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- Initially trained on data from American English speakers ...
- Could not understand 30M+ nonnative speakers in the US!

Costly Solution = 5+ years acquiring more data and retraining!

A Main Practical Goal:
Cheaply transfer ML software between related populations. J
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Al for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities
(2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire

Al in medicine, Genomics, Insurance Industry, Smart cities,




driver of ML

SU.CCGSS
Andrew Ng,
NIBS2016 tut

Many heuristics ... but theory and principles are still evolving
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Basic questions remain largely unanswered:

Suppose: h is trained on source data ~ P, to be transferred to target Q.
® |s there sufficient information in source P about target Q7
® |f not, how much new data should be collected?
® Would unlabeled data help?
e What's the right mix of P and @ data w.r.t. $$ sampling costs?

What's the relative statistical value of P and () data?
Depends on how far P is from @ ...
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Nonparametric work
® (Covariate Shift) [Kpo. and Martinet, AoS 21]
(Posterior Drift) [Scott 19] [Cai and Wei, AoS 19]
® (Covariate Shift, Posterior Drift) [Reeve, Cannings, Samworth, AoS 21]
(Covariate Shift) [Pathak, Ma, Wainwright, ICML 22]
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Formal Setup:
Classification X — Y, fixed VC class H

Given: source data {X;,Y;} ~ P"P, target data {X,,Y;} ~ Q"<.

Goal: h € H with small excess target error

Eq(h) = Eqh(X) # Y] — inf Eq[h(X) # Y]

~

Basic Information-theoretic Question: J

Which £q(h) is achievable in terms of sample sizes np and ng?

Which notion of dist(P — Q) captures this error?



Similar Questions in Regression, RL & Bandits (even harder) ...
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¢ Extensions of TV: consider |P(A) — Q(A)| over suitable A
(e.g. da divergence/Y-discrepancy of S. Ben David, M. Mohri, ...)

~

Eo(h) Sop(l) +dist(P — Q)

¢ Density Ratios: consider ratio dQ)/dP over data space
(e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

~

Eo(h) < op(1) + estimation error(dg/dp)
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Many notions: (TV, d4, Y-disc, KL, Renyi, MMD, Wasserstein ...)
They all tend to be over-pessimistic about transfer ©

Namely: P far from () = Transfer is Hard

Source Distribution Target Distribution
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Large dQ/dP, KL-div ~ co
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Intuition: h € H has low error under P =—> low error under @

* 1k
For now assume h}, = hQ

Transfer exponent p > 0:
Vhet, Eg(h) < c-Sllg/p(h) J

p captures a continuum of easy to hard transfer ...
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p =1 but KL, Renyi, blow up ...



Erxamples:

Transfer exponent p > 0:

VheH,  Eg(h,h*) <c-EFF(h,h*)

J,

b
h* hi
L 1 ]

p > 1 = how much P covers decision boundary



Eramples:

Transfer exponent p > 0:

VheH,  Eg(h,h*) < c-EFF(h,h*)

0 < p < 1 = Super Transfer (P has better coverage of decision boundary)



p captures performance limits (minimax rates) under transfer ...



Performance depends on p + hardness of classification:

EID[J

Ll

L]

?




Performance depends on p + hardness of classification:

Easy to hard classification

[
mh A
Oy A

DA@

A
O & A

Easy Classification

Hard Classification




Performance depends on p + hardness of classification:

Easy to hard classification

EIDDD O DD
] O A0

[ [
] [

[
5 0

Easy Classification Hard Classification

Essential: Noise in Y| X, and X-mass near decision boundary



Performance depends on p + hardness of classification:

Easy to hard classification

EIDDD O DD
] O A0

[ [
L] [

[
5 0

Easy Classification Hard Classification
Essential: Noise in Y| X, and X-mass near decision boundary

Bernstein condition: Qx(h # h*) < &P (h;h*), B € (0,1]



Performance depends on p + hardness of classification:

Easy to hard classification
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Easy Classification Hard Classification
Essential: Noise in Y| X, and X-mass near decision boundary

Bernstein condition: Qx(h # h*) < &P (h;h*), B € (0,1]

Similar noise condition on P.
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Minimax rates of Transfer: [Hanneke, Kpo. NeurlPS 19]

Given: labeled source and target data {X;,Y;} ~ P"P x Q"<.

Theorem. Let / trained on samples from P + Q:
- -1/(2-8)
inf sup Eg(h) o <n}3/p + nQ)
h (PQ)

Tight for any H,p > 1,8,np,nq ...

® Benefits of Unlabeled data: cannot improve the rates ...

e Benefits of Labeled @ data: transition at n¢g > 1"

® Adaptive sampling at optimal $$ costs: possible in some regimes
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Lower-Bound Analysis

h has access to (P, Q) samples, but has to do well on just @ ...

Construction: family {(P,Q)x}, any H, p > 1, f:
e (PP x QQ"@)y, are close in KL-divergence
e But far under distance Q(h' # h)

The rest is extensions of Fano (see e.g. Tsybakov, or Barron and Li) ...
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. —1/(2-8)
Performance limits: £g(h) o (n;/p + nQ>

We are interested in adaptivity to p ...
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Upper-bound Analysis:

. ~1/(2-8
Performance limits: £g(h) o (n}g/p—i—nQ) [

(Optimal Heuristics for unknown p)

Low Classification noise (5 = 1):

ERM on combined source and target data.

Non i.i.d. Bernstein + usual fixed point argument
Unknown Noise Level (3 € [0,1]):
Minimize Rq(h) subject to Rp(h) < miny Rp(h') + A, (h)

Lepski-type argument
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Quick Summary:

p captures a more optimistic view of transferability P — Q.

Reveals general form of optimal heuristics:

Minimize Rp(h) subject to Rg(h) not too large ...

Cost-sensitive sampling is possible with no knowledge of p.
Results extend to hp 7 hy): Jh s.t.

EQ(B) < min {n;l/(%ﬁ)p + Eq (), nél/(%ﬁ)}
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Limits of Adaptivity in Multi-Task (AoS 2022 with S. Hanneke)

P1+P2+"'+PN—|—Q—>Q?

Prior theory only yields single source rates ...
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Setup:
N sources {P}N | — Q with &(h) = g (h)

¢ —1/(2-B)pt
Minimax Rate on &g (h) : r[rjl\;nl] <Z n(s)>
te[N+
s=1

Adaptive Strategies (as N — c0):

Low noise (8 = 1): ERM on combined data

Information on ranking p(1) < ... < p(ny: Greedy ICl strategy ...

No adaptive strategy outside above regimes !!!

inf sup sup EQ(B)ZnéI/@_B).
h rankings { P} xQ
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Driving Philosophy: which aspects of the change affect learning?

Unknown Distribution Changes in Bandits (with Joe Suk)
e No Change-Point Detection under Covariate-Shifts. ALT 21 .
e Detecting (In-)Significant Changes in Best-Arms. COLT 22.

Model Selection and Transfer (with S. Hanneke, to be written :))

- (sample sizes, model complexity, model transferability)

Somehow we are still just scratching the surface ...

Thanks!



