Adaptive Rates in Active Learning with Label Noise

Samory Kpotufe

Princeton University

Based on works with S. Ben David, R. Urner, A. Locatelli, A. Carpentier
Active Classification

Pb: Classification $X \rightarrow Y \in \{0, 1\}$ when labels are expensive.

Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?
Active Classification

Pb: Classification $X \rightarrow Y \in \{0, 1\}$ when labels are expensive.

Goal: Return a good classifier using **few label queries.**

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...

Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?
Active Classification

Pb: Classification $X \rightarrow Y \in \{0, 1\}$ when *labels are expensive.*

Goal: Return a good classifier using *few label queries.*

Applications:

- **Industrial:** Document categorization, Vision/Audio, IoT security ...
- **Science:** Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?
Active Classification

Pb: Classification $X \rightarrow Y \in \{0, 1\}$ when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:
Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?
Gains in active learning

Performance measure:
- Let \(f^* \) minimize \(R(f) = \mathbb{P}(Y \neq f(X)) \).
- Let \(\hat{f} \) ← classifier returned after querying \(n \) labels.

How small can \(R(\hat{f}) - R(f^*) \) be in terms of \(n \)?

Most results are in parametric settings (e.g. VC dim. < \(\infty \)):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

\(R(f^*) \approx 0 \): A-L rates \(\equiv e^{-\sqrt{n}} \), while P-L rates \(\equiv 1/n \)
\(R(f^*) \gg 0 \): A-L rates \(\equiv 1/\sqrt{n} \) same as P-L rates.

But \(R(f^*) \) is often \(\gg 0 \) (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let \(f^* \) minimize \(R(f) = \mathbb{P}(Y \neq f(X)) \).
- Let \(\hat{f} \leftarrow \) classifier returned after querying \(n \) labels.

How small can \(R(\hat{f}) - R(f^*) \) be in terms of \(n \)?

Most results are in parametric settings (e.g. VC dim. \(< \infty\)):
[Langford, Dasgupta, Hanneke, Balcan, et al … since early 2000’s]

\(R(f^*) \approx 0 \):
 A-L rates \(\equiv e^{-\sqrt{n}} \), while P-L rates \(\equiv 1/n \)

\(R(f^*) \gg 0 \):
 A-L rates \(\equiv 1/\sqrt{n} \) same as P-L rates.

But \(R(f^*) \) is often \(\gg 0 \) (imperfect world):
 noisy images or speech, adversarial spam, unpredictable drug response …

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. < ∞):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world): noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) \triangleq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) = \mathbb{P}(Y \neq f(X))$.
- Let \hat{f} ← classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) = \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

- $R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$
- $R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. $\text{VC dim.} < \infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(\hat{f}^*)$ is often $\gg 0$ (imperfect world):
- noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) = \mathbb{P}(Y \neq f(X))$.
- Let \hat{f} ← classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$
$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):

noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) \triangleq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. < ∞):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Gains in active learning

Performance measure:
- Let f^* minimize $R(f) = \mathbb{P}(Y \neq f(X))$.
- Let \hat{f} ← classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

$R(f^*) \approx 0$: A-L rates $\equiv e^{-\sqrt{n}}$, while P-L rates $\equiv 1/n$

$R(f^*) \gg 0$: A-L rates $\equiv 1/\sqrt{n}$ same as P-L rates.

But $R(f^*)$ is often $\gg 0$ (imperfect world):
noisy images or speech, adversarial spam, unpredictable drug response ...

Are there no gains in these practical settings?
Remarks:
Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = 1 \{\eta \geq 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it’s easy!

How typical \mapsto existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
Remarks:
Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = 1 \{\eta \geq 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it’s easy!
How typical \implies existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
Remarks:
Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = 1 \{\eta \geq 1/2\}$.
So $R(f^*)$ depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it’s easy!
How typical \implies existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
Remarks:
Let $\eta(x) \triangleq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = 1 \{\eta \geq 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it’s easy!

How typical \implies existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
Remarks:
Let $\eta(x) \equiv P(Y = 1 \mid x)$, and note that $f^* = 1 \{\eta \geq 1/2\}$.
So $R(f^*)$ depends on how η behaves.

A natural direction:
Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it’s easy!
How typical \iff existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with **regularity** or **complexity** conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
Remarks:
Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = 1 \{\eta \geq 1/2\}$.
So $R(f^*)$ depends on how η behaves.

A natural direction:
Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it’s easy!
How typical \implies existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with **regularity** or **complexity** conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
Remarks:
Let \(\eta(x) = \mathbb{P}(Y = 1 \mid x) \), and note that \(f^* = 1 \{ \eta \geq 1/2 \} \). So \(R(f^*) \) depends on how \(\eta \) behaves.

A natural direction:
Parametrize \(\eta \) on a continuum from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if \(\eta(x) \) is typically \(\approx 1/2 \), else it’s easy! How **typical** \(\Rightarrow \) existing noise conditions (e.g. Tsyb., Mass., ...)

(ii). Combine with **regularity** or **complexity** conditions:
smoothness of \(\eta \) or class-boundary, complexity of hypothesis class ...
Initial insights in this direction ... different settings
[Hanneke 09], [Koltchinskii 10], [Castro-Nowak 08], [Minsker 12]
[Hanneke 09], [Koltchinskii 10] \textit{(ERM + low metric entropy)}: Show considerable gains over passive learning \textit{even with label noise}!

However:
- The above assume \textit{bounded disagreement coefficient}: Mostly known for toy distributions (\mathcal{U}\text{(interval)}, \mathcal{U}\text{(sphere)}).
- Procedures are not implementable (search over infinite \mathcal{F}).

What about \textit{implementable} A-L procedures?
[Hanneke 09], [Koltchinskii 10] \((\text{ERM} + \text{low metric entropy})\):
Show considerable gains over passive learning even with label noise!

However:

- The above assume \textit{bounded disagreement coefficient}:
 Mostly known for toy distributions \((\mathcal{U}(\text{interval}), \mathcal{U}(\text{sphere}))\).
- Procedures are not implementable (search over infinite \(\mathcal{F}\)).

What about \textit{implementable} A-L procedures?
[Castro-Nowak 08] *(smooth decision boundary)*: Show considerable gains over passive learning *even with label noise!* Implementable, no conditions on D-C!

However:
Needs full knowledge of boundary regularity and noise decay.
What about *adaptive + implementable* A-L procedures?
[Castro-Nowak 08] (smooth decision boundary):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C!

However:
Needs full knowledge of boundary regularity and noise decay.
What about adaptive + implementable A-L procedures?
[Castro-Nowak 08] *(smooth decision boundary)*:
Show considerable gains over passive learning even with label noise!
Implementable, no conditions on D-C!

However:
Needs full knowledge of boundary regularity and noise decay.

What about **adaptive + implementable** A-L procedures?
[Castro-Nowak 08] *(smooth decision boundary)*:

Show considerable gains over passive learning **even with label noise!**

Implementable, no conditions on D-C!

However:

Needs full knowledge of boundary regularity and noise decay.

What about **adaptive + implementable** A-L procedures?
[Minsker, 2012] (*\eta* is smooth):

Show considerable gains over passive learning **even with label noise**! Implementable, no conditions on D-C, Adaptive!

However:

Needs quite restrictive technical conditions on \(P_{X,Y}\).

What about **adaptive + implementable** A-L for general \(P_{X,Y}\)?
[Minsker, 2012] \((\eta \text{ is smooth})\):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on D-C, Adaptive!

However:
Needs quite restrictive technical conditions on \(P_{X,Y}\).
What about adaptive + implementable A-L for general \(P_{X,Y}\)?
[Minsker, 2012] (\(\eta\) is smooth):
Show considerable gains over passive learning even with label noise!
Implementable, no conditions on D-C, Adaptive!

However:
Needs quite restrictive technical conditions on \(P_{X,Y}\).
What about adaptive + implementable A-L for general \(P_{X,Y}\)?
[Minsker, 2012] \((\eta \text{ is smooth})\):

Show considerable gains over passive learning **even with label noise**! **Implementable, no conditions on D-C, Adaptive!**

However:

Needs quite restrictive technical conditions on \(P_{X,Y}\).

What about **adaptive + implementable** A-L for general \(P_{X,Y}\)?
Outline:

We consider various regularity conditions on $\eta = \mathbb{E} [Y|X]$:

- η nearly aligns with clusters in X
 with R. Urner and S. Ben David, 2015

- η is a smooth function
 with A. Locatelli and A. Carpentier, 2017

- η defines a smooth decision-boundary
 with A. Locatelli and A. Carpentier, soon on Arxiv
Outline:

We consider various regularity conditions on $\eta = \mathbb{E} [Y | X]$:

- η nearly aligns with clusters in X
 with R. Urner and S. Ben David, 2015

- η is a smooth function
 with A. Locatelli and A. Carpentier, 2017

- η defines a smooth decision-boundary
 with A. Locatelli and A. Carpentier, soon on Arxiv
\(\eta \) nearly aligns with clusters in \(X \)

Related to the *cluster assumption* (C-A):
One label dominates in each cluster
So query \(O(1) \) labels per cluster

Benefits: Few label queries when C-A holds! Implementable!
Downside: unsafe assumption!

Fortunately there are existing safe approaches ...
η nearly aligns with clusters in X

Related to the \textit{cluster assumption} (C-A):
One label dominates in each cluster
So query $O(1)$ labels per cluster

\textbf{Benefits:} Few label queries when C-A holds! Implementable!
\textbf{Downside:} unsafe assumption!

Fortunately there are existing safe approaches ...
η nearly aligns with clusters in X

Related to the *cluster assumption* (C-A):
One label dominates in each cluster
So query $O(1)$ labels per cluster

Benefits: Few label queries when C-A holds!

Downside: unsafe assumption!

Fortunately there are existing safe approaches ...
η nearly aligns with clusters in X

Related to the *cluster assumption* (C-A):
One label dominates in each cluster
So query $O(1)$ labels per cluster

Benefits: Few label queries when C-A holds! Implementable!
Downside: unsafe assumption!

Fortunately there are existing safe approaches ...
η nearly aligns with clusters in X

Related to the cluster assumption (C-A):
One label dominates in each cluster
So query $O(1)$ labels per cluster

Benefits: Few label queries when C-A holds! Implementable!
Downside: unsafe assumption!

Fortunately there are existing safe approaches ...
Hierarchical Labeling: Dasgupta and Hsu 2008

- Partition unlabeled X_1^n, query a few labels in each cell.

Consider each cell:
- If there is a clear majority label (say $1 - \epsilon$ proportion):
 - LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon \implies$ now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general P_X

C-A: savings when C-A nearly holds, SAFE when not.
Hierarchical Labeling: Dasgupta and Hsu 2008

− Partition unlabeled X^n_1, query a few labels in each cell.

Consider each cell:

• If there is a clear majority label (say $1 - \epsilon$ proportion):

 LABEL the cell (using majority label)

• Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon \implies$ now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general P_X

C-A: savings when C-A nearly holds, SAFE when not.
Hierarchical Labeling: Dasgupta and Hsu 2008

Partition unlabeled X^n_1, query a few labels in each cell.

Consider each cell:
• If there is a clear majority label (say $1 - \epsilon$ proportion):
 LABEL the cell (using majority label)
• Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon$ \Rightarrow now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general P_X
C-A: savings when C-A nearly holds, SAFE when not.
Hierarchical Labeling: Dasgupta and Hsu 2008

- Partition unlabeled X^n_1, query a few labels in each cell.

Consider each cell:
- If there is a clear majority label (say $1 - \epsilon$ proportion):
 - LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon \implies$ now use supervised learner.

Overall Appeal:
A-L: Implementable and has guarantees for general P_X
C-A: savings when C-A nearly holds, SAFE when not.
Hierarchical Labeling: Dasgupta and Hsu 2008

– Partition unlabeled X_n^1, query a few labels in each cell.

Consider each cell:
- If there is a clear majority label (say $1 - \epsilon$ proportion):
 - LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon \implies$ now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general P_X

C-A: savings when C-A nearly holds, SAFE when not.
Hierarchical Labeling: Dasgupta and Hsu 2008

Partition unlabeled X_1^n, query a few labels in each cell.

Consider each cell:
- If there is a clear majority label (say $1 - \epsilon$ proportion):
 - LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon \implies$ now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general P_X

C-A: savings when C-A nearly holds, SAFE when not.
Hierarchical Labeling: Dasgupta and Hsu 2008

- Partition unlabeled X_1^n, query a few labels in each cell.

Consider each cell:
- If there is a clear majority label (say $1 - \epsilon$ proportion):
 - LABEL the cell (using majority label)
- Else, PARTITION the cell and REPEAT

Label data with error $< \epsilon \implies$ now use supervised learner.

Overall Appeal:

A-L: Implementable and has guarantees for general P_X
C-A: savings when C-A nearly holds, SAFE when not.
Labeling Goal: \(\leq 1/\epsilon^2 \) label-queries of agnostic-learning.

Guarantees on label-queries: from \(|T|_* \cdot (1/\epsilon) \) to \(1/\epsilon^2 \)

Depends on niceness of \(P_{X,Y} \), and \(|T|_* = \text{Data-quantization rate} \).

Earlier results (similar label guarantees)

- [Das., Hsu, 08]: Niceness of sample \(X_1^n, Y_1^n \).
- [Urn., Wulff, B-Dav, 13]: Niceness of \(P_{X,Y} \), no noise in \(Y \), partition \(T \) cannot depend on \(X_1^n \).

Our results: more practical assumptions

Niceness of \(P_{X,Y} \), low noise in \(Y \),\(T = T(X_1^n) \implies \) smaller \(|T|_* \).

We now have \(|T|_* = O(2^d) \ll 2^D \), \((d = \text{intrinsic dim. of } X) \).
Labeling Goal: \(\leq 1/\epsilon^2 \) label-queries of agnostic-learning.

Guarantees on label-queries: from \(|T|_* \cdot (1/\epsilon)\) to \(1/\epsilon^2\)

Depends on niceness of \(P_{X,Y}\), and \(|T|_*=\) Data-quantization rate.

Earlier results (similar label guarantees)
- [Das., Hsu, 08]: Niceness of sample \(X_1^n, Y_1^n\).
- [Urn., Wulff, B-Dav, 13]: Niceness of \(P_{X,Y}\), no noise in \(Y\), partition \(T\) cannot depend on \(X_1^n\).

Our results: more practical assumptions

Niceness of \(P_{X,Y}\), low noise in \(Y\), \(T = T(X_1^n) \implies\) smaller \(|T|_*\).

We now have \(|T|_* = O(2^d) \ll 2^D\), \((d=\text{intrinsic dim. of } X)\).
Labeling Goal: $\leq 1/\epsilon^2$ label-queries of agnostic-learning.

Guarantees on label-queries: from $|T|_* \cdot (1/\epsilon)$ to $1/\epsilon^2$
Depends on niceness of $P_{X,Y}$, and $|T|_* \equiv \text{Data-quantization rate}$.

Earlier results (similar label guarantees)
- [Das., Hsu, 08]: Niceness of sample X_1^n, Y_1^n.
- [Urn., Wulff, B-Dav, 13]: Niceness of $P_{X,Y}$, no noise in Y, partition T cannot depend on X_1^n.

Our results: more practical assumptions
Niceness of $P_{X,Y}$, low noise in Y, $T = T(X_1^n) \implies$ smaller $|T|_*$.

We now have $|T|_* = O(2^d) \ll 2^D$, ($d = \text{intrinsic dim. of } X$).
Labeling Goal: \(\leq 1/\epsilon^2 \) label-queries of agnostic-learning.

Guarantees on label-queries: \(\text{from } |T|_\star \cdot (1/\epsilon) \text{ to } 1/\epsilon^2 \)

Depends on niceness of \(P_{X,Y} \), and \(|T|_\star \equiv \text{Data-quantization rate.} \)

Earlier results (similar label guarantees)

- [Das., Hsu, 08]: Niceness of sample \(X_1^n, Y_1^n \).
- [Urn., Wulff, B-Dav, 13]: Niceness of \(P_{X,Y} \), no noise in \(Y \), partition \(T \) cannot depend on \(X_1^n \).

Our results: more practical assumptions

Niceness of \(P_{X,Y} \), low noise in \(Y \), \(T = T(X_1^n) \implies \text{smaller } |T|_\star \).

We now have \(|T|_\star = O(2^d) \ll 2^D \), \((d = \text{intrinsic dim. of } X) \).
Niceness (or parametrization) of $P_{X,Y}$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

- η is likely far from $\frac{1}{2}$ (Tsy. noise condition):
 \[
P_X(|\eta(X) - 1/2| < \tau) \leq \tau^\beta
 \]

- η is nearly Lipschitz:
 \[
P_X(\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda\|X - x\|) \leq \lambda^{-\alpha}
 \]

Large $\alpha, \beta \implies$ C-A holds (at least for small clusters).
Niceness (or parametrization) of $P_{X,Y}$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

- η is likely far from $\frac{1}{2}$ (Tsypin noise condition):
 \[\mathbb{P}_X (|\eta(X) - 1/2| < \tau) \leq \tau^\beta \]

- η is nearly Lipschitz:
 \[\mathbb{P}_X (\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda\|X - x\|) \leq \lambda^{-\alpha} \]

Large $\alpha, \beta \implies$ C-A holds (at least for small clusters).
Niceness (or parametrization) of $P_{X,Y}$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

\[\eta \text{ is likely far from } \frac{1}{2} \text{ (Tsy. noise condition):} \]

\[\mathbb{P}_X \left(|\eta(X) - \frac{1}{2}| < \tau \right) \leq \tau^\beta \]

\[\eta \text{ is nearly Lipschitz:} \]

\[\mathbb{P}_X \left(\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda \|X - x\| \right) \leq \lambda^{-\alpha} \]

Large $\alpha, \beta \implies$ C-A holds (at least for small clusters).
Niceness (or parametrization) of $P_{X,Y}$

Two main conditions on $\eta(x) = \mathbb{E}[Y|x]$:

η is likely far from $\frac{1}{2}$ (Tsy. noise condition):

$$
\mathbb{P}_X \left(|\eta(X) - 1/2| < \tau \right) \leq \tau^\beta
$$

η is nearly Lipschitz:

$$
\mathbb{P}_X (\exists x \text{ s.t. } |\eta(X) - \eta(x)| > \lambda \|X - x\|) \leq \lambda^{-\alpha}
$$

Large $\alpha, \beta \implies$ C-A holds (at least for small clusters).
Parametrizing the partition-tree T

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X^n_1)$ and X^n_1.

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Remark: $\kappa = O(d) \ll D$ w.h.p. for various procedures T
(Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
Parametrizing the partition-tree T

Two main ingredients:

Cells of T have bounded complexity V_T
Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n.

T has good quantization rate
Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Remark: $\kappa = O(d) \ll D$ w.h.p. for various procedures T
(Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
Parametrizing the partition-tree T

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n.

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Remark: $\kappa = O(d) \ll D$ w.h.p. for various procedures T
(Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
Parametrizing the partition-tree T

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n.

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Remark: $\kappa = O(d) \ll D$ w.h.p. for various procedures T (Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
Parametrizing the partition-tree T

Two main ingredients:

Cells of T have bounded complexity V_T

Allows for decoupling the dependence between $T(X_1^n)$ and X_1^n.

T has good quantization rate

Let $T_r \equiv$ level where cells have diameter r; $|T_r| \lesssim r^{-\kappa}$

Remark: $\kappa = O(d) \ll D$ w.h.p. for various procedures T (Rand. Proj., PCA, Rand. k-d) [Verma, Kpo., Das. 10] [Vemp. 12]
Guarantees (w.h.p.)

Given: \(n = \Omega(1/\epsilon^2) \) unlabeled samples \(X^n_1 \).

- **Correctness:** At most \(\epsilon \) fraction of \(X^n_1 \) is mislabeled.
- **Labels requested:** At most
 \[
 n \cdot \left(2^{\kappa/(1 + \kappa/\alpha)} \cdot \epsilon^{1/(1 + \kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)
 \]

- This is best as C-A holds (\(\alpha, \beta \) large), safe if not.
- Avoids the curse of dimension for structured data (\(\kappa \approx d \ll D \)).
Guarantees (w.h.p.)

Given: \(n = \Omega(1/\epsilon^2) \) unlabeled samples \(X^n_1 \).

- **Correctness:** At most \(\epsilon \) fraction of \(X^n_1 \) is *mislabeled*.
- **Labels requested:** At most

\[
n \cdot \left(\frac{2^\kappa}{1+\kappa/\alpha} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)
\]

- This is best as C-A holds (\(\alpha, \beta \) large), safe if not.
- Avoids the curse of dimension for structured data (\(\kappa \approx d \ll D \)).
Guarantees (w.h.p.)

Given: \(n = \Omega(1/\epsilon^2) \) unlabeled samples \(X^n_1 \).

- **Correctness:** At most \(\epsilon \) fraction of \(X^n_1 \) is *mislabeled*.
- **Labels requested:** At most

\[
n \cdot \left(2^{\kappa/(1+\kappa/\alpha)} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta)\right)
\]

- This is best as C-A holds \((\alpha, \beta \text{ large}),\) safe if not.
- Avoids the curse of dimension for structured data \((\kappa \approx d \ll D)\).
Guarantees (w.h.p.)

Given: $n = \Omega(1/\epsilon^2)$ unlabeled samples X^n_1.

- **Correctness:** At most ϵ fraction of X^n_1 is *mislabeled*.
- **Labels requested:** At most

$$n \cdot \left(2^\kappa/(1+\kappa/\alpha) \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)$$

- This is best as C-A holds (α, β large), safe if not.
- Avoids the curse of dimension for structured data ($\kappa \approx d \ll D$).
Guarantees (w.h.p.)

Given: \(n = \Omega(1/\epsilon^2) \) unlabeled samples \(X_1^n \).

- **Correctness:** At most \(\epsilon \) fraction of \(X_1^n \) is *mislabeled*.
- **Labels requested:** At most
 \[
 n \cdot \left(\frac{2^\kappa}{1+\kappa/\alpha} \cdot \epsilon^{1/(1+\kappa/\alpha)} + \exp(-\epsilon \cdot \beta) \right)
 \]

 - This is best as C-A holds (\(\alpha, \beta \) large), safe if not.
 - Avoids the curse of dimension for structured data (\(\kappa \approx d \ll D \)).
Outline:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η nearly aligns with clusters in X
 with R. Urner and S. Ben David, 2015
- η is a smooth function
 with A. Locatelli and A. Carpentier, 2017
- η defines a smooth decision-boundary
 with A. Locatelli and A. Carpentier, soon on Arxiv
\[\eta \text{ is a smooth function} \]

Setup:

- \(\eta(x) = \mathbb{E}[Y | x] \) has Hölder smoothness \(\alpha \)
 (e.g. all derivatives up to order \(\alpha \) are bounded)
- **Tsybakov noise condition**: \(\exists c, \beta \geq 0 \) such that \(\forall \tau > 0 \):
 \[
 \mathbb{P}_X \left(x : \left| \eta(x) - \frac{1}{2} \right| \leq \tau \right) \leq c \tau^\beta,
 \]
\(\alpha \) and \(\beta \): continuum between easy and hard problems

Questions: how do \(\alpha \), \(\beta \) and \(d \) interact? Can we adapt to this?
α and β: continuum between easy and hard problems

Questions: how do α, β and d interact? Can we adapt to this?
Previous work Minsker (2012): \(\mathbb{P}_X \) uniform

Self-similarity of \(\eta \): smoothness is tight \(\forall x \) (never better than \(\alpha \))

Theorem: \(\alpha \leq 1, \alpha \beta \leq d \)

There exists an active strategy \(\hat{f}_n \) such that:

\[
R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}} \quad \text{(rate is tight)}
\]

Passive rate: replace \(d - \alpha \beta \) by \(d \) [AT07]

For \(\alpha > 1 \) the rate seems to transition:

\[
R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}
\]

Minsker conjectures that this rate is tight.

Open: Unrestricted \(\mathbb{P}_X \)? General \(\eta \)? Tightness of \(\alpha > 1 \)?
Previous work Minsker (2012): \mathbb{P}_X uniform

Self-similarity of η: smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha \beta \leq d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$

(rate is tight)

Passive rate: replace $d - \alpha \beta$ by d [AT07]

For $\alpha > 1$ the rate seems to transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Minsker conjectures that this rate is tight.

Open: Unrestricted \mathbb{P}_X? General η? Tightness of $\alpha > 1$?
Previous work Minsker (2012): \(\mathbb{P}_X \) uniform

Self-similarity of \(\eta \): smoothness is tight \(\forall x \) (never better than \(\alpha \))

Theorem: \(\alpha \leq 1, \alpha \beta \leq d \)

There exists an active strategy \(\hat{f}_n \) such that:

\[
R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha + d - \alpha \beta}} \quad \text{(rate is tight)}
\]

Passive rate: replace \(d - \alpha \beta \) by \(d \) \cite{AT07}

For \(\alpha > 1 \) the rate seems to transition:

\[
R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha + d - \beta}}
\]

Minsker conjectures that this rate is tight.

Open: Unrestricted \(\mathbb{P}_X \)? General \(\eta \)? Tightness of \(\alpha > 1 \)?
Milder conditions, new rate regimes

- \mathbb{P}_X uniform: same rates **without self-similarity condition**
- Verify rate transition for $\alpha > 1$:

 \[
 \text{For } \beta = 1 : \quad \inf_{\hat{f}_n} \sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}
 \]

- Unrestricted \mathbb{P}_X: different minimax rate

 \[
 \text{Active : } \Theta \left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}\right) \text{ vs. Passive : } \Theta \left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d+\alpha\beta}}\right)
 \]
Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3

Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha > 0}$

Aggregate \hat{Y} estimates from non-adaptive subroutines (over α).
Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3

Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha > 0}$

Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$).
Our results: algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3

Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha > 0}$

Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$).
Outline

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds
Non-adaptive Subroutine

Suppose we know \(\eta \) is \(\alpha \)-smooth (\(\alpha \leq 1 \))

- Query \(t \) labels at \(x_C \) and estimate \(\eta(x_C) \):

 \[
 \text{w.h.p.} \quad |\hat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}
 \]

- We know \(\eta \) changes on \(C \) by at most \(r^\alpha \)

 \[
 \implies \forall x \in C, \quad |\hat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^\alpha
 \]

 \[
 \therefore \text{Let } t \approx r^{-2\alpha}, \text{ we can safely label } C \text{ if}
 \]

 \[
 |\hat{\eta}(x_C) - 1/2| \gtrsim 2r^\alpha
 \]

Otherwise partition \(C \) and repeat over smaller regions.
Non-adaptive Subroutine

Suppose we know \(\eta \) is \(\alpha \)-smooth \((\alpha \leq 1)\)

- Query \(t \) labels at \(x_C \) and estimate \(\eta(x_C) \):

 \[
 \text{w.h.p. } |\hat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}
 \]

- We know \(\eta \) changes on \(C \) by at most \(r^\alpha \)

 \[
 \implies \forall x \in C, \quad |\hat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^\alpha
 \]

 \[\therefore \text{ Let } t \approx r^{-2\alpha}, \text{ we can safely label } C \text{ if }\]

 \[
 |\hat{\eta}(x_C) - 1/2| \gtrsim 2r^\alpha
 \]

 Otherwise partition \(C \) and repeat over smaller regions.
Non-adaptive Subroutine

Suppose we know η is α-smooth ($\alpha \leq 1$)

- Query t labels at x_C and estimate $\eta(x_C)$:

 \[
 \text{w.h.p. } |\hat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}
 \]

- We know η changes on C by at most r^α

 \[
 \implies \forall x \in C, \quad |\hat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t} + r^\alpha}
 \]

 \[\therefore \text{ Let } t \approx r^{-2\alpha}, \text{ we can safely label } C \text{ if }\]

 \[|\hat{\eta}(x_C) - 1/2| \gtrsim 2r^\alpha\]

 Otherwise partition C and repeat over smaller regions.
Non-adaptive Subroutine

Suppose we know η is α-smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0, 1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0, 1]^d$
- Abstention region contained in $\{x : |\eta(x) - 1/2| \leq \Delta_{\alpha,\beta}\}$.

$\Delta_{\alpha,\beta} = \Delta_{\alpha,\beta}(n)$ is “optimal” under different \mathbb{P}_X regimes.

Case $\alpha > 1$:

Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C.

![Diagram showing labeled and abstention regions in a 2D space with classes 0 and 1 distinguished by color.]
Non-adaptive Subroutine

Suppose we know η is α-smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0, 1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0, 1]^d$
- Abstention region contained in $\{x : |\eta(x) - 1/2| \leq \Delta_{\alpha,\beta}\}$.

$\Delta_{\alpha,\beta} \doteq \Delta_{\alpha,\beta}(n)$ is “optimal” under different \mathbb{P}_X regimes.

Case $\alpha > 1$:

Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C.
Suppose we know η is α-smooth ($\alpha \leq 1$)

Implement previous intuition over **hierarchical partition** of $[0, 1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0, 1]^d$
- Abstention region contained in $\{x : |\eta(x) - 1/2| \leq \Delta_{\alpha,\beta}\}$.

$\Delta_{\alpha,\beta} = \Delta_{\alpha,\beta}(n)$ is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$:
Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C
Outline

• Upper-bounds
 • Non-adaptive Subroutine
 • Adaptive Procedure

• Lower-bounds
Adaptive Procedure (α unknown)

Key idea: η is α'-Hölder for any $\alpha' \leq \alpha$

\implies Subroutine(α') returns correct labels (red or blue)

Procedure:
Aggregate labelings of Subroutine(α') for $\alpha' = \alpha_1 < \alpha_2 < \ldots$

Correctness: at $\alpha_i = \alpha$ labeling has optimal error

At $\alpha_i > \alpha$, we never overwrite previous labels (error remains small)

Implementation: $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n \right]$, use budget $\frac{n}{\log^2 n} \forall \alpha_i$
Adaptive Procedure (α unknown)

Key idea: \(\eta \) is \(\alpha' \)-Hölder for any \(\alpha' \leq \alpha \)
\(\Longrightarrow \) Subroutine(\(\alpha' \)) returns correct labels (red or blue)

Procedure:
Aggregate labelings of Subroutine(\(\alpha' \)) for \(\alpha' = \alpha_1 < \alpha_2 < \ldots \)

Correctness: at \(\alpha_i = \alpha \) labeling has optimal error
At \(\alpha_i > \alpha \), we never overwrite previous labels (error remains small)

Implementation: \(\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n \right] \), use budget \(\frac{n}{\log^2 n} \) \(\forall \alpha_i \)
Adaptive Procedure (α unknown)

Without self-similarity assumptions adaptive \hat{f}_n satisfies:

Theorem: unrestricted \mathbb{P}_X

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem: \mathbb{P}_X uniform

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-(\alpha \land 1)\beta}}$$

which are all tight rates.
Adaptive Procedure \((\alpha \text{ unknown})\)

Without self-similarity assumptions adaptive \(\hat{f}_n\) satisfies:

Theorem: unrestricted \(\mathbb{P}_X\)

\[
R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}
\]

Theorem: \(\mathbb{P}_X\) uniform

\[
R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-(\alpha\wedge 1)\beta}}
\]

which are all tight rates.
Adaptive Procedure (α unknown)

Without self-similarity assumptions adaptive \hat{f}_n satisfies:

Theorem: unrestricted \mathbb{P}_X

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem: \mathbb{P}_X uniform

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-(\alpha\wedge 1)\beta}}$$

which are all tight rates.
Outline

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds
Lower-bounds

Theorem (unrestricted \mathbb{P}_X)
For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$)
For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for $\beta = 1$).
Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for $\beta = 1$).
Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_\eta \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$)

For any active learner \hat{f}_n we have:

$$\sup_\eta \mathbb{E}[R(\hat{f}_n)] - R(f^*) \geq Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a **transition** in the rate (at least for $\beta = 1$).
Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates:

$\alpha \leq 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$

$\alpha > 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Hard case for $\alpha > 1$:

η changes linearly in β directions, but oscillates in $d - \beta$ directions

...$d - \beta$ now acts as the effective degrees of freedom
Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates:

$\alpha \leq 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$

$\alpha > 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Hard case for $\alpha > 1$:

η changes linearly in β directions, but oscillates in $d-\beta$ directions

...$d-\beta$ now acts as the effective degrees of freedom
Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates:

$\alpha \leq 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$

$\alpha > 1 : n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Hard case for $\alpha > 1$:

η changes linearly in β directions, but oscillates in $d-\beta$ directions

...$d-\beta$ now acts as the **effective degrees of freedom**
Summary

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)
Summary

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)
Summary

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)
Summary

- We recover rates in A-L under more natural assumptions
- Confirmed a conjectured transition at $\alpha > 1$
- Established new minimax rates for unrestricted \mathbb{P}_X
- Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)
Summary

• We recover rates in A-L under more natural assumptions
• Confirmed a conjectured transition at $\alpha > 1$
• Established new minimax rates for unrestricted \mathbb{P}_X
• Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)
We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η nearly aligns with clusters in X
 with R. Urner and S. Ben David, 2015
- blue η is a smooth function
 with A. Locatelli and A. Carpentier, 2017
- η defines a smooth decision-boundary
 with A. Locatelli and A. Carpentier, soon on Arxiv
\(\eta \) defines a smooth decision-boundary

- \(\mathcal{D} \equiv \{ x : \eta(x) = 1/2 \} \) is given by \(\alpha \)-Hölder function \(g \).
- Noise condition: \(|\eta(x) - 1/2| \approx \text{dist}(x, \mathcal{D})^{\kappa-1}, \kappa > 1 \).

Problem is easier as \(\kappa \to 1, \alpha \to \infty \).
\[\eta \text{ defines a smooth decision-boundary} \]

- \(\mathcal{D} \equiv \{ x : \eta(x) = 1/2 \} \) is given by \(\alpha \)-Hölder function \(g \).

- Noise condition: \(|\eta(x) - 1/2| \approx \text{dist}(x, \mathcal{D})^{\kappa^{-1}}, \kappa > 1 \).

Problem is easier as \(\kappa \to 1, \alpha \to \infty \).
\(\eta \) defines a smooth decision-boundary

- \(D \equiv \{ x : \eta(x) = 1/2 \} \) is given by \(\alpha \)-Hölder function \(g \).
- **Noise condition:** \(|\eta(x) - 1/2| \approx \text{dist}(x, D)^{\kappa-1}, \kappa > 1 \).

Problem is easier as \(\kappa \to 1, \alpha \to \infty \).
Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0, 1]^d$

If we know α, κ, then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha \kappa}{2\alpha(\kappa - 1) + d - 1}}$$

(rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?
Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0, 1]^d$

If we know α, κ, then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-2\alpha(\kappa-1)+d-1}$$

(rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?
If we know α, κ, then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha \kappa}{2\alpha(\kappa - 1) + d - 1}}$$

(rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?
Previous work [Castro, Nowak 07], $P_X \equiv \mathcal{U}[0, 1]^d$

If we know α, κ, then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha \kappa}{2(\kappa - 1) + d - 1}}$$
(rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Can these gains be achieved by an adaptive procedure?
Existing adaptive results:

Dimension $d = 1$, $D \equiv \text{threshold on the line}$

Binary search strategies are adaptive to $\kappa \ldots$ (fixed $\alpha = \infty$)
[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Use any of these (blackbox) to get a fully adaptive strategy in \mathbb{R}^d!
Existing adaptive results:

Dimension $d = 1$, $D \equiv$ threshold on the line

Binary search strategies are adaptive to κ ... (fixed $\alpha = \infty$)

[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Use any of these (blackbox) to get a fully adaptive strategy in \mathbb{R}^d!
Intuition:
If \mathcal{D} is α-smooth, then it’s $\alpha’$-smooth for $\alpha’ \leq \alpha$!

So use the same strategy as before:
Aggregate estimates from non-adaptive subroutine for α.

Main difficulty: such subroutine must adapt to κ in \mathbb{R}^d...
Intuition:
If \mathcal{D} is α-smooth, then it’s α'-smooth for $\alpha' \leq \alpha$!

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for $\alpha \uparrow$

Main difficulty: such subroutine must adapt to κ in \mathbb{R}^d ...
Intuition:
If \mathcal{D} is α-smooth, then it’s α'-smooth for $\alpha' \leq \alpha$!

So use the same strategy as before:
Aggregate estimates from non-adaptive subroutine for $\alpha \uparrow$

Main difficulty: such subroutine must adapt to κ in \mathbb{R}^d ...
SubRoutine: suppose α were known

Partition $[0, 1]^{d-1}$ into cells of side-length r.

\[x_{d}, r, x_1, \ldots, x_{d-1} \]
SubRoutine: suppose α were known

Partition $[0, 1]^{d-1}$ into cells of side-length r.

...
Subroutine: suppose α were known

Line search in each cell returns $[t_1, t_2]$ intersecting \mathcal{D}.

$|t_2 - t_1|$ is optimal in terms of unknown κ ...
Subroutine: suppose α were known

Line search in each cell returns $[t_1, t_2]$ intersecting D. $|t_2 - t_1|$ is optimal in terms of unknown κ ...
Subroutine: Suppose α were known

$\alpha \leq 1$: We know \mathcal{D} is at most r^α away through the cell

$\alpha > 1$: Use more careful (higher-order) extrapolation.
Subroutine: suppose α were known

$\alpha \leq 1$: We know \mathcal{D} is at most r^α away through the cell

$\alpha > 1$: use more careful (higher-order) extrapolation.
Subroutine: suppose α were known.

Aggregate over $r \in [\frac{1}{2}, \frac{1}{4}, \ldots, 1/n]$:

Final labeling is optimal w.r.t. κ, α

Active learning procedure: (adapting to α)

Call subroutine for $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n}$ \(\forall \alpha_i \).

We then get the first fully adaptive and optimal A-L for the setting!
Subroutine: suppose α were known.

Aggregate over $r \in \left[\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{n}\right]$:

Final labeling is optimal w.r.t. κ, α

Active learning procedure: (adapting to α)

Call subroutine for $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n}$ $\forall \alpha_i$.

We then get the first fully adaptive and optimal A-L for the setting!
Subroutine: suppose α were known.

Aggregate over $r \in [\frac{1}{2}, \frac{1}{4}, \ldots, 1/n]$:
Final labeling is optimal w.r.t. κ, α

Active learning procedure: (adapting to α)
Call subroutine for $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n \right]$, use budget $\frac{n}{\log^2 n}$ \forall α_i.

We then get the first fully adaptive and optimal A-L for the setting!
In summary:
Further gains in A-L emerge as we parametrize from easy to hard. There is much left to understand ...

Thanks!
In summary:

Further gains in A-L emerge as we parametrize from easy to hard. There is much left to understand ...
In summary:
Further gains in A-L emerge as we parametrize from easy to hard. There is much left to understand ...

Thanks!