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Abstract

We present two related contributions of independent interest: (1) high-probability
finite sample rates for k-NN density estimation, and (2) practical mode estimators
– based on k-NN – which attain minimax-optimal rates under surprisingly general
distributional conditions.

1 Introduction

We prove finite sample bounds for k-nearest neighbor (k-NN) density estimation, and subsequently
apply these bounds to the related problem of mode estimation. These two main results, while related,
are interesting on their own.

First, k-NN density estimation [1] is one of the better known and simplest density estimation pro-
cedures. The estimate fk(x) of an unknown density f (see Definition 1 of Section 3) is a simple
functional of the distance rk(x) from x to its k-th nearest neighbor in a sample X[n] , {Xi}ni=1.
As such it is intimately related to other functionals of rk(x), e.g. the degree of vertices x in k-NN
graphs and their variants used in modeling communities and in clustering applications (see e.g. [2]).

While this procedure has been known for a long time, its convergence properties are still not fully
understood. The bulk of research in the area has concentrated on establishing its asymptotic con-
vergence, while its finite sample properties have received little attention in comparison. Our finite
sample bounds are concisely derived once the proper tools are identified. The bounds hold with high
probability, under general conditions on the unknown density f . This generality proves quite useful
as shown in our subsequent application to the problem of mode estimation.

The basic problem of estimating the modes (local maxima) of an unknown density f has also been
studied for a while (see e.g. [3] for an early take on the problem). It arises in various unsupervised
problems where modes are used as a measure of typicality of a sample X . In particular, in modern
applications, mode estimation is often used in clustering, with the modes representing cluster centers
(see e.g. [4, 5] and general applications of the popular mean-shift procedure).

While there exists a rich literature on mode estimation, the bulk of theoretical work concerns es-
timators of a single mode (highest maximum of f ), and often concentrates on procedures that are
hard to implement in practice. Given the generality of our first result on k-NN density estimation,
we can prove that some simple implementable procedures yield optimal estimates of the modes of
an unknown density f , under surprisingly general conditions on f .

Our results are overviewed in the following section, along with an overview of the rich literature on
k-NN density estimation and mode estimation. This is followed by our theoretical setup in Section 3;
our rates for k-NN density estimation are detailed in Section 4, while the results on mode estimation
are given in Section 5.

∗Much of this work was conducted when this author was at TTI-Chicago.
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2 Overview of results and related Work

2.1 Rates for k-NN density estimates

The k-NN density estimator dates back perhaps to the early work of [1] where it is shown to be
consistent when the unknown density f is continuous on Rd. While one of the best known and
simplest procedure for density estimation, it has proved more cumbersome to analyze than its smooth
counterpart, the kernel density estimator.

More general consistency results such as [6, 7] have been established since its introduction. In
particular [6] shows that, for f Lipschitz in a neighborhood of a point x, where f(x) > 0, and
k = k(n) satisfying k → ∞ and k/n2/(2+d) → 0, the estimator is asymptotically normal, i.e.√
k(fk(x) − f(x))/f(x)

D−→ N (0, 1). The recent work of [8], concerning generalized weighted
variants of k-NN, shows that asymptotic normality holds under the weaker restriction k/n4/(4+d) →
0 if f is twice differentiable at x.

Asymptotic normality as stated above yields some insight into the rate of convergence of fk: we
can expect that |fk(x)− f(x)| . f(x)/

√
k under the stated conditions on k. In fact, [8] shows

that such a result can be obtained in expectation for n = n(x) sufficiently large. In particular,
their conditions on k allows for a setting of k ≈ n4/(4+d) (not allowed under the above conditions)
yielding a minimax-optimal l2 risk E |fk(x)− f(x)|2 . f(x)2/k = O(n−4/(4+d)).

While consistency results and bounds on expected error are now well understood, we still don’t have
a clear understanding of the conditions under which high probability bounds on |fk(x)− f(x)| are
possible. This is particularly important given the inherent instability of nearest neighbors estimates
which are based on order-statistics rather than the more stable average statistics at the core of kernel-
density estimates. The recent result of [9] provides an initial answer: they obtain a high-probability
bound uniformly over x taking value in the sample X[n], however under conditions not allowing for
optimal settings of k (where f is assumed Lipschitz).

The bounds in the present paper hold with high-probability, simultaneously for all x in the support
of f . Rather than requiring smoothness conditions on f , we simply give the bounds in terms of the
modulus of continuity of f at any x, i.e. how much f can change in a neighborhood of x. This
allows for a useful degree of flexibility in applying these bounds. In particular, optimal bounds
under various degrees of smoothness of f at x easily follow. More importantly, for our application
to mode estimation, the bounds allow us to handle |fk(x)− f(x)| at different x ∈ Rd with varying
smoothness in f . As a result we can derive minimax-optimal mode estimation rates for practical
procedures under surprisingly weak assumptions.

2.2 Mode estimation

There is an extensive literature on mode estimation and we unfortunately can only overview some
of the relevant work. Most of the literature covers the case of a unimodal distribution, or one where
there is a single maximizer x0 of f .

Early work on estimating the (single) mode of a distribution focused primarily on understand-
ing the consistency and rates achievable by various approaches, with much less emphasis on the
ease of implementation of these approaches. The common approaches consist of estimating x0 as
x̂ , arg supx∈Rd fn(x) where fn is an estimate of f , usually a kernel density estimate. Various
work such as [3, 10, 11] establish consistency properties of the approach and achievable rates under
various Euclidean settings and regularity assumptions on the distribution F . More recent work such
as [12, 13] address the problem of optimal choice of bandwidth and kernel to adaptively achieve
the minimax risk for mode estimation. Essentially, under smoothness κ (e.g. f is κ times differen-
tiable), the minimax risk (inf x̂ supf Ef ‖x̂− x0‖) is of the form n−(κ−1)/(2κ+d), as independently
established in [14] and [15].

As noticed early in [16], the estimator arg supx∈Rd fn(x), while yielding much insight into the
problem, is hard to implement in practice. Hence, other work, apparently starting with [16, 14]
have looked into so-called recursive estimators of the (single) mode which are practical and easy
to update as the sample size increases. These approaches can be viewed as some form of gradient-
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ascent of fn with carefully chosen step sizes. The later versions of [14] are shown to be minimax-
optimal. Another line of work is that of so-called direct mode estimators which estimate the mode
from practical statistics of the data [17, 18]. In particular, [18] shows that the simple and practical
estimator arg maxx∈X[n]

fn(x), where fn is a kernel-density estimator, is a consistent estimator of
the mode. We show in the present paper that arg maxx∈X[n]

fk(x), where fk is a k-NN density
estimator, is not only consistent, but converges at a minimax-optimal rate under surprisingly mild
distributional conditions.

The more general problem of estimating all modes of distribution has received comparatively little
attention. The best known practical approach for this problem is the mean-shift procedure and its
variants [19, 4, 20, 21], quite related to recursive-mode-estimators, as they essentially consist of
gradient ascent of fn starting from every sample point, where fn is required to be appropriately
smooth to ascend (e.g. a smooth kernel estimate). While mean-shift is popular in practice, it has
proved quite difficult to analyze. A recent result of [22] comes close to establishing the consistency
of mean-shift, as it establishes the convergence of the procedure to the right gradient lines (essen-
tially the ascent path to the mode) if it is seeded from fixed starting points rather than the random
samples themselves. It remains unclear however whether mean-shift produces only true modes,
given the inherent variability in estimating f from sample. This question was recently addressed by
[23] which proposes a hypothesis test to detect false modes based on confidence intervals around
Hessians estimated at the modes returned by any procedure.

Interestingly, while a k-NN density estimate fk is far from smooth, in fact not even continuous, we
show a simple practical procedure that identifies any mode of the unknown density f under mild
conditions: we mainly require that f is well approximated by a quadratic in a neighborhood of
each mode. Our finite sample rates (on ‖x̂− x0‖, for an estimate x̂ of any mode x0) are of the
form O(k−1/4), hold with high-probability and are minimax-optimal for an appropriate choice of
k = Θ(n4/(4+d)).

If in addition f is Lipschitz or more generally Hölder-continuous (in principle uniform continuity
of f is enough), all the modes returned above a level set λ of fk can be optimally assigned to
separate modes of the unknown f . Since λ n→∞−−−−→ 0, the procedure consistently prunes false modes.
This feature is made intrinsic to the procedure by borrowing from insights of [9, 24] on identifying
false clusters by inspecting levels sets of fn. These last works concern the related area of level set
estimation, and do not study mode estimation rates.

As alluded to so far, our results are given in terms of local assumptions on modes rather than
global distributional conditions. We show that any mode that is sufficiently salient (this is locally
parametrized) w.r.t. the finite sample size n, is optimally estimated, while false modes are pruned
away. In particular our results allow for f having a countably infinite number of modes.

3 Preliminaries

Throughout the analysis, we assume access to a sample X[n] = {Xi}ni=1 drawn i.i.d. from an
absolutely continuous distribution F over Rd, with Lebesgue-density function f . We let X denote
the support of the density function f .

The k-NN density estimate at a point x is defined as follows.

Definition 1 (k-NN density estimate). For every x ∈ Rd, let rk(x) denote the distance from x to its
k-th nearest neighbor in X[n]. The density estimate is given as:

fk(x) ,
k

n · vd · rk(x)d
,

where vd denotes the volume of the unit sphere in Rd.

All balls considered in the analysis are closed Euclidean balls of Rd.
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4 k-NN density estimation rates

In this section we bound the error in estimating f(x) as fk(x) at every x ∈ X . The main results of
the section are Lemmas 3 and 4. These lemmas are easily obtained given the right tools: uniform
concentration bounds on the empirical mass of balls in Rd, using relative Vapnik-Chervonenkis
bounds, i.e. Bernstein’s type bounds rather than Chernoff type bounds (see e.g. Theorem 5.1 of
[25]). We next state a form of these bounds for completion.

Lemma 1. Let G be a class of functions from X to {0, 1} with VC dimension d < ∞, and P a
probability distribution on X . Let E denote expectation with respect to P. Suppose n points are
drawn independently at random from P; let En denote expectation with respect to this sample. Then
for any δ > 0, with probability at least 1− δ, the following holds for all g ∈ G:

−min(βn
√
Eng, β2

n + βn
√

Eg) ≤ Eg − Eng ≤ min(β2
n + βn

√
Eng, βn

√
Eg),

where βn =
√

(4/n)(d ln 2n+ ln(8/δ)).

These sort of relative VC bounds allows for a tighter relation (than Chernoff type bounds) between
empirical and true mass of sets (Eng and Eg) in those situations where these quantities are small,
i.e. of the order of β2

n = Õ(1/n) above. This is particularly useful since the balls we have to deal
with are those containing approximately k points, and hence of (small) mass approximately k/n.

A direct result of the above lemma is the following lemma of [26]. This next lemma essentially
reworks Lemma 1 above into a form we can use more directly. We re-use Cδ,n below throughout
the analysis.

Lemma 2 ([26]). Pick 0 < δ < 1. Let Cδ,n , 16 log(2/δ)
√
d log n. Assume k ≥ d log n. With

probability at least 1− δ, for every ball B ⊂ Rd we have,

F(B) ≥ Cδ,n
√
d log n

n
=⇒ Fn(B) > 0,

F(B) ≥ k

n
+ Cδ,n

√
k

n
=⇒ Fn(B) ≥ k

n
, and

F(B) ≤ k

n
− Cδ,n

√
k

n
=⇒ Fn(B) <

k

n
.

The main idea in bounding fk(x) is to bound the random term rk(x) in terms of f(x) using Lemma
2 above. We can deduce from the lemma that if a ball B(x, r) centered has mass roughly k/n, then
its empirical mass is likely to be of the order k/n; hence rk(x) is likely to be close to the radius r
of B(x, r). Now if f does not vary too much in B(x, r), then we can express the mass of B(x, r) in
terms of f(x), and thus get our desired bound on rk(x) and fk(x) in terms of f(x).

Our results are given in terms of how f varies in a neighborhood of x, captured as follows.

Definition 2. For x ∈ Rd and ε > 0, define r̂(ε, x) , sup
{
r : sup‖x−x′‖≤r f(x′)− f(x) ≤ ε

}
,

and ř(ε, x) , sup
{
r : sup‖x−x′‖≤r f(x)− f(x′) ≤ ε

}
.

The continuity parameters r̂(ε, x) and ř(ε, x) (related to the modulus of continuity of f at x) are eas-
ily bounded under smoothness assumptions on f at x. Our high-probability bounds on the estimates
fk(x) in terms of f(x) and the continuity parameters are given as follows.

Lemma 3 (Upper-bound on fk). Suppose k ≥ 4C2
δ,n. Then, with probability at least 1 − δ, for all

x ∈ Rd and all ε > 0,

fk(x) <

(
1 + 2

Cδ,n√
k

)
(f(x) + ε) ,

provided k satisfies vd · r̂(ε, x)d · (f(x) + ε) ≥ k
n − Cδ,n

√
k
n .
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Lemma 4 (Lower-bound on fk). Then, with probability at least 1− δ, for all x ∈ Rd and all ε > 0,

fk(x) ≥
(

1− Cδ,n√
k

)
(f(x)− ε) ,

provided k satisfies vd · ř(ε, x)d · (f(x)− ε) ≥ k
n + Cδ,n

√
k
n .

The proof of these results are concise applications of Lemma 2 above. They are given in the appendix
(long version). The trick is in showing that, under the conditions on k, there exists an r ≈ (k/(n ·
f(x)))1/d which is at most r̂(ε, x) or ř(ε, x) as appropriate; hence, f does not vary much onB(x, r)
so we must have

F (B(x, r)) ≈ volume (B(x, r)) · f(x) = vd · rd · f(x) ≈ k

n
.

Using Lemma 2 we get rk(x) ≈ r; plug this value into fk(x) to obtain fk(x) ≈ (1 + 1/
√
k)f(x).

Lemmas 3 and 4 allow a great deal of flexibility as we will soon see with their application to mode
estimation. In particular we can consider various smoothness conditions simultaneously at different
x for different biases ε.

Suppose for instance that f is locally Hölder at x, i.e. ∃r, L, β > 0 s.t. for all x′ ∈
B(x, r), |f(x)− f(x′)| ≤ L ‖x− x′‖β . Then for small ε, both r̂(ε, x) and ř(ε, x) are at least
(ε/L)1/β ; pick ε = O(f(x)/

√
k) for n sufficiently large, then by both lemmas we have, w.h.p.,

|fk(x)− f(x)| ≤ O(f(x)/
√
k) provided k = Ω(log2 n) and satisfies vd(1/L

√
k)d/βf(x) ≥ Ck/n

for some constant C. This allows for a setting of k = Θ
(
n2β/(2β+d)

)
for a minimax-optimal rate

of |fk(x)− f(x)| = O
(
n−β/(2β+d

)
.

The ability to consider various biases ε would prove particularly helpful in the next section on
mode estimation where we have to consider different approximations in different parts of space with
varying smoothness in f . In particular, at a mode x, we will essentially have β = 2 (f is twice
differentiable) while elsewhere on X we might not have much smoothness in f .

5 Mode estimation

We start with the following definition of modes.
Definition 3. We denote the set of modes of f byM≡ {x : ∃r > 0,∀x′ ∈ B(x, r), f(x′) < f(x)} .

We need the following assumption at modes.
Assumption 1. f is twice differentiable in a neighborhood of every x ∈M. We denote the gradient
and Hessian of f by ∇f and∇2f . Furthermore,∇2f(x) is negative definite at all x ∈M.

Assumption 1 excludes modes at the boundary of the support of f (where f cannot be continuously
differentiable). We note that most work on the subject consider only interior modes as we are
doing here. Modes on the boundary can however be handled under additional boundary smoothness
assumptions to ensure that f puts sufficient mass on any ball around such modes. This however only
complicates the analysis, while the main insights remain the same as for interior modes.

An implication of Assumption 1 is that for all x ∈ M, ∇f is continuous in a neighborhood of x,
with ∇f(x) = 0. Together with ∇2f(x) ≺ 0 (i.e. negative definite), f is well-approximated by a
quadratic in a neighborhood of a mode x ∈M. This is stated in the following lemma.
Lemma 5. Let f satisfy Assumption 1. Consider any x ∈ M. Then there exists a neighborhood
B(x, r), r > 0, and constants Ĉx, Čx > 0 such that, for all x′ ∈ B(x, r), we have

Čx ‖x′ − x‖
2 ≤ f(x)− f(x′) ≤ Ĉx ‖x′ − x‖

2
. (1)

We can therefore parametrize a mode x ∈M locally as follows:
Definition 4 (Critical radius rx around mode x). For every mode x ∈ M, there exists rx > 0, such
that B(x, rx) is contained in a set Ax, satisfying the following conditions:
(i) Ax is a connected component of a level set X λ , {x′ ∈ X : f(x′) > λ} for some λ > 0.
(ii) ∃Ĉx, Čx > 0, ∀x′ ∈ Ax, Čx ‖x′ − x‖2 ≤ f(x)− f(x′) ≤ Ĉx ‖x′ − x‖2. (So Ax ∩M = {x}.)
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Return arg maxx∈X[n]
fk(x).

Figure 1: Estimate the mode of a unimodal density f from X[n].

Figure 2: The analysis argues over different regions (depicted) around a mode x.

Finally, we assume that every hill in f corresponds to a mode inM:

Assumption 2. Each connected component of any level set X λ, λ > 0, contains a mode inM.

5.1 Single mode

We start with the simple but common assumption that |M| = 1. This case has been extensively
studied to get a handle on the inherent difficulty of mode estimation. The usual procedures in the
statistical literature are known to be minimax-optimal but are not practical: they invariably return the
maximizer of some density estimator (usually a kernel estimate) over the entire space Rd. Instead
we analyze the practical procedure of Figure 1 where we pick the maximizer of fk out of the finite
sample X[n]. The rates of Theorem 1 are optimal (O(n−1/(4+d))) for a setting of k = O(n4/(4+d)).

Theorem 1. Let δ > 0. Assume f has a single mode x0 and satisfies Assumptions 1, 2. There exists
Nx0,δ such that the following holds for n ≥ Nx0,δ . Let Ĉx0

, Čx0
be as in Definition 4. Suppose k

satisfies(
24Cδ,nf(x0)

Čx0
r2
x0

)2

≤ k ≤

(
1

2

√
Cδ,n

Ĉx0

)4d/(4+d)

f(x0)(2d+4)/(4+d)
(vd

4
n
)4/(4+d)

. (2)

Let x be the mode returned in the procedure of Figure 1. With probability at least 1− 2δ we have

‖x− x0‖ ≤ 5

√
Cδ,n

Čx0

f(x0) · 1

k1/4
.

Proof. Let rx0 be the critical radius of Definition 4. Let rn(x0) ≡ inf
{
r : B(x0, r) ∩X[n] 6= ∅

}
.

Let 0 < τ < 1 to be later specified, and assume the event that rn(x0) ≤ τ
2 rx0

. We will bound the
probability of this event once the proper setting of τ becomes clear.

Consider r̃ satisfying rx0 ≥ r̃ ≥ 2rn(x0)/τ (see Figure 2). We will first upper bound fk for any x
outside B(x0, r̃), then lower-bound fk for x ∈ B(x0, rn(x0)).

Recall Ax0
from Definition 4. By equation (1) we have

sup
x∈Ax0\B(x0,r̃/2)

f(x) ≤ f(x0)− Čx0
(r̃/2)2 , F̂ . (3)

The above allows us to apply Lemma 3 as follows. First note that for any x ∈ X\B(x0, r̃/2), f(x) ≤
F̂ since Ax0 is a level set of the unimodal f , i.e. supx/∈Ax0 f(x) ≤ infx∈Ax0 f(x). Therefore, for

any x ∈ X \B(x0, r̃) let ε .= F̂ − f(x). By equation (3) the modulus of continuity r̂(ε, x) is at least
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Initialize:Mn ← ∅.
For λ = maxx∈X[n]

fk(x) down to 0:

• Let ελ , λ · Cδ,n/
√
k.

• Let
{
Ãi

}m
i=1

be the CCs of G (λ− ελ − ε̃) disjoint fromMn.

• Mn ←Mn ∪
{
xi , argmaxx∈Ãi∩Xλ[n]

fk(x)
}m
i=1

.

Return the estimated modesMn.

Figure 3: Estimate the modes of a multimodal f from X[n]. The parameter ε̃ serves to prune.

r̃/2. Therefore, if k satisfies

vd · (r̃/2)
d ·
(
f(x0)− Čx0

(r̃/2)2
)
≥ k

n
− Cδ,n

√
k

n
, (4)

we have with probability at least 1− δ

sup
x∈X\B(x0,r̃)

fk(x) <

(
1 + 2

Cδ,n√
k

)(
f(x0)− Čx0

(r̃/2)2
)
. (5)

Now we turn to x ∈ B(x0, rn(x0)). We have again by equation (1) that infx∈B(x,τr̃) f(x) ≥
f(x0) − Ĉx0

(τ r̃)2 , F̌ . Therefore, for x ∈ B(x0, rn(x0)) let ε = f(x) − F̌ , we have ř(ε, x) ≥
τ r̃ − rn(x0) ≥ τ r̃/2. It follows that, if k satisfies

vd · ((τ/2)r̃)
d ·
(
f(x0)− Ĉx0

(τ r̃)2
)
≥ k

n
+ Cδ,n

√
k

n
, (6)

we have by Lemma 4 that, with probability at least 1− δ (under the same event used in Lemma 3)

inf
x∈B(x,rn(x0))

fk(x) ≥
(

1− Cδ,n√
k

)(
f(x0)− Ĉx0

(τ r̃)2
)
. (7)

Next, with a bit of algebra, we can pick τ and r̃ so that the l.h.s. of (5) is less than the l.h.s.
of equation (7). It suffices to pick τ2 = Čx0/8Ĉx0 and r̃2 ≥ 24f(x0)Cδ,n/Čx0

√
k. Given these

settings, equations (4) and (6) are satisfied whenever k satisfies equation (2) of the lemma statement.

It follows that, with probability at least 1 − δ, infx∈B(x,rn(x0)) fk(x) > supx∈X\B(x0,r̃) fk(x).
Therefore, the empirical mode chosen by the procedure is in B(x0, r̂). We are free to choose r̃ as

small as max

{√
24f(x0)Cδ,n/

(
Čx0

√
k
)
, 2rn(x0)/τ

}
.

We’ve assumed so far the event that rn(x0) ≤ τ
2 rx0

. We bound the probability of this event as

follows. Let r ,
√

24f(x0)Cδ,n/Čx0

√
k. Under the above setting of τ , the Theorem’s assumptions

on k imply that r ≤ rx0 , and that vd · ((τ/2)r)
d ·
(
f(x0)− Ĉx0((τ/2)r)2

)
≥ k

n +Cδ,n
√
k
n . Again,

by equation (1), this implies that F(B(x0, (τ/2)r)) ≥ k
n +Cδ,n

√
k
n . By Lemma, 2, with probability

at least 1 − δ, Fn(B(x0, (τ/2)r)) ≥ k/n and therefore rn(x0) ≤ (τ/2)r ≤ (τ/2)rx0
. It now

becomes clear that we can just pick r̃ = r.

5.2 Multiple modes

In this section we turn to the problem of estimating the modes of a more general density f with an
unknown number of modes.

The algorithm of Figure 3 operates on the following set of nested graphs G(λ). These are subgraphs
of a mutual k-NN graph on the sample X[n], where vertices are connected if they are in each other’s
nearest neighbor sets. The connected components (CCs) of these graphsG(λ) are known to be good
estimates of the CCs of corresponding level sets of the unknown density f [9, 26, 27].
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Definition 5 (k-NN level set G(λ)). Given λ ∈ R, let G(λ) denote the graph with vertices in
Xλ

[n] ,
{
x ∈ X[n] : fk(x) ≥ λ

}
, and where vertices x, x′ are connected by an edge when and only

when ‖x− x′‖ ≤ α ·min {rk(x), rk(x′)}, for some α ≥
√

2.

We will show that for a given n, any sufficiently salient mode is optimally recovered; furthermore,
if f is uniformly continuous on Rd, then the procedure returns no false mode above a level λn → 0.

5.2.1 Optimal Recovery for Any Mode

The guarantees of this section would be given in terms of salient modes as defined below. Essentially
a mode x0 is salient if it is separated from other modes by a sufficiently wide and deep valley.
We define saliency in a way similar to [9], but simpler: we only require a wide valley since the
smoothness of f at the mode (as expressed in equation 1) takes care of the depth.

We start with a notion of separation between sets inspired from [26].
Definition 6 (r-separation). A,A′ ⊂ X are r-separated if there exists a (separating) set S ⊂ Rd
such that: every path from A to A′ crosses S, and supx∈S+B(0,r) f(x) < infx∈A∪A′ f(x).

Our notion of mode saliency follows: for a mode x, we require the critical set Ax of Definition 4 to
be well separated from all components at the level where it appears.
Definition 7 (r-salient Modes). A mode x of f is said to be r-salient for r > 0 if the following
holds. There exist Ax as in Definition 4 (with the corresponding rx, Ĉx and Čx), which is a CC of
say X λx , {x ∈ X : f(x) ≥ λx}. Ax is r-separated from X λx \Ax.

The next theorem again yields the optimal rates O(n−1/(4+d)) for k = O(n4/(4+d)).
Theorem 2 (Recovery of salient modes). Assume f satisfies Assumptions 1, 2. Suppose ε̃ =

ε̃(n)
n→∞−−−−→ 0. Let x0 be an r-salient mode for some r > 0. Assume k = Ω

(
C2
δ,n

)
. Then

there exist N = N (x0, {ε̃(n)}) depending on x0 and ε̃(n) such that the following holds for n ≥ N .
Let Ax0 , Ĉx0 , Čx0 be as in Definition 4, and let λx0 , infx∈Ax0 f(x). Let δ > 0. Suppose k further
satisfies(

24Cδ,nf(x0)

Čx0 min
{
r2
x0
/4, (r/α)2

})2

≤ k ≤

(
1

2

√
Cδ,n

Ĉx0

)4d/(4+d)

λ(2d+4)/(4+d)
x0

(vd
4
n
)4/(4+d)

.

LetMn be the modes returned by the procedure of Figure 3. With probability at least 1− 2δ, there
exists x ∈Mn such that

‖x− x0‖ ≤ 5

√
Cδ,n

Čx0

f(x0) · 1

k1/4
.

5.2.2 Pruning guarantees

The proof of the main theorem of this section is based on Lemma 7.4 of [24].

Theorem 3. Let Λ , supx f(x) and r(ε) , infx∈Rd min {r̂(ε, x), ř(ε, x)}. Assume f satisfies
Assumption 2. Suppose ε̃ = ε̃(n) satisfies r(ε̃) = Ω (k/n)

1/d, which is feasible whenever f is
uniformly continuous on Rd. In particular, if f is Hölder continuous, i.e.

∀x, x′ ∈ Rd, |f(x)− f(x′)| ≤ L ‖x− x′‖β , for some L > 0, 0 < β ≤ 1,

then we can just let ε̃ = Ω (k/n)
β/d since r(ε̃) ≥ (ε̃/L)1/β . Define

λ0 = max

{
2ε̃, 8

Λ

k
C2
δ,n,

(
k

n
+ Cδ,n

√
k

n

)
2

vd (r(ε̃/2)/2)
d

}
.

Assume k ≥ 36C2
δ,n. The following holds with probability at least 1 − δ. Pick any λ ≥ 2λ0, and

let λf = infx∈Xλ
[n]
f(x). All estimated modes inMn ∩ Xλ

[n] can be assigned to distinct modes in

M∩X λf .
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A Proofs for density estimation bounds

Proof of Lemma 3. For any x ∈ Rd and ε > 0, pick r = r(x) such that

vd · rd · (f(x) + ε) =
k

n
− Cδ,n

√
k

n
≤ vd · r̂(ε, x)d · (f(x) + ε) ,

whenever the last inequality holds. Thus, r ≤ r̂(ε, x), and hence by continuity of F ,

F(B(x, r)) ≤ vd · rd · (f(x) + ε) =
k

n
− Cδ,n

√
k

n
.

By Lemma 2, Fn(B(x, r)) < k/n implying rk(x) > r for all such x, with probability at least 1−δ.
It follows that

fk(x) <
k

nvdrd
=

1

1− Cδ,n/
√
k

(f(x) + ε) ≤
(

1 + 2
Cδ,n√
k

)
(f(x) + ε) .

Proof of Lemma 4. The proof mirrors the upper-bound proof. Pick any ε > 0. For any x where
f(x) > ε, pick r = r(x), such that

vd · rd · (f(x)− ε) =
k

n
+ Cδ,n

√
k

n
≤ vd · ř(ε, x)d · (f(x)− ε) ,

whenever the last inequality holds. Thus r ≤ ř(ε, x), and we have

F(B(x, r)) ≥ vd · rd · (f(x)− ε) =
k

n
+ Cδ,n

√
k

n
.

By Lemma 2, Fn(B(x, r)) ≥ k/n, implying rk(x) ≤ r for all such x, with probability at least
1− δ. Hence

fk(x) ≥ k

nvdrd
=

1

1 + Cδ,n/
√
k

(f(x)− ε) ≥
(

1− Cδ,n√
k

)
(f(x)− ε) .

B Mode estimation proofs

Proof of Lemma 5. By assumption, there exists B(x, r0) where ∇f is uniformly continuous (by
existence and ∇2f and compactness of the ball). On the other hand, for any ‖v‖ = 1 we have
limt→0 v

>∇f(x + tv)/t = v>∇2f(x)v, and −λd ≤ v>∇2f(x)v ≤ −λ1 where −λ1,−λd < 0
are eigenvalues of ∇2f(x).

By the above, there exists a ball r > 0 where for any ‖v‖ = 1 and t < r, v>∇f(x + tv)/t is
contained in an interval [−2Ĉx,−2Čx].

For any x′ ∈ B(x, r) let v ≡ (x′ − x)/ ‖x′ − x‖ denote the unit vector in direction x′ − x, then
write

f(x′)− f(x) =

∫ ‖x′−x‖

0

v>∇f(x+ tv) dt

Upper and lower-bound the integrand and conclude.

Proof of Theorem 2. We first proceed as in the proof of Theorem 1. Let τ2 , Čx0/8Ĉx0 , and let

r̃ ,

√
24Cδ,nf(x0)/

(
Čx0

√
k
)
.
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Let rn(x0) ≡ inf
{
r : B(x0, r) ∩X[n] 6= ∅

}
, i.e. the smallest radius around x0 containing a sam-

ple. As established in Theorem 1, under our settings of k, we have with probability at least 1 − δ
that rx0

≥ r̃ ≥ 2rn(x0)/τ .

Let F̂ , f(x0) − Čx0(r̃/2)2 and F̌ , f(x0) − Ĉx0(τ r̃)2. As argued in the proof of Theorem 1,
∀x ∈ B(x0, rn(x0)), ř

(
f(x)− F̌ , x

)
≥ τ r̃/2, and ∀x ∈ Ax0 \B(x0, r̃), r̂

(
F̂ − f(x), x

)
≥ r̃/2,

implying by Lemmas 3 and 4 that, with probability at least 1− 2δ,

sup
x∈Ax0\B(x0,r̃)

fk(x) <

(
1 + 2

Cδ,n√
k

)
F̂ ≤

(
1− Cδ,n√

k

)
F̌ ≤ inf

x∈B(x,rn(x0))
fk(x)

whenever k satisfies

vd · ((τ/2)r̃)
d · λx0

≥ k

n
+ Cδ,n

√
k

n
. (8)

Hence, if the procedures picks a maximizer of fk out of a set contained in Ax0
and intersecting

B(x0, rn(x0)), this maximize must be within r̃ of x0. Next, we show that the procedure indeed
picks a maximizer out of such a set.

Let λ ≥ infx∈B(x,rn(x0)) fk(x) be the first level (in the iteration of the procedure) containing a
point from B(x0, rn(x0)); we first upper-bound λ to get a handle on ελ. It’s clear that for all
x ∈ B(x0, rn(x0)) we have r̂(f(x0)−f(x), x) ≥ (τ/2)r̃. Hence, by Lemma 3, under the conditions
of (8) on k, we have λ ≤ (1 + 2Cδ,n/

√
k) · f(x0). It follows that ελ ≤ 2f(x0) ·Cδ,n/

√
k. This will

soon come in handy.

Now, let S denote the set which r-separates Ax0 from the rest of X λx0 . Define

XS x0 , {x : ∃ a path P from x to x0,P ∩ S = ∅} ,

i.e. the set of points reachable from x0 without crossing S. By definition XS x0
∩ X λx0 = Ax0

.

We need to introduce a new scale r̄ < rx0
(so that B(x0, r̄) ⊂ Ax0

) and show that, for n suffi-
ciently large, points in XS x0

\ B(x0, r̄) have significantly smaller fk value than that of points in
B(x0, rn(x0)).

Fix r̄ , rx0
/2 (actually any fixed r̄ ≤ rx0

/2 will do), and let F̄ = f(x0) − Čx0
(r̄/2)2. Given the

lower-bound on k in the statement of the lemma, we have r̃ ≤ r̄, and also r̃ ≤ r, where r is the
separation parameter. Then, for all x ∈ XS x0

\ B(x0, r̄) we have supx′∈B(x,r̃/2) f(x′) ≤ F̄ . To
see this, first notice that the ball B(x, r̃/2) is contained in (S + B(0, r)) ∪ XS x0

\ B(x0, r̄/2).
By equation (1) supx∈XS x0\B(x0,r̄/2) f(x) ≤ F̄ : this is clear for x ∈ Ax0

\ B(x0, r̄/2), while by
definition of XS x0 we have supx∈XS x0\Ax0 f(x) ≤ λx0 ≤ F̄ . On the other hand, the separation
condition ensures that supx∈S+B(0,r) f(x) < λx0

≤ F̄ .

We therefore have for all x ∈ XS x0
\ B(x0, r̄) that ř

(
F̄ − f(x), x

)
≥ r̃/2. Hence, under the

same conditions on k as in (8), calling on Lemma 3, we have with probability at least 1− 2δ

sup
x∈XS x0\B(x0,r̄)

fk(x) <

(
1 + 2

Cδ,n√
k

)
F̄ ≤

(
1− Cδ,n√

k

)
F̌ − 2

Cδ,n√
k
f(x0)− ε̃

≤ inf
x∈B(x,rn(x0))

fk(x)− ελ − ε̃, (9)

where the second inequality holds for sufficiently large n, provided Cδ,n√
k
→ 0 and ε̃(n)→ 0.

Similarly, by the separation assumption, for x ∈ S + B(0, r/2), ř
(
F̄ − f(x), x

)
≥ r/2 ≥ r̃/2.

Hence we have under our conditions on k that

sup
x∈S+B(0,r/2)

fk(x) <

(
1 + 2

Cδ,n√
k

)
F̄ ≤ inf

x∈B(x,rn(x0))
fk(x)− ε̃. (10)

It follows from (9) and (10) that the graph G (λ− ελ − ε̃) contains no point from XS x0
\B(x0, r̄)

and no point from S +B(0, r/2).
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Furthermore, for any point x ∈ B(x0, r̄), the ball B(x, r̃/2) is fully contained in Ax0
and therefore

has mass at least vd(r̃/2)dλx0
≥ k

n+Cδ,n
√
k
n . Hence, by Lemma 2, for all such points, rk(x) ≤ r̃/2.

Therefore if r/2 ≥ αr̃/2 ≥ αrk(x), there cannot be an edge between x ∈ B(x0, r̄) and points in
X \ XS x0

at the level Gλ−ε̃. Our lower-bound assumptions on k ensure that r̃ ≤ r/α.

It follows that there exists a CC Ãi ofGλ−ε̃, disconnected from X \XS x0
(and hence any previous

mode found by the procedure), such that Ãi ∩ Xλ
[n] contains only points from Ax0

and intersects
B(x0, rn(x0)). Therefore the procedure picks a point x = arg maxx∈Ãi∩Xλ[n]

fk(x) satisfying

‖x− x′‖ ≤ r̃.

Lemma 6 (Lemma 7.4 of [24]). Fix ε > 0 and let r(ε) , infx∈Rd min {r̂(ε, x), ř(ε, x)}. Define
Λ , maxx∈Rd f(x). Assume ε̃ ≥ 2ε. For any λ > 0, let G̃(λ) denote the graph obtained by
reconnecting any two CCs of G(λ) if they are connected in G (λ− ελ − ε̃), where ελ is as defined
in the procedure of Figure 3. The following holds with probability at least 1− δ.

Let Ã1 and Ã2 denote two disconnected sets of points of G̃(λ) for some λ > 0. Define λf ,
infx∈Ã1∪Ã2

f(x). Then Ã1 and Ã2 are disconnected in the level set {x ∈ X : f(x) ≥ λf} whenever
the following two conditions on λf hold: first,

vd(r(ε)/2)d(λf − ε) ≥
k

n
+ Cδ,n

√
k

n
,

and second, λf ≥ 8(Λ/k)C2
δ,n.

Proof of Theorem 3. Assume the event of Lemma 6. Notice that, for any λ > 0 considered by the

procedure, the sets
{
Ãi ∩Xλ

[n]

}m
1

are exactly the (vertices of) CCs of G̃(λ) which do not contain

the modesMn picked so far. For simplicity let’s denote Ãi ∩Xλ
[n] by Ãi,λ.

Fix λ > 0 such that λf , infx∈Xλ
[n]
f(x) ≥ λ0. It is easy to check that λf satisfies the two

conditions of Lemma 6 for ε = ε̃/2, since these conditions are satisfied by λ0. Now suppose w.l.o.g.

that
{
Ãi,λ

}m
1

are ordered in increasing order according to λi,f = minx∈Ãi,λ f(x). Starting with

i = 1, by Lemma 6,X λ1,f can be partitioned into disconnected subsetsA1 andX λ1,f \A1 containing
respectively Ã1,λ and ∪mi=2Ãi,λ. Assign the estimated mode x1 = argmaxx∈Ã1,λ

to any mode in

M∩ A1. Repeat the same argument successively for any Ãi,λ and ∪mj=i+1Ãj,λ till all estimated
modes xi are assigned to distinct modes in disjoint sets Ai ⊂ X λi,f .

Now, again by Lemma 6, X λf itself can be partitioned into disconnected subsets A and X λf \ A
containing respectively Ãλ = ∪mi=1Ãi,λ and Xλf

[n] \ Ãλ. Thus the estimated modes {xi} in Ãλ were
assigned so far to modes inM∩A.

We can now assign the modes in Xλ
[n] \ Ãλ (all the modes found at higher levels λ′ > λ) to distinct

modes in M ∩
(
X λ \Aλ

)
by repeating the above argument at higher levels λ′ > λ since λ′f ,

minx∈Xλ′
[n]
≥ λf ≥ λ0.

We have thus shown above that all modes in Mn ∩ Xλ
[n] can be assigned to distinct modes in

M∩X λf if λf ≥ λ0. Last we show that if λ ≥ 2λ0, then λf ≥ λ0.

By definition, λ0/2 ≥ ε̃ so we have r(λ0/2) ≥ r(ε̃), implying that

vd(r(λ0/2))d · (λ0/2) ≥ k

n
+ Cδ,n

√
k

n
.

Hence, by Lemma 3, with probability at least 1− δ (under the event of Lemma 2 also used to obtain
Lemma 6), for all x satisfying f(x) ≤ λ0, we have

fk(x) ≤
(

1 + 2
Cδ,n√
k

)
(f(x) + λ0/2) ≤ 2λ0.
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