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Abstract

Kernel regression or classification (also referred to as weighted ε-NN methods in Machine
Learning) are appealing for their simplicity and therefore ubiquitous in data analysis. How-
ever, practical implementations of kernel regression or classification consist of quantizing
or sub-sampling data for improving time efficiency, often at the cost of prediction quality.
While such tradeoffs are necessary in practice, their statistical implications are generally
not well understood, hence practical implementations come with few performance guaran-
tees. In particular, it is unclear whether it is possible to maintain the statistical accuracy
of kernel prediction—crucial in some applications—while improving prediction time.

The present work provides guiding principles for combining kernel prediction with data-
quantization so as to guarantee good tradeoffs between prediction time and accuracy, and
in particular so as to approximately maintain the good accuracy of vanilla kernel prediction.

Furthermore, our tradeoff guarantees are worked out explicitly in terms of a tuning
parameter which acts as a knob that favors either time or accuracy depending on practical
needs. On one end of the knob, prediction time is of the same order as that of single-nearest-
neighbor prediction (which is statistically inconsistent) while maintaining consistency; on
the other end of the knob, the prediction risk is nearly minimax-optimal (in terms of
the original data size) while still reducing time complexity. The analysis thus reveals the
interaction between the data-quantization approach and the kernel prediction method, and
most importantly gives explicit control of the tradeoff to the practitioner rather than fixing
the tradeoff in advance or leaving it opaque.

The theoretical results are validated on data from a range of real-world application
domains; in particular we demonstrate that the theoretical knob performs as expected.

1. Introduction

Kernel regression or classification approaches—which predict at a point x by weighting
the contributions of nearby sample points using a kernel function—are some of the most
studied approaches in nonparametric prediction and enjoy optimality guarantees in gen-
eral theoretical settings. In Machine Learning, these methods often appear as weighted
ε-Nearest-Neighbor prediction, and are ubiquitous due to their simplicity.

However, vanilla kernel prediction (regression or classification) methods are rarely im-
plemented in practice since they can be expensive at prediction time: given a large training
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data {Xi, Yi} of size n, predicting Y at a new query x can take time Θ(n) since much of
the data {Xi} has to be visited to compute kernel weights.

Practical implementations therefore generally combine fast-similarity search procedures
with some form of data-quantization or sub-sampling (where the original large training data
{Xi, Yi} is replaced with a smaller quantization set {q, Yq}1, see Figure 1) for faster process-
ing (see e.g. Lee and Gray, 2008; Atkeson et al., 1997). However, the effect of these approx-
imations on prediction accuracy is not well understood theoretically, hence good tradeoffs
rely mostly on proper engineering and domain experience. A main motivation of this work
is to elucidate which features of practical approaches to time-accuracy tradeoffs should be
most emphasized in practice, especially in applications where it is crucial to approximately
maintain the accuracy of the original predictor (e.g. medical analytics, structural-health
monitoring, robotic control, where inaccurate prediction is relatively costly, yet fast predic-
tion is desired).

The present work provides simple guiding principles that guarantee good tradeoffs be-
tween prediction time and accuracy under benign theoretical conditions that are easily met
in real-world applications.

We first remark that fast-similarity search procedures alone can only guarantee sub-
optimal time-improvement, replacing the linear order O(n) with a root of n; this is easy to
show (see Proposition 1). Therefore, proper data-quantization or sub-sampling is crucial to
achieving good tradeoffs between prediction time and accuracy. In particular we first show
that it is possible to guarantee prediction time of order O(log n) for structured data (data
on a manifold or sparse data) while maintaining a near minimax prediction accuracy as a
function of the original data size n (rather than the suboptimal quantization size).

Interestingly our sufficient conditions on quantization for such tradeoffs are not far from
what is already intuitive in practice: quantization centers (essentially a compression of the
data) are usually picked so as to be close to the data, yet at the same time far apart so
as to succinctly capture the data (illustrated in Figure 1). Formalizing this intuition, we
consider quantization centers Q = {q} that form (a) an r-cover of the data {Xi} (i.e. r-close
to data), and (b) an r-packing, i.e. are r far-apart. We show that, with proper choice of r,
and after variance correction, the first property (a) maintains minimax prediction accuracy,
while the second property (b) is crucial to fast prediction.

As alluded to earlier, the achievable tradeoffs are worked out in terms of the unknown
intrinsic structure of the data, as captured by the now common notion of doubling di-
mension, known to be small for structured data. The tradeoffs improve with the doubling
dimension of the data, independent of the ambient dimension D of Euclidean data in RD.
In fact our analysis is over a generic metric space and its intrinsic structure and thus allow
general representations of the data.

Finally, the most practical aspect of our tradeoff guarantees is that they explicitly cap-
ture the interaction between the quantization parameter r and the kernel bandwidth h.
Note that, for a fixed h, it is clear that increasing r (more quantization) can only improve
time while potentially decreasing accuracy; however the choice of h is not fixed in practice,
and paired with the choice of r, the direction of the tradeoffs become unclear. Our analysis
simplifies these choices, as we show that the ratio α = r/h acts as a practical knob that

1. Yq is some label assigned to quantization point q, depending on the labels of those data points Xi’s
represented by q.
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Figure 1: Quantization in kernel regression: given a bandwidth h > 0, the estimate fQ(x)
is a weighted average of the Y contributions of quantization-centers q ∈ Q (gray
points) which fall in the ball B(x, h). Each q ∈ Q contributes the average Y value
of the sample points close to it.

can be tuned (α → 1 or α → 0) to favor either prediction time or accuracy according to
application needs. In other words, rather than fixing a tradeoff, our analysis shows how
to control the tradeoff through the interaction of the parameters r and h; such simplified
control is valuable to practitioners since appropriate tradeoffs differ across applications.

The resulting approach to kernel prediction, which we term Kernel-Netting, or Netting
for short, can be instantiated with existing fast-search procedures and quantization methods
properly adjusted to satisfy the two conditions (a) and (b). In particular, the two conditions
are maintained by a simple farthest-first-traversal of the data, and are shown experimentally
to yield the tradeoffs predicted by the analysis. In particular the prediction accuracy of
the vanilla kernel predictor is nearly maintained as shown on datasets from real-world
applications. Furthermore, actual tradeoffs are shown empirically to be easily controlled
through the knob parameter α.

The rest of the paper is organized as follows. In Section 2 we discuss related work,
followed by a discussion of our theoretical results in Section 3. A detailed instantiation of
Netting is presented in Section 4. This is followed by experimental evaluations in Section
5. All the supporting proofs of our theoretical results are deferred to the appendix.

2. Related Work

We discuss various types of tradeoffs studied in the literature.

2.1 Tradeoffs in General

While practical tradeoffs have always been of interest in Machine Learning, they have been
gaining much recent attention as the field matures into new application areas with large data
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sizes and dimension. There are many important directions with respect to time-accuracy
tradeoffs. We next overview a few of the recent results and directions.

One line of research is concerned with deriving faster implementations for popular pro-
cedures such as Support Vector Machines (e.g. Bordes et al., 2005; Rahimi and Recht,
2007; Le et al., 2013; Dai et al., 2014; Alaoui and Mahoney, 2015), parametric regression
via sketching (e.g. Clarkson and Woodruff, 2013; Pilanci and Wainwright, 2014; Clarkson
et al., 2013; Shender and Lafferty, 2013; Raskutti and Mahoney, 2014).

Another line of research is concerned with understanding the difficulty of learning in
constrained settings, including under time constraints, for instance in a minimax sense or
in terms of computation-theoretic hardness (see e.g. Agarwal et al., 2011; Cai et al., 2015;
Chandrasekaran and Jordan, 2013; Berthet and Rigollet, 2013; Zhu and Lafferty, 2014).

Our focus in this paper is on kernel prediction approaches, and most closely related
works are discussed next.

2.2 Tradeoffs in Kernel Prediction

Given a bandwidth parameter h > 0, a kernel estimate fn(x) is obtained as a weighted
average of the Y values of (predominantly) those data points that lie in a ball B(x, h).
Note that data points outside of B(x, h) might also contribute to the estimate but they
are typically given negligible weights. These weights are computed using kernel functions
that give larger weights to data points closest to x. Kernel weights might be used directly
to average Y values (kernel regression, see Gyorfi et al., 2002), or they might be combined
in more sophisticated ways to approximate f by a polynomial in the vicinity of x (local
polynomial regression, see Gyorfi et al., 2002).

In the naive implementation, evaluation takes time Ω(n) since weights have to be com-
puted for all points. However many useful approaches in the applied literature help speedup
evaluation by combining fast proximity search procedures with methods for approximating
kernel weights (see e.g. Carrier et al., 1988; Lee and Gray, 2008; Atkeson et al., 1997;
Morariu et al., 2009). More specifically, let X1:n = {Xi}n1 , such faster approaches quickly
identify the samples in B(x, h) ∩ X1:n, and quickly compute the kernel weights of these
samples. The resulting speedup can be substantial, but guarantees on speedups are hard
to obtain as this depends on the unknown size of B(x, h) ∩ X1:n for future queries x. In
particular, it is easy to show as in Proposition 1 below, that |B(x, h) ∩X1:n| is typically at
least a root of n for settings of h optimizing statistical accuracy (e.g. `2 excess risk).

Proposition 1 There exists a distribution P supported on a subset on RD such that the
following holds. Let X1:n ∼ Pn denote a randomly drawn train set of size n, and h =
O
(
n−1/(2+D)

)
(this is the order of a statistically optimal bandwidth in kernel regression

where E [Y |x] is Lipschitz, see Gyorfi et al., 2002). Fix any x in the interior of the support
of P . For n sufficiently large, we have with probability at least 1/2 on X1:n that

|B(x, h) ∩X1:n| = Ω
(
n2/(2+D)

)
.

The distribution P in the above proposition corresponds to actually reasonable distri-
bution such as ones with (upper and lower) bounded density on a full-dimensional subset
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of RD. The proposition (whose proof is given in the appendix) is easily extended to low-
dimensional subsets X of RD, resulting in larger lower-bounds of the form Ω

(
n2/(2+d)

)
,

d = dim(X ) (lower-dimensional balls tend to have larger mass).

Approaches that further quantize the data X1:n (or sub-sample from it), e.g. Carrier
et al. (1988) can attain better time complexity, however likely at the cost of decreased
accuracy in estimates. The resulting tradeoffs on time and accuracy are generally not well
understood, and largely depend on how the data is compressed. The present work derive
general insights on how to quantize to guarantee good tradeoffs.

The present work extends on insights from an earlier conference work (Kpotufe, 2009)
which provides initial results in the case of regression. However, that earlier work only
manages a fixed (theoretical) tradeoff between time complexity and accuracy. Instead, as
discussed above, the present work provides a controllable tradeoff and works out the con-
tinuum of achievable rates and time complexity as the knob α is tuned up or down. This
requires a refined analysis of all supporting results. Furthermore, the main theoretical re-
sults are now shown to carry over to the classification regime as a corollary to the risk
bounds for regression; the time complexity bounds are the same for regression and clas-
sification since kernel classification involves no extra-work over kernel regression. Finally,
the refined analysis of the present work is further supported by extensive experimental
evaluation.

3. Overview of Theoretical Results

We start this section with our main theoretical assumptions and useful definitions towards
the discussion of results.

3.1 Preliminaries

We are interested in classification or regression where the learner has access to training data
(X1:n, Y1:n) = {Xi, Yi}n1 ∼ PnX,Y where PX,Y is unknown. The goal is to return a regression
estimate or classifier that maps future inputs X to outputs Y while achieving good tradeoffs
on accuracy and estimation time for Y = Y (X).

The input X belongs to a metric space (X , ρ). The learner has access to ρ while X is
only observed through the data X1:n. The output Y belongs to a space Y, where Y = {0, 1}
in the case of classification, or Y = RdY in the case of regression (we allow multivariate
regression outputs).

Next we overview our working assumptions on the input and output spaces. Our main
assumptions are rather mild and are specified under Assumptions 1, 2. Our theoretical
results generally have no other assumption unless explicitly specified.

3.1.1 Input Space X

We need to capture the complexity of the input data X through notions of data space
complexity such as metric dimension of the underlying space (X , ρ).

For intuition, consider a natural two-dimensional object such as a square. A square can
be covered by 4 = 22 squares of half its side length. Similarly, a cube can be covered by
8 = 23 cubes of half its side length. Notice that the exponents correspond to the natural
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dimensions of the objects. This sort of intuition can be formalized in a number of ways
involving how the space X might be covered by subsets such as balls under the metric ρ.

Definition 2 Let x ∈ X and r > 0. The ball B(x, r) is defined as {x′ ∈ X : ρ (x′, x) ≤ r}.

Next we introduce proper definitions of what we mean by a cover of a space, along with
related notions that appear throughout the discussion.

Definition 3 (Covers, packings, and nets) Consider a metric space (X , ρ) and r > 0.

– Q ⊂ X is an r-cover of X if for all x ∈ X , there exists q ∈ Q, s.t. ρ (x, q) ≤ r. In
other words, the balls B(q, r) cover X , i.e. X ⊂ ∪q∈QB(q, r).

– Q ⊂ X is an r-packing if for all q, q′ ∈ Q, ρ (q, q′) > r.

– Q ⊂ X is an r-net of X1:n if it is an r-cover and an r-packing.

Note that, on the algorithmic side, we will be interested in packings and covers of the
input data X1:n (rather than of X ) as a means to attain good time-accuracy tradeoffs.

We can now introduce the following (common) notion of metric dimension.

Definition 4 The doubling dimension of (X , ρ) is the smallest d such that any ball B(x, r)
can be covered by 2d balls of radius r/2.

The doubling dimension captures the inherent complexity of various settings of contempo-
rary interest including sparse datasets and low-dimensional manifolds (Dasgupta and Fre-
und, 2008) and is common in the Machine Learning literature (see for instance Krauthgamer
and Lee, 2004; Clarkson, 2005; Beygelzimer et al., 2006; Dasgupta and Freund, 2008; Got-
tlieb et al., 2013; Reddi and Poczos, 2014).

We have the following assumptions on X:

Assumption 1 The metric space (X , ρ) has bounded diameter maxx,x′∈X ρ (x, x′) = ∆X ,
and doubling dimension d.

3.1.2 Output Space Y

Both classification and regression can be treated under the same assumptions on conditional
distributions PY |x. In particular we are interested in the behavior of the unknown regression
function f :

Definition 5 The regression function is defined for all x ∈ X as f(x) = E [Y |x]. For
classification, its range is [0, 1] while for regression, its range is RdY . In a slight abuse of
notation, we will let the norm ‖f(x)− f(x′)‖ denote the absolute value on [0, 1] (classifica-
tion) or the Euclidean norm on RdY (regression).

We have the following assumptions:

Assumption 2 The regression function f is λ-Lipschitz for some unknown λ > 0:

∀x, x′ ∈ X ,
∥∥f(x)− f(x′)

∥∥ ≤ λρ (x, x′) .
Let Y (x) ∼ PY |x, its variance, namely EY |X=x ‖Y − f(x)‖2, is uniformly bounded by σ2

Y

over x ∈ X . Furthermore, f is bounded over X , i.e. supx,x′∈X ‖f(x)− f(x′)‖ ≤ ∆f .
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The Lipschitz condition is common and known to be mild: it captures the idea that whenever
x and x′ are close, so are f(x) and f(x′), uniformly.

Note that the boundedness conditions hold automatically in the case of classification
since then Y is itself bounded. In the case of regression, Y itself is allowed to be unbounded;
the boundedness assumption on f is immediate from the continuity of f (implied by the
Lipschitz condition) whenever (X , ρ) has bounded diameter (see Assumption 1).

3.1.3 Risk and Excess Risk of a Regression Estimate

Suppose g : X → Y is some estimate of f . We define its `2 pointwise risk at x to be
R(g, x)

.
= EY |X=x ‖Y − g(x)‖2 and its integrated risk to be R(g)

.
= EX R(g,X). Standard

manipulations show that

R(g, x) = R(f, x) + ‖f(x)− g(x)‖2 , and therefore

R(g) = R(f) + EX ‖g(X)− f(X)‖2 .

In this paper we are interested in the integrated excess risk

‖g − f‖2 .
= R(g)−R(f) = EX ‖g(X)− f(X)‖2 . (1)

Many factors contribute to the complexity of nonparametric regression, more precisely,
to the excess risk ‖fn − f‖2 of the regression estimate fn. Important quantities identi-
fied in the literature are the smoothness of the regression function f(x), the Y -variance

E
[
‖Y − f(x)‖2 |X = x

]
≤ σ2

Y , and the dimension of the input space X .

Curse of dimension. Suppose X ⊂ RD. Then, for any regression estimate fn,
there exists PX,Y where f is λ-Lipschitz, such that the error ‖fn − f‖2 is of the order(
λDσ2

Y /n
)2/(2+D)

(Stone, 1982). Clearly, the dimension D has a radical effect on the qual-
ity of estimates. With kernel regression estimates however, D in the above rate can be
replaced by d� D, where d is the doubling dimension as we will soon see.

Such adaptivity in kernel regression was first shown in Bickel and Li (2006) for data
on a manifold,2 and more recently in Kpotufe and Garg (2013) for a different measure of
intrinsic dimension related to doubling measures (Clarkson, 2005) and doubling dimension.

We will show how to maintain adaptive rates in terms of the unknown doubling dimen-
sion while reducing the data to speedup prediction. This will also be true in the case of
classification as explained below.

3.1.4 Risk and Excess risk of a Classifier

The pointwise risk of a classifier l : X 7→ {0, 1} is defined as R0,1(l, x) = E Y |X=x1[l(x) 6= Y ],
and the integrated risk, or classification error, is given as R0,1(l) = EXR(l,X).

A kernel classifier is a so-called plug-in classifier. These are classifiers of the form lg(x) =
1[g(x) ≥ 1/2] where g ∈ [0, 1] is an estimate of the regression function f(x) = E [Y |x]. It is
well known that the Bayes classifier lf attains the smallest pointwise risk at every x ∈ X .

The excess risk of a plug-in classifier is directly upper-bounded by regression excess risk
(Devroye et al., 1996):

R0,1(lg)−R0,1(lf ) ≤ 2E |g(X)− f(X)| ≤ 2 ‖f − g‖ . (2)

2. The paper concerns local polynomial regression but the results are easily extended to kernel regression.
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We can therefore proceed with a single analysis for both classification and regression based
solely on the assumptions on the regression function f . We note that the above discussion
on curse of dimension also apply to classification, unless more regularity is assumed on
f (see e.g. a discussion of such additional noise assumptions in Audibert and Tsybakov,
2007).

3.2 Results and Key Insights on Tradeoffs

We are now ready to discuss the two main goals of Netting, namely improved estimates and
good evaluation time. Many instantiations of the approach are possible, combining a choice
of kernel function, and choice of quantization Q with fast-proximity search. The results in
this section remain generic, and only assume that Q forms an r-net of the data for some r
properly tied to the kernel bandwidth. In Section 4 we discuss how to exactly obtain such
quantizations, and discuss details of the prediction procedures.

In contrast with usual analyses of kernel regression, the added technicality in establishing
these results is in dealing with non-i.i.d. data: the quantization points q ∈ Q on which the
estimates are defined, and their assigned Yq values, are interdependent, and also depend on
the data in nontrivial manners (since we only assume a generic Q that forms an r-net).
These interdependencies are handled by properly decomposing the risk, and conditioning
on the right sequence of events (see conditional variance and bias bounds of Appendix A).

3.2.1 Main Results

Our main results on tradeoffs are given in the next theorem. The theorem relies on the
benign Assumptions 1 and 2 on X and Y, and considers Netting with a generic quantization
Q of the data. It is shown that good tradeoffs can be guaranteed whenever Q is an r-net
of the data (see Definition 3). The tradeoffs are given in terms of a knob α = r/h which
can be dialed up or down to favor either accuracy or time. The regression estimate, under
a generic quantization Q is given as follows:

Definition 6 (Regression estimate) Given a bandwidth h > 0, and 0 < α < 3/4, con-
sider an αh-net Q of the sample X1:n, where Q is independent of Y1:n. Assign every point
Xi ∈ X1:n to a single q ∈ Q such that ρ (Xi, q) ≤ αh. For q ∈ Q, let nq denote the number
of points from X1:n assigned to it, and let Ȳq denote the average Y value of points assigned
to q.

Let the kernel K(u) be a non increasing function of u ∈ [0,∞); K is positive on u ∈
[0, 1), maximal at u = 0, and is 0 for u ≥ 1. Define the regression estimate as

fQ(x) =
∑
q∈Q

wq(x)Ȳq, where (3)

wq =
nq(K(ρ (x, q) /h) + ε)∑

q′∈Q nq′(K(ρ (x, q′) /h) + ε)
,

for a positive correction 0 < ε ≤ K(3/4)/n2.

Most common kernels satisfy the above conditions, e.g., triangle kernel K(u) = |1− u|+,
box kernel K(u) = 1[u ≤ 1], Epanechnikov K(u) = (1− u2)+, etc.
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The Kernel correction ε simply insures that we do not divide by 0; the (technical) upper-
bound on ε ensures that the error term induced by ε is of smaller order than the desired
rate. Our results hold for any ε as described above, and in our implementation we just set
it very small to 1/n2.

Theorem 7 Let fQ be defined as in (5). The following holds under Assumptions 1 and 2.

1. Regression: for any h > 0, we have

E
(X1:n,Y1:n)

‖fQ − f‖2 ≤
C
(
σ2
Y + ∆2

f

)
n · ((3/4− α)h/(2∆X ))d

+ (1 + α)2λ2h2 +
∆2
f

n

where d is the doubling dimension of X , ∆X is its diameter, and the constant C
depends only on K(·).

2. Classification: it follows by (2) that the excess risk of the corresponding Netting clas-
sifier lfQ = 1[fQ ≥ 1/2] over the Bayes classifier lf = 1[f ≥ 1/2] satisfies

EX1:n,Y1:nR0,1(lfQ)−R0,1(lf ) ≤ 2

 C
(
σ2
Y + ∆2

f

)
n · ((3/4− α)h/(2∆X ))d

+ (1 + α)2λ2h2 +
∆2
f

n

1/2

.

3. Time complexity: the estimate fQ(x), used in either regression or classification, can
be obtained in worst-case time C ′

(
log(∆X /αh) + α−d

)
, for some C ′ that depends on

d, but independent of the choice of x ∈ X , h and α.

The choice of 0 < α < 3/4 in the above theorem can be relaxed to any 0 < α < α0 < 1,
simply replacing 3/4 everywhere it appears with α0. The need to for an upper-bound less
than 1 on α stems from the need for considering only those centers q that fall in the interior
of B(x, h) and hence contribute non-negligible weight to the estimate fQ(x).

The accuracy results (items 1 and 2) of the above theorem holds simultaneously for any
h and is decomposed into variance and bias terms. Thus the bound can be optimized over
choices of h as is done later in Corollary 8 (which further establishes that a good choice of
h can be obtained through cross-validation).

The risk bounds mainly depend on α through the variance terms of the form C/n ·
((3/4 − α)h)d while the bias term is effectively O(λh)2. This bound is best as α → 0 and
recovers known variance bounds (see e.g. Gyorfi et al., 2002; Tsybakov and Zaiats, 2009)
for kernel regression and classification for α = 0 (in which case there is no quantization,
i.e. Q = X1:n). We emphasize that the bound here is adaptive to the unknown intrinsic
dimension d of the data space X (for X ⊂ RD), which is now known to be a feature of
kernel regression and other distance-based procedures (see e.g. Bickel and Li, 2006; Scott
and Nowak, 2006; Lafferty and Wasserman, 2007; Kpotufe, 2011; Kpotufe and Dasgupta,
2012; Kpotufe and Garg, 2013; Gottlieb et al., 2013). In other words, the achieved tradeoffs
are best for structured data as captured by its intrinsic dimension d.

The time complexity of Theorem 7 is expressed as worst-case over any choice of x and h.
In particular, it depends exponentially on the unknown doubling dimension d of X (through

9



Kpotufe and Verma

α and possibly through C ′), which as previously discussed, can be much smaller than the
ambient dimension D for structured high-dimensional data (e.g. X is O(d)-sparse, or is an
O(d)-dimensional submanifold of RD). This sort of worst-case time dependence on intrinsic
dimension cannot be avoided as one can construct doubling-metrics X where fast-similarity
search requires time Ω

(
2O(d) log n

)
(see e.g. Krauthgamer and Lee, 2004), but fortunately

does not seem typical of practical data (see experiments).

The time complexity of the theorem is best as α→ 3/4 and depends on the number of
points in the range B(x, h) ∩ Q (which can be shown to be at most O(α−d), independent
of n) but does not depend on the number of points in B(x, h) ∩ X1:n (the effective range
for vanilla kernel-prediction which can be a root of n as shown in Proposition 1). For fixed
α ≈ 3/4, the time complexity is of order O(log(∆X /h)); thus if h is of the form n−1/O(d)

(the theoretical order for risk-optimal h) the time complexity is O(log n).

We emphasize that a time complexity of O(log n) is the best attainable for fast-range
search (see e.g. Krauthgamer and Lee, 2004; Beygelzimer et al., 2006) when the range
B(x, h) contains a constant number of points. In particular O(log n) is the time complexity
for single-nearest-neighbor search (a range of 1 point). This is interesting in that the
procedure remains statistically consistent (unlike 1-NN or any constant-NN approach), i.e.,
fQ →P f for fixed α provided h→ 0 and nhd →∞.

As is often the case when providing guarantees which hold in the worst-case, the bounds
of the above theorem are quite conservative in practice, but accurately identify the depen-
dence of the Netting approach on the parameter α. This is further shown in the experi-
mental evaluations of Section 5; in particular the dependence on the unknown d is often
much milder than the worst-case time complexity above, as the achievable time-savings are
significant for relatively small values of α ensuring good accuracy.

We discuss the main technical insights in our analysis in the next two subsections on
accuracy and time complexity.

3.2.2 Maintaining Good Accuracy

While Q in Theorem 7 is an αh-net, the accuracy statements (items 1 and 2) in fact only
require Q to be an αh-cover of X1:n. As stated, the classification result (item 2) is a direct
consequence of the regression result (item 1). We therefore only need to discuss the technical
insights behind the regression accuracy bounds. Item 1 of Theorem 7 is obtained as Lemma
14 proved in the appendix. The main insights are as follows.

As is well known, the excess `2 risk of a regression estimate fQ is a sum of its variance

and its square bias. The bias of a kernel regression estimate f̂(x) at a point x is a function
how far the data points contributing to the estimate are from x, and is order O(h). So,
suppose Q is an αh-cover of the data; every center q being close to the data X1:n, the data
points contributing to the estimate fQ(x) (the points assigned to the centers q contributing
to the estimate) are O(h) close to x, so the bias remains of order O(h) (Lemma 13).

The variance of a quantization-based estimator such as fQ is more problematic and
requires variance correction, consisting here of weighting every center q by the number
nq of data points assigned to it. To see this, remember that the variance of a kernel estimate

f̂(x) (in fact of distance-based estimates in general) depend on the number of points say nx
contributing to the estimate, and is of the form 1/nx. Without the variance correction (i.e.

10
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if every q is weighted only by the kernel K) the information in nx is lost; hence effectively
only the net centers in B(x, h)∩Q contribute to the estimate; suppose there are nQ,x < nx
such centers, we will then get a worse variance bound of the form 1/nQ,x. By adjusting
the kernel weights of every q with nq, we properly account for all data contributing their
estimates, and can show that the variance of fQ is then of similar order as that of a vanilla
kernel estimate (Lemma 12).

Analysis outline. The bias analysis is broken into the bias due to net centers q close
to the query x, and the bias due to centers q far from x; for q’s close to x the analysis is
fairly standard by following the above insights; the new technicality is in handling the bias
due to q’s far from x, which is done by considering both situations where x is appropriately
close to the data and far from the data.

For the variance analysis, notice that our basic variance correction can be viewed as
replacing the original kernel K with one that accounts for both distances ρ (x, q) and density
at q. This makes the variance analysis relatively non-standard, along with the fact that we
have little control over the data-dependent choice of Q. The variance analysis is divided
over queries x that are particularly close to centers in Q (and therefore result in high
weights wq and low variance) and those queries x that are far from Q (and therefore result
in unstable estimates). Integrating properly over the data space X and the choice of data
X1:n, Y1:n helps circumvent the dependence of Q on X1:n, and also reveals that the estimator
fQ remains adaptive to the unknown intrinsic dimension d of X (by further breaking the
integration over an appropriately refined O(h)-cover of X depending on α).

Risk dependence on α. The risk bound of Theorem 7 depends on α through the
variance term of the form 1/n · ((3/4 − α)h)d, assuming ∆X = 1. Noting that the typical
volume of a ball of radius r in a d-dimensional space is of the form rd, if PX is nearly uniform
in a neighborhood of a query x (or has upper and lower bounded density) then the term
n · ((3/4− α)h)d corresponds to the expected number of points in a ball B(x, (3/4− α)h).
In contrast, the variance of a kernel estimate would depend on the number of points in
the ball B(x, h). The difference is easily explained: the estimate fQ(x) is based on the
data through assigned centers q ∈ Q falling in B(x, h); however, the data assigned to these
q’s—this is the actual data driving the estimate and its variance—are only guaranteed to be
in B(x, (1− α)h). Rather than using 1, i.e., considering q’s as far as h from x, we consider
only q’s at most 3h/4 from x to ensure they contribute non-negligible weights wq to fQ(x)
(in fact, we can use any 0 < α0 < 1 rather than 3/4), which results in a variance bound
depending on the mass of B(x, (3/4 − α)h). Thus the risk bound captures the worst-case
dependence on α and cannot be further tightened without additional assumptions of the
interaction between Q and PX .

Choice of h. It follows from Theorem 7 above that the bandwidth h can be chosen by
cross-validation to obtain a nearly minimax-optimal rate in terms of the unknown distribu-
tional parameters d and λ, where α is viewed as a constant. This is stated in the corollary

below where ĥ is assumed to be picked out of a range H
.
= {∆X ·2−i/(3/4−α)}dlogne

0 , using
an independent validation sample of size n.

Corollary 8 Assume the conditions of Theorem 7. Assume further that Y has bounded

diameter, and w.l.o.g. contains the 0 vector. Let ∆Y = max
{

diam(Y), σ2
Y + ∆2

f

}
. Suppose

11



Kpotufe and Verma

n ≥
(

λ∆X
∆Y (3/4−α)

)1/(2+d)
. There exist C depending on X and the kernel K such that the

following holds. Define

Φ(n) = C

(
λ∆X

3/4− α

)2d/(2+d)
(

∆2
Y
n

)2/(2+d)

, and C1 =
K(3/4) + ε

K(0) + ε
, C2 = 1/C1.

A bandwidth ĥ can be selected by cross-validation over O(log n) choices to guarantee

E

∥∥∥fQαĥ − f∥∥∥2
≤ Φ(n) + 4∆2

Y

√
lnn

n
+ 2(C2 − C1)2∆2

Y · 1

[
n <

(
∆Y(3/4− α)

λ∆X

)2
]
. (4)

In the case of classification, by equation (2), the excess risk for lfQ
αĥ

is bounded by twice

the square-root of the r.h.s. above.

Notice that, for n sufficiently large, the third term in (4) is 0, so the rate is given by Φ(n).
This rate is minimax-optimal for α fixed, with respect to the intrinsic dimension d and
Lipschitz parameter λ (see matching lower-bound in Kpotufe, 2011).

3.2.3 Maintaining a Fast Evaluation Time

The time complexity of Theorem 7 (item 3) only requires that the quantization Q be an
αh-packing of the data X1:n. Together with the requirement of Q being an αh-cover for
good accuracy, we get the theorem’s requirement of Q being an αh-net.

The time complexity relies on noticing that the time to estimate fQ(x) depends on the
number of centers q in the range B(x, h)∩Q and how fast these points can be identified by a
given fast-range search procedure. The weights nq can be precomputed during preprocessing
and therefore do not contribute to estimation time.

Intuitively, the farther points in B(x, h)∩Q are, the fewer such points there should be.
In particular, if they are over h far apart, there could only be one point in B(x, h) ∩ Q.
This intuition carries over to αh-nets where all points in B(x, h) ∩ Q are over αh apart.
This is stated in the following lemma which relies on simple arguments that are standard
in analyses of fast proximity search procedures. Its proof is given in the appendix.

Lemma 9 Suppose X has doubling dimension d. Let Q be a set of centers forming an
αh-packing, 0 < α < 1. Then for any fixed c ≥ 1, maxx∈X |Q ∩B(x, c · h)| ≤ Cα−d, where
C depends on d and c.

Again, the above bound cannot be tightened, since following directly from the definition
of doubling-dimension, it is easy to construct X such that there is a ball of radius 1 with
largest α-packing of size roughly α−d (e.g. X is a d-dimensional hypercube with l∞ metric).

Now it is left to ensure thatQ∩B(x, h) can be identified quickly. As previously discussed,
we can employ a generic fast-range search procedure. We will expect the time complexity to
be of the form τ(Q) + α−d, where τ(Q) is the time to identify a near-neighbor q of a query
x in Q (range-search typically then consists of traversing a precomputed neighborhood of
q). In particular, the statement of Theorem 7 relies on results from Krauthgamer and Lee
(2004) and is proven in Lemma 16 in the appendix.

12
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4. Detailed Instantiation of Netting

We now discuss instantiations of the insights of Theorem 7. In Section 4.1 below, we discuss
a few ways to exactly obtain an r-net of the data. This is followed by the regression and
classification procedures in Section 4.2.

4.1 Obtaining an r-net

Algorithm 1 below details a standard way to building an r-net offline using a farthest-
first-traversal. This is an O(n2) procedure, but is easily implemented to handle all r > 0
simultaneously in O(n) space (notice that Qr ⊂ Qr′ in Algorithm 1 whenever r > r′).

Algorithm 1: r-net with farthest-first traversal

Input: points {xi} of size n, r > 0.
Initialize Qr ← {x1}.
Define ρ (xi, Qr)

.
= minxj∈Qr ρ (xi, xj).

while max{xi} ρ (xi, Qr) > r do
Add x

.
= argmax{xi} ρ (xi, Qr) to Qr.

end while
Return r-net Qr.

For fixed r, an r-net can be obtained online in time
∑n

i=1 t(i) where t(·) is the time-
complexity of an online black-box nearest neighbor search procedure (e.g. Krauthgamer and
Lee, 2004; Beygelzimer et al., 2006). Thus, if interested in a fixed r, the r-net could be ob-
tained in time O(n× time for a nearest-neighbor search) which, as observed empirically for
fast-search procedures, could behave as low asO(n log n) depending on the fast-search proce-
dure and the data (see e.g. the nice discussions in Krauthgamer and Lee, 2004; Beygelzimer
et al., 2006). This online approach is given in Algorithm 2.

Algorithm 2: r-net online

Input: points {xi} of size n > 1, r > 0.
Initialize Qr ← {x1}.
Define ρ (xi, Qr)

.
= minxj∈Qr ρ (xi, xj).

for i = 2 to n do
Add xi to Qr if ρ (xi, Qr) > r.

end for
Return r-net Qr.

Proposition 10 (Correctness of Algorithms 1 and 2) Qr is an r-net over {xi}.

Proof By construction Qr is an r-packing in both procedures. It is also an r-cover since
the only points not added to (the current) Qr are within distance r of Qr.

13
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4.2 Prediction Procedure

Algorithm 3 describes the prediction procedure fQ in the case of regression. Instantiations
for classification follow as direct plug-ins lfQ

.
= 1[fQ ≥ 1/2] of the corresponding regression

estimate fQ as discussed in Section 3.1.4.

Algorithm 3: Netting: r-nets, fQ(x)

Input: h > 0, query point x, αh-net Q of the data.
Assign every x ∈ X1:n to closest center q ∈ Q (break ties arbitrarily).

Precomputed: Ȳ ← average Y value over training data.
nq ← number of training points assigned to q ∈ Q.
Ȳq ← Average Y value of training points assigned to q ∈ Q.
Pick any 0 < ε ≤ K(3/4)/n2.

Return fQ(x)←
∑

q∈Q nqK(ρ (x, q) /h)Ȳq + εnȲ∑
q′∈Q nq′K(ρ (x, q′) /h) + εn

.

The estimation of fQr(x) is already given in Theorem 7, and is given in an equivalent
form (closer to implementation) in Algorithm 3. The form given in Algorithm 3 pulls out the
kernel correction ε and makes it clear that we only need to identify those q’s with nonnegative
kernel values (using any black-box range-search procedure). In light of Theorem 7 we can
expect this version of Netting to be competitive with kernel regression in terms of accuracy
but considerably better in terms of time complexity. We will see that this holds empirically.

5. Experiments

In this section we discuss the practical benefits of Netting, and in particular verify experi-
mentally that the knob α can be adjusted to favor estimation time or prediction accuracy
on benchmark datasets from a diverse set of application domains.

5.1 Tradeoff Between Estimation Time and Prediction Accuracy

Datasets. We selected a number of prediction benchmarks from different application do-
mains, including some large-scale prediction tasks. Datasets are summarized in Table 1.

The first prediction task is taken from robotic controls. The goal here is to learn the
inverse dynamics for the movement of an anthropomorphic robotic arm. That is, we want to
predict the torque required to move the robotic arm to a given state, where each state is a 21-
dimensional vector of position, velocity and acceleration (Vijayakumar and Schaal, 2000).3

Different torques are applied at seven joint positions, we predict the first torque value in
our experiments as a regression task. This dataset contains 44,484 training examples.

The second prediction task comes from the medical image analysis domain. The dataset
consists of 384 features extracted from 53,500 Computed Tomography (CT) scan images

3. The dataset was taken from Rasmussen and Williams (2006).
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Dataset Name Application Domain n D Task

SARCOS3 Robotic Control 44k 21 regression
Location of CT slices (axial)4 Medical Image Analysis 54k 384 regression
MiniBooNE4 Particle Physics 130k 50 classification

Table 1: Summary of the datasets used for time-accuracy tradeoff experiments.

Datasets SARCOS (42k) CT Slices (51k) MiniBooNE (128k)

α = 1/6 0.99 - 2.03 0.93 - 1.29 0.99 - 1.17

α = 2/6 0.99 - 4.10 0.92 - 2.04 0.99 - 1.65

α = 3/6 0.98 - 6.31 0.91 - 3.17 0.99 - 4.05

α = 4/6 0.96 - 7.70 0.91 - 5.40 0.98 - 6.42

α = 5/6 0.89 - 9.26 0.85 - 11.94 0.94 - 8.83

α = 6/6 0.77 - 10.14 0.43 - 15.33 0.88 - 10.22

Table 2: The two numbers in each cell are error ratio, vs. time ratio (w.r.t. base kernel
method), for different datasets. The error ratio (loss in accuracy) is the error of
the base kernel method over the error of the method (for a given α value). The
time ratio (time improvement) is the estimation time of the base kernel method
over the estimation time of the method (for a given α value). Shown are averages
over multiple runs (as described in the experimental section). For the MiniBooNE
dataset, the error is the 0-1 classification error, while for the other datasets we use
RMSE. Some of the best tradeoffs are highlighted, appearing at different α values
for different datasets. As predicted by the analysis, in many such cases, little
accuracy is lost when following our conditions on quantization. Furthermore, as
predicted by the analysis, the knob α can be seen to control the tradeoffs, i.e.
relative accuracy goes down as α→ 1, while time gain goes up.

from 74 distinct patients (Graf et al., 2011).4 The goal is to predict the relative location of
the CT slice on the axial axis of the human body. This is a regression task.

The third prediction task is from Particle Physics, where the goal is to classify elementary
particles. Particles are either electron neutrinos (signal) or muon neutrinos (background)
collected from the MiniBooNE (Booster Neutrino) experiment (Roe et al., 2005).4 There
are 50 features computed for each event (observation), with a total of 130,065 events.

Experimental setup. We consider increasing settings of the trade-off knob α from
1
6 ,

2
6 , . . . ,

6
6 , while we monitor the prediction accuracy and evaluation time for different

sample sizes of each dataset. The results (accuracy and prediction time w.r.t. the vanilla
kernel method) for the largest sample sizes are reported in Table 2, while in Figure 2 we
report results for increasing sample sizes.

A basic experiment is as follows. We select 2,000 random samples from each dataset
for testing, and use (part of) the rest for training. Training sizes are logarithmically space

4. The dataset was taken from UCI Machine Learning repository (Lichman, 2013).
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from 100 samples to the maximum training dataset size. For each training size, results are
averaged over 5 draws of training and testing samples.

Implementation details. Both r-nets and kernel regression (baseline) can signifi-
cantly benefit from using a fast nearest neighbor search mechanism. We use the default fast
rangesearch functionality available in Matlab for nearest neighbor search in all our exper-
iments. The choice of weighting kernel can also affect the prediction quality. We use the
triangular kernel (K(u) = (1 − |u|)+) for all our experiments; we get similar trends (with
slightly worse accuracies) if we use the box kernel instead.

The bandwidth parameter for each procedure (corresponding to each choice of α, where
α = 0 is the vanilla kernel regression estimate) were selected using a 5-fold cross validation
(over the training sample).

Bandwidth range. For a good range of bandwidth (for any procedure) we use a two
step approach: we first approximate a good bandwidth choice h1 by iterating over 10 sizes
ranging from minimum training-data diameter to maximum training-data diameter (equally
spaced). We then use h1 to get a refined range to search, namely [h1/2, 2h1], over which we
do a full sweep of 100 equally spaced bandwidth values.

Demo code. A Matlab implementation of the r-nets algorithm along with a test demo
is available at http://www.cse.ucsd.edu/~naverma/code/rnets_prediction.zip.

5.2 Discussion of Results

We report the root mean squared error (RMSE) for regression tasks, and the 0-1 loss for
classification.

In Figure 2, the errors and estimation (wall-clock) times are reported for each dataset
for increasing values of the sample size n. For baseline comparison we also include the
performance of a simple “average” predictor, i.e. one that returns the global average Y
value of the training samples.

In Table 2, the results are on the same experiments as in Figure 2, but we now focus on
the largest sample size for each dataset. While Figure 2 shows the general trend of tradeoffs
as n varies, Table 2 emphasizes the exact accuracy and time ratios relative to the vanilla
kernel procedure as a function of the knob α.

The empirical results match the theoretical analysis. The knob α is seen to control
the achievable tradeoffs, i.e., an α value close to 0 results in an accuracy on par with
that of kernel regression, while as α → 1, the accuracy decreases while time improves,
sometimes dramatically for some of the datasets. Some of the best tradeoffs are highlighted
in bold in Table 2. Some of the best tradeoffs are obtained for SARCOS (regression) and
the MiniBoone (classification) tasks, where we observe negligible decrease in accuracy for
nearly 8 to 9 times speedups in prediction time. The largest decrease in accuracy is observed
with the CT Slices dataset, although the achieved tradeoffs are still of significant practical
value.

The general trend is maintained as the sample size n grows (see Figure 2), with better
accuracy for low-values of α (as the statistical aspect gets easier with sample size), and
more speedup (as also suggested by the time bounds in the earlier analysis).

Finally, we contrast these results with those obtained using a more common quantization
approach such as a kd-tree. A kd-tree (see appendix) is a hierarchical partitioning of the
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Figure 2: Average prediction error (left column) and the corresponding evaluation time
(right column) of r-nets (Algorithm 3).
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space that aims to quickly decrease the diameter of the data in each partition-cell. Each
level of a kd-tree (from 0 to about log n, with the last level being all of the data) yields a
quantization Q of the data by simply assigning datapoints in each cell to their mean. For
comparison, we pick a bandwidth h by cross-validation (as described above for the other
methods), and estimate f by the quantized predictor fQ of (5). In other words we simply
replace our earlier quantization with r-nets with those defined by levels of the common
kd-tree. Again we use the default Matlab fast-similarity search over Q.

The resulting error and time ratios (w.r.t. the base kernel method) are given in Table 3
below, where we only show the last few levels which the best prediction errors (note that the
last level, not shown, is exactly the vanilla kernel method since there is no quantization).

Datasets SARCOS (42k) CT Slices (51k) MiniBooNE (128k)

level 14 0.80 - 1.58 0.34 - 4.22 0.90 - 4.95

level 15 0.93 - 1.42 0.41 - 2.89 0.92 - 3.49

level 16 - - 0.95 - 2.24

Table 3: kd-tree quantization results

We see that the best error-ratios (error of kernel over error of fQ) attained are worse
than those using the r-nets as prescribed by our analysis, and furthermore the time-speedups
(time of kernel over time of fQ) are also significantly worse. This is most apparent for the CT
Slices dataset, which seems the hardest for maintaining the accuracy of the original kernel
predictor (0.41-2.89 is the best tradeoff for kd-tree, vs, 0.91-5.40 for the r-net approach).
We note however that, if time is favored, then a kd-tree can be preferable to the r-net
approach since much better time can be attained at lower tree levels (further quantization)
but with significant decrease in prediction accuracy (see Appendix C).

6. Final Remarks and Potential Future Directions

Our analysis reveals simple sufficient conditions on data-quantization to approximately
maintain prediction accuracy while significantly improving prediction time. Furthermore,
we identify a practical knob tying together quantization and prediction parameters, so
as to simplify practical control of achievable tradeoffs. These new insights are validated
experimentally on real-world datasets.

One possible future direction is to extend the insights herein to situations where the
data is a mixture of structured subspaces of varying complexity so as to better capture
the richness of real-world data. It could be that different quantization schemes should be
employed for each such subspace once identified. Another potential direction is in character-
izing what happens with a random subsampling scheme (as a way to quantize data) rather
than with data-quantization; in particular it will be interesting to characterize situations
where a random subsample (approximately) achieves the sufficient quantization conditions
derived in the present work.
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Appendix A. Analysis for r-nets

We first analyze the risk for a fixed choice of h, then we give guarantees for a simple
cross-validation procedure for choosing a good h.

Throughout this section we assume that Q is independent of Y1:n, and is an αh-cover of
X1:n. Here we consider the Kernel Netting estimate fQ defined as follows.

Let the kernel K(u) be a non increasing function of u ∈ [0,∞); K is positive on u ∈ [0, 1),
maximal at u = 0, and is 0 for u ≥ 1. For q ∈ Q, let nq denote the number of points from
X1:n assigned to it, and let Ȳq denote the average Y value of points assigned to q.

Define the regression estimate as

fQ(x) =
∑
q∈Q

wq(x)Ȳq, where

wq =
nq(K(ρ (x, q) /h) + ε)∑

q′∈Q nq′(K(ρ (x, q′) /h) + ε)
,

where the positive constant ε ≤ K(3/4)/n2 ensures the ratio is well defined.
All the results below are given under Assumptions 1 and 2.

A.1 Risk Bound for Fixed h

Throughout this section we assume 0 < h < ∆X , 0 < α < 3/4 and we let Q = Qαh. We’ll
bound the risk for fQ for any fixed choice of h. The results in this section only require the
fact that Q is a cover of the data and thus preserves local information.

For any estimator fn(x)
.
= fn(x;X1:n, Y1:n), define f̃n(x)

.
= EY1:n|X1:n

fn(x), i.e., the
conditional expectation of the estimate for X1:n fixed. In particular we will be interested in
f̃Q(x)

.
= EY1:n|X1:n

fQ(x). We have the following standard decomposition of the (conditional)
excess risk into variance and bias terms:

∀x ∈ X , E
Y1:n|X1:n

‖fn(x)− f(x)‖2 = E
Y1:n|X1:n

∥∥∥fn(x)− f̃n(x)
∥∥∥2

+
∥∥∥f̃n(x)− f(x)

∥∥∥2
. (5)

For linear estimates (as those discussed in this work), the above decomposition yields the
following simple proposition providing a rough bound on the risk for all x ∈ X .

Proposition 11 Fix x ∈ X and consider a linear estimate fn(x) =
∑

iwi(x)Yi, where∑
iwi(x) = 1. We then have

∀x ∈ X , E
Y1:n|X1:n

‖fn(x)− f(x)‖2 ≤ σ2
Y + ∆2

f , (6)

where σ2
Y and ∆2

f are respectively shown to bound the variance and bias terms in (5).

Proof It is easily verified that, for independent random vectors vi with expectation 0,
E ‖
∑

i vi‖
2 =

∑
iE ‖vi‖

2. We therefore have for the variance,

E
Y1:n|X1:n

∥∥∥fn(x)− f̃n(x)
∥∥∥2
≤
∑
i

w2
i (x) E

Y1:n|X1:n

∥∥∥∥Yi − E
Y1:n|X1:n

Yi

∥∥∥∥2

≤
∑
i

w2
i (x) · σ2

Y ≤ σ2
Y .
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For the bias term we have by a simple triangle inequality,

∥∥∥f̃n(x)− f(x)
∥∥∥2

=

∥∥∥∥∥∑
i

wi(x) (f(xi)− f(x))

∥∥∥∥∥
2

≤

(∑
i

wi(x)∆f

)2

≤ ∆2
f .

The rough bound of Proposition 11 is used for particular x ∈ X that end up in potentially
bad estimates. The following lemmas establish refined variance and bias bounds for those
queries x ∈ X close to the data X1:n.

We’ll proceed by bounding each term of (5) separately in the following two lemmas, and
then combining these bounds in Lemma 14. We let µ denote the marginal measure over X
and µn denote the corresponding empirical measure.

Lemma 12 (Variance at x) Let h > 0, and 0 < α < 3/4. Fix X1:n, and let Q be an αh-
cover of X1:n. Let x ∈ X and let Eα(x) denote the event that X1:n∩(B(x, (3/4−α) ·h)) 6= ∅.
We have

E
Y1:n|X1:n

∥∥∥fQ(x)− f̃Q(x)
∥∥∥2
≤

2K(0) · σ2
Y

K(3/4) · n · µn (B(x, (3/4− α) · h))
· 1[Eα(x)] + σ2

Y · 1
[
Ēα(x)

]
.

Proof Conditioned on X1:n and Q ⊂ X1:n, the Yi values are mutually independent and so
are the Ȳq values. Therefore, in what follows, we repeatedly use the fact that ‖

∑
i vi‖

2 =∑
iE ‖vi‖

2 for independent 0-mean vectors vi. We have

E
Y1:n|X1:n

∥∥∥fQ(x)− f̃Q(x)
∥∥∥2

= E
Y1:n|X1:n

∥∥∥∥∥∥
∑
q∈Q

wq(x)

(
Ȳq − E

Y1:n|X1:n

Ȳq

)∥∥∥∥∥∥
2

=
∑
q∈Q

w2
q(x) E

Y1:n|X1:n

∥∥∥∥Ȳq − E
Y1:n|X1:n

Ȳq

∥∥∥∥2

=
∑
q∈Q

w2
q(x) E

Y1:n|X1:n

∥∥∥∥∥∥
∑

i:Xi∈X1:n(q)

1

nq

(
Yi − E

Y1:n|X1:n

Yi

)∥∥∥∥∥∥
2

=
∑
q∈Q

w2
q(x)

∑
i:Xi∈X1:n(q)

1

n2
q

E
Y1:n|X1:n

∥∥∥∥Yi − E
Y1:n|X1:n

Yi

∥∥∥∥2

=
∑
q∈Q

w2
q(x)

σ2
Y

nq

≤
(

max
q∈Q

{
wq(x)

σ2
Y

nq

})∑
q∈Q

wq = max
q∈Q

{
wq(x)

σ2
Y

nq

}

= max
q∈Q

(K(x, q, h) + ε)σ2
Y∑

q′∈Q nq′(K(x, q′, h) + ε)

≤ min

{
σ2
Y ,

2K(0)σ2
Y∑

q∈Q nqK(x, q, h)

}
. (7)

20



Time-Accuracy Tradeoffs in Kernel Prediction

Assume the event Eα(x). To bound the fraction in (7), we lower-bound the denominator as:

∑
q∈Q

nqK(x, q, h) ≥
∑

q:ρ(x,q)≤3h/4

nqK(3/4) ≥ K (3/4) · n · µn(B(x, (3/4− α) · h)).

The last inequality follows by remarking that, since Q is an αh-cover of X1:n, the ball
B(x, (3/4−α) ·h) can only contain points from ∪q:ρ(x,q)≤3h/4X1:n(q). Plug this last inequal-
ity into (7) and conclude.

Lemma 13 (Bias at x) Fix X1:n, let 0 < α < 3/4, and h > 0. Suppose Q is an αh-cover
of X1:n. Let x ∈ X , and define Eα(x) as the event that X1:n ∩ (B(x, (3/4−α) · h)) 6= ∅. We
have ∥∥∥f̃Q(x)− f(x)

∥∥∥2
≤

(
(1 + α)2λ2h2 +

∆2
f

n

)
· 1[Eα(x)] + ∆2

f · 1
[
Ēα(x)

]
.

Proof The bias term
∥∥∥f̃Q(x)− f(x)

∥∥∥2
equals

∥∥∥∥∥∥
∑
q∈Q

wq(x)

nq

∑
i:Xi∈X1:n(q)

(f(Xi)− f(x))

∥∥∥∥∥∥
2

≤
∑
q∈Q

wq(x)

nq

∑
i:Xi∈X1:n(q)

‖f(Xi)− f(x)‖2 (8)

≤
∑
q∈Q

wq(x)

nq

∑
i:Xi∈X1:n(q)

λ2ρ (Xi, x)2 (9)

where in (8) we applied Jensen’s inequality on the norm square. It immediately follows

from (8) that
∥∥∥f̃Q(x)− f(x)

∥∥∥2
is at most ∆2

f , for any x ∈ X .

Now assume the event Eα(x). We bound the r.h.s of (8) by breaking the summation over
the following two subsets of Q: those centers q close to x and those far from x. Starting
with close centers, and using (9) we have

∑
q:ρ(x,q)<h

wq(x)

nq

∑
i:Xi∈X1:n(q)

λ2ρ (Xi, x)2 ≤
∑

q:ρ(x,q)<h

wq(x)

nq

∑
i:Xi∈X1:n(q)

λ2 (ρ (x, q) + ρ (q,Xi))
2

≤
∑

q:ρ(x,q)<h

wq(x)

nq

∑
i:Xi∈X1:n(q)

(1 + α)2λ2h2.
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Next, we have∑
q:ρ(x,q)≥h

wq(x)

nq

∑
Xi∈X1:n(q)

‖f(Xi)− f(x)‖2 ≤
∑

q:ρ(x,q)≥h

wq(x)∆2
f

=
∆2
f

∑
q:ρ(x,q)≥h nqε∑

q:ρ(x,q)≥h

nqε+
∑

q:ρ(x,q)<h

nq (K(x, q, h) + ε)

= ∆2
f

1 +

∑
q:ρ(x,q)<h nq (K(x, q, h) + ε)∑

q:ρ(x,q)≥h

nqε


−1

≤ ∆2
f

(
1 +

K(3/4)∑
q:ρ(x,q)≥h nqε

)−1

≤ ∆2
f

(
1 +

K(3/4)

nε

)−1

≤
∆2
f

1 + n
,

where the first inequality is due to the fact that, since µn(B(x, (3/4− α) · h)) > 0, the set
B(x, 3h/4)∩Q cannot be empty (remember that Q is an αh-cover of X1:n). This concludes
the argument.

Lemma 14 (Integrated excess risk) Given a bandwidth h > 0, and 0 < α < 3/4, con-
sider an αh-cover Q of the sample X1:n. Assign every point Xi ∈ X1:n to a single q ∈ Q
such that ρ (Xi, q) ≤ αh. We have:

E
(X1:n,Y1:n)

‖fQ − f‖2 ≤
C
(
σ2
Y + ∆2

f

)
n · ((3/4− α)h/(2∆X ))d

+ (1 + α)2λ2h2 +
∆2
f

n

where the constant C depends only on K(·).

Proof To ease notation, let τ
.
= (3/4−α). Applying Fubini’s theorem, the expected excess

risk, E(X1:n,Y1:n) ‖fQ − f‖2, can be written as

E
X

E
(X1:n,Y1:n)

‖fQ(X)− f(X)‖2 · (1[µn(B(X, τh)) > 0] + 1[µn(B(X, τh)) = 0]) .

By lemmas 12 and 13 and equation (5), for X = x fixed, E(X1:n,Y1:n) ‖fQ(x)− f(x)‖2 ·
1[µn(B(x, τh)) > 0] is upper bounded by

C1 E
X1:n

[
σ2
Y 1[µn(B(x, τh)) > 0]

nµn(B(x, τh))

]
+ (1 + α)2λ2h2 +

∆2
f

n

≤ C1

(
2σ2

Y

nµ(B(x, τh))

)
+ (1 + α)2λ2h2 +

∆2
f

n
, (10)

where for the last inequality we used the fact that for a binomial b(n, p), E
[
1[b(n,p)>0]
b(n,p)

]
≤ 2

np

(see lemma 4.1 of Gyorfi et al. (2002)).
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On the other hand, E(X1:n,Y1:n) ‖fQ(x)− f(x)‖2 · 1[µn(B(x, τh)) = 0] is upper bounded
by (

σ2
Y + ∆2

f

)
E
X1:n

1[µn(B(x, τh)) = 0] =
(
σ2
Y + ∆2

f

)
(1− µ(B(x, τh)))n

≤
(
σ2
Y + ∆2

f

)
e−nµ(B(x,τh)) ≤

(
σ2
Y + ∆2

f

)
nµ(B(x, τh))

. (11)

Combining (10) and (11) we can then bound the expected excess risk as

E
(X1:n,Y1:n)

‖fQ − f‖2 ≤
C2

(
σ2
Y + ∆2

f

)
n

E
X

[
1

µ(B(X, τh))

]
+ (1 + α)2λ2h2 +

∆2
f

n
. (12)

The expectation on the r.h.s. can now be bounded using a standard covering argument
(see e.g. Gyorfi et al. (2002)). Let {zi}N1 be a τh/2-cover of X . Notice that for any zi,
x ∈ B(zi, τh/2) implies B(x, τh) ⊃ B(zi, τh/2). We therefore have

E
X

[
1

µ(B(X, τh))

]
≤

N∑
i=1

E
X

[
1[X ∈ B(zi, τh/2)]

µ(B(X, τh))

]
≤

N∑
i=1

E
X

[
1[X ∈ B(zi, τh/2)]

µ(B(zi, τh/2))

]

= N ≤ C3

(
2∆X
τh

)d
, where C3 depends just on X .

We conclude by combining the above with (12) to obtain

E
(X1:n,Y1:n)

‖fQ − f‖2 ≤
C
(
σ2
Y + ∆2

f

)
n(τh/2∆X )d

+ (1 + α)2λ2h2 +
∆2
f

n
.

A.2 Choosing a Good h by Empirical Risk Minimization

In this section, we analyze the following simple procedure for choosing a good h:

Define H
.
= {∆X · 2−i/(3/4 − α)}dlogne

0 . For every h ∈ H, pick the αh-
net Qαh over the sample (X1:n, Y1:n), and let fQαh be as previously defined
(equation 5). Draw a new sample (X ′1:n, Y

′
1:n) of size n. For every h ∈ H,

test fQαh on (X ′1:n, Y
′

1:n); let the empirical risk be minimized at ĥ, i.e. ĥ
.
=

argminh∈H
1
n

∑n
i=1 ‖fQαh(X ′i)− Y ′i ‖

2.
Return fQαĥ as the final regression estimate.

Proof [Corollary 8] The sample size n is lower-bounded so that there exists a universal
constant C0 such that

h̃
.
= C0

(
∆X

3/4− α

)d/(2+d)
(

∆2
Y

λ2n

)1/(2+d)
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is a dyadic number greater than ∆X /n.

First, let’s consider the situation where h ∈ H, i.e. h̃ ≤ ∆X /(3/4 − α). Note that,

whenever n ≥
(

∆Y (3/4−α)
λ∆X

)2
, we can choose a universal C0 above so that h̃ ∈ H.

We have by Lemma 14 that for some C, regression with h̃ satisfies

E
X1:n,Y1:n

∥∥∥fQαh̃ − f∥∥∥2
≤ C ′

(
λ∆X

3/4− α

)2d/(2+d)
(

∆2
Y
n

)2/(2+d)

. (13)

Applying McDiarmid’s to the empirical risk followed by a union bound over H, we have
that, with probability at least 1− 1/

√
n over the choice of (X ′1:n, Y

′
1:n), for all h ∈ H∣∣∣∣∣ EX,Y ‖fQαh(X)− Y ‖2 − 1

n

n∑
i=0

∥∥fQαh(X ′i)− Y ′i
∥∥2

∣∣∣∣∣ ≤ ∆2
Y

√
ln(|H|

√
n)

n
.

It follows that EX,Y

∥∥∥fQαĥ(X)− Y
∥∥∥2
≤ infh∈H EX,Y ‖fQαh(X)− Y ‖2 + 2∆2

Y

√
ln(|H|

√
n)

n ,

which by equation (1) implies

∥∥∥fQαĥ − f∥∥∥2
≤ inf

h∈H
‖fQαh − f‖

2 + 2∆2
Y

√
ln(|H|

√
n)

n
(14)

≤
∥∥∥fQαh̃ − f∥∥∥2

+ 2∆2
Y

√
ln(|H|

√
n)

n

Take the expectation (given the randomness in the two samples) over this last inequality

and apply (13) to obtain the first two terms of the bound on E
∥∥∥fQαĥ − f∥∥∥2

.

Now consider the case where h̃ /∈ H, i.e. h̃ > ∆X /(3/4 − α). Consider any h ≥
∆X /(3/4 − α). For any such h, and any query x ∈ X , 0 ≤ ρ (x, q) ≤ ∆X ≤ 3h/4 for
all q ∈ Q ⊂ X . It follows that for any q ∈ Q, C1/n ≤ wq ≤ C2/n where C1, C2 are as
defined in the corollary’s statement. In particular, the estimates (at any x) using h̃ or using
l0 = ∆X /(3/4 − α) differ by at most (C2 − C1)

∥∥Ȳ ∥∥ ≤ (C2 − C1)∆Y , where Ȳ =
∑

i Yi/n.
It follows that the difference in errors (fixing X1:n, Y1:n) is at most∥∥∥fQαl0 − f∥∥∥2

≤
(∥∥∥fQαh̃ − f∥∥∥+

∥∥∥fQαl0 − fQαh̃∥∥∥)2
≤ 2

∥∥∥fQαh̃ − f∥∥∥2
+ 2(C2 − C1)2∆2

Y .

Therefore, whenever n <
(

∆Y (3/4−α)
λ∆X

)2
, let h̃ > ∆X /(3/4− α), and obtain by (14) that

∥∥∥fQαĥ − f∥∥∥2
≤ 2

∥∥∥fQαh̃ − f∥∥∥2
+ 2(C2 − C1)2∆2

Y + 2∆2
Y

√
ln(|H|

√
n)

n
,

with probability at least 1− 1/
√
n. Again take the expectation w.r.t. the two samples and

apply (13) to obtain the full corollary’s statement.

24



Time-Accuracy Tradeoffs in Kernel Prediction

Appendix B. Time Complexity Bounds

B.1 Time Bound of Proposition 1

The proof of Proposition 1 follows easily from considering the mass of balls in a high-
dimensional space. The proof is given below.
Proof [Proposition 1] Let for instance P be uniform on a closed ball X of RD. Then any
ball of radius h centered on the interior of X has mass Ω(hD). Thus for h = Ω

(
n−1/(2+D)

)
,

E |B(x, h) ∩X1:n| = n · P (B(x, h)) = Ω
(
n2/(2+D)

)
. Now, let Pn denote the empirical

distribution on X1:n; it is well known that by Bernstein’s bounds (Bousquet et al., 2004),
we have with probability at least 1/2 that

P (B(x, h)) ≤ Pn(B(x, h)) +
√
C · Pn(B(x, h))/n+ C/n,

for some universal constant C. This implies that if Pn(B(x, h)) < C/n, then P (B(x, h)) <
3C/n. For n sufficiently large, P (B(x, h)) = Ω

(
n−D/(2+D)

)
≥ 3C/n, so we must have

Pn(B(x, h)) ≥ C/n. It then follows by the above Bernstein’s inequality that P (B(x, h)) ≤
3Pn(B(x, h)), which yields the proposition’s statement.

B.2 Evaluation Times for Netting

Proof [Proof of Lemma 9] It is well known that an r-packing Q of a ball B(x, r′), r′ > r,
has size at most that of an r/2-cover of B(x, r′) (Clarkson, 2005). This size is bounded by
C(r′/r)d, which is seen by applying the definition of doubling dimension recursively.

Lemma 15 (Paraphrased from Krauthgamer and Lee (2004)) Let {xi} be a finite
set of points from a metric space (X , ρ) with doubling dimension d.

Define the aspect-ratio of {xi} as τ
.
= maxi,j ρ (xi, xj) /mini,j ρ (xi, xj). For any query

x ∈ X and r > 0, the range B(x, r) ∩ {xi} can be obtained in time at most

C (|B(x, c · r) ∩ {xi}|+ log τ) ,

for some C depending on d, and a universal constant c ≥ 1.

Lemma 16 Assume the conditions of Theorem 7. For any x ∈ X , the estimate fQ(x) can
be computed in time C

(
log(∆X /αh) + α−d

)
, where C depends on d.

Proof This is a direct corollary to Lemmas 9 and 15, by noticing that the aspect ratio of
Q is at most ∆X /αh.
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Appendix C. kd-tree Construction Details

Algorithm 4: kd-tree
Input: dataset X1:n.
if |X1:n| ≤ 1 then

Return leaf.
end if
Let j be the largest-variance coordinate of the data x ∈ X1:n.
Define t

.
= median

{
xj : x ∈ X1:n

}
.

Xleft
.
= {x ∈ X1:n | xj ≤ t}.

Xright
.
= {x ∈ X1:n | xj > t}.

Treeleft = kd-tree(X left
1:n ).

Treeright = kd-tree(Xright
1:n ).

Return (Treeleft,Treeright).

C.1 kd-tree Results

The following table lists the error and time ratios (w.r.t. to kernel prediction) achieved at
every level of the tree (omitting the last level with no quantization).

Datasets SARCOS (42k) CT Slices (51k) MiniBooNE (128k)

level 0 0.34 - 271.67 0.08 - 2,351.77 0.46 - 412.06

level 1 0.37 - 11.08 0.09 - 260.33 0.46 - 515.86

level 2 0.38 - 10.52 0.09 - 301.92 0.48 - 11.71

level 3 0.39 - 10.77 0.10 - 254.53 0.51 - 12.63

level 4 0.40 - 10.46 0.10 - 209.23 0.54 - 11.96

level 5 0.41 - 10.73 0.11 - 174.25 0.60 - 12.06

level 6 0.43 - 10.22 0.12 - 126.92 0.62 - 11.15

level 7 0.45 - 9.44 0.13 - 90.44 0.64 - 10.51

level 8 0.48 - 8.30 0.15 - 67.72 0.64 - 9.38

level 9 0.52 - 7.77 0.16 - 43.64 0.69 - 8.42

level 10 0.56 - 6.05 0.18 - 27.14 0.71 - 7.21

level 11 0.60 - 4.86 0.20 - 16.25 0.78 - 9.70

level 12 0.65 - 3.23 0.23 - 9.63 0.81 - 7.33

level 13 0.71 - 2.18 0.28 - 6.17 0.87 - 5.84

level 14 0.80 - 1.58 0.34 - 4.22 0.90 - 4.95

level 15 0.93 - 1.42 0.41 - 2.89 0.92 - 3.49

level 16 - - 0.95 - 2.24

Table 4: kd-tree quantization results
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