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Active Classification

Pb: Classification X → Y ∈ {0, 1} when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?
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Gains in active learning

Performance measure:
- Let f∗ minimize R(f)

.
= P (Y 6= f(X)).

- Let f̂ ← classifier returned after querying n labels.

How small can R(f̂)−R(f∗) be in terms of n?

Most results are in parametric settings (e.g. VC dim. <∞):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

R(f∗) ≈ 0: A-L rates ≡ e−
√
n, while P-L rates ≡ 1/n

R(f∗)� 0: A-L rates ≡ 1/
√
n same as P-L rates.

But R(f∗) is often � 0 (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
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Remarks:
Let η(x)

.
= P (Y = 1 | x), and note that f∗ = 1 {η ≥ 1/2}.

So R(f∗) depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if η(x) is typically ≈ 1/2, else it’s easy!
How typical =⇒ existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
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Initial insights in this direction ... different settings
[Hanneke 09], [Koltchinskii 10], [Castro-Nowak 08], [Minsker 12]
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[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):

Show considerable gains over passive learning even with label noise!

However:

• The above assume bounded disagreement coefficient:
Mostly known for toy distributions (U(interval), U(sphere)).

• Procedures are not implementable (search over infinite F).

What about implementable A-L procedures?
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[Castro-Nowak 08] (smooth decision boundary):

Show considerable gains over passive learning even with label noise!
Implementable, no conditions on D-C!

However:
Needs full knowledge of boundary regularity and noise decay.

What about adaptive + implementable A-L procedures?
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[Minsker, 2012] (η is smooth):

Show considerable gains over passive learning even with label noise!
Implementable, no conditions on D-C, Adaptive!

However:
Needs quite restrictive technical conditions on PX,Y .

What about adaptive + implementable A-L for general PX,Y ?
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Outline:

We consider various regularity conditions on η = E [Y |X]:

• η nearly aligns with clusters in X
with R. Urner and S. Ben David, 2015

• η is a smooth function
with A. Locatelli and A. Carpentier, 2017

• η defines a smooth decision-boundary
with A. Locatelli and A. Carpentier, soon on Arxiv
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η nearly aligns with clusters in X

Related to the cluster assumption (C-A):
One label dominates in each cluster
So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable!
Downside: unsafe assumption!

Fortunately there are existing safe approaches ...
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Hierarchical Labeling: Dasgupta and Hsu 2008

− Partition unlabeled Xn
1 , query a few labels in each cell.

Consider each cell:
• If there is a clear majority label (say 1− ε proportion):

LABEL the cell (using majority label)
• Else, PARTITION the cell and REPEAT

Label data with error < ε =⇒ now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general PX
C-A: savings when C-A nearly holds, SAFE when not.
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Labeling Goal: ≤ 1/ε2 label-queries of agnostic-learning.

Guarantees on label-queries: from |T |∗ · (1/ε) to 1/ε2

Depends on niceness of PX,Y , and |T |∗ ≡ Data-quantization rate.

Earlier results (similar label guarantees)

• [Das., Hsu, 08]: Niceness of sample Xn
1 , Y

n
1 .

• [Urn., Wulff, B-Dav, 13]: Niceness of PX,Y , no noise in Y ,
partition T cannot depend on Xn

1 .

Our results: more practical assumptions

Niceness of PX,Y , low noise in Y , T = T (Xn
1 ) =⇒ smaller |T |∗.

We now have |T |∗ = O(2d)� 2D, (d = intrinsic dim. of X).
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Niceness (or parametrization) of PX,Y

Two main conditions on η(x) = E [Y |x]:

η is likely far from 1
2 (Tsy. noise condition):

PX (|η(X)− 1/2| < τ) ≤ τβ

η is nearly Lipschitz:

PX (∃x s.t. |η(X)− η(x)| > λ‖X − x‖) ≤ λ−α

Large α, β =⇒ C-A holds (at least for small clusters).
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Parametrizing the partition-tree T

Two main ingredients:

Cells of T have bounded complexity VT

Allows for decoupling the dependence between T (Xn
1 ) and Xn

1 .

T has good quantization rate

Let Tr ≡ level where cells have diameter r; |Tr| . r−κ

Remark: κ = O(d)� D w.h.p. for various procedures T
(Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
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Guarantees (w.h.p.)

Given: n = Ω(1/ε2) unlabeled samples Xn
1 .

• Correctness: At most ε fraction of Xn
1 is mislabeled.

• Labels requested: At most

n ·
(

2κ/(1+κ/α) · ε1/(1+κ/α) + exp(−ε · β)
)

- This is best as C-A holds (α, β large), safe if not.
- Avoids the curse of dimension for structured data (κ ≈ d� D).
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Outline:

We consider various regularity conditions on η = E [Y |X]:

• η nearly aligns with clusters in X
with R. Urner and S. Ben David, 2015

• η is a smooth function
with A. Locatelli and A. Carpentier, 2017

• η defines a smooth decision-boundary
with A. Locatelli and A. Carpentier, soon on Arxiv
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η is a smooth function

Setup:

• η(x)
.
= E[Y |x] has Hölder smoothness α

(e.g. all derivatives up to order α are bounded)

• Tsybakov noise condition: ∃c, β ≥ 0 such that ∀τ > 0:

PX
(
x :

∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ τ) ≤ cτβ,
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...

α and β: continuum between easy and hard problems

Questions: how do α, β and d interact? Can we adapt to this?
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Previous work Minsker (2012): PX uniform

Self-similarity of η: smoothness is tight ∀x (never better than α)

Theorem: α ≤ 1, αβ ≤ d

There exists an active strategy f̂n such that:

R(f̂n)−R(f∗) . n
− α(β+1)

2α+d−αβ (rate is tight)

Passive rate: replace d− αβ by d [AT07]

For α > 1 the rate seems to transition:

R(f̂n)−R(f∗) . n
− α(β+1)

2α+d−β

Minsker conjectures that this rate is tight.

Open: Unrestricted PX? General η? Tightness of α > 1?
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Our results: statistical contributions

Milder conditions, new rate regimes

• PX uniform: same rates without self-similarity condition

• Verify rate transition for α > 1:

For β = 1 : inf
f̂n

sup
η

E[R(f̂n)]−R(f∗) ≥ Cn−
α(β+1)
2α+d−β

• Unrestricted PX : different minimax rate

Active : Θ

(
n−

α(β+1)
2α+d

)
vs. Passive : Θ

(
n
− α(β+1)

2α+d+αβ

)
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Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x2 but not at x1, x3

Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes {Σ(α)}α>0

Aggregate Ŷ estimates from non-adaptive subroutines (over α↗).
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Outline

• Upper-bounds
• Non-adaptive Subroutine
• Adaptive Procedure

• Lower-bounds
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Non-adaptive Subroutine

Suppose we know η is α-smooth (α ≤ 1)

• Query t labels at xC and estimate η(xC):

w.h.p. |η̂(xC)− η(xC)| .
√

1

t

• We know η changes on C by at most rα

=⇒ ∀x ∈ C, |η̂(xC)−η(x)| .
√

1
t +rα

∴ Let t ≈ r−2α, we can safely label C if

|η̂(xC)− 1/2| & 2rα

Otherwise partition C and repeat over smaller regions.
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Non-adaptive Subroutine

Suppose we know η is α-smooth (α ≤ 1)

Implement previous intuition over
hierarchical partition of [0, 1]d.

Final output given budget n:

• Correctly labeled subset of [0, 1]d

• Abstention region contained in
{x : |η(x)− 1/2| ≤ ∆α,β}.

∆α,β
.
= ∆α,β(n) is “optimal”

under different PX regimes.

Case α > 1:
Same intuition, but higher order interpolation (for η̂) on cells C
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Outline

• Upper-bounds
• Non-adaptive Subroutine
• Adaptive Procedure

• Lower-bounds
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Adaptive Procedure (α unknown)

Key idea: η is α′-Hölder for any α′ ≤ α
=⇒ Subroutine(α′) returns correct labels (red or blue)

Procedure:
Aggregate labelings of Subroutine(α′) for α′ = α1 < α2 < . . .

Correctness: at αi = α labeling has optimal error
At αi > α, we never overwrite previous labels (error remains small)

Implementation: αi ∈
[

1
logn : 1

logn : log n
]
, use budget n

log2 n
∀αi
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Adaptive Procedure (α unknown)

Without self-similarity assumptions adaptive f̂n satisfies:

Theorem: unrestricted PX

R(f̂n)−R(f∗) . n−
α(β+1)
2α+d

Theorem: PX uniform

R(f̂n)−R(f∗) . n
− α(β+1)

2α+d−(α∧1)β

which are all tight rates.
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Outline

• Upper-bounds
• Non-adaptive Subroutine
• Adaptive Procedure

• Lower-bounds
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Lower-bounds

Theorem (unrestricted PX)

For any active learner f̂n we have:

sup
η

E[R(f̂n)]−R(f∗) ≥ Cn−
α(β+1)
2α+d

Theorem (PX uniform and α > 1, β = 1)

For any active learner f̂n we have:

sup
η

E[R(f̂n)]−R(f∗) ≥ Cn−
α(β+1)
2α+d−β

This confirms a transition in the rate (at least for β = 1).
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Lower-bound construction for PX uniform, α > 1, β = 1

Remember difference in rates:

α ≤ 1 : n
− α(β+1)

2α+d−αβ

α > 1 : n
− α(β+1)

2α+d−β

Hard case for α > 1:
η changes linearly in β directions,
but oscillates in d− β directions

...d− β now acts as the effective degrees of freedom
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Summary

• We recover rates in A-L under more natural assumptions

• Confirmed a conjectured transition at α > 1

• Established new minimax rates for unrestricted PX
• Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure
in the smooth boundary setting of Castro and Nowak (2008)
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Outline:

We consider various regularity conditions on η = E [Y |X]:

• η nearly aligns with clusters in X
with R. Urner and S. Ben David, 2015

• blue η is a smooth function
with A. Locatelli and A. Carpentier, 2017

• η defines a smooth decision-boundary
with A. Locatelli and A. Carpentier, soon on Arxiv
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η defines a smooth decision-boundary

• D ≡ {x : η(x) = 1/2} is given by α-Hölder function g.

• Noise condition: |η(x)− 1/2| ≈ dist(x,D)κ−1, κ > 1.

Problem is easier as κ→ 1, α→∞.
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Previous work [Castro, Nowak 07], PX ≡ U [0, 1]d

If we know α, κ, then:

R(f̂n)−R(f∗) . n
− ακ

2α(κ−1)+d−1 (rate is tight)

Passive rate: Replace κ− 1 with κ− 1/2.

Can these gains be achieved by an adaptive procedure?
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Existing adaptive results:

Dimension d = 1, D ≡ threshold on the line

Binary search strategies are adaptive to κ ... (fixed α =∞)
[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Use any of these (blackbox) to get a fully adaptive strategy in IRd!
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Intuition:
If D is α-smooth, then it’s α′-smooth for α′ ≤ α!

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for α↗

Main difficulty: such subroutine must adapt to κ in IRd ...
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SubRoutine: suppose α were known

Partition [0, 1]d−1 into cells of side-length r.
. . .
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Subroutine: suppose α were known

Line search in each cell returns [t1, t2] intersecting D.
|t2 − t1| is optimal in terms of unknown κ ...
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Subroutine: suppose α were known

α ≤ 1: We know D is at most rα away through the cell
α > 1 : use more careful (higher-order) extrapolation.
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Subroutine: suppose α were known.

Aggregate over r ∈ [12 ,
1
4 , . . . , 1/n]:
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