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v

Q: Can active outperform passive learning? When? By how much?
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Gains in active learning

Performance measure:
- Let f* minimize R(f) =P (Y # f(X)).

- Let f < classifier returned after querying n labels.

~

How small can R(f) — R(f*) be in terms of n?

Most results are in parametric settings (e.g. VC dim. < c0):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
R(f*) ~0:  A-L rates = e~ V", while P-L rates = 1/n
R(f*)>0:  A-L rates = 1//n same as P-L rates.

But R(f*) is often > 0 (imperfect world):

noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
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Remarks:
Let n(x) =P (Y =1 | z), and note that f* =1{n > 1/2}.
So (") depends on how 7 behaves.

A natural direction:
Parametrize 77 on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if 7)() is typically ~ 1/2, else it's easy!
How typical = existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with regularity or complexity conditions:
smoothness of 7 or class-boundary, complexity of hypothesis class ...
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However:
Needs quite restrictive technical conditions on Px y.

What about adaptive 4+ implementable A-L for general Px y 7
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n nearly aligns with clusters in X

Related to the cluster assumption (C-A):
One label dominates in each cluster
So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable!
Downside: unsafe assumption!

Fortunately there are existing safe approaches ...
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— Partition unlabeled X7, query a few labels in each cell.

Consider each cell:

e If there is a clear majority label (say 1 — € proportion):
LABEL the cell (using majority label)

e Else, PARTITION the cell and REPEAT

Label data with error < € == now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general Px
C-A: savings when C-A nearly holds, SAFE when not.
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Earlier results (similar label guarantees)
e [Das., Hsu, 08]: Niceness of sample X7, Y{".

e [Urn., Wulff, B-Dav, 13]: Niceness of Px y, no noise in Y,
partition 7" cannot depend on X'

Our results: more practical assumptions

Niceness of Pxy, low noise in Y, T'=T(X]") = smaller |T,.

We now have |T|, = O(2%) < 2P, (d = intrinsic dim. of X).
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Two main conditions on 7(z) = E[Y|z]:
7 is likely far from % (Tsy. noise condition):

Py (In(X) —1/2[ <) <7’

1 is nearly Lipschitz:

Px (Fz st n(X) —n(z) > A|X —z|) <A™

Large ./ = C-A holds (at least for small clusters).
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Parametrizing the partition-tree T

Two main ingredients:

Cells of T' have bounded complexity Vi
Allows for decoupling the dependence between T'(X7) and X7

T has good quantization rate

Let T, = level where cells have diameter r; |T,.| < r™ "

Remark: x = O(d) < D w.h.p. for various procedures T’
(Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
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Guarantees (w.h.p.)

Given: n = Q(1/€?) unlabeled samples X7
e Correctness: At most ¢ fraction of X' is mislabeled.

e Labels requested: At most

n- <2~/<1+n/a> LM FR/0) | exp(—e - ﬂ))

- This is best as C-A holds («, 3 large), safe if not.
- Avoids the curse of dimension for structured data (k ~ d < D).



Outline:

We consider various regularity conditions on n = E [Y'| X]:
e 7 nearly aligns with clusters in X
with R. Urner and S. Ben David, 2015

e 7 is a smooth function
with A. Locatelli and A. Carpentier, 2017

e 7) defines a smooth decision-boundary
with A. Locatelli and A. Carpentier, soon on Arxiv



1 is @ smooth function

Setup:

e n(x) = E[Y|z] has Holder smoothness «
(e.g. all derivatives up to order « are bounded)

e Tsybakov noise condition: 3¢, 8 > 0 such that V7 > 0:

1
Px (153 ‘77(55)—2’ §T> < et
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« and B: continuum between easy and hard problems
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Questions: how do «a, £ and d interact? Can we adapt to this?
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Previous work Minsker (2012): Px uniform

Self-similarity of 17: smoothness is tight Va (never better than «)
Theorem: o < 1, aff < d
There exists an active strategy fn such that:

A B+1

a(B+1)
R(fn) — R(f*) Sn 2e+d—oF  (rate is tight)

Passive rate: replace d — a3 by d [AT07]

For «« > 1 the rate seems to transition:
a(B+1)

R(fn) — R(f*) S~ 2ot

Minsker conjectures that this rate is tight.

Open: Unrestricted Px? General n? Tightness of o > 17



Our results: statistical contributions

Milder conditions, new rate regimes
e Px uniform: same rates without self-similarity condition

e Verify rate transition for oo > 1:

~ a(B+1)
For 3 =1: infsupE[R(f,)] — R(f") > Cn_2a+j—ﬁ
fn M

e Unrestricted Px: different minimax rate

. _o(B+D) . _ _a(B+1)
Active : © | n~ 2a+d | vs. Passive : © | n= 2a+dtaB
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Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on 7

CBonnp

Request new label at x5 but not at z1, x3

Optimal CBs require strong conditions on 7 (e.g. self-similarity)

New generic adaptation strategy for nested classes {¥(a)}a>0 J

Aggregate Y estimates from non-adaptive subroutines (over a *).
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Non-adaptive Subroutine

Suppose we know 7 is a-smooth (a < 1)

e Query t labels at z¢ and estimate n(z¢):

Cell C
™
~ 1
whp. [iee) =n(ze)l S /5 .
To
e We know 7 changes on C' by at most r¢ B

r

= Ve eC, |n(zc)-— |<f+r

. Let t ~ 2% we can safely label C if

(@) —1/2] 2 2r |

Otherwise partition C' and repeat over smaller regions.
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Non-adaptive Subroutine

Suppose we know 7 is a-smooth (a < 1)

Implement previous intuition over
hierarchical partition of [0, 1]¢.

Final output given budget n: Abstention region
e Correctly labeled subset of [0, 1]¢ ¥
e Abstention region contained in

{z:|n(x) =1/2] < Agp}-

Ay g = Aq(n)is "optimal’
under different Px regimes.

Labeled regions

M Class 1 M Class 0

Case a > 1:
Same intuition, but higher order interpolation (for 7) on cells C
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Adaptive Procedure (o unknown)

Key idea: 7 is o/-Holder for any o/ < «
= Subroutine(a’) returns correct labels (red or blue)

Procedure:
Aggregate labelings of Subroutine(a’) for o/ = a1 < as < ...

Abstention region
\

Labeled regions for ay Labeled regions for a: Aggregated labels

Correctness: at «; = « labeling has optimal error
At o > «, we never overwrite previous labels (error remains small)

Implementation: o; € [loén logn : log n] use budget log%n Yoy
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Adaptive Procedure (o unknown)

Without self-similarity assumptions adaptive fn satisfies:
Theorem: unrestricted Px

_a(B+1)

R(fa) = R(f*) S n” 2o

Theorem: Px uniform

R(fa) = B(f*) S 0”7t

which are all tight rates.



Outline

e Upper-bounds

e Non-adaptive Subroutine
e Adaptive Procedure

e Lower-bounds
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Theorem (unrestricted Px )

For any active learner f,, we have:

A _a(B+1)

s%pE[R(fn)] — R(f*) > Cn™ 2044

Theorem (Px uniform and a > 1, f=1)

For any active learner f, we have:
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Lower-bounds

Theorem (unrestricted Px )

For any active learner f,, we have:

A _a(B+1)

supB[R(f)] = R(f*) 2 O~ 5

Theorem (Px uniform and a > 1, f=1)

For any active learner f, we have:

A a(B+1)

SupE[R(f,)] — R(f*) > Cn~ v
n

This confirms a transition in the rate (at least for 5 = 1).
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Remember difference in rates:
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7 changes linearly in 3 directions, 45 directions
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Lower-bound construction for Px uniform, o > 1, =1

Remember difference in rates:
a(B+1)

a S 1: n_ 2a+d—af
_ a(B+1)
a>1:n 2+d=5

Hard case for o > 1:
7 changes linearly in 3 directions, 45 directions
but oscillates in d — /3 directions

77 directions

...d — 3 now acts as the effective degrees of freedom
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Summary

We recover rates in A-L under more natural assumptions
Confirmed a conjectured transition at o > 1
Established new minimax rates for unrestricted Px

Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure
in the smooth boundary setting of Castro and Nowak (2008)



Outline:

We consider various regularity conditions on n = E [Y'| X]:
e 7 nearly aligns with clusters in X
with R. Urner and S. Ben David, 2015

e blue 7 is a smooth function
with A. Locatelli and A. Carpentier, 2017

o 1) defines a smooth decision-boundary
with A. Locatelli and A. Carpentier, soon on Arxiv



n defines a smooth decision-boundary

T4 y= 1
/\/\4’”1
y=0
I, y Ld—1

e D= {x:n(x)=1/2} is given by a-Holder function g.
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n defines a smooth decision-boundary

T4 y= 1
/\/\4’”1
y=0
I, y Ld—1

e D= {x:n(x)=1/2} is given by a-Holder function g.
e Noise condition: |n(z) — 1/2| ~ dist(xz, D)*" !, k > 1.

Problem is easier as kK — 1, v — o0.
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Previous work [Castro, Nowak 07], Px = U[0, 1]

If we know «, k, then:

R(f) — R(f*) Sn” 2G0T (rate is tight)

Passive rate: Replace x — 1 with xk — 1/2.

Can these gains be achieved by an adaptive procedure?
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Dimension d = 1, D = threshold on the line

Binary search strategies are adaptive to « ... (fixed o = 00)
[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]




Existing adaptive results:

Dimension d = 1, D = threshold on the line

Binary search strategies are adaptive to « ... (fixed o = 00)
[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Use any of these (blackbox) to get a fully adaptive strategy in IR%!
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Intuition:
If D is a-smooth, then it's o/-smooth for o/ < a!

So use the same strategy as before:
Aggregate estimates from non-adaptive subroutine for o

Main difficulty: such subroutine must adapt to x in IR? ...
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SubRoutine: suppose o were known

Tdq ‘ It ‘
|
|

1yeeeyld—1

Partition [0,1]7 ! into cells of side-length 7.
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Subroutine: suppose o were known

Tq ‘ i

r A |

Line search in each cell returns [t1,to] intersecting D.
|ta — 1] is optimal in terms of unknown x ...
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a < 1. We know D is at most r® away through the cell



Subroutine: suppose o were known

|
/W
|
|
| .
| ——l 1 '

\

|\\\ X \,\ \
!\“\“ RN |
=

Ti1yeeeylg-1

a < 1. We know D is at most r® away through the cell
a > 1 : use more careful (higher-order) extrapolation.
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Subroutine: suppose o were known.
Aggregate over r € [1,1,...,1/n]:

Final labeling is optimal w.r.t. K, «

Active learning procedure: (adapting to )

1
logn log n

Call subroutine for a;; € [ : log n] use budget Val

We then get the first fully adaptive and optimal A-L for the setting!J
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In summary:

Further gains in A-L emerge as we parametrize from easy to hard.
There is much left to understand ...

.

Thanks!



