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Adaptivity in Domain Adaptation and Friends

P +Q→ Q?

Samory Kpotufe
Columbia University, Statistics

Based on various works with G. Martinet, S. Hanneke and J. Suk
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Domain Adaptation (or Transfer Learning):

Given data {Xi, Yi} ∼i.i.d. P , produce a classifier for (X,Y ) ∼ Q.

Case study: Apple Siri’s voice assistant

- Initially trained on data from American English speakers ...

- Could not understand 30M+ nonnative speakers in the US!

Costly Solution ≡ 5+ years acquiring more data and retraining!

A Main Practical Goal:

Cheaply transfer ML software between related populations.
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Transfer is of general relevance:

AI for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities
(2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire

AI in medicine, Genomics, Insurance Industry, Smart cities,
...
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Many heuristics ... but theory and principles are still evolving
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Basic questions remain largely unanswered:

Suppose: ĥ is trained on source data ∼ P , to be transferred to target Q.

• Is there sufficient information in source P about target Q?

• If not, how much new data should be collected?

• Would unlabeled data help?

• What’s the right mix of P and Q data w.r.t. $$ sampling costs?

What’s the relative statistical value of P and Q data?

Depends on how far P is from Q ...
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How do we proceed?

Formal Setup:
Classification X 7→ Y , fixed VC class H

Given: source data {Xi, Yi} ∼ PnP , target data {Xi, Yi} ∼ QnQ .

Goal: ĥ ∈ H with small excess target error

EQ(ĥ) = EQ [ĥ(X) 6= Y ]− inf
h∈H

EQ [h(X) 6= Y ]

Basic Information-theoretic Question:

Which EQ(ĥ) is achievable in terms of sample sizes nP and nQ?

Which notion of dist(P → Q) captures this error?
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How do we proceed?

Nonparametric work

• (Covariate Shift) [Kpo. and Martinet, AoS 21]

• (Posterior Drift) [Scott 19] [Cai and Wei, AoS 19]

• (Covariate Shift, Posterior Drift) [Reeve, Cannings, Samworth, AoS 21]

• (Covariate Shift) [Pathak, Ma, Wainwright, ICML 22]

Formal Setup:
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Goal: ĥ ∈ H with small excess target error
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Similar Questions in Regression, RL & Bandits (even harder) ...
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(Classification) Many competing notions of dist(P → Q) ...

• Extensions of TV: consider |P (A)−Q(A)| over suitable A
(e.g. dA divergence/Y-discrepancy of S. Ben David, M. Mohri, ...)

EQ(ĥ) . oP (1) + dist(P → Q)

• Density Ratios: consider ratio dQ/dP over data space
(e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

EQ(ĥ) . oP (1) + estimation error(dQ/dP )
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Many notions: (TV, dA, Y-disc, KL, Renyi, MMD, Wasserstein ...)

They all tend to be over-pessimistic about transfer §

Namely: P far from Q ���=⇒ Transfer is Hard
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Many notions: (TV, dA, Y-disc, KL, Renyi, MMD, Wasserstein ...)

They all tend to be over-pessimistic about transfer §

Namely: P far from Q ���=⇒ Transfer is Hard

Asymmetry in transfer =⇒ Metrics are inappropriate
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Many notions: (TV, dA, Y-disc, KL, Renyi, MMD, Wasserstein ...)

They all tend to be over-pessimistic about transfer §

Namely: P far from Q ���=⇒ Transfer is Hard

Large dQ/dP , KL-div ≈ ∞
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Relating source P to target Q [Hanneke, Kpo. NeurIPS 19]

Intuition: h ∈ H has low error under P =⇒ low error under Q

For now assume h∗P = h∗Q ...

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h) ≤ c · E1/ρ
P (h)

ρ captures a continuum of easy to hard transfer ...
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Examples:

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h, h∗) ≤ c · E1/ρ
P (h, h∗)
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Examples:

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h, h∗) ≤ c · E1/ρ
P (h, h∗)

For deterministic Y = h∗(X) this reduces to:

QX(h 6= h∗) ≤ c · PX1/ρ(h 6= h∗)
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Examples:

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h, h∗) ≤ c · E1/ρ
P (h, h∗)

ρ = 1 but dA(P,Q) = Y-disc(P,Q) = 1/4
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Examples:

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h, h∗) ≤ c · E1/ρ
P (h, h∗)

ρ = 1 but KL, Renyi, blow up ...
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Examples:

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h, h∗) ≤ c · E1/ρ
P (h, h∗)

ρ > 1 ≡ how much P covers decision boundary
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Examples:

Transfer exponent ρ > 0:

∀h ∈ H, EQ(h, h∗) ≤ c · E1/ρ
P (h, h∗)

0 < ρ < 1 ≡ Super Transfer (P has better coverage of decision boundary)
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ρ captures performance limits (minimax rates) under transfer ...
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Performance depends on ρ + hardness of classification:

Easy to hard classification

Easy Classification Hard Classification

Essential: Noise in Y |X, and X-mass near decision boundary

Bernstein condition: QX(h 6= h∗) . EQβ(h;h∗), β ∈ [0, 1]

Similar noise condition on P .
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Minimax rates of Transfer: [Hanneke, Kpo. NeurIPS 19]

Given: labeled source and target data {Xi, Yi} ∼ PnP ×QnQ .

Theorem. Let ĥ trained on samples from P +Q:

inf
ĥ

sup
(P,Q)

EQ(ĥ) ∝
(
n

1/ρ
P + nQ

)−1/(2−β)

Tight for any H, ρ ≥ 1, β, nP , nQ ...

• Benefits of Unlabeled data: cannot improve the rates ...

• Benefits of Labeled Q data: transition at nQ > n
1/ρ
P

• Adaptive sampling at optimal $$ costs: possible in some regimes
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Theorem. Let ĥ trained on samples from P +Q:

inf
ĥ
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Lower-Bound Analysis

ĥ has access to (P,Q) samples, but has to do well on just Q ...

Construction: family {(P,Q)h}, any H, ρ ≥ 1, β:

• (PnP ×QnQ)h are close in KL-divergence

• But far under distance Qh(h′ 6= h)

The rest is extensions of Fano (see e.g. Tsybakov, or Barron and Li) ...
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Upper-bound Analysis:

Performance limits: EQ(ĥ) ∝
(
n

1/ρ
P + nQ

)−1/(2−β)

(Optimal Heuristics for unknown ρ)

Low Classification noise (β = 1):

ERM on combined source and target data.

Non i.i.d. Bernstein + usual fixed point argument

Unknown Noise Level (β ∈ [0, 1]):

Minimize R̂Q(h) subject to R̂P (h) ≤ minh′ R̂P (h′) + ∆nP (h)

Lepski-type argument
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Upper-bound Analysis:

Performance limits: EQ(ĥ) ∝
(
n

1/ρ
P + nQ

)−1/(2−β)

We are interested in adaptivity to ρ ...

(Optimal Heuristics for unknown ρ)

Low Classification noise (β = 1):

ERM on combined source and target data.

Non i.i.d. Bernstein + usual fixed point argument
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Quick Summary and some New Directions ...
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Quick Summary:

• ρ captures a more optimistic view of transferability P → Q.

• Reveals general form of optimal heuristics:

Minimize R̂P (h) subject to R̂Q(h) not too large ...

• Cost-sensitive sampling is possible with no knowledge of ρ.

• Results extend to h∗P 6= h∗Q: ∃ĥ s.t.

EQ(ĥ) . min
{
n
−1/(2−β)ρ
P + EQ(h∗P ), n

−1/(2−β)
Q

}
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Setup:

N sources {Pt}Nt=1 7→ Q with Et(h) & EρtQ (h)

Minimax Rate on EQ(ĥ) : min
t∈[N+1]

(
t∑

s=1

n(s)

)−1/(2−β)ρ̄t

Adaptive Strategies (as N →∞):

Low noise (β = 1): ERM on combined data

Information on ranking ρ(1) ≤ ... ≤ ρ(N): Greedy ICI strategy ...

No adaptive strategy outside above regimes !!!

inf
ĥ

sup
rankings

sup
{Pt}×Q

EQ(ĥ) & n
−1/(2−β)
Q .
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t∈[N+1]

(
t∑

s=1

n(s)

)−1/(2−β)ρ̄t

Adaptive Strategies (as N →∞):

Low noise (β = 1): ERM on combined data

Information on ranking ρ(1) ≤ ... ≤ ρ(N): Greedy ICI strategy ...

No adaptive strategy outside above regimes !!!

inf
ĥ
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ĥ

sup
rankings

sup
{Pt}×Q
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Driving Philosophy: which aspects of the change affect learning?

Unknown Distribution Changes in Bandits (with Joe Suk)

• No Change-Point Detection under Covariate-Shifts. ALT 21 .

• Detecting (In-)Significant Changes in Best-Arms. COLT 22.

Model Selection and Transfer (with S. Hanneke, to be written :))

· · · (sample sizes, model complexity, model transferability)

Somehow we are still just scratching the surface ...

Thanks!
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