independent of r,BR(x, r) can be packed with Cr−(d−|R|) disjoint Euclidean
balls of radius r. Let B(z, r) denote the ball with the smallest mass in the packing. We have

µ(BR(x, r)) ≥ Cr−(d−|R|)µ(B(z, r)) ≥ Cr−(d−|R|) · C1r
d ≥ C · C1r

|R|.

Since the above holds for any r > 0, including εr for any ε > 0, the conclusion is immediate.

Proof of Lemma 1. First apply Lemma 10. Notice that the doubling property of µ on (X , ‖·‖R)
similarly implies for balls BρR

in (X , ρR) that ∀x ∈ X ,∀r > 0,∀ε > 0, µ(BρR
(x, r)) ≤ Cε−|R| ·

µ(BρR
(x, εr)).

For any x, x′ ∈ X one can check that ρ(x, x′) ≤ κρR(x, x
′) + ε6R ≤ κρR(x, x

′) + ερ(X )/2. It
follows that for any x ∈ X , Bρ(x, ερ(X )) ⊃ BρR(x, ερ(X )/2κ). Now since ρR(x, x′) ≤ ρ(x, x′),
the ρR-diameter of X is at most ρ(X ), and we have

µ(Bρ(x, ερ(X ))) ≥ µ(BρR
(x, ερ(X )/2κ) ≥ C(ε/2κ)|R|.
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Proof of Lemma 2. Let x 6= x′ and v = (x − x′)/ ‖x− x′‖. Clearly vi ≤ ρ(x, x′)/(‖x− x′‖ ·√
Wi). We have

|f(x)− f(x′)| ≤
∫ ‖x−x′‖

0

∣∣v>∇f(x+ sv)
∣∣ ds ≤ ∫ ‖x−x′‖

0

∑
i∈R

∣∣vi · f ′i(x+ sv)
∣∣ ds

≤
∑
i∈R

∫ ‖x−x′‖

0

∣∣vi∣∣ · |f ′i |sup ≤
∑
i∈R

ρ(x, x′)√
Wi

|f ′i |sup .
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