Adaptivity in Domain Adaptation and Friends

$$P+Q\rightarrow Q$$
?

Samory Kpotufe Columbia University, Statistics

Based on various works with G. Martinet, S. Hanneke and J. Suk

Domain Adaptation (or Transfer Learning):

Given data $\{X_i, Y_i\} \sim_{\text{i.i.d.}} P$, produce a classifier for $(X, Y) \sim Q$.

Case study: Apple Siri's voice assistant

- Initially trained on data from American English speakers ..
- Could not understand 30M+ nonnative speakers in the US!

Costly Solution \equiv **5**+ years acquiring more data and retraining!

A Main Practical Goal:

Cheaply transfer ML software between related populations

Domain Adaptation (or Transfer Learning):

Given data $\{X_i, Y_i\} \sim_{\text{i.i.d.}} P$, produce a classifier for $(X, Y) \sim Q$.

Case study: Apple Siri's voice assistant

- Initially trained on data from American English speakers ...
- Could not understand 30M+ nonnative speakers in the US!

Costly Solution \equiv 5+ years acquiring more data and retraining!

A Main Practical Goal:

Cheaply transfer ML software between related populations

Domain Adaptation (or Transfer Learning):

Given data $\{X_i, Y_i\} \sim_{\text{i.i.d.}} P$, produce a classifier for $(X, Y) \sim Q$.

Case study: Apple Siri's voice assistant

- Initially trained on data from American English speakers ...
- Could not understand 30M+ nonnative speakers in the US!

Costly Solution \equiv 5+ years acquiring more data and retraining!

A Main Practical Goal:

Cheaply transfer ML software between related populations.

Al for Judicial Systems

- Source Population: prison inmates
- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities (2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire

Al in medicine, Genomics, Insurance Industry, Smart cities,

Al for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities (2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire AI in medicine, Genomics, Insurance Industry, Smart cities,

- -

Al for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities (2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire AI in medicine, Genomics, Insurance Industry, Smart cities,

. .

Al for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities (2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire AI in medicine, Genomics, Insurance Industry, Smart cities,

Many heuristics ... but theory and principles are still evolving

Suppose: \hat{h} is trained on source data $\sim P$, to be transferred to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

What's the relative statistical value of P and Q data? Depends on how $far\ P$ is from Q ...

Suppose: \hat{h} is trained on source data $\sim P$, to be transferred to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

What's the relative statistical value of P and Q data? Depends on how $far\ P$ is from Q ...

Suppose: \hat{h} is trained on source data $\sim P$, to be transferred to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

What's the relative statistical value of P and Q data? Depends on how $\mathit{far}\ P$ is from Q ...

Suppose: \hat{h} is trained on source data $\sim P$, to be *transferred* to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

What's the relative statistical value of P and Q data? Depends on how $far\ P$ is from Q ...

Suppose: \hat{h} is trained on source data $\sim P$, to be *transferred* to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

What's the relative statistical value of P and Q data? Depends on how $far\ P$ is from Q ...

Suppose: \hat{h} is trained on source data $\sim P$, to be *transferred* to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

What's the relative statistical value of P and Q data?

Depends on how far P is from Q ...

Suppose: \hat{h} is trained on source data $\sim P$, to be *transferred* to target Q.

- Is there sufficient information in source P about target Q?
- If not, how much new data should be collected?
- Would unlabeled data help?
- What's the right mix of P and Q data w.r.t. \$\$ sampling costs?

 $\frac{ \text{What's the relative statistical value of } P \text{ and } Q \text{ data?} }{ \text{Depends on how } \textit{far } P \text{ is from } Q \dots }$

Formal Setup: Classification $X \mapsto Y$, fixed VC class $\mathcal H$

Given: source data $\{X_i,Y_i\}\sim P^{n_P}$, target data $\{X_i,Y_i\}\sim Q^{n_Q}$.

Goal: $\hat{h} \in \mathcal{H}$ with small *excess* target error

$$\mathcal{E}_{Q}(\hat{h}) = \mathbb{E}_{Q}\left[\hat{h}(X) \neq Y\right] - \inf_{h \in \mathcal{H}} \mathbb{E}_{Q}\left[h(X) \neq Y\right]$$

Basic Information-theoretic Question:

Which $\mathcal{E}_Q(\hat{h})$ is achievable in terms of sample sizes n_P and n_Q ?

$Nonparametric\ work$

- (Covariate Shift) [Kpo. and Martinet, AoS 21]
- (Posterior Drift) [Scott 19] [Cai and Wei, AoS 19]
- (Covariate Shift, Posterior Drift) [Reeve, Cannings, Samworth, AoS 21]
- (Covariate Shift) [Pathak, Ma, Wainwright, ICML 22]

Formal Setup:

Classification $X \mapsto Y$, fixed VC class \mathcal{H}

Given: source data $\{X_i,Y_i\}\sim P^{n_P}$, target data $\{X_i,Y_i\}\sim Q^{n_Q}$

Goal: $h \in \mathcal{H}$ with small *excess* target error

$$\mathcal{E}_{Q}(\hat{h}) = \mathbb{E}_{Q}[\hat{h}(X) \neq Y] - \inf_{h \in \mathcal{H}} \mathbb{E}_{Q}[h(X) \neq Y]$$

Basic Information-theoretic Question:

Which $\mathcal{E}_Q(\hat{h})$ is achievable in terms of sample sizes n_P and n_Q ?

Formal Setup:

Classification $X \mapsto Y$, fixed VC class \mathcal{H}

Given: source data $\{X_i,Y_i\} \sim P^{n_P}$, target data $\{X_i,Y_i\} \sim Q^{n_Q}$.

Goal: $\hat{h} \in \mathcal{H}$ with small *excess* target error

$$\mathcal{E}_{Q}(\hat{h}) = \mathbb{E}_{Q}\left[\hat{h}(X) \neq Y\right] - \inf_{h \in \mathcal{H}} \mathbb{E}_{Q}\left[h(X) \neq Y\right]$$

Basic Information-theoretic Question:

Which $\mathcal{E}_Q(\hat{h})$ is achievable in terms of sample sizes n_P and n_Q ?

Formal Setup:

Classification $X \mapsto Y$, fixed VC class \mathcal{H}

Given: source data $\{X_i,Y_i\} \sim P^{n_P}$, target data $\{X_i,Y_i\} \sim Q^{n_Q}$.

Goal: $\hat{h} \in \mathcal{H}$ with small *excess* target error

$$\mathcal{E}_{Q}(\hat{h}) = \mathbb{E}_{Q}\left[\hat{h}(X) \neq Y\right] - \inf_{h \in \mathcal{H}} \mathbb{E}_{Q}\left[h(X) \neq Y\right]$$

Basic Information-theoretic Question:

Which $\mathcal{E}_Q(\hat{h})$ is achievable in terms of sample sizes n_P and n_Q ?

Formal Setup:

Classification $X \mapsto Y$, fixed VC class \mathcal{H}

Given: source data $\{X_i,Y_i\} \sim P^{n_P}$, target data $\{X_i,Y_i\} \sim Q^{n_Q}$.

Goal: $\hat{h} \in \mathcal{H}$ with small *excess* target error

$$\mathcal{E}_{Q}(\hat{h}) = \mathbb{E}_{Q}\left[\hat{h}(X) \neq Y\right] - \inf_{h \in \mathcal{H}} \mathbb{E}_{Q}\left[h(X) \neq Y\right]$$

Basic Information-theoretic Question:

Which $\mathcal{E}_Q(\hat{h})$ is achievable in terms of sample sizes n_P and n_Q ?

Formal Setup:

Classification $X \mapsto Y$, fixed VC class \mathcal{H}

Given: source data $\{X_i,Y_i\} \sim P^{n_P}$, target data $\{X_i,Y_i\} \sim Q^{n_Q}$.

Goal: $\hat{h} \in \mathcal{H}$ with small *excess* target error

$$\mathcal{E}_{Q}(\hat{h}) = \mathbb{E}_{Q}\left[\hat{h}(X) \neq Y\right] - \inf_{h \in \mathcal{H}} \mathbb{E}_{Q}\left[h(X) \neq Y\right]$$

Basic Information-theoretic Question:

Which $\mathcal{E}_Q(\hat{h})$ is achievable in terms of sample sizes n_P and n_Q ?

Which notion of $\operatorname{dist}(P \to Q)$ captures this error?

Similar Questions in Regression, RL & Bandits (even harder) ...

(Classification) Many competing notions of $\operatorname{dist}(P \to Q)$...

• Extensions of TV: consider |P(A) - Q(A)| over suitable A (e.g. d_A divergence/ \mathcal{Y} -discrepancy of S. Ben David, M. Mohri, ...)

$$\mathcal{E}_Q(\hat{h}) \lesssim o_P(1) + \operatorname{dist}(P \to Q)$$

• **Density Ratios:** consider ratio dQ/dP over data space (e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

$$\mathcal{E}_Q(\hat{h}) \lesssim o_P(1) + \mathrm{estimation} \ \mathrm{error}(d_Q/d_P)$$

(Classification) Many competing notions of $\operatorname{dist}(P \to Q)$...

• Extensions of TV: consider |P(A)-Q(A)| over suitable A (e.g. $d_{\mathcal{A}}$ divergence/ \mathcal{Y} -discrepancy of S. Ben David, M. Mohri, ...)

$$\mathcal{E}_Q(\hat{h}) \lesssim o_P(1) + \mathsf{dist}(P \to Q)$$

• **Density Ratios:** consider ratio dQ/dP over data space (e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

$$\mathcal{E}_Q(\hat{h}) \lesssim o_P(1) + \text{estimation error}(d_Q/d_P)$$

(Classification) Many competing notions of $\mathsf{dist}(P \to Q)$...

• Extensions of TV: consider |P(A)-Q(A)| over suitable A (e.g. $d_{\mathcal{A}}$ divergence/ \mathcal{Y} -discrepancy of S. Ben David, M. Mohri, ...)

$$\mathcal{E}_Q(\hat{h}) \lesssim o_P(1) + \mathsf{dist}(P \to Q)$$

• **Density Ratios:** consider ratio dQ/dP over data space (e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

$$\mathcal{E}_Q(\hat{h}) \lesssim o_P(1) + \text{estimation error}(d_Q/d_P)$$

Namely: P far from Q \longrightarrow Transfer is Hard

Many notions: (TV, d_A , \mathcal{Y} -disc, KL, Renyi, MMD, Wasserstein ...)

They all tend to be over-pessimistic about transfer \odot

Namely: P far from Q \longrightarrow Transfer is Hard

Many notions: (TV, d_A , \mathcal{Y} -disc, KL, Renyi, MMD, Wasserstein ...)

They all tend to be over-pessimistic about transfer \bigcirc

Namely: P far from $Q \longrightarrow$ Transfer is Hard

They all tend to be over-pessimistic about transfer ©

Namely: P far from $Q \Longrightarrow$ Transfer is Hard

Large TV, d_A , \mathcal{Y} -disc $\approx 1/2$

They all tend to be over-pessimistic about transfer ©

Namely: P far from $Q \longrightarrow$ Transfer is Hard

Asymmetry in transfer \implies Metrics are inappropriate

They all tend to be over-pessimistic about transfer ©

Namely: P far from $Q \implies$ Transfer is Hard

Large dQ/dP, KL-div $\approx \infty$

Relating source P to target Q [Hanneke, Kpo. NeurIPS 19]

Intuition: $h \in \mathcal{H}$ has low error under $P \implies$ low error under Q

For now assume
$$h_P^* = h_Q^* \dots$$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h) \le c \cdot \mathcal{E}_P^{1/\rho}(h)$$

ho captures a continuum of easy to hard transfer

Relating source P to target Q [Hanneke, Kpo. NeurIPS 19]

Intuition: $h \in \mathcal{H}$ has low error under $P \implies$ low error under Q

For now assume
$$h_P^* = h_Q^* \dots$$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h) \le c \cdot \mathcal{E}_P^{1/\rho}(h)$$

a captures a continuum of easy to hard transferr

Relating source P to target Q [Hanneke, Kpo. NeurlPS 19]

Intuition: $h \in \mathcal{H}$ has low error under $P \implies$ low error under Q

For now assume
$$h_P^\ast = h_Q^\ast \, \dots$$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h) \le c \cdot \mathcal{E}_P^{1/\rho}(h)$$

 ρ captures a continuum of easy to hard transfer ...

Relating source P to target Q [Hanneke, Kpo. NeurIPS 19]

Intuition: $h \in \mathcal{H}$ has low error under $P \implies$ low error under Q

For now assume $h_P^\ast = h_Q^\ast \, \dots$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h) \le c \cdot \mathcal{E}_P^{1/\rho}(h)$$

 ρ captures a continuum of easy to hard transfer ...

Relating source P to target Q [Hanneke, Kpo. NeurIPS 19]

Intuition: $h \in \mathcal{H}$ has low error under $P \implies$ low error under Q

For now assume $h_P^\ast = h_Q^\ast \, \dots$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h) \leq c \cdot \mathcal{E}_P^{1/\rho}(h)$$

 ρ captures a continuum of easy to hard transfer ...

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h, h^*) \le c \cdot \mathcal{E}_P^{1/\rho}(h, h^*)$$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h, h^*) \le c \cdot \mathcal{E}_P^{1/\rho}(h, h^*)$$

For deterministic $Y = h^*(X)$ this reduces to:

$$Q_X(h \neq h^*) \le c \cdot P_X^{1/\rho}(h \neq h^*)$$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h, h^*) \le c \cdot \mathcal{E}_P^{1/\rho}(h, h^*)$$

$$\rho = 1$$
 but $d_{\mathcal{A}}(P,Q) = \mathcal{Y}\text{-disc}(P,Q) = 1/4$

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h, h^*) \leq c \cdot \mathcal{E}_P^{1/\rho}(h, h^*)$$

 $\rho = 1$ but KL, Renyi, blow up ...

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h, h^*) \leq c \cdot \mathcal{E}_P^{1/\rho}(h, h^*)$$

 $ho > 1 \equiv$ how much P covers decision boundary

Transfer exponent $\rho > 0$:

$$\forall h \in \mathcal{H}, \quad \mathcal{E}_Q(h, h^*) \le c \cdot \mathcal{E}_P^{1/\rho}(h, h^*)$$

 $0 < \rho < 1 \equiv$ Super Transfer (P has better coverage of decision boundary)

 ρ captures performance limits (minimax rates) under transfer \dots

Easy to hard classification

Easy Classification

Hard Classification

Essential: Noise in Y|X, and X-mass near decision boundary

Bernstein condition:
$$Q_X(h \neq h^*) \lesssim \mathcal{E}_Q^{\beta}(h; h^*), \quad \beta \in [0, 1]$$

Easy to hard classification

Easy Classification

Hard Classification

Essential: Noise in Y|X, and X-mass near decision boundary Bernstein condition: $Q_X(h \neq h^*) \lesssim \mathcal{E}_Q^{\beta}(h;h^*), \quad \beta \in [0,1]$

Similar noise condition on P.

Easy to hard classification

Easy Classification

Hard Classification

Essential: Noise in Y|X, and X-mass near decision boundary

Bernstein condition:
$$Q_X(h \neq h^*) \lesssim \mathcal{E}_Q^{\beta}(h; h^*), \quad \beta \in [0, 1]$$

Easy to hard classification

Easy Classification

Hard Classification

Essential: Noise in Y|X, and X-mass near decision boundary

Bernstein condition:
$$Q_X(h \neq h^*) \lesssim \mathcal{E}_Q^{\beta}(h; h^*), \quad \beta \in [0, 1]$$

Easy to hard classification

Easy Classification

Hard Classification

Essential: Noise in Y|X, and X-mass near decision boundary

Bernstein condition: $Q_X(h \neq h^*) \lesssim \mathcal{E}_Q^{\beta}(h; h^*), \quad \beta \in [0, 1]$

Similar noise condition on P.

Given: labeled source and target data $\{X_i, Y_i\} \sim P^{n_P} \times Q^{n_Q}$.

Theorem. Let \hat{h} trained on samples from P+Q:

$$\inf_{\hat{h}} \sup_{(P,Q)} \mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/\rho} + n_Q \right)^{-1/(2-\beta)}$$

- Benefits of Unlabeled data: cannot improve the rates ...
- Benefits of Labeled Q data: transition at $n_Q>n_P^{1/
 ho}$
- Adaptive sampling at optimal \$\$ costs: possible in some regimes

Given: labeled source and target data $\{X_i,Y_i\} \sim P^{n_P} \times Q^{n_Q}$.

Theorem. Let \hat{h} trained on samples from P+Q:

$$\inf_{\hat{h}} \sup_{(P,Q)} \mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/\rho} + n_Q\right)^{-1/(2-\beta)}$$

- Benefits of Unlabeled data: cannot improve the rates ..
- Benefits of Labeled Q data: transition at $n_Q > n_P^{1/\rho}$
- Adaptive sampling at optimal \$\$ costs: possible in some regimes

Given: labeled source and target data $\{X_i,Y_i\} \sim P^{n_P} \times Q^{n_Q}$.

Theorem. Let \hat{h} trained on samples from P+Q:

$$\inf_{\hat{h}} \sup_{(P,Q)} \mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/\rho} + n_Q \right)^{-1/(2-\beta)}$$

- Benefits of Unlabeled data: cannot improve the rates ...
- Benefits of Labeled Q data: transition at $n_Q > n_P^{1/\rho}$
- Adaptive sampling at optimal \$\$ costs: possible in some regimes

Given: labeled source and target data $\{X_i,Y_i\} \sim P^{n_P} \times Q^{n_Q}$.

Theorem. Let \hat{h} trained on samples from P+Q:

$$\inf_{\hat{h}} \sup_{(P,Q)} \mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/\rho} + n_Q \right)^{-1/(2-\beta)}$$

- Benefits of Unlabeled data: cannot improve the rates ...
- Benefits of Labeled Q data: transition at $n_Q > n_P^{1/\rho}$
- Adaptive sampling at optimal \$\$ costs: possible in some regimes

Given: labeled source and target data $\{X_i,Y_i\} \sim P^{n_P} \times Q^{n_Q}$.

Theorem. Let \hat{h} trained on samples from P+Q:

$$\inf_{\hat{h}} \sup_{(P,Q)} \mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/\rho} + n_Q \right)^{-1/(2-\beta)}$$

- Benefits of Unlabeled data: cannot improve the rates ...
- Benefits of Labeled Q data: transition at $n_Q > n_P^{1/\rho}$
- Adaptive sampling at optimal \$\$ costs: possible in some regimes

Lower-Bound Analysis

 \hat{h} has access to (P,Q) samples, but has to do well on just $Q\,\dots$

Construction: family $\{(P,Q)_h\}$, any \mathcal{H} , $\rho \geq 1$, β :

- $(P^{n_P} \times Q^{n_Q})_h$ are close in KL-divergence
- But far under distance $Q_h(h' \neq h)$

The rest is extensions of Fano (see e.g. Tsybakov, or Barron and Li) ...

Lower-Bound Analysis

 \hat{h} has access to (P,Q) samples, but has to do well on just $Q\,\dots$

Construction: family $\{(P,Q)_h\}$, any \mathcal{H} , $\rho \geq 1$, β :

- $(P^{n_P} \times Q^{n_Q})_h$ are close in KL-divergence
- But far under distance $Q_h(h' \neq h)$

The rest is extensions of Fano (see e.g. Tsybakov, or Barron and Li) ...

Lower-Bound Analysis

 \hat{h} has access to (P,Q) samples, but has to do well on just $Q\,\dots$

Construction: family $\{(P,Q)_h\}$, any \mathcal{H} , $\rho \geq 1$, β :

- $(P^{n_P} \times Q^{n_Q})_h$ are close in KL-divergence
- But far under distance $Q_h(h' \neq h)$

The rest is extensions of Fano (see e.g. Tsybakov, or Barron and Li) ...

Performance limits:
$$\mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/
ho} + n_Q
ight)^{-1/(2-eta)}$$

(Optimal Heuristics for unknown ρ)

Low Classification noise (eta=1):

ERM on combined source and target data

Non i.i.d. Bernstein + usual fixed point argument

Unknown Noise Level $(eta \in [0,1])$:

Minimize $\hat{R}_Q(h)$ subject to $\hat{R}_P(h) \leq \min_{h'} \hat{R}_P(h') + \Delta_{n_P}(h)$

Lepski-type argument

Performance limits:
$$\mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/
ho} + n_Q\right)^{-1/(2-eta)}$$

We are interested in adaptivity to ρ ...

(Optimal Heuristics for unknown ρ)

Low Classification noise ($\beta = 1$):

ERM on combined source and target data

Non i.i.d. Bernstein + usual fixed point argument

Unknown Noise Level ($\beta \in [0,1]$):

Minimize $\hat{R}_Q(h)$ subject to $\hat{R}_P(h) \leq \min_{h'} \hat{R}_P(h') + \Delta_{n_P}(h)$

Lepski-type argument

Performance limits:
$$\mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/
ho} + n_Q
ight)^{-1/(2-eta)}$$

(Optimal Heuristics for unknown ρ)

Low Classification noise ($\beta = 1$):

ERM on combined source and target data

Non i.i.d. Bernstein + usual fixed point argument

Unknown Noise Level $(\beta \in [0,1])$:

Minimize $\hat{R}_Q(h)$ subject to $\hat{R}_P(h) \leq \min_{h'} \hat{R}_P(h') + \Delta_{n_P}(h)$

Lepski-type argumen

Performance limits:
$$\mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/
ho} + n_Q\right)^{-1/(2-eta)}$$

(Optimal Heuristics for unknown ρ)

Low Classification noise ($\beta = 1$):

ERM on combined source and target data.

Non i.i.d. Bernstein + usual fixed point argument

Unknown Noise Level ($eta \in [0,1]$):

Minimize $\hat{R}_{Q}(h)$ subject to $\hat{R}_{P}(h) \leq \min_{h'} \hat{R}_{P}(h') + \Delta_{n_{P}}(h')$

Lepski-type argument

Performance limits:
$$\mathcal{E}_Q(\hat{h}) \propto \left(n_P^{1/
ho} + n_Q\right)^{-1/(2-eta)}$$

(Optimal Heuristics for unknown ρ)

Low Classification noise ($\beta = 1$):

ERM on combined source and target data.

Non i.i.d. Bernstein + usual fixed point argument

Unknown Noise Level ($\beta \in [0,1]$):

Minimize $\hat{R}_Q(h)$ subject to $\hat{R}_P(h) \leq \min_{h'} \hat{R}_P(h') + \Delta_{n_P}(h)$

Lepski-type argument

Quick Summary and some New Directions ...

- ρ captures a more optimistic view of transferability $P \to Q$.
- Reveals general form of optimal heuristics:

Minimize
$$\hat{R}_P(h)$$
 subject to $\hat{R}_Q(h)$ not too large ...

- Cost-sensitive sampling is possible with no knowledge of ρ .
- Results extend to $h_P^* \neq h_Q^*$: $\exists \hat{h}$ s.t.

$$\mathcal{E}_Q(\hat{h}) \lesssim \min \left\{ n_P^{-1/(2-\beta)\rho} + \mathcal{E}_Q(h_P^*), n_Q^{-1/(2-\beta)} \right\}$$

- ρ captures a more optimistic view of transferability $P \to Q$.
- Reveals general form of optimal heuristics:

Minimize
$$\hat{R}_P(h)$$
 subject to $\hat{R}_Q(h)$ not too large ..

- Cost-sensitive sampling is possible with no knowledge of ρ .
- Results extend to $h_P^* \neq h_Q^*$: $\exists \hat{h}$ s.t.

$$\mathcal{E}_Q(\hat{h}) \lesssim \min \left\{ n_P^{-1/(2-\beta)\rho} + \mathcal{E}_Q(h_P^*), n_Q^{-1/(2-\beta)} \right\}$$

- ρ captures a more optimistic view of transferability $P \to Q$.
- Reveals general form of optimal heuristics:

Minimize
$$\hat{R}_P(h)$$
 subject to $\hat{R}_Q(h)$ not too large ...

- Cost-sensitive sampling is possible with no knowledge of ρ .
- Results extend to $h_P^* \neq h_Q^*$: $\exists \hat{h}$ s.t.

$$\mathcal{E}_Q(\hat{h}) \lesssim \min \left\{ n_P^{-1/(2-\beta)\rho} + \mathcal{E}_Q(h_P^*), n_Q^{-1/(2-\beta)} \right\}$$

- ρ captures a more optimistic view of transferability $P \to Q$.
- Reveals general form of optimal heuristics:

Minimize
$$\hat{R}_P(h)$$
 subject to $\hat{R}_Q(h)$ not too large ...

- Cost-sensitive sampling is possible with no knowledge of ρ .
- Results extend to $h_P^* \neq h_Q^*$: $\exists \hat{h}$ s.t.

$$\mathcal{E}_Q(\hat{h}) \lesssim \min \left\{ n_P^{-1/(2-\beta)\rho} + \mathcal{E}_Q(h_P^*), n_Q^{-1/(2-\beta)} \right\}$$

- ρ captures a more optimistic view of transferability $P \to Q$.
- Reveals general form of optimal heuristics:

Minimize
$$\hat{R}_P(h)$$
 subject to $\hat{R}_Q(h)$ not too large ...

- Cost-sensitive sampling is possible with no knowledge of ρ .
- Results extend to $h_P^* \neq h_Q^*$: $\exists \hat{h} \text{ s.t.}$

$$\mathcal{E}_Q(\hat{h}) \lesssim \min \left\{ n_P^{-1/(2-\beta)\rho} + \mathcal{E}_Q(h_P^*), n_Q^{-1/(2-\beta)} \right\}$$

Recent work:

Limits of Adaptivity in Multi-Task (AoS 2022 with S. Hanneke)

$$P_1 + P_2 + \cdots + P_N + Q \rightarrow Q$$
?

Prior theory only yields single source rates ...

Recent work:

Limits of Adaptivity in Multi-Task (AoS 2022 with S. Hanneke)

$$P_1 + P_2 + \cdots + P_N + Q \rightarrow Q$$
?

Prior theory only yields single source rates ...

N sources $\{P_t\}_{t=1}^N \mapsto Q$ with $\mathcal{E}_t(h) \gtrsim \mathcal{E}_Q^{
ho_t}(h)$

Minimax Rate on
$$\mathcal{E}_Q(\hat{h})$$
 : $\min_{t \in [N+1]} \left(\sum_{s=1}^t n_{(s)}\right)^{-1/(2-\beta)\bar{\rho}_s}$

Adaptive Strategies (as $N o \infty$):

Low noise ($\beta = 1$): ERM on combined data

Information on ranking $ho_{(1)} \leq ... \leq
ho_{(N)}$: Greedy ICI strategy ...

$$\inf_{\hat{h}} \sup_{\text{rankings}} \sup_{\{P_i\} \times Q} \mathcal{E}_Q(\hat{h}) \gtrsim n_Q^{-1/(2-\beta)}$$

 $N \text{ sources } \{P_t\}_{t=1}^N \mapsto Q \text{ with } \mathcal{E}_t(h) \gtrsim \mathcal{E}_Q^{
ho_t}(h)$

$$\text{Minimax Rate on } \mathcal{E}_Q(\hat{h}): \quad \min_{t \in [N+1]} \left(\sum_{s=1}^t n_{(s)} \right)^{-1/(2-\beta)\bar{\rho}_t}$$

Adaptive Strategies (as $N o \infty$):

Low noise ($\beta = 1$): ERM on combined data

Information on ranking $\rho_{(1)} \leq ... \leq \rho_{(N)}$: Greedy ICI strategy

$$\inf_{\hat{h}} \sup_{\text{rankings}} \sup_{\{P_i\} \times O} \mathcal{E}_Q(\hat{h}) \gtrsim n_Q^{-1/(2-\beta)}$$

 $N \text{ sources } \{P_t\}_{t=1}^N \mapsto Q \text{ with } \mathcal{E}_t(h) \gtrsim \mathcal{E}_Q^{\rho_t}(h)$

$$\text{Minimax Rate on } \mathcal{E}_Q(\hat{h}): \qquad \min_{t \in [N+1]} \left(\sum_{s=1}^t n_{(s)} \right)^{-1/(2-\beta)\bar{\rho}_t}$$

Adaptive Strategies (as $N \to \infty$):

Low noise ($\beta = 1$): ERM on combined data

Information on ranking $\rho_{(1)} \leq ... \leq \rho_{(N)}$: Greedy ICI strategy ...

$$\inf_{\hat{h}} \sup_{\text{rankings}} \sup_{\{P_i\} \times O} \mathcal{E}_Q(\hat{h}) \gtrsim n_Q^{-1/(2-\beta)}$$

 $N \text{ sources } \{P_t\}_{t=1}^N \mapsto Q \text{ with } \mathcal{E}_t(h) \gtrsim \mathcal{E}_Q^{\rho_t}(h)$

$$\text{Minimax Rate on } \mathcal{E}_Q(\hat{h}): \qquad \min_{t \in [N+1]} \left(\sum_{s=1}^t n_{(s)}\right)^{-1/(2-\beta)\bar{\rho}_t}$$

Adaptive Strategies (as $N \to \infty$):

Low noise ($\beta = 1$): ERM on combined data

Information on ranking $\rho_{(1)} \leq ... \leq \rho_{(N)}$: Greedy ICI strategy ...

$$\inf_{\hat{h}} \sup_{\text{rankings}} \sup_{\{P_t\} \times Q} \mathcal{E}_Q(\hat{h}) \gtrsim n_Q^{-1/(2-\beta)}$$

N sources $\{P_t\}_{t=1}^N \mapsto Q$ with $\mathcal{E}_t(h) \gtrsim \mathcal{E}_Q^{
ho_t}(h)$

$$\text{Minimax Rate on } \mathcal{E}_Q(\hat{h}): \quad \min_{t \in [N+1]} \left(\sum_{s=1}^t n_{(s)} \right)^{-1/(2-\beta)\bar{\rho}_t}$$

Adaptive Strategies (as $N \to \infty$):

Low noise ($\beta = 1$): ERM on combined data

Information on ranking $\rho_{(1)} \leq ... \leq \rho_{(N)}$: Greedy ICI strategy ...

$$\inf_{\hat{h}} \sup_{\text{rankings } \{P_t\} \times Q} \mathcal{E}_Q(\hat{h}) \gtrsim n_Q^{-1/(2-\beta)}.$$

 $N \text{ sources } \{P_t\}_{t=1}^N \mapsto Q \text{ with } \mathcal{E}_t(h) \gtrsim \mathcal{E}_Q^{\rho_t}(h)$

$$\text{Minimax Rate on } \mathcal{E}_Q(\hat{h}): \qquad \min_{t \in [N+1]} \left(\sum_{s=1}^t n_{(s)} \right)^{-1/(2-\beta)\bar{\rho}_t}$$

Adaptive Strategies (as $N \to \infty$):

Low noise ($\beta = 1$): ERM on combined data

Information on ranking $\rho_{(1)} \leq ... \leq \rho_{(N)}$: Greedy ICI strategy ...

$$\inf_{\hat{h}} \sup_{\text{rankings}} \sup_{\{P_t\} \times Q} \mathcal{E}_Q(\hat{h}) \gtrsim n_Q^{-1/(2-\beta)}.$$

Driving Philosophy: which aspects of the change affect learning?

Unknown Distribution Changes in Bandits (with Joe Suk)

- No Change-Point Detection under Covariate-Shifts. ALT 21.
- Detecting (In-)Significant Changes in Best-Arms. COLT 22.

Model Selection and Transfer (with S. Hanneke, to be written :))
... (sample sizes, model complexity, model transferability)

Somehow we are still just scratching the surface ...

Thanks!

Driving Philosophy: which aspects of the change affect learning?

Unknown Distribution Changes in Bandits (with Joe Suk)

- No Change-Point Detection under Covariate-Shifts. ALT 21 .
- Detecting (In-)Significant Changes in Best-Arms. COLT 22.

Model Selection and Transfer (with S. Hanneke, to be written :))

· · · (sample sizes, model complexity, model transferability)

Somehow we are still just scratching the surface ...

Thanks!

Driving Philosophy: which aspects of the change affect learning?

Unknown Distribution Changes in Bandits (with Joe Suk)

- No Change-Point Detection under Covariate-Shifts. ALT 21.
- Detecting (In-)Significant Changes in Best-Arms. COLT 22.

Model Selection and Transfer (with S. Hanneke, to be written :))

· · · (sample sizes, model complexity, model transferability)

Somehow we are still just scratching the surface ...

Thanks!

