Understanding thy neighbors:
Practical perspectives from modern analysis

Sanjoy Dasgupta and Samory Kpotufe
Key questions

1 **Statistical issues**: under what conditions does NN produce good predictions, and how should it be run?
 - When is 1-NN enough?
 - If using k-NN, what should k be, roughly?
 - Is there a curse of dimension?
 - Does it adapt to latent structure: clusters, manifolds, etc?

2 **Algorithmic issues**: how to find nearest neighbors?
 - Data structures for fast NN
 - Parallelizing NN
 - Geometric tasks that build upon nearest neighbors: hierarchical clustering, minimum spanning tree, etc
Outline

1. Statistical properties of nearest neighbor
2. Algorithmic approaches to nearest neighbor search
Nearest neighbor classification

Given:

- \textit{training points} \((x_1, y_1), \ldots, (x_n, y_n) \in X \times \{0, 1\}\)
- \textit{query point} \(x\)

predict the label of \(x\) by looking at its nearest neighbor(s) among the \(x_i\).

- 1-NN returns the label of the nearest neighbor of \(x\) amongst the \(x_i\).
- \(k\)-NN returns the majority vote of the \(k\) nearest neighbors.
- \(k_n\)-NN lets \(k\) grow with \(n\).
The data space

Data points lie in a space \mathcal{X} with distance function $\rho : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$.

- Most common scenario: $\mathcal{X} = \mathbb{R}^d$ and ρ is Euclidean distance.
- Common more general setting: (\mathcal{X}, ρ) is a metric space.
 - ℓ_p distances
 - Metrics obtained from user preferences/feedback
- Also of interest: more general distances.
 - KL divergence
 - Domain-specific dissimilarity measures
Statistical learning theory setup

Training points come from the same source as future queries.
- Underlying measure μ on \mathcal{X} from which all points are generated.
- We call (\mathcal{X}, ρ, μ) a **metric measure space**.
- Label of x is a coin flip with bias $\eta(x) = \Pr(Y = 1|X = x)$.

Question: why wouldn’t $\eta(x)$ always be either 0 or 1?

A classifier is a rule $h : \mathcal{X} \rightarrow \{0, 1\}$.
- Misclassification rate, or risk: $R(h) = \Pr(h(X) \neq Y)$.
- The **Bayes-optimal classifier**

$$h^*(x) = \begin{cases}
1 & \text{if } \eta(x) > 1/2 \\
0 & \text{otherwise}
\end{cases},$$

has minimum risk, $R^* = R(h^*) = \mathbb{E}_X \min(\eta(X), 1 - \eta(X))$.
Statistical questions

Let \(h_n \) be a classifier based on \(n \) labeled data points from the underlying distribution. \(R(h_n) \) is a random variable.

- **Consistency**: does \(R(h_n) \) converge to \(R^* \)?
 - 1-NN is not consistent. e.g. \(\mathcal{X} = \mathbb{R} \) and \(\eta \equiv 1/4 \).
Statistical questions

Let h_n be a classifier based on n labeled data points from the underlying distribution. $R(h_n)$ is a random variable.

- **Consistency**: does $R(h_n)$ converge to R^*?

 - 1-NN is not consistent. e.g. $\mathcal{X} = \mathbb{R}$ and $\eta \equiv 1/4$.
 - Neither is k-NN for fixed k.
 - Therefore, take k_n-NN classifier with $k_n \to \infty$.

What are minimal assumptions for consistency?
Statistical questions

Let h_n be a classifier based on n labeled data points from the underlying distribution. $R(h_n)$ is a random variable.

- **Consistency**: does $R(h_n)$ converge to R^*?
 - 1-NN is not consistent. e.g. $\mathcal{X} = \mathbb{R}$ and $\eta \equiv 1/4$.
 - Neither is k-NN for fixed k.
 - Therefore, take k_n-NN classifier with $k_n \to \infty$.

What are minimal assumptions for consistency?

- **Rates of convergence**: how fast does convergence occur?
 Rates depend upon smoothness of $\eta(x) = \Pr(Y = 1|X = x)$:

What is a suitable notion of smoothness, and rates?
Consistency results under continuity

Assume $\eta(x) = P(Y = 1|X = x)$ is continuous.
Let h_n be the k_n-classifier, with $k_n \uparrow \infty$ and $k_n/n \downarrow 0$.

- Fix and Hodges (1951): Consistent in \mathbb{R}^d.

Proof outline: Let x be a query point and let $x(1), \ldots, x(n)$ denote the training points ordered by increasing distance from x.

Training points are drawn from μ, so the number of them in any ball B is roughly $n \cdot \mu(B)$.

- Therefore $x(1), \ldots, x(k_n)$ lie in a ball centered at x of probability mass $\approx k_n/n$. Since $k_n/n \downarrow 0$, we have $x(1), \ldots, x(k_n) \to x$.
- By continuity, $\eta(x(1)), \ldots, \eta(x(k_n)) \to \eta(x)$.
- By law of large numbers, when tossing many coins of bias roughly $\eta(x)$, the fraction of 1s will be approximately $\eta(x)$. Thus the majority vote of their labels will approach $h^*(x)$.
Universal consistency in \mathbb{R}^d

Stone (1977): consistency in \mathbb{R}^d assuming only measurability.
Universal consistency in \mathbb{R}^d

Stone (1977): consistency in \mathbb{R}^d assuming only measurability.

Lusin’s thm: for any measurable η, for any $\epsilon > 0$, there is a continuous function that differs from it on at most ϵ fraction of points.

Training points in the red region can cause trouble. What fraction of query points have one of these as their nearest neighbor?
Universal consistency in \mathbb{R}^d

Stone (1977): consistency in \mathbb{R}^d assuming only measurability.

Lusin’s thm: for any measurable η, for any $\epsilon > 0$, there is a continuous function that differs from it on at most ϵ fraction of points.

Training points in the red region can cause trouble. What fraction of query points have one of these as their nearest neighbor?

Geometric result: at most a constant number! And this yields consistency.
A key geometric fact

Pick any n points in \mathbb{R}^d. Pick one of these points, x. At most how many of the remaining points can have x as its nearest neighbor?
A key geometric fact

Pick any n points in \mathbb{R}^d. Pick one of these points, x. At most how many of the remaining points can have x as its nearest neighbor?
At most 5^d [Stone].
A key geometric fact

Pick any n points in \mathbb{R}^d. Pick one of these points, x. At most how many of the remaining points can have x as its nearest neighbor?
At most 5^d [Stone].
A key geometric fact

Pick any n points in \mathbb{R}^d. Pick one of these points, x. At most how many of the remaining points can have x as its nearest neighbor? At most 5^d [Stone].

But this argument fails in general metric measure spaces (\mathcal{X}, ρ, μ).
Universal consistency in metric spaces [Chaudhuri-D’ 14]

Preiss [80’s]: An infinite-dimensional space in which consistency fails
Cerou-Guyader ’06: Conditions for universal consistency in metric spaces
Universal consistency in metric spaces [Chaudhuri-D’ 14]

Preiss [80’s]: An infinite-dimensional space in which consistency fails

Cerou-Guyader ’06: Conditions for universal consistency in metric spaces

Let \((X, d, \mu)\) be a separable metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable \(f\),

\[
\lim_{r \downarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} f \, d\mu = f(x)
\]

for almost all (\(\mu\)-a.e.) \(x \in X\).
Universal consistency in metric spaces [Chaudhuri-D’ 14]

Preiss [80’s]: An infinite-dimensional space in which consistency fails
Cerou-Guyader ’06: Conditions for universal consistency in metric spaces

Let \((\mathcal{X}, d, \mu)\) be a separable metric measure space in which the Lebesgue
differentiation property holds: for any bounded measurable \(f\),

\[
\lim_{r \downarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} f \, d\mu = f(x)
\]

for almost all (\(\mu\)-a.e.) \(x \in \mathcal{X}\).

- If \(k_n \to \infty\) and \(k_n/n \to 0\), then \(R_n \to R^*\) in probability.
- If in addition \(k_n/\log n \to \infty\), then \(R_n \to R^*\) almost surely.
Universal consistency in metric spaces [Chaudhuri-D’ 14]

Preiss [80’s]: An infinite-dimensional space in which consistency fails
Cerou-Guyader ’06: Conditions for universal consistency in metric spaces

Let (\mathcal{X}, d, μ) be a separable metric measure space in which the Lebesgue differentiation property holds: for any bounded measurable f,

$$
\lim_{r \downarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} f \, d\mu = f(x)
$$

for almost all $(\mu$-a.e.) $x \in \mathcal{X}$.

- If $k_n \to \infty$ and $k_n/n \to 0$, then $R_n \to R^*$ in probability.
- If in addition $k_n/\log n \to \infty$, then $R_n \to R^*$ almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling metric measure spaces.
Universal consistency in metric spaces

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$.
Universal consistency in metric spaces

Query \(x \); training points by increasing distance from \(x \) are \(x^{(1)}, \ldots, x^{(n)} \).

1. Since \(k_n/n \to 0 \), we have \(x^{(1)}, \ldots, x^{(k_n)} \to x \).
Universal consistency in metric spaces

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$.

1. Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.

2. Earlier argument using continuity: $\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \to \eta(x)$.
 In this case, the k_n-NN are coins of roughly the same bias as x.
Query \(x \); training points by increasing distance from \(x \) are \(x_{(1)}, \ldots, x_{(n)} \).

1. Since \(k_n/n \to 0 \), we have \(x_{(1)}, \ldots, x_{(k_n)} \to x \).
2. Earlier argument using continuity: \(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \to \eta(x) \).
 In this case, the \(k_n \)-NN are coins of roughly the same bias as \(x \).
3. It suffices that \(\text{average}(\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})) \to \eta(x) \).
Universal consistency in metric spaces

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$.

1. Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.

2. Earlier argument using continuity: $\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \to \eta(x)$.
 In this case, the k_n-NN are coins of roughly the same bias as x.

3. It suffices that average($\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})$) $\to \eta(x)$.

4. $x_{(1)}, \ldots, x_{(k_n)}$ lie in some ball $B(x, r)$.
 For suitable r, they are random draws from μ restricted to $B(x, r)$.

Universal consistency in metric spaces

Query \(x \); training points by increasing distance from \(x \) are \(x_1, \ldots, x_n \).

1. Since \(k_n/n \to 0 \), we have \(x_1, \ldots, x_{k_n} \to x \).

2. Earlier argument using continuity: \(\eta(x_1), \ldots, \eta(x_{k_n}) \to \eta(x) \).
 In this case, the \(k_n \)-NN are coins of roughly the same bias as \(x \).

3. It suffices that \(\text{average}(\eta(x_1), \ldots, \eta(x_{k_n})) \to \eta(x) \).

4. \(x_1, \ldots, x_{k_n} \) lie in some ball \(B(x, r) \).
 For suitable \(r \), they are random draws from \(\mu \) restricted to \(B(x, r) \).

5. \(\text{average}(\eta(x_1), \ldots, \eta(x_{k_n})) \) is close to the average \(\eta \) in this ball:

\[
\frac{1}{\mu(B(x, r))} \int_{B(x, r)} \eta \, d\mu.
\]
Universal consistency in metric spaces

Query x; training points by increasing distance from x are $x_{(1)}, \ldots, x_{(n)}$.

1. Since $k_n/n \to 0$, we have $x_{(1)}, \ldots, x_{(k_n)} \to x$.
2. Earlier argument using continuity: $\eta(x_{(1)}), \ldots, \eta(x_{(k_n)}) \to \eta(x)$.
 In this case, the k_n-NN are coins of roughly the same bias as x.
3. It suffices that average($\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})$) $\to \eta(x)$.
4. $x_{(1)}, \ldots, x_{(k_n)}$ lie in some ball $B(x, r)$.
 For suitable r, they are random draws from μ restricted to $B(x, r)$.
5. average($\eta(x_{(1)}), \ldots, \eta(x_{(k_n)})$) is close to the average η in this ball:
 \[
 \frac{1}{\mu(B(x, r))} \int_{B(x, r)} \eta \, d\mu.
 \]
6. As n grows, this ball $B(x, r)$ shrinks. Thus it is enough that
 \[
 \lim_{r \downarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} \eta \, d\mu = \eta(x).
 \]
Rates of convergence

Bad news: curse of dimension

Good news: adaptive to
 - Intrinsic low dimension (e.g. manifold structure)
 - Smoothness of boundary
Smoothness and margin conditions

- The usual smoothness condition in \mathbb{R}^d: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L\|x - x'\|^{\alpha}. $$
Smoothness and margin conditions

- The usual smoothness condition in \(\mathbb{R}^d \): \(\eta \) is \(\alpha \)-Holder continuous if for some constant \(L \), for all \(x, x' \),

 \[
 |\eta(x) - \eta(x')| \leq L \|x - x'\|^\alpha.
 \]

- Mammen-Tsybakov \(\beta \)-margin condition: For some constant \(C \), for any \(t \), we have \(\mu(\{x : |\eta(x) - 1/2| \leq t\}) \leq Ct^\beta \).

Width-\(t \) margin around decision boundary

\[\eta(x)\]

1

1/2

x

Smoothness and margin conditions

• The usual smoothness condition in \mathbb{R}^d: η is α-Holder continuous if for some constant L, for all x, x',

$$|\eta(x) - \eta(x')| \leq L\|x - x'\|^\alpha.$$

• Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have $\mu(\{x : |\eta(x) - 1/2| \leq t\}) \leq Ct^\beta$.

Width-t margin around decision boundary

• Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a regular set with $0 < \mu_{\text{min}} < \mu < \mu_{\text{max}}$. Then $\mathbb{E}R_n - R^*$ is $\Omega(n^{-\alpha(\beta+1)/(2\alpha+d)}).$
Smoothness and margin conditions

- The usual smoothness condition in \mathbb{R}^d: η is α-Holder continuous if for some constant L, for all x, x',
 $$|\eta(x) - \eta(x')| \leq L\|x - x'\|^{\alpha}.$$

- Mammen-Tsybakov β-margin condition: For some constant C, for any t, we have $\mu(\{x : |\eta(x) - 1/2| \leq t\}) \leq Ct^\beta$.

Width-t margin around decision boundary

- Audibert-Tsybakov: Suppose these two conditions hold, and that μ is supported on a regular set with $0 < \mu_{\text{min}} < \mu < \mu_{\text{max}}$. Then $\mathbb{E}R_n - R^*$ is $\Omega(n^{-\alpha(\beta+1)/(2\alpha+d)})$.

 Under these conditions, for suitable (k_n), this rate is achieved by k_n-NN.
How much does η change over an interval?

- The usual notions relate this to $|x - x'|$.
- For NN: more sensible to relate to $\mu([x, x'])$.

A better smoothness condition for NN [Chaudhuri-D’14]

\[
\eta(x)
\]
A better smoothness condition for NN [Chaudhuri-D’14]

How much does η change over an interval?

- The usual notions relate this to $|x - x'|$.
- For NN: more sensible to relate to $\mu([x, x'])$.

We will say η is α-smooth in metric measure space (\mathcal{X}, ρ, μ) if for some constant L, for all $x \in \mathcal{X}$ and $r > 0$,

$$|\eta(x) - \eta(B(x, r))| \leq L \mu(B(x, r))^\alpha,$$

where $\eta(B) = \text{average } \eta \text{ in ball } B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

A better smoothness condition for NN [Chaudhuri-D’14]

How much does η change over an interval?

- The usual notions relate this to $|x - x'|$.
- For NN: more sensible to relate to $\mu([x, x'])$.

We will say η is α-smooth in metric measure space (\mathcal{X}, ρ, μ) if for some constant L, for all $x \in \mathcal{X}$ and $r > 0$,

$$|\eta(x) - \eta(B(x, r))| \leq L \mu(B(x, r))^\alpha,$$

where $\eta(B) = \text{average } \eta \text{ in ball } B = \frac{1}{\mu(B)} \int_B \eta \ d\mu$.

η is α-Holder continuous in \mathbb{R}^d, μ bounded below $\Rightarrow \eta$ is (α/d)-smooth.
Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on n training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α-smooth in (\mathcal{X}, ρ, μ). Then for any n, k,

1. For any $\delta > 0$, with probability at least $1 - \delta$ over the training set,
 \[
 \Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1\sqrt{\frac{1}{k} \ln \frac{1}{\delta}}\})
 \]
 under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.

2. $\mathbb{E}_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_3\sqrt{\frac{1}{k}}\})$.

Rates of convergence under smoothness

Let $h_{n,k}$ denote the k-NN classifier based on n training points. Let h^* be the Bayes-optimal classifier.

Suppose η is α-smooth in (X, ρ, μ). Then for any n, k,

1. For any $\delta > 0$, with probability at least $1 - \delta$ over the training set,
 \[\Pr_X(h_{n,k}(X) \neq h^*(X)) \leq \delta + \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_1 \sqrt{\frac{1}{k} \ln \frac{1}{\delta}}\}) \]
 under the choice $k \propto n^{2\alpha/(2\alpha+1)}$.

2. $E_n \Pr_X(h_{n,k}(X) \neq h^*(X)) \geq C_2 \mu(\{x : |\eta(x) - \frac{1}{2}| \leq C_3 \sqrt{\frac{1}{k}}\}$).

These upper and lower bounds are qualitatively similar for all smooth conditional probability functions:

the probability mass of the width-$\frac{1}{\sqrt{k}}$ margin around the decision boundary.
Variants of nearest neighbor rules

1. Quantization strategies

2. Subsampling
Quantization: reduce the data

\[\{X_i\}_{i=1}^n \]
Quantization: reduce the data

Assign $\{X_i\}$ to representatives $Q \equiv \{q\}$
Quantization: reduce the data

Pick $q's$ in Q close to x

Kpotufe-Verma (2017): pick Q to be an ϵ-net.

Favorable empirical performance: small rise in error rate, significant speedup in query time.

Kontorovich-Weiss-Sabato (2017): pick Q to be a suitable ϵ-cover.

Then: 1-NN using Q is consistent.
Quantization: reduce the data

Pick \(q \)'s in \(Q \) close to \(x \)

1. Kpotufe-Verma (2017): pick \(Q \) to be an \(\epsilon \)-net.
 Favorable empirical performance: small rise in error rate, significant speedup in query time.
Quantization: reduce the data

Pick \(q \)'s in \(Q \) close to \(x \)

1. Kpotufe-Verma (2017): pick \(Q \) to be an \(\epsilon \)-net.
 Favorable empirical performance: small rise in error rate, significant speedup in query time.

2. Kontorovich-Weiss-Sabato (2017): pick \(Q \) to be a suitable \(\epsilon \)-cover.
 Then: 1-NN using \(Q \) is consistent.
Subsampling: reduce data and parallelize

Data: \(\{(X_i, Y_i)\}_{i=1}^{n}, \ Y \in \{0, 1\} \).

Repeat for \(t = 1, 2, \ldots, N \):

- Let \(S_t \) be a random subsample of \(m \ll n \) points.

To classify \(x \): compute 1-NN wrt to each \(S_t \), take majority label.
Subsampling: reduce data and parallelize

Data: \(\{(X_i, Y_i)\}_{i=1}^{n}, Y \in \{0, 1\} \).

Repeat for \(t = 1, 2, \ldots, N \):

- Let \(S_t \) be a random subsample of \(m \ll n \) points

To classify \(x \): compute 1-NN wrt to each \(S_t \), take majority label.

Biau-Cerou-Guyader (2010), Samworth (2010):

- This is consistent.
- In fact, it is weighted \(k \)-NN.
 Each of \(x \)'s \(k \) nearest neighbors (in the original data set) will be its 1-NN in some fraction of \(S_t \).
- Asymptotically more accurate than \(k \)-NN.
Outline

1. Statistical properties of nearest neighbor
2. Algorithmic approaches to nearest neighbor search
The complexity of nearest neighbor search

Given a data set of n points in a metric space (X, ρ), build a data structure for efficiently answering subsequent nearest neighbor queries q.

- Data structure should take space $O(n)$
- Query time should be $o(n)$
The complexity of nearest neighbor search

Given a data set of n points in a metric space (\mathcal{X}, ρ), build a data structure for efficiently answering subsequent nearest neighbor queries q.

- Data structure should take space $O(n)$
- Query time should be $o(n)$

Unproven but common conjecture: either data structure size or query time must be exponential in the dimension of the space.

Bad case: for any $0 < \epsilon < 1$,

- Pick $2^{O(\epsilon^2 d)}$ points uniformly from the unit sphere in \mathbb{R}^d
- With high probability, all interpoint distances are $(1 \pm \epsilon)\sqrt{2}$
The complexity of nearest neighbor search

Given a data set of n points in a metric space (\mathcal{X}, ρ), build a data structure for efficiently answering subsequent nearest neighbor queries q.

- Data structure should take space $O(n)$
- Query time should be $o(n)$

Unproven but common conjecture: either data structure size or query time must be exponential in the dimension of the space.

Bad case: for any $0 < \epsilon < 1$,

- Pick $2^{O(\epsilon^2 d)}$ points uniformly from the unit sphere in \mathbb{R}^d
- With high probability, all interpoint distances are $(1 \pm \epsilon)\sqrt{2}$

How can this bad case be defeated?
NN algorithms: an impressionistic history

- 1975: The k-d tree (Bentley and Friedman).
 Widely used, but algorithmic guarantees on weak footing.
NN algorithms: an impressionistic history

- **1975**: The k-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.
- **1980s-1990s**: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.
- **1990s-**: It's okay to fail sometimes (e.g. Clarkson, Kleinberg).
- **Late 1990s-**: Locality-sensitive hashing (Indyk, Motwani, Andoni). Hashing scheme with some failure probability, widely used.
- **Recently**: Binary hashing; resurgence of trees.
NN algorithms: an impressionistic history

- **1975**: The k-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.

- **1980s-1990s**: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.

- **1990s-**: It’s okay to fail sometimes (e.g. Clarkson, Kleinberg).
NN algorithms: an impressionistic history

- **1975:** The k-d tree (Bentley and Friedman).
 Widely used, but algorithmic guarantees on weak footing.

- **1980s-1990s:** More tree structures (e.g. Clarkson, Mount).
 Could accommodate general metric spaces.

- **1990s-:** It’s okay to fail sometimes (e.g. Clarkson, Kleinberg).

- **Late 1990s-:** Locality-sensitive hashing (Indyk, Motwani, Andoni).
 Hashing scheme with some failure probability, widely used.
NN algorithms: an impressionistic history

- **1975**: The k-d tree (Bentley and Friedman). Widely used, but algorithmic guarantees on weak footing.

- **1980s-1990s**: More tree structures (e.g. Clarkson, Mount). Could accommodate general metric spaces.

- **1990s-**: It’s okay to fail sometimes (e.g. Clarkson, Kleinberg).

- **Late 1990s-**: Locality-sensitive hashing (Indyk, Motwani, Andoni). Hashing scheme with some failure probability, widely used.

- **Recently**: binary hashing; resurgence of trees.
The k-d tree [Bentley-Friedman ’75]

Defeatist search:
• Return NN in query’s leaf node; maybe not the actual NN
• Time $O(\log n) + O(\# \text{(points in each leaf)})$

Comprehensive search:
• Always returns the NN
• Can take $O(n)$ time in some cases
The k-d tree [Bentley-Friedman '75]

Defeatist search:

• Return NN in query’s leaf node; maybe not the actual NN
• Time $O(\log n) + O(\#(\text{points in each leaf}))$
The \textit{k-d tree} \cite{Bentley-Friedman '75}

\textbf{Defeatist search:}
- Return NN in query’s leaf node; maybe not the actual NN
- Time $O(\log n) + O(\#(\text{points in each leaf}))$

\textbf{Comprehensive search:}
- Always returns the NN
- Can take $O(n)$ time in some cases
Trees for general distance spaces

- Ball trees for metric spaces [Omohundro '89]
- Bregman ball trees [Cayton '08]
- Vantage-point (VP) trees [Yianilos '91; Uhlmann '91]
Trees for general distance spaces

- Ball trees for metric spaces [Omohundro ’89]

Diagram showing two overlapping circles with points inside, illustrating the concept of ball trees for metric spaces.
Trees for general distance spaces

- Ball trees for metric spaces [Omohundro ’89]
- Bregman ball trees [Cayton ’08]

Trees for general distance spaces

- Ball trees for metric spaces [Omohundro ’89]
- Bregman ball trees [Cayton ’08]
- Vantage-point (VP) trees [Yianilos ’91; Uhlmann ’91]
Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a d-dimensional unit ball.
Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a d-dimensional unit ball.

1. Methods that are adaptive to intrinsic dimension.
Recall canonical bad case: points uniformly distributed over a d-dimensional unit ball.

1. Methods that are adaptive to intrinsic dimension.
2. Methods that return approximate nearest neighbors.
Cover trees for metric spaces

Beygelzimer-Kakade-Langford ’06:
- Hierarchical cover of an arbitrary metric space
- Space $O(n)$, permits dynamic insertion and deletion of data points
- Query time $O(\text{poly}(c) \log n)$

A finite set X in a metric space has expansion rate c if for any point x and any radius $r > 0$,
$$|B(x, 2r) \cap X| \leq c \cdot |B(x, r) \cap X|.$$
Cover trees for metric spaces

Beygelzimer-Kakade-Langford '06:
• Hierarchical cover of an arbitrary metric space
• Space $O(n)$, permits dynamic insertion and deletion of data points
• Query time $O(\text{poly}(c) \log n)$

A finite set X in a metric space has expansion rate c if for any point x and any radius $r > 0$,

$$|B(x, 2r) \cap X| \leq c \cdot |B(x, r) \cap X|.$$
Variants of k-d trees with guarantees

Random projection trees: In each cell of the tree, pick split direction uniformly at random from the unit sphere in \mathbb{R}^d.

Perturbed split: after projection, pick $\beta \in [1/4, 3/4]$ and split at the β-fractile point.

Failure probability for defeatist search is $< 1/2$ if each leaf has $O(d)$ points, where d is the doubling dimension of the data. [D-Sinha '13]
Variants of k-d trees with guarantees

Random projection trees: In each cell of the tree, pick split direction uniformly at random from the unit sphere in \mathbb{R}^d.

![Diagram of random projection trees]

Perturbed split: after projection, pick $\beta \in [1/4, 3/4]$ and split at the β-fractile point.

Failure probability for defeatist search is $< 1/2$ if each leaf has $O(d_\circ^{d_\circ})$ points, where d_\circ is the **doubling dimension** of the data. [D-Sinha ’13]
Doubling dimension

[Assouad ’83; Gupta-Krauthgamer-Lee ’03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_0 if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_0} balls of half the radius.
Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

Example: $S =$ line has doubling dimension 1.
Doubleing dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1. Example: $S =$ line has doubling dimension 1.

2. A k-dimensional flat has doubling dimension $c_o k$ for some absolute constant c_o.
Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1. Example: $S =$ line has doubling dimension 1.

2. A k-dimensional flat has doubling dimension $c_0 k$ for some absolute constant c_0.

3. If S has diameter Δ and doubling dimension d_o, then for any $\epsilon > 0$, it has an ϵ-cover of size $\leq (2\Delta/\epsilon)^{d_o}$.
Doubling dimension

[Assouad ’83; Gupta-Krauthgamer-Lee ’03]

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1. Example: $S = \text{line}$ has doubling dimension 1.

\[\text{Example: } S = \text{line has doubling dimension } 1. \]

2. A k-dimensional flat has doubling dimension $c_o k$ for some absolute constant c_o.

3. If S has diameter Δ and doubling dimension d_o, then for any $\epsilon > 0$, it has an ϵ-cover of size $\leq (2\Delta/\epsilon)^{d_o}$.

4. If S has doubling dimension d_o, then so does any subset of S.
The doubling dimension of sparse sets

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1. A set of n points has doubling dimension at most $\log n$.
 Proof: It can be covered by n balls of any radius.
The doubling dimension of sparse sets

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1. A set of n points has doubling dimension at most $\log n$.
 Proof: It can be covered by n balls of any radius.

2. If sets S_1, \ldots, S_m each have doubling dimension $\leq d_o$, then $S_1 \cup \cdots \cup S_m$ has doubling dimension $\leq d_o + \log m$.
 Proof: $S_i \cap B$ can be covered by 2^{d_o} balls of half the radius. Therefore, at most $m2^{d_o}$ balls are needed for the union.
The doubling dimension of sparse sets

Set $S \subset \mathbb{R}^d$ has doubling dimension d_o if for any (Euclidean) ball B, the subset $S \cap B$ can be covered by 2^{d_o} balls of half the radius.

1. A set of n points has doubling dimension at most $\log n$.
 Proof: It can be covered by n balls of any radius.

2. If sets S_1, \ldots, S_m each have doubling dimension $\leq d_o$, then $S_1 \cup \cdots \cup S_m$ has doubling dimension $\leq d_o + \log m$.
 Proof: $S_i \cap B$ can be covered by 2^{d_o} balls of half the radius. Therefore, at most $m2^{d_o}$ balls are needed for the union.

3. Suppose each point in $S \subset \mathbb{R}^d$ has $\leq k$ nonzero coordinates. Then S has doubling dimension $\leq c_0 k + k \log d$.
 Proof: S is the union of $\binom{d}{k}$ flats of dimension k; we’ve seen that each flat has doubling dimension $\leq c_0 k$.

The doubling dimension of manifolds

A Riemannian submanifold $M \subset \mathbb{R}^p$ has condition number $\leq 1/\tau$ if normals to M of length τ don’t intersect:

If $M \subset \mathbb{R}^p$ is a k-dimensional manifold of condition number $1/\tau$, then its neighborhoods of radius τ have doubling dimension $O(k)$.

Locality-sensitive hashing [Indyk-Motwani-Andoni]

Typical hash function h_i:
random projection + binning

$$h_i(x) = \left\lfloor \frac{r_i \cdot x + b}{w} \right\rfloor$$

- r_i is a random direction
- b is a random offset
- w is the bin width
Locality-sensitive hashing \[\text{[Indyk-Motwani-Andoni]}\]

Typical hash function \(h_i:\)
random projection + binning

\[
h_i(x) = \left\lfloor \frac{r_i \cdot x + b}{w} \right\rfloor
\]

- \(r_i\) is a random direction
- \(b\) is a random offset
- \(w\) is the bin width

For any data set \(x_1, \ldots, x_n\), query \(q\): probability < 1 of failing to return an approximate NN.
Locality-sensitive hashing [Indyk-Motwani-Andoni]

Typical hash function h_i: random projection + binning

$$h_i(x) = \left\lfloor \frac{r_i \cdot x + b}{w} \right\rfloor$$

- r_i is a random direction
- b is a random offset
- w is the bin width

- For any data set x_1, \ldots, x_n, query q: probability < 1 of failing to return an approximate NN.
- To reduce this probability, make t tables. Space: $O(nt)$.
Approximate nearest neighbor

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x - q\| \leq c \cdot \min_{z \in S} \|z - q\|.$$
Approximate nearest neighbor

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x - q\| \leq c \cdot \min_{z \in S} \|z - q\|.$$

Complexity of approximate NN search in Euclidean space:

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}
Approximate nearest neighbor

For data set $S \subset \mathbb{R}^d$ and query q, a c-approximate nearest neighbor is any $x \in S$ such that

$$\|x - q\| \leq c \cdot \min_{z \in S} \|z - q\|.$$

Complexity of approximate NN search in Euclidean space:

- Data structure size n^{1+1/c^2}
- Query time n^{1/c^2}

Caution: the same value of c can have very different implications for different data sets.
Approximate nearest neighbor

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?
Approximate nearest neighbor

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

<table>
<thead>
<tr>
<th>c</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error rate (%)</td>
<td>3.1</td>
<td>9.0</td>
<td>18.4</td>
<td>29.3</td>
<td>40.7</td>
<td>51.4</td>
</tr>
</tbody>
</table>

But LSH also does well on exact NN search!
Approximate nearest neighbor

The MNIST data set of handwritten digits:

What % of c-approximate nearest neighbors have the wrong label?

<table>
<thead>
<tr>
<th>c</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error rate (%)</td>
<td>3.1</td>
<td>9.0</td>
<td>18.4</td>
<td>29.3</td>
<td>40.7</td>
<td>51.4</td>
</tr>
</tbody>
</table>

But LSH also does well on **exact** NN search!
Hash tables versus trees

As long as these structures are randomized, can use:

- **collection of LSH tables**
- **forest of trees**

Experimental comparisons, e.g. V. Hyvonen, T. Roos et al (2016).
Relevant books
