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Key questions

@ Statistical issues: under what conditions does NN produce good
predictions, and how should it be run?
e When is 1-NN enough?
If using k-NN, what should k be, roughly?
Is there a curse of dimension?
Does it adapt to latent structure: clusters, manifolds, etc?

® Algorithmic issues: how to find nearest neighbors?

e Data structures for fast NN

o Parallelizing NN

o Geometric tasks that build upon nearest neighbors: hierarchical
clustering, minimum spanning tree, etc



Outline

@ Statistical properties of nearest neighbor

® Algorithmic approaches to nearest neighbor search



Nearest neighbor classification

Given:
e training points (x1,y1), - ., (Xn, ¥n) € X x {0,1}
e query point x
predict the label of x by looking at its nearest neighbor(s) among the x;.

e 1-NN returns the label of the nearest neighbor of x amongst the x;.
e k-NN returns the majority vote of the k nearest neighbors.

o k,-NN lets k grow with n.



The data space

) e X

+
y Data points lie in a space X" with distance

x® function p: X x X — R.

e Most common scenario: X = R? and p is Euclidean distance.
e Common more general setting: (X, p) is a metric space.

e (, distances

o Metrics obtained from user preferences/feedback
e Also of interest: more general distances.

e KL divergence
e Domain-specific dissimilarity measures



Statistical learning theory setup

Training points come from the same source as future queries.
e Underlying measure p on X from which all points are generated.
e We call (X, p, ) a metric measure space.
e Label of x is a coin flip with bias n(x) = Pr(Y = 1|X = x).

Question: why wouldn't 7(x) always be either 0 or 17

A classifier is a rule h: X — {0,1}.
o Misclassification rate, or risk: R(h) = Pr(h(X) # Y).

e The Bayes-optimal classifier
h*(x) = { 1 ifn(x)>1/2

)

0 otherwise

has minimum risk, R* = R(h*) = Ex min(n(X), 1 — n(X)).



Statistical questions

Let h, be a classifier based on n labeled data points from the underlying
distribution. R(h,) is a random variable.
o Consistency: does R(h,) converge to R*?

e 1-NN is not consistent. e.g. X =R and n =1/4.
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Statistical questions
Let h, be a classifier based on n labeled data points from the underlying
distribution. R(h,) is a random variable.
o Consistency: does R(h,) converge to R*?

e 1-NN is not consistent. e.g. X =R and n =1/4.
o Neither is k-NN for fixed k.
e Therefore, take k,-NN classifier with k, — oo.

What are minimal assumptions for consistency?

o Rates of convergence: how fast does convergence occur?
Rates depend upon smoothness of n(x) = Pr(Y = 1|X = x):

7(x) n(x)

N

What is a suitable notion of smoothness, and rates?

> T > T



Consistency results under continuity

Assume n(x) = P(Y = 1|X = x) is continuous.
Let h, be the k,-classifier, with k, 1 oo and k,/n ] 0.

e Fix and Hodges (1951): Consistent in R9.
e Cover-Hart (1965, 1967, 1968): Consistent in any metric space.

Proof outline: Let x be a query point and let xy), . .., X(,) denote the
training points ordered by increasing distance from x.

@ . Training points are drawn from g, so the number of
) * | them in any ball B is roughly n- u(B).

e Therefore x(1), ..., X(x,) lie in a ball centered at x of probability mass
~ ku/n. Since k,/n | 0, we have x(1y,..., Xk, —* X.

e By continuity, (X)), - - -, 7(Xk,)) — n(x)-

e By law of large numbers, when tossing many coins of bias roughly

n(x), the fraction of 1s will be approximately n(x). Thus the
majority vote of their labels will approach h*(x).
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one of these as their nearest neighbor?




Universal consistency in RY

Stone (1977): consistency in RY assuming only measurability.

Lusin’s thm: for any measurable 7, for any € > 0, there is a continuous
function that differs from it on at most € fraction of points.

Training points in the red region can cause
. trouble. What fraction of query points have
@. ° . one of these as their nearest neighbor?

Geometric result: at most a constant number! And this yields
consistency.
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A key geometric fact

Pick any n points in R?. Pick one of these points, x. At most how many
of the remaining points can have x as its nearest neighbor?
At most 59 [Stone].

But this argument fails in general metric measure spaces (X, p, ).
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Universal consistency in metric sSpaces [Cuavpuuri-D’ 14]

Preiss [80’s]: An infinite-dimensional space in which consistency fails
Cerou-Guyader '06: Conditions for universal consistency in metric spaces

Let (X, d, 1) be a separable metric measure space in which the Lebesgue
differentiation property holds: for any bounded measurable f,

. 1 o
" (B(x.1) ./B(X,,)f du = )

for almost all (u-a.e.) x € X.

o If k, — o0 and k,/n — 0, then R, — R* in probability.
e If in addition k,/logn — oo, then R, — R* almost surely.

Examples of such spaces: finite-dimensional normed spaces; doubling
metric measure spaces.
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Universal consistency in metric spaces

Query x; training points by increasing distance from x are x(1), . .., X(n)-
® Since k,/n — 0, we have x(1y, ..., Xk, = X.

® Earlier argument using continuity: 1(x)), .., 7(Xk,)) = 1(x).
In this case, the k,-NN are coins of roughly the same bias as x.

® It suffices that average(n(xq)), - - -, n(X«,))) = 1(x).
© X(1);- -, Xk, lie in some ball B(x,r).
For suitable r, they are random draws from p restricted to B(x, r).

@ average(n(xw)), - - - M(X(k,))) is close to the average 7 in this ball:

#/ 0 dp
w(B(x,r)) B(x,r) '

® As n grows, this ball B(x, r) shrinks. Thus it is enough that

1
|im7/ du = n(x).
40 M(B(X? r)) B(x,r)"7 . 77( )



Rates of convergence

Bad news: curse of dimension

Good news: adaptive to
e Intrinsic low dimension (e.g. manifold structure)

e Smoothness of boundary
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Smoothness and margin conditions

e The usual smoothness condition in RY: 7 is a-Holder continuous if
for some constant L, for all x, x’,

In(x) =n(x)| < Lllx = x|

e Mammen-Tsybakov -margin condition: For some constant C, for
any t, we have p ({x : |n(x) —1/2| < t}) < CtP.
n(x)

Width-t margin
around decision
boundary

o Audibert-Tsybakov: Suppose these two conditions hold, and that p

is supported on a regular set with 0 < fimin < t < fmax- 1 hen
ER, — R* is Q(n—a(6+1)/(2a+d))_

Under these conditions, for suitable (k,), this rate is achieved by k,-NN.
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A better smoothness condition for NN [Cuavpuuri-D'14]

n(x)

How much does 7 change over
an interval?

| >
I/ =
T T

e The usual notions relate this to |x — x|.
e For NN: more sensible to relate to u([x, x']).

We will say 7 is a-smooth in metric measure space (X, p, ) if for
some constant L, for all x € X and r > 0,

In(x) =n(B(x.r))l < Lu(B(x,r))%,
where 1(B) = average 7 in ball B = ﬁ Jgn du.

7 is a-Holder continuous in RY, ;1 bounded below = 7 is («/d)-smooth.



Rates of convergence under smoothness

Let hy, x denote the k-NN classifier based on n training points.
Let h* be the Bayes-optimal classifier.
Suppose 7 is a-smooth in (X, p, ). Then for any n, k,
® For any § > 0, with probability at least 1 — & over the training set,
Prx(hnk(X) # h*(X)) < 0+ p({x:|n(x) = 3] < G/ In5})
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® E, Prx(hni(X) # 1*(X)) > Gouu({x: In(x) — 3 < Gy /1)),



Rates of convergence under smoothness

Let hy, x denote the k-NN classifier based on n training points.
Let h* be the Bayes-optimal classifier.
Suppose 7 is a-smooth in (X, p, ). Then for any n, k,
® For any § > 0, with probability at least 1 — & over the training set,
Prx(hnk(X) # h*(X)) < 0+ p({x:|n(x) = 3] < G/ In5})

under the choice k o< n2o/(a+1),

® E, Prx(hni(X) # 1*(X)) > Gouu({x: In(x) — 3 < Gy /1)),

These upper and lower bounds are qualitatively similar for all smooth
conditional probability functions:

the probability mass of the Wl'dth—ﬁ margin around the
decision boundary.



Variants of nearest neighbor rules

® Quantization strategies

® Subsampling



Quantization: reduce the data

[ J
® [
L .
[ ]
[ ]



Quantization: reduce the data

. e
0 ./O/.

LY

Assign {Xi} to representatives Q = {q}
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Quantization: reduce the data

0]
Pick g's in Q close to x

©® Kpotufe-Verma (2017): pick Q to be an e-net.
Favorable empirical performance: small rise in error rate, significant
speedup in query time.

® Kontorovich-Weiss-Sabato (2017): pick Q to be a suitable e-cover.
Then: 1-NN using Q is consistent.



Subsampling: reduce data and parallelize

Data: {(X;,Y;)}",, Y €{0,1}.

Repeat for t =1,2,..., N:
o Let S; be a random subsample of m < n points

To classify x: compute 1-NN wrt to each S;, take majority label.



Subsampling: reduce data and parallelize

Data: {(X;,Y;)}",, Y €{0,1}.

Repeat for t =1,2,..., N:
o Let S; be a random subsample of m < n points

To classify x: compute 1-NN wrt to each S;, take majority label.

Biau-Cerou-Guyader (2010), Samworth (2010):
e This is consistent.

e In fact, it is weighted k-NN.
Each of x's k nearest neighbors (in the original data set) will be its
1-NN in some fraction of S;.

e Asympotically more accurate than k-NN.



Outline

@ Statistical properties of nearest neighbor

® Algorithmic approaches to nearest neighbor search
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The complexity of nearest neighbor search

Given a data set of n points in a metric space (X, p), build a data
structure for efficiently answering subsequent nearest neighbor queries gq.

e Data structure should take space O(n)
e Query time should be o(n)

Unproven but common conjecture: either data structure size or query
time must be exponential in the dimension of the space.
Bad case: for any 0 < e < 1,

e Pick 29(€) points uniformly from the unit sphere in R¢
e With high probability, all interpoint distances are (1 4 ¢)+/2

How can this bad case be defeated?
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NN algorithms: an impressionistic history

1975: The k-d tree (Bentley and Friedman).
Widely used, but algorithmic guarantees on weak footing.

1980s-1990s: More tree structures (e.g. Clarkson, Mount).
Could accommodate general metric spaces.

1990s-: It's okay to fail sometimes (e.g. Clarkson, Kleinberg).

Late 1990s-: Locality-sensitive hashing (Indyk, Motwani, Andoni).
Hashing scheme with some failure probability, widely used.

Recently: binary hashing; resurgence of trees.
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The k-d tree [BENTLEY-FRIEDMAN ’75]

Defeatist search:
e Return NN in query’s leaf node; maybe not the actual NN
e Time O(log n) + O(#(points in each leaf))

Comprehensive search:
e Always returns the NN

e Can take O(n) time in some cases
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Trees for general distance spaces

o Ball trees for metric spaces [Omohundro "89]
e Bregman ball trees [Cayton '08]
e Vantage-point (VP) trees [Yianilos '91; Uhlmann '91]
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Controlling the complexity of NN search

Recall canonical bad case: points uniformly distributed over a
d-dimensional unit ball.

@® Methods that are adaptive to intrinsic dimension.

® Methods that return approximate nearest neighbors.
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Cover trees for metric spaces

Beygelzimer-Kakade-Langford '06:
e Hierarchical cover of an arbitrary metric space
e Space O(n), permits dynamic insertion and deletion of data points
e Query time O(poly(c) log n)

A finite set X in a metric space has expansion rate c if for any point x
and any radius r > 0,

[B(x,2r)N X| < c-|B(x,r)nX|.
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Random projection trees: In each cell of the tree, pick split direction
uniformly at random from the unit sphere in R?

Perturbed split: after projection, pick 8 €g [1/4,3/4] and split at the
[-fractile point.



Variants of k-d trees with guarantees

Random projection trees: In each cell of the tree, pick split direction
uniformly at random from the unit sphere in R?

Perturbed split: after projection, pick 8 €g [1/4,3/4] and split at the
[-fractile point.

Failure probability for defeatist search is < 1/2 if each leaf has O(d%)
points, where d, is the doubling dimension of the data. [D-Sinha '13]
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Doubling dimension

[Assouad '83; Gupta-Krauthgamer-Lee '03]

Set S C RY has doubling dimension d, if for any (Euclidean) ball B, the
subset SN B can be covered by 2% balls of half the radius.

® Example: S = line has doubling dimension 1.
B

AN
A\

® A k-dimensional flat has doubling dimension ¢,k for some absolute
constant ¢,.

® If S has diameter A and doubling dimension d,, then for any € > 0,
it has an e-cover of size < (2A/¢)%.

@ If S has doubling dimension d,, then so does any subset of S.
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The doubling dimension of sparse sets

Set S C R? has doubling dimension d, if for any (Euclidean) ball B, the
subset SN B can be covered by 2% balls of half the radius.

® A set of n points has doubling dimension at most log n.
Proof: It can be covered by n balls of any radius.

® If sets Sy,...,S,, each have doubling dimension < d,, then
Sy U---US,, has doubling dimension < d, + log m.
Proof: S; N B can be covered by 2% balls of half the radius.
Therefore, at most m2% balls are needed for the union.

® Suppose each point in S € R? has < k nonzero coordinates. Then

S has doubling dimension < ¢,k + klogd.

Proof: S is the union of (Z) flats of dimension k; we've seen that

each flat has doubling dimension < ¢, k.



The doubling dimension of manifolds

A Riemannian submanifold M C RP has condition number < 1/7 if
normals to M of length 7 don't intersect:

o O

If M C RP is a k-dimensional manifold of condition number 1/7, then its
neighborhoods of radius 7 have doubling dimension O(k).
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Locality-sensitive hashing [inxpyk-Morwani-Anponi]

hl(.’IJ)

Typical hash function h;:
random projection + binning

hi(x) = VX—MJ

w

ho(z) z e r; is a random direction

e b is a random offset
e w is the bin width

e For any data set xi, ..., x,, query g: probability < 1 of failing to
return an approximate NN.

e To reduce this probability, make t tables. Space: O(nt).
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Approximate nearest neighbor

For data set S C R? and query g, a c-approximate nearest neighbor is
any x € S such that

—qll <c-mi —qll.
Ix = gll < c-minflz - q]

Complexity of approximate NN search in Euclidean space:
o Data structure size nt*1/’

e Query time n/<’

Caution: the same value of ¢ can have very different implications for
different data sets.
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Approximate nearest neighbor

The MNIST data set of handwritten digits:

F eI/ 79 béal
6757 ¢b34¢5¢s
210790/ a3v¥6
71901 ¢ % oY
T el ¥4 /5 é0
17589265 %1 99
A2R22AeBd34#YFO
DA L0733 ES Y
Ol ebbq bo2y¢?d
7/ 28n0n0qg80b/

What % of c-approximate nearest neighbors have the wrong label?

c 10 12 14 16 18 20
Error rate (%) | 3.1 9.0 184 29.3 40.7 514

But LSH also does well on exact NN search!



Hash tables versus trees

C

As long as these structures are randomized, can use:
e collection of LSH tables
o forest of trees
Experimental comparisons, e.g. V. Hyvonen, T. Roos et al (2016).



Relevant books

e G. Biau and L. Devroye. Lectures on the nearest neighbor method.
Springer, 2015.

e G.H. Chen and D. Shah. Explaining the success of nearest neighbor
methods in prediction. Foundations and Trends in Machine
Learning, 2018.



