Adaptive Rates in Active Learning with Label Noise

Samory Kpotufe

Princeton University

Based on works with S. Ben David, R. Urner, A. Locatelli, A. Carpentier

Pb: Classification $X \to Y \in \{0,1\}$ when **labels are expensive**.

Goal: Return a good classifier using **few label queries.**

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Pb: Classification $X \to Y \in \{0,1\}$ when **labels are expensive**.

Goal: Return a good classifier using **few label queries.**

Applications

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Pb: Classification $X \to Y \in \{0,1\}$ when **labels are expensive**.

Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Pb: Classification $X \to Y \in \{0,1\}$ when **labels are expensive**.

Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\widetilde{f} \leftarrow$ classifier returned after querying n labels

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$).

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$$R(f^*) \approx 0$$
: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}\left(Y \neq f(X)\right)$.
- Let $f \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$$R(f^*) \approx 0$$
: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}\left(Y \neq f(X)\right)$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$).

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

 $R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*)\gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$$R(f^*) \approx 0$$
: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$$R(f^*) \approx 0$$
: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}\left(Y \neq f(X)\right)$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$$R(f^*) \approx 0$$
: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*)\gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}\left(Y \neq f(X)\right)$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

 $R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

 $R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):

noisy images or speech, adversarial spam, unpredictable drug response ..

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

 $R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

 $R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

 $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! How typical \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Let $\eta(x) \doteq \mathbb{P}\left(Y=1 \mid x\right)$, and note that $f^*=\mathbf{1}\left\{\eta \geq 1/2\right\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

- (i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsyb., Mass., ...)
- (ii). Combine with **regularity** or **complexity** conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Initial insights in this direction different settings	
9	10], [Castro-Nowak 08], [Minsker 12]

[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):

Show considerable gains over passive learning even with label noise!

However:

- The above assume bounded disagreement coefficient: Mostly known for toy distributions ($\mathcal{U}(\text{interval}), \mathcal{U}(\text{sphere}))$.
- Procedures are not implementable (search over infinite \mathcal{F}).

What about implementable A-L procedures?

[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):

Show considerable gains over passive learning even with label noise!

However:

- The above assume bounded disagreement coefficient: Mostly known for toy distributions ($\mathcal{U}(\text{interval}), \mathcal{U}(\text{sphere}))$.
- Procedures are not implementable (search over infinite \mathcal{F}).

What about implementable A-L procedures?

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C!

However:

Needs full knowledge of boundary regularity and noise decay.

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C!

However:

Needs full knowledge of boundary regularity and noise decay.

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C!

However:

Needs full knowledge of boundary regularity and noise decay.

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C!

However:

Needs full knowledge of boundary regularity and noise decay.

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C, Adaptive!

However:

Needs quite restrictive technical conditions on $P_{X,Y}$

What about adaptive + implementable A-L for general $P_{X,Y}$

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C, Adaptive!

However:

Needs quite restrictive technical conditions on $P_{X,Y}$.

What about adaptive + implementable A-L for general $P_{X,Y}$?

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C, Adaptive!

However:

Needs quite restrictive technical conditions on $P_{X,Y}$.

What about adaptive + implementable A-L for general $P_{X,Y}$?

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C, Adaptive!

However:

Needs quite restrictive technical conditions on $P_{X,Y}$.

What about adaptive + implementable A-L for general $P_{X,Y}$?

Outline:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η nearly aligns with clusters in X with R. Urner and S. Ben David. 2015
- η is a smooth function with A. Locatelli and A. Carpentier, 2017
- η defines a smooth decision-boundary with A. Locatelli and A. Carpentier, soon on Arxiv

Outline:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η nearly aligns with clusters in X with R. Urner and S. Ben David. 2015
- η is a smooth function with A. Locatelli and A. Carpentier, 2017
- η defines a smooth decision-boundary with A. Locatelli and A. Carpentier, soon on Arxiv

η nearly aligns with clusters in X

Related to the cluster assumption (C-A):

One label dominates in each cluster So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable

Downside: unsafe assumption

Fortunately there are existing safe approaches ...

Related to the *cluster assumption* (C-A): One label dominates in each cluster So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable

Downside: unsafe assumption

Related to the *cluster assumption* (C-A): One label dominates in each cluster So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable!

Downside: unsafe assumption

Related to the *cluster assumption* (C-A): One label dominates in each cluster So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable!

Downside: unsafe assumption!

Related to the *cluster assumption* (C-A): One label dominates in each cluster So query O(1) labels per cluster

Benefits: Few label queries when C-A holds! Implementable!

Downside: unsafe assumption!

- Partition unlabeled X_1^n , query a few labels in each cell. Consider each cell:
- \bullet If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal:

- Partition unlabeled X_1^n , query a few labels in each cell. **Consider each cell**:
- If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal:

- Partition unlabeled X_1^n , query a few labels in each cell. **Consider each cell:**
- ullet If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal:

- Partition unlabeled X_1^n , query a few labels in each cell. Consider each cell:
- ullet If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal.

- Partition unlabeled X_1^n , query a few labels in each cell. Consider each cell:
- ullet If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal.

- Partition unlabeled X_1^n , query a few labels in each cell. **Consider each cell:**
- ullet If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal:

- Partition unlabeled X_1^n , query a few labels in each cell. Consider each cell:
- ullet If there is a clear majority label (say $1-\epsilon$ proportion): LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $<\epsilon \implies$ now use supervised learner.

Overall Appeal:

Guarantees on label-queries: from $|T|_* \cdot (1/\epsilon)$ to $1/\epsilon^2$

Earlier results (similar label guarantees)

- [Das., Hsu, 08]: Niceness of sample X_1^n, Y_1^n .
- [Urn., Wulff, B-Dav, 13]: Niceness of $P_{X,Y}$, no noise in Y, partition T cannot depend on X_1^n .

Our results: more practical assumptions

Niceness of $P_{X,Y}$, low noise in Y, $T=T(X_1^n) \implies \text{smaller } |T|_*$

Guarantees on label-queries: from $|T|_* \cdot (1/\epsilon)$ to $1/\epsilon^2$ Depends on niceness of $P_{X,Y}$, and $|T|_* \equiv \mathsf{Data-quantization}$ rate.

Earlier results (similar label guarantees)

- [Das., Hsu, 08]: Niceness of sample X_1^n, Y_1^n .
- [Urn., Wulff, B-Dav, 13]: Niceness of $P_{X,Y}$, no noise in Y, partition T cannot depend on X_1^n .

Our results: more practical assumptions

Niceness of $P_{X,Y}$, low noise in Y, $T=T(X_1^n) \implies$ smaller $|T|_*$

Guarantees on label-queries: from $|T|_* \cdot (1/\epsilon)$ to $1/\epsilon^2$ Depends on niceness of $P_{X,Y}$, and $|T|_* \equiv$ Data-quantization rate.

Earlier results (similar label guarantees)

- [Das., Hsu, 08]: Niceness of sample X_1^n, Y_1^n .
- [Urn., Wulff, B-Dav, 13]: Niceness of $P_{X,Y}$, no noise in Y, partition T cannot depend on X_1^n .

Our results: more practical assumptions

Niceness of $P_{X,Y}$, low noise in Y, $T = T(X_1^n) \implies \text{smaller } |T|_*$.

Guarantees on label-queries: from $|T|_* \cdot (1/\epsilon)$ to $1/\epsilon^2$

Depends on niceness of $P_{X,Y}$, and $|T|_* \equiv \mathsf{Data}\text{-quantization rate}$.

Earlier results (similar label guarantees)

- [Das., Hsu, 08]: Niceness of sample X_1^n, Y_1^n .
- [Urn., Wulff, B-Dav, 13]: Niceness of $P_{X,Y}$, no noise in Y, partition T cannot depend on X_1^n .

Our results: more practical assumptions

Niceness of $P_{X,Y}$, low noise in Y, $T = T(X_1^n) \implies \text{smaller } |T|_*$.

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

 η is likely far from $\frac{1}{2}$ (Tsy. noise condition):

$$\mathbb{P}_X\left(|\eta(X) - 1/2| < \tau\right) \le \tau^{\beta}$$

 η is nearly Lipschitz

$$\mathbb{P}_X (\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda ||X - x||) \le \lambda^{-\alpha}$$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

 η is likely far from $\frac{1}{2}$ (Tsy. noise condition):

$$\mathbb{P}_X\left(|\eta(X) - 1/2| < \tau\right) \le \tau^{\beta}$$

 η is nearly Lipschitz

$$\mathbb{P}_X \left(\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda ||X - x|| \right) \leq \lambda^{-\alpha}$$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

 η is likely far from $\frac{1}{2}$ (Tsy. noise condition):

$$\mathbb{P}_X\left(|\eta(X) - 1/2| < \tau\right) \le \tau^{\beta}$$

 η is nearly Lipschitz:

$$\mathbb{P}_X (\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda ||X - x||) \leq \lambda^{-\alpha}$$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

$$\eta$$
 is likely far from $\frac{1}{2}$ (Tsy. noise condition):

$$\mathbb{P}_X\left(|\eta(X) - 1/2| < \tau\right) \le \tau^{\beta}$$

 η is nearly Lipschitz:

$$\mathbb{P}_X (\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda ||X - x||) \leq \lambda^{-\alpha}$$

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n .

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n .

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n .

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n .

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n .

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

- Correctness: At most ϵ fraction of X_1^n is mislabeled.
- Labels requested: At most

$$n \cdot \left(2^{\kappa/(1+\kappa/\alpha)} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta)\right)$$

- This is best as C-A holds $(\alpha, \beta \text{ large})$, safe if not.
- Avoids the curse of dimension for structured data ($\kappa \approx d \ll D$).

- Correctness: At most ϵ fraction of X_1^n is mislabeled.
- Labels requested: At most

$$n \cdot \left(2^{\kappa/(1+\kappa/\alpha)} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)$$

- This is best as C-A holds (α, β) large, safe if not
- Avoids the curse of dimension for structured data ($\kappa \approx d \ll D$)

- Correctness: At most ϵ fraction of X_1^n is mislabeled.
- Labels requested: At most

$$n \cdot \left(2^{\kappa/(1+\kappa/\alpha)} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)$$

- This is best as C-A holds (α, β) large, safe if not
- Avoids the curse of dimension for structured data ($\kappa \approx d \ll D$)

- Correctness: At most ϵ fraction of X_1^n is mislabeled.
- Labels requested: At most

$$n \cdot \left(2^{\kappa/(1+\kappa/\alpha)} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)$$

- This is best as C-A holds $(\alpha, \beta \text{ large})$, safe if not.
- Avoids the curse of dimension for structured data ($\kappa \approx d \ll D$).

- Correctness: At most ϵ fraction of X_1^n is mislabeled.
- Labels requested: At most

$$n \cdot \left(2^{\kappa/(1+\kappa/\alpha)} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta)\right)$$

- This is best as C-A holds (α, β large), safe if not.
- Avoids the curse of dimension for structured data ($\kappa \approx d \ll D$).

Outline:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η nearly aligns with clusters in X with R. Urner and S. Ben David, 2015
- η is a smooth function with A. Locatelli and A. Carpentier, 2017
- η defines a smooth decision-boundary with A. Locatelli and A. Carpentier, soon on Arxiv

η is a smooth function

Setup:

- $\eta(x) \doteq \mathbb{E}[Y|x]$ has Hölder smoothness α (e.g. all derivatives up to order α are bounded)
- Tsybakov noise condition: $\exists c, \beta > 0$ such that $\forall \tau > 0$:

$$\mathbb{P}_X\left(x:\left|\eta(x)-\frac{1}{2}\right|\leq \tau\right)\leq c\tau^{\beta},$$

. . .

 α and β : continuum between easy and hard problems

Questions: how do α , β and d interact? Can we adapt to this?

. . .

 α and β : continuum between easy and hard problems

Questions: how do α , β and d interact? Can we adapt to this?

Previous work Minsker (2012): \mathbb{P}_X uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta \leq d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha \beta$ by d [AT07]

For $\alpha > 1$ the rate seems to transition.

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Minsker conjectures that this rate is tight.

Open: Unrestricted \mathbb{P}_X ? General η ? Tightness of $\alpha > 1$?

Previous work Minsker (2012): \mathbb{P}_X uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta \leq d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha \beta$ by d [AT07]

For $\alpha > 1$ the rate seems to transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Minsker conjectures that this rate is tight.

Open: Unrestricted \mathbb{P}_X ? General η ? Tightness of $\alpha > 1$?

Previous work Minsker (2012): \mathbb{P}_X uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta \leq d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ the rate seems to transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Minsker conjectures that this rate is tight.

Open: Unrestricted \mathbb{P}_X ? General η ? Tightness of $\alpha > 1$?

Our results: statistical contributions

Milder conditions, new rate regimes

- \mathbb{P}_X uniform: same rates without self-similarity condition
- Verify rate transition for $\alpha > 1$:

For
$$\beta = 1$$
: $\inf_{\hat{f}_n} \sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge C n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

• Unrestricted \mathbb{P}_X : different minimax rate

Active :
$$\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}\right)$$
 vs. Passive : $\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d+\alpha\beta}}\right)$

Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3

Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$)

Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1,x_3 Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$)

Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3 Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$

Aggregate \hat{Y} estimates from non-adaptive subroutines (over α \nearrow).

Outline

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds

Suppose we know η is α -smooth ($\alpha \leq 1$)

• Query t labels at x_C and estimate $\eta(x_C)$:

w.h.p.
$$|\widehat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}$$

• We know η changes on C by at most r^{α}

 \therefore Let $t \approx r^{-2\alpha}$, we can safely label C if

$$|\widehat{\eta}(x_C) - 1/2| \gtrsim 2r^{\alpha}$$

Otherwise partition C and repeat over smaller regions.

Suppose we know η is α -smooth ($\alpha \leq 1$)

• Query t labels at x_C and estimate $\eta(x_C)$:

w.h.p.
$$|\widehat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}$$

• We know η changes on C by at most r^{α}

$$\implies \forall x \in C, \quad |\widehat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^{\alpha}$$

 \therefore Let $t \approx r^{-2\alpha}$, we can safely label C if

$$|\widehat{\eta}(x_C) - 1/2| \gtrsim 2r^{\alpha}$$

Otherwise partition C and repeat over smaller regions.

Suppose we know η is α -smooth ($\alpha \leq 1$)

• Query t labels at x_C and estimate $\eta(x_C)$:

w.h.p.
$$|\widehat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}$$

• We know η changes on C by at most r^{α}

$$\implies \forall x \in C, \quad |\widehat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^{\alpha}$$

 \therefore Let $t \approx r^{-2\alpha}$, we can safely label C if

$$|\widehat{\eta}(x_C) - 1/2| \gtrsim 2r^{\alpha}$$

Otherwise partition C and repeat over smaller regions.

Suppose we know η is α -smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0,1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0,1]^d$
- Abstention region contained in $\{x: |\eta(x)-1/2| \leq \Delta_{\alpha,\beta}\}.$

 $\Delta_{\alpha,\beta} \doteq \Delta_{\alpha,\beta}(n)$ is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$:

Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C

Suppose we know η is α -smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0,1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0,1]^d$
- Abstention region contained in $\{x: |\eta(x)-1/2| \leq \Delta_{\alpha,\beta}\}.$

$$\Delta_{\alpha,\beta} \doteq \Delta_{\alpha,\beta}(n)$$
 is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$:

Same intuition, but higher order interpolation (for $\hat{\eta})$ on cells C

Suppose we know η is α -smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0,1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0,1]^d$
- Abstention region contained in $\{x: |\eta(x)-1/2| \leq \Delta_{\alpha,\beta}\}.$

$$\Delta_{\alpha,\beta} \doteq \Delta_{\alpha,\beta}(n)$$
 is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$:

Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C

Outline

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds

Key idea: η is α' -Hölder for any $\alpha' \leq \alpha$

 \implies Subroutine(α') returns correct labels (red or blue)

Procedure:

Aggregate labelings of Subroutine(α') for $\alpha' = \alpha_1 < \alpha_2 < \dots$

Correctness: at $\alpha_i = \alpha$ labeling has optimal error At $\alpha_i > \alpha$, we never overwrite previous labels (error remains small)

Implementation: $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \ \forall \alpha_i$

Key idea: η is α' -Hölder for any $\alpha' \leq \alpha$

 \implies Subroutine(α') returns correct labels (red or blue)

Procedure:

Aggregate labelings of Subroutine(α') for $\alpha' = \alpha_1 < \alpha_2 < \dots$

Correctness: at $\alpha_i = \alpha$ labeling has optimal error At $\alpha_i > \alpha$, we never overwrite previous labels (error remains small)

Implementation: $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \ \forall \alpha_i$

Without self-similarity assumptions adaptive \widehat{f}_n satisfies:

Theorem: unrestricted \mathbb{P}_X

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem: \mathbb{P}_X uniform

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-(\alpha\wedge 1)\beta}}$$

which are all tight rates.

Without self-similarity assumptions adaptive \widehat{f}_n satisfies:

Theorem: unrestricted \mathbb{P}_X

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem: \mathbb{P}_X uniform

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-(\alpha\wedge 1)\beta}}$$

which are all tight rates.

Without self-similarity assumptions adaptive \widehat{f}_n satisfies:

Theorem: unrestricted \mathbb{P}_X

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem: \mathbb{P}_X uniform

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-(\alpha\wedge 1)\beta}}$$

which are all tight rates.

Outline

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds

Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$)

For any active learner \hat{f}_n we have

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge C n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for $\beta = 1$).

Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge C n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for eta=1).

Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge C n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for $\beta = 1$).

Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates:

$$\alpha \le 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha}}$$

$$\alpha > 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Hard case for $\alpha > 1$: η changes linearly in β directions, but oscillates in $d - \beta$ directions

 $...d - \beta$ now acts as the effective degrees of freedom

Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates:

$$\alpha \le 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
$$\alpha > 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Hard case for $\alpha > 1$: η changes linearly in β directions, but oscillates in $d - \beta$ directions

 $...d - \beta$ now acts as the effective degrees of freedom

Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates:

$$\alpha \le 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
$$\alpha > 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Hard case for $\alpha > 1$: η changes linearly in β directions, but oscillates in $d - \beta$ directions

 $...d - \beta$ now acts as the effective degrees of freedom

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- ullet Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- ullet Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- ullet Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

Outline:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η nearly aligns with clusters in X with R. Urner and S. Ben David, 2015
- blue η is a smooth function
 with A. Locatelli and A. Carpentier, 2017
- η defines a smooth decision-boundary with A. Locatelli and A. Carpentier, soon on Arxiv

η defines a smooth decision-boundary

- $\mathcal{D} \equiv \{x : \eta(x) = 1/2\}$ is given by α -Hölder function g.
- Noise condition: $|\eta(x) 1/2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa 1}, \ \kappa > 1.$

Problem is easier as $\kappa \to 1, \alpha \to \infty$.

η defines a smooth decision-boundary

- $\mathcal{D} \equiv \{x : \eta(x) = 1/2\}$ is given by α -Hölder function g.
- Noise condition: $|\eta(x) 1/2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa 1}$, $\kappa > 1$.

Problem is easier as $\kappa \to 1, \alpha \to \infty$.

η defines a smooth decision-boundary

- $\mathcal{D} \equiv \{x : \eta(x) = 1/2\}$ is given by α -Hölder function g.
- Noise condition: $|\eta(x) 1/2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa 1}$, $\kappa > 1$.

Problem is easier as $\kappa \to 1, \alpha \to \infty$.

Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0,1]^d$

If we know α , κ , then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha \kappa}{2\alpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?

Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0,1]^d$

If we know α , κ , *then:*

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha\kappa}{2\alpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?

Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0,1]^d$

If we know α , κ , *then:*

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha\kappa}{2\alpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?

Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0,1]^d$

If we know α , κ , *then:*

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha\kappa}{2\alpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?

Existing adaptive results:

Dimension d=1, $\mathcal{D}\equiv$ threshold on the line Binary search strategies are adaptive to κ ... (fixed $\alpha=\infty$) [Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Use any of these (blackbox) to get a fully adaptive strategy in ${
m I\!R}^d$

Existing adaptive results:

Dimension d=1, $\mathcal{D}\equiv$ threshold on the line

Binary search strategies are adaptive to κ ... (fixed $\alpha=\infty)$

[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Use any of these (blackbox) to get a fully adaptive strategy in \mathbb{R}^d !

Intuition:

If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha!$

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for lpha /

Main difficulty: such subroutine must adapt to κ in \mathbb{R}^d ...

Intuition:

If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha!$

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty: such subroutine must adapt to κ in ${
m I\!R}^d$...

Intuition:

If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha!$

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty: such subroutine must adapt to κ in \mathbb{R}^d ...

Partition $[0,1]^{d-1}$ into cells of side-length r.

Partition $[0,1]^{d-1}$ into cells of side-length r.

• •

Line search in each cell returns $[t_1, t_2]$ intersecting \mathcal{D} . $|t_2 - t_1|$ is optimal in terms of unknown κ ...

Line search in each cell returns $[t_1,t_2]$ intersecting $\mathcal{D}.$ $|t_2-t_1|$ is optimal in terms of unknown κ ...

 $\alpha \leq 1$: We know $\mathcal D$ is at most r^{α} away through the cell $\alpha > 1$: use more careful (higher-order) extrapolation.

 $\alpha \leq 1$: We know $\mathcal D$ is at most r^{α} away through the cell $\alpha > 1$: use more careful (higher-order) extrapolation.

Aggregate over $r \in [\frac{1}{2}, \frac{1}{4}, \dots, 1/n]$:

Final labeling is optimal w.r.t. κ, α

Active learning procedure: (adapting to α)

Call subroutine for $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \ \forall \alpha_i$

We then get the first fully adaptive and optimal A-L for the setting!

Aggregate over $r \in [\frac{1}{2}, \frac{1}{4}, \dots, 1/n]$:

Final labeling is optimal w.r.t. κ, α

Active learning procedure: (adapting to α)

Call subroutine for $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \ \forall \alpha_i$.

We then get the first fully adaptive and optimal A-L for the setting!

Aggregate over $r \in [\frac{1}{2}, \frac{1}{4}, \dots, 1/n]$:

Final labeling is optimal w.r.t. κ, α

Active learning procedure: (adapting to α)

Call subroutine for $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \ \forall \alpha_i$.

We then get the first fully adaptive and optimal A-L for the setting!

In summary:

Further gains in A-L emerge as we parametrize from easy to hard.

There is much left to understand ...

7

Thanks!

In summary:

Further gains in A-L emerge as we parametrize from easy to hard. There is much left to understand ...

T

Thanks!

In summary:

Further gains in A-L emerge as we parametrize from easy to hard. There is much left to understand \dots

 τ

Thanks!