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Curse of dimensionality
• In general: Computational and/or prediction performance

deteriorate as the dimension D increases.

• For nonparametric regression: Worst case bounds on excess
risk ‖fn − f‖2 are of the form n−2/(2+D).
Here ‖fn − f‖2 = EX ‖fn(X)− f(X)‖2.

Reasons for hope: data often has low intrinsic complexity

d-dimensional manifold d-sparse data
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How do we take advantage of such situations?

• Manifold learning (e.g. LLE, Isomap): embed the data in
a lower dimensional space where traditional learners might
perform well.

• Adaptivity: can we design learners which run in IRD but
whose performance depend just on the intrinsic complexity of
the data?
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Recent adaptivity results
• Classification with dyadic trees (Scott and Nowak, 2006).

Manifold data.

• Kernel regression (Bickel and Li, 2006).
Manifold data.

• Vector Quantization with RPtree partitioning (Dasgupta
and Freund, 2008).
Data with low Assouad dimension.

Tree-based regressors are computationally inexpensive relative to
kernel regressors. Is there an adaptive tree-based regressor?
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Tree-based regression

Build a hierarchy of nested partitions of X , somehow pick a
partition A:
fn,A(x) .= average Y value in A(x), the cell of A in which x falls.

Dyadic tree k-d tree
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Random Partition tree (RPtree)

Recursively bisect the data near the median along a random direction.

Figure: First level.
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Random Partition tree (RPtree)

Recursively bisect the data near the median along a random direction.

Figure: Second level.
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Our results:
We show how to use the RPtree for regression and obtain rates
that depend just on the intrinsic complexity of the data, namely its
Assouad dimension.

This is the first such adaptivity result for tree-based regression.
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What we’ll see next:

• Preliminaries: (1) Assouad dimension. (2)
Algorithmic issues regarding the choice of
a partition.

• How we choose an RPtree partition for regression.

• Analysis overview.
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Assouad dimension.

Definition

The Assouad dimension (or doubling dimension) of X is the
smallest d such that any ball B ⊂ X can be covered by 2d balls of
half its radius.

22 balls 23 balls
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Examples of data with low Assouad dimension

d-dimensional manifold d-sparse data
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Choosing a good partition: bias-variance tradeoff

Partition A with small cell diameters?
Low bias: x is near all the data in A(x) =⇒ similar Y values.
High variance: fewer data in A(x) =⇒ unstable estimates.

So choose partition with mid-range cell diameters.

x x x
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Problem with RPtree cells:
• Cell diameters are hard to assess.

• Cell diameters may not decrease at all.



, , , , ,

Problem with RPtree cells:
• Cell diameters are hard to assess.

• Cell diameters may not decrease at all.



, , , , ,

Problem with RPtree cells:
• Cell diameters are hard to assess.
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Cell diameter

Data diameter
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Choosing a partition based on data diameter:
This is of general interest for algorithm design and risk analysis:
many trees have misbehaved cell diameters like RPtree does.

Data diameters aren’t stable =⇒ hard to generalize from.

RPtree quickly decreases data diameters from the root down:
data diameters are halved every d log d levels [DF08].

Fast data diameter decrease rate implies: We reach cells with
small data diameters without decreasing the number of points per
cell too much.
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What we’ll see next:

• Preliminaries: (1) Assouad dimension. (2) Algorithmic issues
regarding the choice of a partition.

• How we choose an RPtree partition for
regression.

• Analysis overview.
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How we choose an RPtree partition for regression

Identify candidate partitions Ai such that data diameters are
halved from Ai to Ai+1.

Diameter decrease rate k:
max levels between Ai and Ai+1.

Two stopping options:
I: Stop after O(log n) levels, and test
all fn,Ai on new sample.

II: Stop when data diameters are small
enough. Requires no testing.
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Theorem
With probability at least 1− δ, under either stopping option,

‖fn − f‖2 ≤ C
(

log2 n+ log 1/δ
n

)2/(2+k)

,

where k ≤ C ′d log d is the observed diameter decrease rate.

Assumptions:

Regression function f(x) = E [Y |X = x] is Lipschitz, X and Y are
bounded. No distributional assumption.
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What we’ll see next:

• Preliminaries: (1) Assouad dimension. (2) Algorithmic issues
regarding the choice of a partition.
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Risk analysis: Handling data diameters

Remember: Data diameters don’t generalize well to distribution.
Solution: ∀A ∈

{
Ai

}
, replace A with alternate partition A′.

Partition A

• Dense cells of A′ have manageable diameters: cell diameters
approximate data diameters.

• Risk(fn,A′) ≈ Risk(fn,A).
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So we can just analyze the risk of fn,A′, for every A ∈
{
Ai

}
Handle the empty cells and the dense cells separately.

Figure: Partition A′.
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Relative VC bounds for A′ ∈ A′

• µn(A′) ≈ 0 =⇒ µ(A′) . 1
n : empty cells don’t affect risk.

• µn(A′) >> 0 =⇒ µn(A′) ≈ µ(A′): dense cells will be stable.

Need to exhibit VC class containing all A′ ∈ A′

• Cells A′ have random shapes.

• Define a VC class C ⊃ A′ by conditioning on the randomness
in the algorithm and n.
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Risk bound for fn,A′, ∀A ∈
{
Ai

}
:∥∥fn,A′ − f

∥∥2
.
|A′|
n

+ diam2
n

(
A′

)
.

Bound is minimized when:

diam2
n (A′) ≈ |A

′|
n , in which case

∥∥fn,A′ − f
∥∥2

. n−2/(2+k).

Show that we can find A ∈
{
Ai

}
s.t. A′ minimizes the bound,

and conclude.
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Recap:
If the data space has low Assouad dimension d, the excess risk of
an RPtree regressor depends just on d.
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Extending to a more general setting
What if the data has high Assouad dimension overall, but the
intrinsic dimension is low in smaller regions?
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