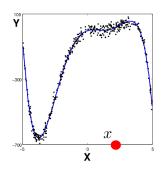
# **Self-Tuning in Nonparametric Regression**

Samory Kpotufe
ORFE, Princeton University

**Data:** 
$$\{(X_i, Y_i)\}_{i=1}^n$$
,  $Y = f(X) + \text{noise}$   $f \in \text{nonparametric } \mathcal{F}$ , i.e.  $\dim(\mathcal{F}) = \infty$ .

#### Learn:

 $f_n(x) = \operatorname{avg}\ (Y_i)$  of  $\operatorname{Neighbors}(x)$ . (e.g. k-NN, kernel, or tree-based reg.



Quite basic  $\implies$  common in modern applications.

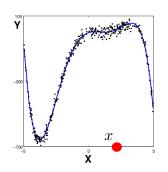
Sensitive to choice of Neighbors(x): k, band. h, tree cell size. **Goal:** choose Neighbors(x) optimally!



**Data:** 
$$\{(X_i, Y_i)\}_{i=1}^n$$
,  $Y = f(X) + \text{noise}$   $f \in \text{nonparametric } \mathcal{F}$ , i.e.  $\dim(\mathcal{F}) = \infty$ .

#### Learn:

 $f_n(x) = \operatorname{avg}(Y_i)$  of  $\operatorname{Neighbors}(x)$ . (e.g. k-NN, kernel, or tree-based reg.)



Quite basic  $\implies$  common in modern applications

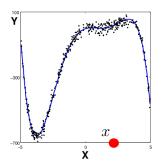
Sensitive to choice of Neighbors(x): k, band. h, tree cell size. **Goal:** choose Neighbors(x) optimally!



**Data:** 
$$\{(X_i, Y_i)\}_{i=1}^n$$
,  $Y = f(X) + \text{noise}$   $f \in \text{nonparametric } \mathcal{F}$ , i.e.  $\dim(\mathcal{F}) = \infty$ .

#### Learn:

 $f_n(x) = {\sf avg}\ (Y_i) \ {\sf of}\ {\sf Neighbors}(x).$  (e.g.  $k{\sf -NN}$ , kernel, or tree-based reg.)



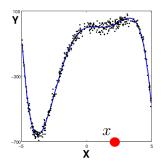
Quite basic  $\implies$  common in modern applications.

Sensitive to choice of Neighbors(x): k, band. h, tree cell size. Goal: choose Neighbors(x) optimally!

**Data:** 
$$\{(X_i, Y_i)\}_{i=1}^n$$
,  $Y = f(X) + \text{noise}$   $f \in \text{nonparametric } \mathcal{F}$ , i.e.  $\dim(\mathcal{F}) = \infty$ .

#### Learn:

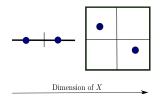
$$f_n(x) = \operatorname{avg}(Y_i)$$
 of  $\operatorname{Neighbors}(x)$ . (e.g.  $k$ -NN, kernel, or tree-based reg.)



Quite basic  $\implies$  common in modern applications.

Sensitive to choice of Neighbors(x): k, band. h, tree cell size.

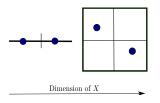
Goal: choose Neighbors(x) optimally!



Performance would depend on  $\dim(X)$  and how fast f varies ... Suppose  $X \in \mathbb{R}^D$ , and  $\forall x, x', \quad |f(x) - f(x')| \leq \lambda \|x - x'\|^{\alpha}$ .

Performance measure:  $\|f_n - f\|_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$ .

$$||f_n - f||_{2,P_Y}^2 \propto \lambda^{2D/(2\alpha+D)} \cdot n^{-2\alpha/(2\alpha+D)}$$

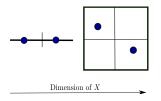


## Performance would depend on $\dim(X)$ and how fast f varies ...

Suppose 
$$X \in \mathbb{R}^D$$
, and  $\forall x, x', \quad |f(x) - f(x')| \le \lambda \|x - x'\|^{\alpha}$ .

Performance measure: 
$$||f_n - f||_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$$
.

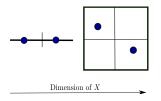
$$||f_n - f||_{2, P_Y}^2 \propto \lambda^{2D/(2\alpha + D)} \cdot n^{-2\alpha/(2\alpha + D)}$$



Performance would depend on  $\dim(X)$  and how fast f varies ... Suppose  $X \in {\rm I\!R}^D$ , and  $\forall x, x', \quad |f(x) - f(x')| \leq \lambda \, \|x - x'\|^{\alpha}$ .

Performance measure: 
$$||f_n - f||_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$$
.

$$||f_n - f||_{2, P_Y}^2 \propto \lambda^{2D/(2\alpha + D)} \cdot n^{-2\alpha/(2\alpha + D)}.$$



Performance would depend on  $\dim(X)$  and how fast f varies ... Suppose  $X \in \mathbb{R}^D$ , and  $\forall x, x', \quad |f(x) - f(x')| \leq \lambda \|x - x'\|^{\alpha}$ .

Performance measure:  $||f_n - f||_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$ .

$$||f_n - f||_{2,P_Y}^2 \propto \lambda^{2D/(2\alpha+D)} \cdot n^{-2\alpha/(2\alpha+D)}$$
.



# Some milder situations for $X \in \mathbb{R}^D$

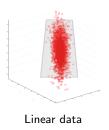
f is simple: smooth, sparse, additive, ...

Of interest here: X has low intrinsic dimension  $d \ll D$ .

# Some milder situations for $X \in \mathbb{R}^D$

f is simple: smooth, sparse, additive, ...

**Of interest here:**  $\mathcal{X}$  has low intrinsic dimension  $d \ll D$ .

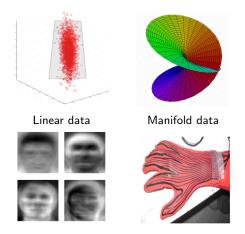


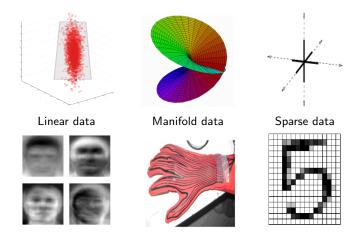


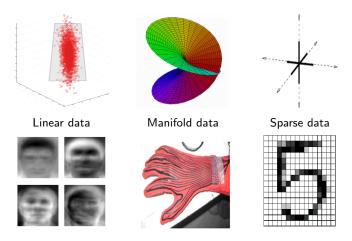












Basic approach: Manifold or Dictionary Learning/Regularization (e.g. LLE, Isomap, Laplacian eigenmaps, kernel PCA, ...)

### Basic approach introduces much more tuning!

Recent Alternative:  $f_n$  operates in  $\mathbb{R}^D$  but adapts to the unknown d of  $\mathcal{X}.$ 

We want: 
$$||f_n - f||_{2, P_Y}^2 \lesssim n^{-1/Cd} \ll n^{-1/CD}$$

#### Basic approach introduces much more tuning!

Recent Alternative:  $f_n$  operates in  $\mathbb{R}^D$  but adapts to the unknown d of  $\mathcal{X}$ .

We want: 
$$||f_n - f||_{2, P_x}^2 \lesssim n^{-1/Cd} \ll n^{-1/CD}$$

#### Basic approach introduces much more tuning!

Recent Alternative:  $f_n$  operates in  $\mathbb{R}^D$  but adapts to the unknown d of  $\mathcal{X}$ .

We want: 
$$||f_n - f||_{2,P_X}^2 \lesssim n^{-1/Cd} \ll n^{-1/CD}$$

#### Some work on adaptivity to intrinsic dimension:

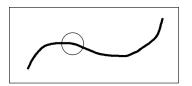
- Kernel and local polynomial regression: Bickel and Li 2006, Lafferty and Wasserman 2007. Manifold dim.
- G-P regression: Yang and Dunson 2016. Manifold dim.
- Dyadic tree classification: Scott and Nowak 2006. Box dim.
- RP/dyadic tree regression: K. and Das. 2011. Doubling dim.
- 1-NN regression\*: Kulkarni and Posner 1995. Metric dim.

**Main insight:** Key algorithmic quantities depend on d, not on D.

For Lipschitz 
$$f$$
,  $\|f_{n,\epsilon} - f\|_{2,P_X}^2 pprox rac{\epsilon^{-d}}{n} + \epsilon^2$ .

**Main insight:** Key algorithmic quantities depend on d, not on D.

Kernel reg.: Avg. mass of a ball of radius  $\epsilon$  is approx.  $\epsilon^d$ 



For Lipschitz 
$$f$$
,  $\|f_{n,\epsilon} - f\|_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$ .

**Main insight:** Key algorithmic quantities depend on d, not on D.

RPtree: **Number of cells** of diameter  $\epsilon$  is approx.  $\epsilon^{-d}$ .



For Lipschitz 
$$f$$
,  $||f_{n,\epsilon} - f||_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$ .

**Main insight:** Key algorithmic quantities depend on d, not on D.

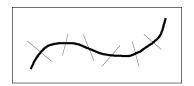
RPtree: **Number of cells** of diameter  $\epsilon$  is approx.  $\epsilon^{-d}$ .



For Lipschitz 
$$f$$
,  $||f_{n,\epsilon} - f||_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$ .

**Main insight:** Key algorithmic quantities depend on d, not on D.

RPtree: **Number of cells** of diameter  $\epsilon$  is approx.  $\epsilon^{-d}$ .



For Lipschitz 
$$f$$
,  $||f_{n,\epsilon} - f||_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$ .

Main Idea: compress data in a way that respects structure of  $\mathcal{X}$ .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small

### **Main Idea:** compress data in a way that respects structure of $\mathcal{X}$ .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.

**Main Idea:** compress data in a way that respects structure of  $\mathcal{X}$ .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.

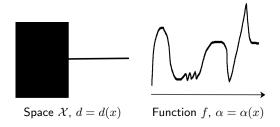
**Main Idea:** compress data in a way that respects structure of  $\mathcal{X}$ .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.

So far, we have viewed d as a global characteristic of  $\ensuremath{\mathcal{X}}$  ...

#### Problem complexity is likely to depend on location!

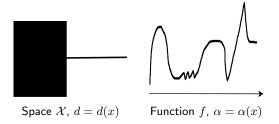


Choose Neighbors(x) adaptively so that:

$$|f_n(x) - f(x)|^2 \propto \lambda_x^{2d_x/(2\alpha_x + d_x)} \cdot n^{-2\alpha_x/(2\alpha_x + d_x)}$$
.

Choose Neighbors(x): Cannot cross-validate locally at  $x! \odot$ 

Problem complexity is likely to depend on location!

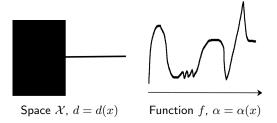


Choose Neighbors(x) adaptively so that:

$$|f_n(x) - f(x)|^2 \propto \lambda_x^{2d_x/(2\alpha_x + d_x)} \cdot n^{-2\alpha_x/(2\alpha_x + d_x)}$$
.

Choose Neighbors(x): Cannot cross-validate locally at x!

Problem complexity is likely to depend on location!



Choose Neighbors(x) adaptively so that:

$$|f_n(x) - f(x)|^2 \propto \lambda_x^{2d_x/(2\alpha_x + d_x)} \cdot n^{-2\alpha_x/(2\alpha_x + d_x)}$$
.

Choose Neighbors(x): Cannot cross-validate locally at x!  $\odot$ 



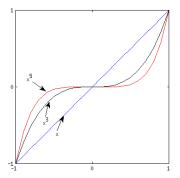
## **NEXT:**

- I. Local notions of smoothness and dimension.
- II. Local adaptivity to dimension: k-NN example.
- III. Full local adaptivity: kernel example.

#### Local smoothness

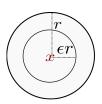
Use local Hölder parameters  $\lambda = \lambda(x), \alpha = \alpha(x)$  on B(x, r):

For all 
$$x' \in B(x, r)$$
,  $|f(x) - f(x')| \le \lambda \rho(x, x')^{\alpha}$ .



 $f(x) = x^{\alpha}$  is flatter at x = 0 as  $\alpha$  is increased.

### Local dimension



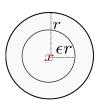
#### Figure: d-dimensional balls centered at x.

Volume growth: 
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If 
$$P_X$$
 is  $\mathcal{U}(B(x,r))$ , then  $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$ .

**Def.:** 
$$P_X$$
 is  $(C,d)$ -homogeneous on  $B(x,r)$  if  $\forall r' \leq r, \epsilon > 0$ , 
$$P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$$

### Local dimension



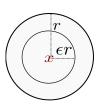
*Figure:* d-dimensional balls centered at x.

Volume growth: 
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If 
$$P_X$$
 is  $\mathcal{U}(B(x,r))$ , then  $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$ .

**Def.:**  $P_X$  is (C,d)-homogeneous on B(x,r) if  $\forall r' \leq r, \epsilon > 0$  $P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$ 

### Local dimension



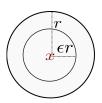
*Figure:* d-dimensional balls centered at x.

Volume growth: 
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If 
$$P_X$$
 is  $\mathcal{U}(B(x,r))$ , then  $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$ .

**Def.:**  $P_X$  is (C,d)-homogeneous on B(x,r) if  $\forall r' \leq r, \epsilon > 0$  $P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$ 

### Local dimension



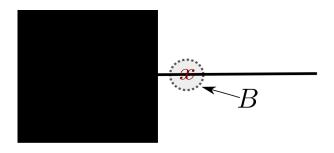
*Figure:* d-dimensional balls centered at x.

Volume growth: 
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If 
$$P_X$$
 is  $\mathcal{U}(B(x,r))$ , then  $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$ .

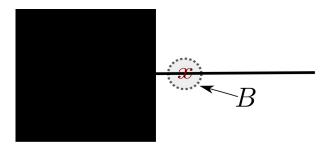
**Def.:** 
$$P_X$$
 is  $(C,d)$ -homogeneous on  $B(x,r)$  if  $\forall r' \leq r, \epsilon > 0$ , 
$$P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$$

### The growth of $P_X$ can capture the intrinsic dimension in B(x).



Location of query x matters! Size of neighborhood B matters!

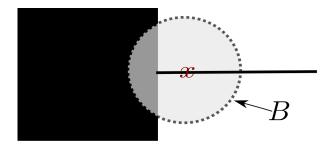
### The growth of $P_X$ can capture the intrinsic dimension in B(x).



#### Location of query x matters!

Size of neighborhood *B* matters!

### The growth of $P_X$ can capture the intrinsic dimension in B(x).



Location of query x matters! Size of neighborhood B matters!

### Size of neighborhood B matters!



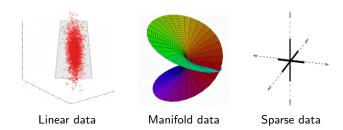
For k-NN, or kernel reg, size of B depends on n and (k or h).

### Size of neighborhood B matters!

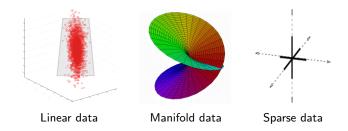


For k-NN, or kernel reg, size of B depends on n and (k or h).

### The growth of $P_X(B)$ can capture the intrinsic dimension locally.



### The growth of $P_X(B)$ can capture the intrinsic dimension locally.



 $\mathcal{X}$  can be a collection of subspaces of various dimensions.

# Intrinsic d tightly captures the minimax rate:

**Theorem:** Consider a metric measure space  $(\mathcal{X}, \rho, \mu)$ , such that for all  $x \in \mathcal{X}, r > 0, \epsilon > 0$ , we have  $\mu(B(x,r)) \approx \epsilon^{-d}\mu(B(x,\epsilon r))$ . Then, for any regressor  $f_n$ , there exists  $P_{X,Y}$ , where  $P_X = \mu$  and  $f(x) = \mathbb{E} Y|x$  is  $\lambda$ -Lipschitz, such that

$$\mathbb{E}_{\mathcal{P}_{X,Y}^n} \|f_n - f\|_{2,\mu}^2 \gtrsim \lambda^{2d/(2+d)} \cdot n^{-2/(2+d)}$$

# Intrinsic d tightly captures the minimax rate:

**Theorem:** Consider a metric measure space  $(\mathcal{X}, \rho, \mu)$ , such that for all  $x \in \mathcal{X}, r > 0, \epsilon > 0$ , we have  $\mu(B(x, r)) \approx \epsilon^{-d}\mu(B(x, \epsilon r))$ . Then, for any regressor  $f_n$ , there exists  $P_{X,Y}$ , where  $P_X = \mu$  and  $f(x) = \mathbb{E} Y|x$  is  $\lambda$ -Lipschitz, such that

$$\mathbb{E}_{\mathcal{P}_{2}^{n}, Y} \|f_{n} - f\|_{2, \mu}^{2} \gtrsim \lambda^{2d/(2+d)} \cdot n^{-2/(2+d)}.$$

### **NEXT:**

I. Local notions of smoothness and dimension.

II. Local adaptivity to dimension: k-NN example.

III. Full local adaptivity: kernel example.

# **Main Assumptions:**

- $X \in \mathsf{metric} \; \mathsf{space} \; (\mathcal{X}, \rho).$
- $P_X$  is locally homogeneous with unknown d(x).
- f is  $\lambda$ -Lipschitz on  $\mathcal{X}$ , i.e.  $\alpha = 1$ .

k-NN regression:  $f_n(x) = \text{weighted avg } (Y_i) \text{ of } k$ -NN(x).

Suppose  $\mathcal{X} \subset \mathbb{R}^D$ , the learner operates in  $\mathbb{R}^D$ ! No dimensionality reduction, no dimension estimation!

### **Main Assumptions:**

- $X \in \mathsf{metric} \; \mathsf{space} \; (\mathcal{X}, \rho).$
- $P_X$  is locally homogeneous with unknown d(x).
- f is  $\lambda$ -Lipschitz on  $\mathcal{X}$ , i.e.  $\alpha = 1$ .

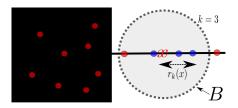
k-NN regression:  $f_n(x) = \text{weighted avg } (Y_i) \text{ of } k$ -NN(x).

Suppose  $\mathcal{X} \subset \mathbb{R}^D$ , the learner operates in  $\mathbb{R}^D$ ! No dimensionality reduction, no dimension estimation!

# Bias-Variance tradeoff

$$\underset{(X_i,Y_i)_1^n}{\mathbb{E}}\left|f_n(x)-f(x)\right|^2 = \underbrace{\mathbb{E}\left|f_n(x)-\mathbb{E}\,f_n(x)\right|^2}_{\text{Variance}} + \underbrace{\left|\mathbb{E}\,f_n(x)-f(x)\right|^2}_{\text{Bias}^2}.$$

Fix  $n \gtrsim k \gtrsim \log n$ , and consider neighborhood B(x) of dim. d.



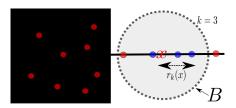
Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/k$
- (Bias of  $f_n(x)$ )  $\approx r_k(x)$ .

We have:  $|f_n(x) - f(x)|^2 \le \frac{1}{2} + r_k(x)$ 



Fix  $n \gtrsim k \gtrsim \log n$ , and consider neighborhood B(x) of dim. d.

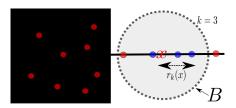


Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/k$ .
- (Bias of  $f_n(x)$ )  $\approx r_k(x)$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

Fix  $n \gtrsim k \gtrsim \log n$ , and consider neighborhood B(x) of dim. d.



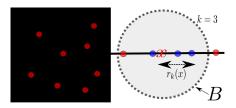
Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/k$ .
- (Bias of  $f_n(x)$ )  $\approx r_k(x)$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.



Fix  $n \gtrsim k \gtrsim \log n$ , and consider neighborhood B(x) of dim. d.

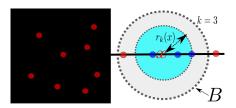


Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/k$ .
- (Bias of  $f_n(x)$ )  $\approx r_k(x)$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

Fix  $n \gtrsim k \gtrsim \log n$ , and consider neighborhood B(x) of dim. d.



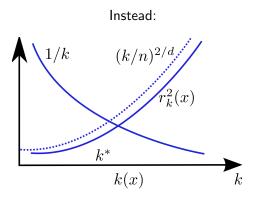
Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/k$ .
- (Bias of  $f_n(x)$ )  $\approx r_k(x)$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

# Choosing k locally at x- Intuition

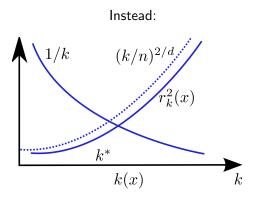
**Remember:** Cross-valid. or dim. estimation at x are impractical.



Main technical hurdle: intrinsic dimension might vary with k

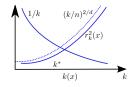
# Choosing k locally at x- Intuition

**Remember:** Cross-valid. or dim. estimation at x are impractical.



Main technical hurdle: intrinsic dimension might vary with k.

# Choosing k(x)- Result



**Theorem:** Suppose k(x) is chosen as above. The following holds w.h.p. simultaneously for all x.

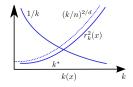
Consider any B centered at x, s.t.  $P_X(B) \gtrsim n^{-1/3}$ . Suppose  $P_X$  is (C,d)-homogeneous on B. We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^2 \left(\frac{C \ln n}{n P_X(B)}\right)^{2/(2+d)}$$
.

As  $n \to \infty$  the claim applies to any B centered at x,  $P_X(B) \neq 0$ .



# Choosing k(x)- Result



**Theorem:** Suppose k(x) is chosen as above. The following holds w.h.p. simultaneously for all x.

Consider any B centered at x, s.t.  $P_X(B) \gtrsim n^{-1/3}$ . Suppose  $P_X$  is (C,d)-homogeneous on B. We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^2 \left(\frac{C \ln n}{n P_X(B)}\right)^{2/(2+d)}$$
.

As  $n \to \infty$  the claim applies to any B centered at x,  $P_X(B) \neq 0$ .

### **NEXT:**

I. Local notions of smoothness and dimension.

II. Local adaptivity to dimension: k-NN example.

III. Full local adaptivity: kernel example. (Recent work with Vikas Garg)

### **Main Assumptions:**

- $X \in \mathsf{metric} \; \mathsf{space} \; (\mathcal{X}, \rho) \; \mathsf{of} \; \mathsf{diameter} \; 1.$
- $P_X$  is locally homogeneous with unknown d(x).
- f is locally Hölder with unknown  $\lambda(x), \alpha(x)$ .

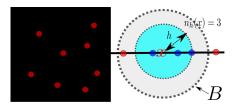
Kernel regression:  $f_n(x) = \text{weighted avg } (Y_i) \text{ for } X_i \text{ in } B_{\rho}(x,h).$ 

### **Main Assumptions:**

- $X \in \text{metric space } (\mathcal{X}, \rho) \text{ of diameter } 1.$
- $P_X$  is locally homogeneous with unknown d(x).
- f is locally Hölder with unknown  $\lambda(x)$ ,  $\alpha(x)$ .

Kernel regression:  $f_n(x) = \text{weighted avg } (Y_i) \text{ for } X_i \text{ in } B_{\rho}(x,h).$ 

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.



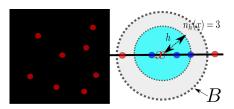
Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/n_h(x)$
- (Bias of  $f_n(x)$ )  $\approx h^{2\alpha}$ .

We have 
$$|f_n(x) - f(x)|^2 \approx \frac{1}{n_1(x)} + h$$



Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

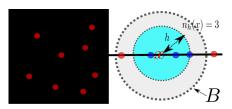


Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/n_h(x)$ .
- (Bias of  $f_n(x)$ )  $\approx h^{2\alpha}$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

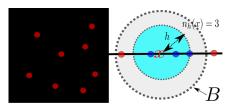


Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/n_h(x)$ .
- (Bias of  $f_n(x)$ )  $\approx h^{2\alpha}$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

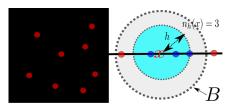


Rate of convergence of  $f_n(x)$  depends on:

- (Variance of  $f_n(x)$ )  $\approx 1/n_h(x)$ .
- (Bias of  $f_n(x)$ )  $\approx h^{2\alpha}$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.



Rate of convergence of  $f_n(x)$  depends on:

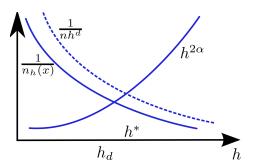
- (Variance of  $f_n(x)$ )  $\approx 1/n_h(x)$ .
- (Bias of  $f_n(x)$ )  $\approx h^{2\alpha}$ .

We have: 
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

# From the previous intuition

**Suppose** we know  $\alpha(x)$  but not d(x).

Monitor  $\frac{1}{n_h(x)}$  and  $h^{2\alpha}$ .

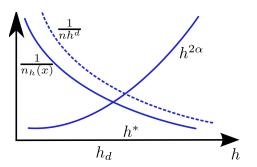


Picking  $h_d(x)$ :  $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$ 

# From the previous intuition

**Suppose** we know  $\alpha(x)$  but not d(x).

Monitor  $\frac{1}{n_h(x)}$  and  $h^{2\alpha}$ .

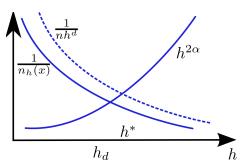


Picking  $h_d(x)$ :  $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$ .

### From Lepski

**Suppose** we know d(x) but not  $\alpha(x)$ .

#### Intuition:



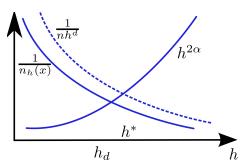
For every  $h < h^*$ ,  $\frac{1}{nh^d} > h^{2\alpha}$  therefore for such h

$$|f_n(h;x) - f(x)|^2 \lesssim \frac{1}{nh^d} + h^{2\alpha} \le 2\frac{1}{nh^d}$$

### From Lepski

**Suppose** we know d(x) but not  $\alpha(x)$ .

#### Intuition:



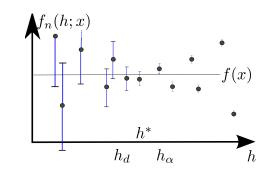
For every  $h < h^*$ ,  $\frac{1}{nh^d} > h^{2\alpha}$  therefore for such h

$$|f_n(h;x) - f(x)|^2 \lesssim \frac{1}{nh^d} + h^{2\alpha} \leq 2\frac{1}{nh^d}.$$

### From Lepski

**Suppose** we know d(x) but not  $\alpha(x)$ .

All intervals 
$$\left[f_n(h;x) \pm \sqrt{2\frac{1}{nh^d}}\right], h < h^*$$
 must intersect!

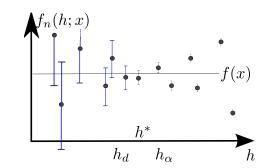


Picking 
$$h_{\alpha}(x)$$
:  $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$ .

### From Lepski

**Suppose** we know d(x) but not  $\alpha(x)$ .

All intervals  $\left[ f_n(h;x) \pm \sqrt{2\frac{1}{nh^d}} \right], h < h^*$  must intersect!

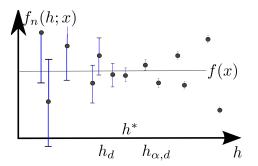


Picking  $h_{\alpha}(x)$ :  $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$ .

# Combine Lepski with previous intuition

We know neither d nor  $\alpha$ .

All intervals 
$$\left[ f_n(h;x) \pm \sqrt{2\frac{1}{n_h(x)}} \right], h < h_d$$
 must intersect!



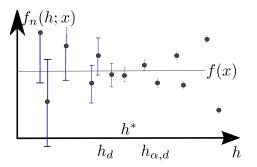
Picking  $h_{\alpha,d}(x)$ :  $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h_d) \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$ .



# Combine Lepski with previous intuition

We know neither d nor  $\alpha$ .

All intervals 
$$\left[ f_n(h;x) \pm \sqrt{2\frac{1}{n_h(x)}} \right], h < h_d$$
 must intersect!



Picking  $h_{\alpha,d}(x)$ :  $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h_d) \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$ .

# Choosing $h_{\alpha,d}(x)$ - Result

**Tightness assumption on** d(x):  $\exists r_0, \forall x \in \mathcal{X}, \exists C, C', d \text{ such that } \forall r \leq r_0, \quad Cr^d \leq P_X(B(x,r)) \leq C'r^d.$ 

**Theorem:** Suppose  $h_{\alpha,d}(x)$  is chosen as described. Let  $n \geq N(r_0)$ . The following holds w.h.p. simultaneously for all x. Let  $d, \alpha, \lambda$  be the local problem parameters on  $B(x, r_0)$ . We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^{2d/(2\alpha+d)} \left(\frac{\ln n}{n}\right)^{2\alpha/(2\alpha+d)}$$
.

The rate is optimal

# Choosing $h_{\alpha,d}(x)$ - Result

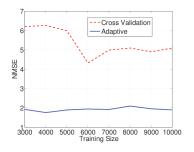
**Tightness assumption on** d(x):  $\exists r_0, \forall x \in \mathcal{X}, \exists C, C', d \text{ such that } \forall r \leq r_0, \quad Cr^d \leq P_X(B(x,r)) \leq C'r^d.$ 

**Theorem:** Suppose  $h_{\alpha,d}(x)$  is chosen as described. Let  $n \geq N(r_0)$ . The following holds w.h.p. simultaneously for all x. Let  $d, \alpha, \lambda$  be the local problem parameters on  $B(x, r_0)$ . We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^{2d/(2\alpha+d)} \left(\frac{\ln n}{n}\right)^{2\alpha/(2\alpha+d)}$$

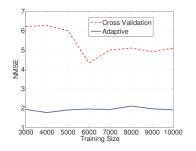
The rate is optimal.

# Simulation on data with mixed spatial complexity



... the approach is promising, but remains expensive!

## Simulation on data with mixed spatial complexity

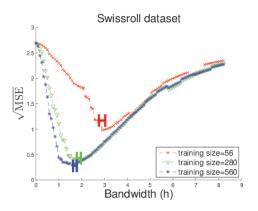


... the approach is promising, but remains expensive!

#### **Future direction:**

Cheaper tree-based kernel implementations.

### Initial experiments with tree-based kernel:

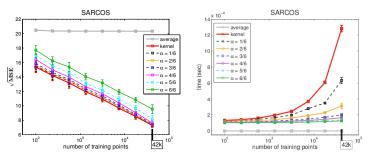


Without CValidation: automatically detect interval containing  $h^*$ .

#### **Current directions:**

Tradeoffs via data compression/quantization.

### Estimating Robotic Torque:

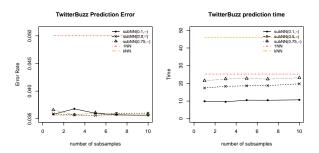


Tradeoffs can be controlled by some  $\alpha$ .

#### **Current directions:**

Tradeoffs via subsampling ...

### Predicting Viral Tweets:



Denoised subsamples of 1-NN's: fast and accurate.

#### Other directions:

- Combine adaptive tuning with representation learning.
- Adaptive conf. bands (à la Belloni, Chernozukov, Lepski, Wasserman?)
- Other procedures (kernel machines, rand. forests, neural nets)

. . .

#### TAKE HOME MESSAGE:

- We can adapt to intrinsic  $d(\mathcal{X})$  without preprocessing.
- Local-learners can self-tune optimally to local d(x) and  $\alpha(x)$ .

Results extend to plug-in classification!

Many potential future directions!

#### TAKE HOME MESSAGE:

- We can adapt to intrinsic  $d(\mathcal{X})$  without preprocessing.
- Local-learners can self-tune optimally to local d(x) and  $\alpha(x)$ .

Results extend to plug-in classification!

Many potential future directions!

#### TAKE HOME MESSAGE:

- We can adapt to intrinsic  $d(\mathcal{X})$  without preprocessing.
- Local-learners can self-tune optimally to local d(x) and  $\alpha(x)$ .

Results extend to plug-in classification!

Many potential future directions!

# Thank you!