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Data: {(X;,Y;)}",, Y = f(X) + noise
f € nonparametric F, i.e. dim(F) = oc.
Learn:

fn(x) = avg (Y;) of Neighbors(z).

(e.g. k-NN, kernel, or tree-based reg.)

Quite basic = common in modern applications. )

Sensitive to choice of Neighbors(z): k, band. h, tree cell size.
Goal: choose Neighbors(x) optimally! J
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Performance would depend on dim(X) and how fast f varies ...
Suppose X € RY, and Va, 2/, |f(x) — f(z')| < Nz —2'||*.

Performance measure: || f,, — f||§,pX =E x |fo(X) — F(X)*.

Minimax global performance (Stone 80-82)
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f is simple: smooth, sparse, additive,

Of interest here: X has low intrinsic dimension d < D.
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Basic approach: Manifold or Dictionary Learning/Regularization
(e.g. LLE, Isomap, Laplacian eigenmaps, kernel PCA, ...)
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Basic approach introduces much more tuning!

Recent Alternative:
fn operates in IR” but adapts to the unknown d of X.

We want: || fn — f||§7PX < VO« p/CD




Some work on adaptivity to intrinsic dimension:

e Kernel and local polynomial regression: Bickel and Li 2006,
Lafferty and Wasserman 2007. Manifold dim.

G-P regression: Yang and Dunson 2016. Manifold dim.
Dyadic tree classification: Scott and Nowak 2006. Box dim.
RP/dyadic tree regression: K. and Das. 2011. Doubling dim.
1-NN regression*: Kulkarni and Posner 1995. Metric dim.
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Adaptivity to intrinsic d
Main insight: Key algorithmic quantities depend on d, not on D. J

RPtree: Number of cells of diameter ¢ is approx. ¢ .

—d
o €
For Lipschitz f, || fne— f”g,px ~- -+ €.

Cross-validate over ¢ for a good rate in terms of d.
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Insights help with tuning under time-constraints.

Main Idea: compress data in a way that respects structure of X.
e Online tuning for regression-trees. [Kpo. and Orabona 2013]
e Compressed Kernel regression. [Kpo. and Verma, 2017]
e Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.




So far, we have viewed d as a global characteristic of X ...
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Problem complexity is likely to depend on location!

3
>

Space X, d = d(z) Function f, a = a(z)

Choose Neighbors(x) adaptively so that:

|fn($> _ f($)|2 o Agdl/(QO/J‘f‘dr) . n_zam/(Qa:(:"Fd:(:).

Choose Neighbors(z): Cannot cross-validate locally at 2! O



NEXT:

I. Local notions of smoothness and dimension.
II. Local adaptivity to dimension: k-NN example.

ITI. Full local adaptivity: kernel example.



Local smoothness

Use local Holder parameters A = X\(z), a = a(x) on B(x,r):
For all 2’ € B(x,r), |f(z)— f(2)| < Xp(x,2’)>.
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f(z) = x“ is flatter at x = 0 as « is increased.
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Local dimension

Figure: d-dimensional balls centered at x.

Volume growth: vol(B(x,r)) = C

=€

4. vol(B(x,er)).
If Px is U(B(z,7)), then Px(B(z,7)) < e 4. Px(B(x,er)).

Def.: Py is (C,d)-homogeneous on B(xz,r) if Vi’ < r e >0,

Px(B(z,7")) < Ce=®- Px(B(z,er')).
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Size of neighborhood B matters!

For k-NN, or kernel reg, size of B depends on n and (k or h).



The growth of Px(B) can capture the intrinsic dimension locally. ]
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The growth of Px(B) can capture the intrinsic dimension locally. J

Linear data Manifold data Sparse data

X can be a collection of subspaces of various dimensions. )
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Intrinsic d tightly captures the minimax rate:

Theorem: Consider a metric measure space (X, p, ), such that
forall z € X,r > 0,e > 0, we have ju(B(x,7)) ~ ¢ u(B(x, er)).
Then, for any regressor f,,, there exists Px y, where Px = p and
f(x) =EY|z is A-Lipschitz, such that

E f = fI3,, 2 22D 72/ 24,
X,Y
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ITI. Full local adaptivity: kernel example.
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Main Assumptions:

e X € metric space (X, p).
e Px is locally homogeneous with unknown d(z).
e fis A-Lipschitzon X, i.e. a = 1.
k-NN regression: f,,(x) = weighted avg (Y;) of k-NN(x).

Suppose X C IR, the learner operates in IR”!
No dimensionality reduction, no dimension estimation!




Bias-Variance tradeoff

B @) = F@)2=E [fu(z) — E fu(@)2 + |E ful(z) — f(z).
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General intuition:

Fix n 2 k 2 logn, and consider neighborhood B(x) of dim. d.

Rate of convergence of f,,(x) depends on:
e (Variance of f,(z)) ~ 1/k.
 (Bias of fu(x)) = ri(x).

We have: |f,(z) — f(z)]* < % + ()2

It turns out: i (z) ~ (k/n)'/4, where d = d(B).
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Choosing k locally at x- Intuition

Remember: Cross-valid. or dim. estimation at x are impractical.

Instead:

1/k

(k/n)?/%s

- |

Main technical hurdle: intrinsic dimension might vary with k.




Choosing k(x)- Result

k(i

Theorem: Suppose k(x) is chosen as above. The following holds
w.h.p. simultaneously for all x.
Consider any B centered at x, s.t. Px(B) > n~'/3. Suppose Px
is (C, d)-homogeneous on B. We have
Clan 2/(24d)
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Choosing k(x)- Result

1/k

=Y

Theorem: Suppose k(x) is chosen as above. The following holds
w.h.p. simultaneously for all x.

Consider any B centered at z, s.t. Px(B) > n~'/3. Suppose Px
is (C, d)-homogeneous on B. We have

fulz) — f(2)]? S N (m

v

As n — oo the claim applies to any B centered at =, Px(B) # 0. J




NEXT:

I. Local notions of smoothness and dimension.
II. Local adaptivity to dimension: k-NN example.

III. Full local adaptivity: kernel example.
(Recent work with Vikas Garg)



Main Assumptions:

e X € metric space (X, p) of diameter 1.
e Py is locally homogeneous with unknown d(z).

e f is locally Holder with unknown A(z), a(z).



Main Assumptions:

e X € metric space (X, p) of diameter 1.
e Py is locally homogeneous with unknown d(z).

e f is locally Holder with unknown A(z), a(z).

Kernel regression: f,(x) = weighted avg (Y;) for X; in B,(x,h).
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Suppose we know «(z) but not d(z).
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Picking hg(z): | fn(2) — f(z)|* ~ err(h*) < n=2e/Ratd),



From Lepsk:
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Suppose we know d(z) but not «o(z).

Intuition:
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From Lepsk:

Suppose we know d(z) but not «(z).

h < h* must intersect!

All intervals [fn(h;z)i 2L,

Ij IREE .f(:v)
!

Picking ha(z): | fu(z) — f(2)]? & err(h*) < n=20/(otd)



Combine Lepski with previous intuition

We know neither d nor «.
All intervals {fn(h; x) £ /2#@)} ,h < hg must intersect!

Nn(m

z)
H ﬁ{;* " @)

1 e

[
®

S



Combine Lepski with previous intuition

We know neither d nor «.

All intervals {fn(h; x) £ 2#@)} ,h < hg must intersect!
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Picking hq a(x): | fn(z) — f(x) 2 & err(hy) ~ err(h*) < 20/ (2a+d).
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Choosing hy q4(x)- Result

Tightness assumption on d(z): 3ry, Vo € X,3C,C’,d such that
vr <ro, Cr®<Px(B(z,r)) <C'r?

Theorem: Suppose h, 4(x) is chosen as described. Let
n > N(rp). The following holds w.h.p. simultaneously for all .
Let d, a, A be the local problem parameters on B(z, 7). We have

I\ 20/ (20+d)
Fule) = () < A2/t () .

n

The rate is optimal.
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Simulation on data with mized spatial complexity

NMSE
& o

(%)

31)00 4000 5000 6000 7000 8000 9000 10000
Training Size

... the approach is promising, but remains expensive!



Future direction:

Cheaper tree-based kernel implementations.




Initial experiments with tree-based kernel

2

Swissroll dataset

# — fraining size=560

training size=56
training size=280

7

Without CValidation:

3Bané!wid‘csh (h)E

a 9

automatically detect interval containing h*.



Current directions:

Tradeoffs via data compression/quantization.




Estimating Robotic Torque:

SARCOS

average
—s—kernel
-8-a=1/6
=26
-8-a=36
—&—0=4/6
o=5/6
—&—0 = 6/6

3

10°
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number of tralning points

Tradeoffs can be controlled by some a.



Current directions:

Tradeoffs via subsampling ...




Predicting Viral Tweets:

TwitterBuzz Prediction Error

TwitterBuzz prediction time
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number of subsamples

Denoised subsamples

number of subsamples

of 1-NN's: fast and accurate.



Other directions:

- Combine adaptive tuning with representation learning.

- Adaptive conf. bands (a la Belloni, Chernozukov, Lepski, Wasserman?)
- Other procedures (kernel machines, rand. forests, neural nets)
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TAKE HOME MESSAGE:
e We can adapt to intrinsic d(X’) without preprocessing.

e Local-learners can self-tune optimally to local d(z) and «a(x).

Results extend to plug-in classification!

Many potential future directions!




Thank you!



