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Understanding thy neighbors:
Practical perspectives from modern analysis
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Key questions

1 Statistical issues: under what conditions does NN produce good
predictions, and how should it be run?

• When is 1-NN enough?
• If using k-NN, what should k be, roughly?
• Is there a curse of dimension?
• Does it adapt to latent structure: clusters, manifolds, etc?

2 Algorithmic issues: how to find nearest neighbors?

• Data structures for fast NN
• Parallelizing NN
• Geometric tasks that build upon nearest neighbors: hierarchical

clustering, minimum spanning tree, etc
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Outline

1 Statistical properties of nearest neighbor

2 Algorithmic approaches to nearest neighbor search
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Nearest neighbor classification

Given:

• training points (x1, y1), . . . , (xn, yn) ∈ X × {0, 1}
• query point x

predict the label of x by looking at its nearest neighbor(s) among the xi .
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• 1-NN returns the label of the nearest neighbor of x amongst the xi .

• k-NN returns the majority vote of the k nearest neighbors.

• kn-NN lets k grow with n.
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The data space

x

x'

d(
x,
x'
)

Data points lie in a space X with distance
function ρ : X × X → R.

• Most common scenario: X = Rd and ρ is Euclidean distance.

• Common more general setting: (X , ρ) is a metric space.

• `p distances
• Metrics obtained from user preferences/feedback

• Also of interest: more general distances.

• KL divergence
• Domain-specific dissimilarity measures
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Statistical learning theory setup

Training points come from the same source as future queries.

• Underlying measure µ on X from which all points are generated.

• We call (X , ρ, µ) a metric measure space.

• Label of x is a coin flip with bias η(x) = Pr(Y = 1|X = x).

Question: why wouldn’t η(x) always be either 0 or 1?

A classifier is a rule h : X → {0, 1}.
• Misclassification rate, or risk: R(h) = Pr(h(X ) 6= Y ).

• The Bayes-optimal classifier

h∗(x) =

{
1 if η(x) > 1/2
0 otherwise

,

has minimum risk, R∗ = R(h∗) = EX min(η(X ), 1− η(X )).
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Statistical questions

Let hn be a classifier based on n labeled data points from the underlying
distribution. R(hn) is a random variable.

• Consistency: does R(hn) converge to R∗?

• 1-NN is not consistent. e.g. X = R and η ≡ 1/4.

• Neither is k-NN for fixed k.
• Therefore, take kn-NN classifier with kn →∞.

What are minimal assumptions for consistency?

• Rates of convergence: how fast does convergence occur?
Rates depend upon smoothness of η(x) = Pr(Y = 1|X = x):

x

⌘(x)

x

⌘(x)

What is a suitable notion of smoothness, and rates?
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Consistency results under continuity
Assume η(x) = P(Y = 1|X = x) is continuous.
Let hn be the kn-classifier, with kn ↑ ∞ and kn/n ↓ 0.

• Fix and Hodges (1951): Consistent in Rd .

• Cover-Hart (1965, 1967, 1968): Consistent in any metric space.

Proof outline: Let x be a query point and let x(1), . . . , x(n) denote the
training points ordered by increasing distance from x .

Training points are drawn from µ, so the number of
them in any ball B is roughly n · µ(B).

• Therefore x(1), . . . , x(kn) lie in a ball centered at x of probability mass
≈ kn/n. Since kn/n ↓ 0, we have x(1), . . . , x(kn) → x .

• By continuity, η(x(1)), . . . , η(x(kn))→ η(x).

• By law of large numbers, when tossing many coins of bias roughly
η(x), the fraction of 1s will be approximately η(x). Thus the
majority vote of their labels will approach h∗(x).
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Universal consistency in Rd

Stone (1977): consistency in Rd assuming only measurability.

Lusin’s thm: for any measurable η, for any ε > 0, there is a continuous
function that differs from it on at most ε fraction of points.

Training points in the red region can cause
trouble. What fraction of query points have
one of these as their nearest neighbor?

Geometric result: at most a constant number! And this yields
consistency.
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A key geometric fact

Pick any n points in Rd . Pick one of these points, x . At most how many
of the remaining points can have x as its nearest neighbor?

At most 5d [Stone].

But this argument fails in general metric measure spaces (X , ρ, µ).
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Universal consistency in metric spaces [Chaudhuri-D’ 14]

Preiss [80’s]: An infinite-dimensional space in which consistency fails
Cerou-Guyader ’06: Conditions for universal consistency in metric spaces

Let (X , d , µ) be a separable metric measure space in which the Lebesgue
differentiation property holds: for any bounded measurable f ,

lim
r↓0

1

µ(B(x , r))

∫
B(x,r)

f dµ = f (x)

for almost all (µ-a.e.) x ∈ X .

• If kn →∞ and kn/n→ 0, then Rn → R∗ in probability.

• If in addition kn/ log n→∞, then Rn → R∗ almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling
metric measure spaces.
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Universal consistency in metric spaces

Query x ; training points by increasing distance from x are x(1), . . . , x(n).

1 Since kn/n→ 0, we have x(1), . . . , x(kn) → x .

2 Earlier argument using continuity: η(x(1)), . . . , η(x(kn))→ η(x).
In this case, the kn-NN are coins of roughly the same bias as x .

3 It suffices that average(η(x(1)), . . . , η(x(kn)))→ η(x).

4 x(1), . . . , x(kn) lie in some ball B(x , r).
For suitable r , they are random draws from µ restricted to B(x , r).

5 average(η(x(1)), . . . , η(x(kn))) is close to the average η in this ball:

1

µ(B(x , r))

∫
B(x,r)

η dµ.

6 As n grows, this ball B(x , r) shrinks. Thus it is enough that

lim
r↓0

1

µ(B(x , r))

∫
B(x,r)

η dµ = η(x).
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Rates of convergence

Bad news: curse of dimension

Good news: adaptive to

• Intrinsic low dimension (e.g. manifold structure)

• Smoothness of boundary
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Smoothness and margin conditions

• The usual smoothness condition in Rd : η is α-Holder continuous if
for some constant L, for all x , x ′,

|η(x)− η(x ′)| ≤ L‖x − x ′‖α.

• Mammen-Tsybakov β-margin condition: For some constant C , for
any t, we have µ ({x : |η(x)− 1/2| ≤ t}) ≤ Ctβ .

Width-t margin
around decision
boundary

x

⌘(x)

1/2

1

• Audibert-Tsybakov: Suppose these two conditions hold, and that µ
is supported on a regular set with 0 < µmin < µ < µmax . Then
ERn − R∗ is Ω(n−α(β+1)/(2α+d)).

Under these conditions, for suitable (kn), this rate is achieved by kn-NN.
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A better smoothness condition for NN [Chaudhuri-D’14]

How much does η change over
an interval?

⌘(x)

x x0

• The usual notions relate this to |x − x ′|.
• For NN: more sensible to relate to µ([x , x ′]).

We will say η is α-smooth in metric measure space (X , ρ, µ) if for
some constant L, for all x ∈ X and r > 0,

|η(x)− η(B(x , r))| ≤ Lµ(B(x , r))α,

where η(B) = average η in ball B = 1
µ(B)

∫
B
η dµ.

η is α-Holder continuous in Rd , µ bounded below ⇒ η is (α/d)-smooth.
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Rates of convergence under smoothness

Let hn,k denote the k-NN classifier based on n training points.
Let h∗ be the Bayes-optimal classifier.

Suppose η is α-smooth in (X , ρ, µ). Then for any n, k ,

1 For any δ > 0, with probability at least 1− δ over the training set,

PrX (hn,k(X ) 6= h∗(X )) ≤ δ + µ({x : |η(x)− 1
2 | ≤ C1

√
1
k ln 1

δ})
under the choice k ∝ n2α/(2α+1).

2 En PrX (hn,k(X ) 6= h∗(X )) ≥ C2 µ({x : |η(x)− 1
2 | ≤ C3

√
1
k }).

These upper and lower bounds are qualitatively similar for all smooth
conditional probability functions:

the probability mass of the width- 1√
k

margin around the

decision boundary.



, , , , , , , , , ,

Rates of convergence under smoothness

Let hn,k denote the k-NN classifier based on n training points.
Let h∗ be the Bayes-optimal classifier.

Suppose η is α-smooth in (X , ρ, µ). Then for any n, k ,

1 For any δ > 0, with probability at least 1− δ over the training set,

PrX (hn,k(X ) 6= h∗(X )) ≤ δ + µ({x : |η(x)− 1
2 | ≤ C1

√
1
k ln 1

δ})
under the choice k ∝ n2α/(2α+1).

2 En PrX (hn,k(X ) 6= h∗(X )) ≥ C2 µ({x : |η(x)− 1
2 | ≤ C3

√
1
k }).

These upper and lower bounds are qualitatively similar for all smooth
conditional probability functions:

the probability mass of the width- 1√
k

margin around the

decision boundary.



, , , , , , , , , ,

Variants of nearest neighbor rules

1 Quantization strategies

2 Subsampling
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Quantization: reduce the data

{Xi}ni=1

1 Kpotufe-Verma (2017): pick Q to be an ε-net.
Favorable empirical performance: small rise in error rate, significant
speedup in query time.

2 Kontorovich-Weiss-Sabato (2017): pick Q to be a suitable ε-cover.
Then: 1-NN using Q is consistent.
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Subsampling: reduce data and parallelize

Data: {(Xi ,Yi )}ni=1, Y ∈ {0, 1}.

Repeat for t = 1, 2, . . . ,N:

• Let St be a random subsample of m� n points

To classify x : compute 1-NN wrt to each St , take majority label.

Biau-Cerou-Guyader (2010), Samworth (2010):

• This is consistent.

• In fact, it is weighted k-NN.
Each of x ’s k nearest neighbors (in the original data set) will be its
1-NN in some fraction of St .

• Asympotically more accurate than k-NN.
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Outline

1 Statistical properties of nearest neighbor

2 Algorithmic approaches to nearest neighbor search
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The complexity of nearest neighbor search

Given a data set of n points in a metric space (X , ρ), build a data
structure for efficiently answering subsequent nearest neighbor queries q.

• Data structure should take space O(n)

• Query time should be o(n)

Unproven but common conjecture: either data structure size or query
time must be exponential in the dimension of the space.
Bad case: for any 0 < ε < 1,

• Pick 2O(ε2d) points uniformly from the unit sphere in Rd

• With high probability, all interpoint distances are (1± ε)
√

2

How can this bad case be defeated?
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NN algorithms: an impressionistic history

• 1975: The k-d tree (Bentley and Friedman).
Widely used, but algorithmic guarantees on weak footing.

• 1980s-1990s: More tree structures (e.g. Clarkson, Mount).
Could accommodate general metric spaces.

• 1990s-: It’s okay to fail sometimes (e.g. Clarkson, Kleinberg).

• Late 1990s-: Locality-sensitive hashing (Indyk, Motwani, Andoni).
Hashing scheme with some failure probability, widely used.

• Recently: binary hashing; resurgence of trees.
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The k-d tree [Bentley-Friedman ’75]

Defeatist search:

• Return NN in query’s leaf node; maybe not the actual NN

• Time O(log n) + O(#(points in each leaf))

Comprehensive search:

• Always returns the NN

• Can take O(n) time in some cases
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Trees for general distance spaces

• Ball trees for metric spaces [Omohundro ’89]

• Bregman ball trees [Cayton ’08]

• Vantage-point (VP) trees [Yianilos ’91; Uhlmann ’91]
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Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a
d-dimensional unit ball.

1 Methods that are adaptive to intrinsic dimension.

2 Methods that return approximate nearest neighbors.
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Cover trees for metric spaces

Beygelzimer-Kakade-Langford ’06:

• Hierarchical cover of an arbitrary metric space

• Space O(n), permits dynamic insertion and deletion of data points

• Query time O(poly(c) log n)

A finite set X in a metric space has expansion rate c if for any point x
and any radius r > 0,

|B(x , 2r) ∩ X | ≤ c · |B(x , r) ∩ X |.
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Variants of k-d trees with guarantees

Random projection trees: In each cell of the tree, pick split direction
uniformly at random from the unit sphere in Rd

Perturbed split: after projection, pick β ∈R [1/4, 3/4] and split at the
β-fractile point.

Failure probability for defeatist search is < 1/2 if each leaf has O(ddo
o )

points, where do is the doubling dimension of the data. [D-Sinha ’13]
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Doubling dimension

[Assouad ’83; Gupta-Krauthgamer-Lee ’03]

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius.

1 Example: S = line has doubling dimension 1.

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If S has diameter ∆ and doubling dimension do , then for any ε > 0,
it has an ε-cover of size ≤ (2∆/ε)do .

4 If S has doubling dimension do , then so does any subset of S .
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The doubling dimension of sparse sets

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius.

1 A set of n points has doubling dimension at most log n.
Proof: It can be covered by n balls of any radius.

2 If sets S1, . . . ,Sm each have doubling dimension ≤ do , then
S1 ∪ · · · ∪ Sm has doubling dimension ≤ do + logm.
Proof: Si ∩ B can be covered by 2do balls of half the radius.
Therefore, at most m2do balls are needed for the union.

3 Suppose each point in S ⊂ Rd has ≤ k nonzero coordinates. Then
S has doubling dimension ≤ cok + k log d .
Proof: S is the union of

(
d
k

)
flats of dimension k; we’ve seen that

each flat has doubling dimension ≤ cok.



, , , , , , , , , ,

The doubling dimension of sparse sets

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius.

1 A set of n points has doubling dimension at most log n.
Proof: It can be covered by n balls of any radius.

2 If sets S1, . . . ,Sm each have doubling dimension ≤ do , then
S1 ∪ · · · ∪ Sm has doubling dimension ≤ do + logm.
Proof: Si ∩ B can be covered by 2do balls of half the radius.
Therefore, at most m2do balls are needed for the union.

3 Suppose each point in S ⊂ Rd has ≤ k nonzero coordinates. Then
S has doubling dimension ≤ cok + k log d .
Proof: S is the union of

(
d
k

)
flats of dimension k; we’ve seen that

each flat has doubling dimension ≤ cok.



, , , , , , , , , ,

The doubling dimension of sparse sets

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius.

1 A set of n points has doubling dimension at most log n.
Proof: It can be covered by n balls of any radius.

2 If sets S1, . . . ,Sm each have doubling dimension ≤ do , then
S1 ∪ · · · ∪ Sm has doubling dimension ≤ do + logm.
Proof: Si ∩ B can be covered by 2do balls of half the radius.
Therefore, at most m2do balls are needed for the union.

3 Suppose each point in S ⊂ Rd has ≤ k nonzero coordinates. Then
S has doubling dimension ≤ cok + k log d .
Proof: S is the union of

(
d
k

)
flats of dimension k ; we’ve seen that

each flat has doubling dimension ≤ cok .



, , , , , , , , , ,

The doubling dimension of manifolds

A Riemannian submanifold M ⊂ Rp has condition number ≤ 1/τ if
normals to M of length τ don’t intersect:

A useful curvature condition
[Niyogi-Smale-Weinberger  ’03]

Suppose data lies on M = d-dimensional Riemannian submanifold of RD.
M has condition number · 1/¿ if normals to M of length ¿ don’t  intersect.

Computational geometry formulation [Amenta-Bern]:
Medial axis: points in RD with > 1 nearest neighbor in M
Then every p 2M has distance ¸ ¿ to medial axis

If M ⊂ Rp is a k-dimensional manifold of condition number 1/τ , then its
neighborhoods of radius τ have doubling dimension O(k).
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Locality-sensitive hashing [Indyk-Motwani-Andoni]

h1(x)

h2(x) x

Typical hash function hi :
random projection + binning

hi (x) =

⌊
ri · x + b

w

⌋

• ri is a random direction

• b is a random offset

• w is the bin width

• For any data set x1, . . . , xn, query q: probability < 1 of failing to
return an approximate NN.

• To reduce this probability, make t tables. Space: O(nt).
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Approximate nearest neighbor

For data set S ⊂ Rd and query q, a c-approximate nearest neighbor is
any x ∈ S such that

‖x − q‖ ≤ c ·min
z∈S
‖z − q‖.

Complexity of approximate NN search in Euclidean space:

• Data structure size n1+1/c2

• Query time n1/c
2

Caution: the same value of c can have very different implications for
different data sets.
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Approximate nearest neighbor

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

c 1.0 1.2 1.4 1.6 1.8 2.0
Error rate (%) 3.1 9.0 18.4 29.3 40.7 51.4

But LSH also does well on exact NN search!
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Hash tables versus trees

✓

As long as these structures are randomized, can use:

• collection of LSH tables

• forest of trees

Experimental comparisons, e.g. V. Hyvonen, T. Roos et al (2016).
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Relevant books

• G. Biau and L. Devroye. Lectures on the nearest neighbor method.
Springer, 2015.

• G.H. Chen and D. Shah. Explaining the success of nearest neighbor
methods in prediction. Foundations and Trends in Machine
Learning, 2018.


