Self-Tuning in Nonparametric Regression

Samory Kpotufe
ORFE, Princeton University

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$ $f \in \text{nonparametric } \mathcal{F}$, i.e. $\dim(\mathcal{F}) = \infty$.

Learn:

 $f_n(x) = \operatorname{avg}\ (Y_i)$ of $\operatorname{Neighbors}(x)$. (e.g. k-NN, kernel, or tree-based reg.

Quite basic \implies common in modern applications.

Sensitive to choice of Neighbors(x): k, band. h, tree cell size. **Goal:** choose Neighbors(x) optimally!

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$ $f \in \text{nonparametric } \mathcal{F}$, i.e. $\dim(\mathcal{F}) = \infty$.

Learn:

 $f_n(x) = \operatorname{avg}(Y_i)$ of $\operatorname{Neighbors}(x)$. (e.g. k-NN, kernel, or tree-based reg.)

Quite basic \implies common in modern applications

Sensitive to choice of Neighbors(x): k, band. h, tree cell size. **Goal:** choose Neighbors(x) optimally!

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$ $f \in \text{nonparametric } \mathcal{F}$, i.e. $\dim(\mathcal{F}) = \infty$.

Learn:

 $f_n(x) = {\sf avg}\ (Y_i) \ {\sf of}\ {\sf Neighbors}(x).$ (e.g. $k{\sf -NN}$, kernel, or tree-based reg.)

Quite basic \implies common in modern applications.

Sensitive to choice of Neighbors(x): k, band. h, tree cell size. Goal: choose Neighbors(x) optimally!

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$ $f \in \text{nonparametric } \mathcal{F}$, i.e. $\dim(\mathcal{F}) = \infty$.

Learn:

$$f_n(x) = \operatorname{avg}(Y_i)$$
 of $\operatorname{Neighbors}(x)$. (e.g. k -NN, kernel, or tree-based reg.)

Quite basic \implies common in modern applications.

Sensitive to choice of Neighbors(x): k, band. h, tree cell size.

Goal: choose Neighbors(x) optimally!

Performance would depend on $\dim(X)$ and how fast f varies ... Suppose $X \in \mathbb{R}^D$, and $\forall x, x', \quad |f(x) - f(x')| \leq \lambda \|x - x'\|^{\alpha}$.

Performance measure: $\|f_n - f\|_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$.

$$||f_n - f||_{2,P_Y}^2 \propto \lambda^{2D/(2\alpha+D)} \cdot n^{-2\alpha/(2\alpha+D)}$$

Performance would depend on $\dim(X)$ and how fast f varies ...

Suppose
$$X \in \mathbb{R}^D$$
, and $\forall x, x', \quad |f(x) - f(x')| \le \lambda \|x - x'\|^{\alpha}$.

Performance measure:
$$||f_n - f||_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$$
.

$$||f_n - f||_{2, P_Y}^2 \propto \lambda^{2D/(2\alpha + D)} \cdot n^{-2\alpha/(2\alpha + D)}$$

Performance would depend on $\dim(X)$ and how fast f varies ... Suppose $X \in {\rm I\!R}^D$, and $\forall x, x', \quad |f(x) - f(x')| \leq \lambda \, \|x - x'\|^{\alpha}$.

Performance measure:
$$||f_n - f||_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$$
.

$$||f_n - f||_{2, P_Y}^2 \propto \lambda^{2D/(2\alpha + D)} \cdot n^{-2\alpha/(2\alpha + D)}.$$

Performance would depend on $\dim(X)$ and how fast f varies ... Suppose $X \in \mathbb{R}^D$, and $\forall x, x', \quad |f(x) - f(x')| \leq \lambda \|x - x'\|^{\alpha}$.

Performance measure: $||f_n - f||_{2,P_X}^2 \doteq \mathbb{E}_X |f_n(X) - f(X)|^2$.

$$||f_n - f||_{2,P_Y}^2 \propto \lambda^{2D/(2\alpha+D)} \cdot n^{-2\alpha/(2\alpha+D)}$$
.

Some milder situations for $X \in \mathbb{R}^D$

f is simple: smooth, sparse, additive, ...

Of interest here: X has low intrinsic dimension $d \ll D$.

Some milder situations for $X \in \mathbb{R}^D$

f is simple: smooth, sparse, additive, ...

Of interest here: \mathcal{X} has low intrinsic dimension $d \ll D$.

Basic approach: Manifold or Dictionary Learning/Regularization (e.g. LLE, Isomap, Laplacian eigenmaps, kernel PCA, ...)

Basic approach introduces much more tuning!

Recent Alternative: f_n operates in \mathbb{R}^D but adapts to the unknown d of $\mathcal{X}.$

We want:
$$||f_n - f||_{2, P_Y}^2 \lesssim n^{-1/Cd} \ll n^{-1/CD}$$

Basic approach introduces much more tuning!

Recent Alternative: f_n operates in \mathbb{R}^D but adapts to the unknown d of \mathcal{X} .

We want:
$$||f_n - f||_{2, P_x}^2 \lesssim n^{-1/Cd} \ll n^{-1/CD}$$

Basic approach introduces much more tuning!

Recent Alternative: f_n operates in \mathbb{R}^D but adapts to the unknown d of \mathcal{X} .

We want:
$$||f_n - f||_{2,P_X}^2 \lesssim n^{-1/Cd} \ll n^{-1/CD}$$

Some work on adaptivity to intrinsic dimension:

- Kernel and local polynomial regression: Bickel and Li 2006, Lafferty and Wasserman 2007. Manifold dim.
- G-P regression: Yang and Dunson 2016. Manifold dim.
- Dyadic tree classification: Scott and Nowak 2006. Box dim.
- RP/dyadic tree regression: K. and Das. 2011. Doubling dim.
- 1-NN regression*: Kulkarni and Posner 1995. Metric dim.

Main insight: Key algorithmic quantities depend on d, not on D.

For Lipschitz
$$f$$
, $\|f_{n,\epsilon} - f\|_{2,P_X}^2 pprox rac{\epsilon^{-d}}{n} + \epsilon^2$.

Main insight: Key algorithmic quantities depend on d, not on D.

Kernel reg.: Avg. mass of a ball of radius ϵ is approx. ϵ^d

For Lipschitz
$$f$$
, $\|f_{n,\epsilon} - f\|_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$.

Main insight: Key algorithmic quantities depend on d, not on D.

RPtree: **Number of cells** of diameter ϵ is approx. ϵ^{-d} .

For Lipschitz
$$f$$
, $||f_{n,\epsilon} - f||_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$.

Main insight: Key algorithmic quantities depend on d, not on D.

RPtree: **Number of cells** of diameter ϵ is approx. ϵ^{-d} .

For Lipschitz
$$f$$
, $||f_{n,\epsilon} - f||_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$.

Main insight: Key algorithmic quantities depend on d, not on D.

RPtree: **Number of cells** of diameter ϵ is approx. ϵ^{-d} .

For Lipschitz
$$f$$
, $||f_{n,\epsilon} - f||_{2,P_X}^2 \approx \frac{\epsilon^{-d}}{n} + \epsilon^2$.

Main Idea: compress data in a way that respects structure of \mathcal{X} .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small

Main Idea: compress data in a way that respects structure of \mathcal{X} .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.

Main Idea: compress data in a way that respects structure of \mathcal{X} .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.

Main Idea: compress data in a way that respects structure of \mathcal{X} .

- Online tuning for regression-trees. [Kpo. and Orabona 2013]
- Compressed Kernel regression. [Kpo. and Verma, 2017]
- Subsampled 1-NN's. [Xue and Kpo, Submitted]

Better tradeoffs (time, accuracy, space) when unknown d is small.

So far, we have viewed d as a global characteristic of $\ensuremath{\mathcal{X}}$...

Problem complexity is likely to depend on location!

Choose Neighbors(x) adaptively so that:

$$|f_n(x) - f(x)|^2 \propto \lambda_x^{2d_x/(2\alpha_x + d_x)} \cdot n^{-2\alpha_x/(2\alpha_x + d_x)}$$
.

Choose Neighbors(x): Cannot cross-validate locally at $x! \odot$

Problem complexity is likely to depend on location!

Choose Neighbors(x) adaptively so that:

$$|f_n(x) - f(x)|^2 \propto \lambda_x^{2d_x/(2\alpha_x + d_x)} \cdot n^{-2\alpha_x/(2\alpha_x + d_x)}$$
.

Choose Neighbors(x): Cannot cross-validate locally at x!

Problem complexity is likely to depend on location!

Choose Neighbors(x) adaptively so that:

$$|f_n(x) - f(x)|^2 \propto \lambda_x^{2d_x/(2\alpha_x + d_x)} \cdot n^{-2\alpha_x/(2\alpha_x + d_x)}$$
.

Choose Neighbors(x): Cannot cross-validate locally at x! \odot

NEXT:

- I. Local notions of smoothness and dimension.
- II. Local adaptivity to dimension: k-NN example.
- III. Full local adaptivity: kernel example.

Local smoothness

Use local Hölder parameters $\lambda = \lambda(x), \alpha = \alpha(x)$ on B(x, r):

For all
$$x' \in B(x, r)$$
, $|f(x) - f(x')| \le \lambda \rho(x, x')^{\alpha}$.

 $f(x) = x^{\alpha}$ is flatter at x = 0 as α is increased.

Local dimension

Figure: d-dimensional balls centered at x.

Volume growth:
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If
$$P_X$$
 is $\mathcal{U}(B(x,r))$, then $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$.

Def.:
$$P_X$$
 is (C,d) -homogeneous on $B(x,r)$ if $\forall r' \leq r, \epsilon > 0$,
$$P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$$

Local dimension

Figure: d-dimensional balls centered at x.

Volume growth:
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If
$$P_X$$
 is $\mathcal{U}(B(x,r))$, then $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$.

Def.: P_X is (C,d)-homogeneous on B(x,r) if $\forall r' \leq r, \epsilon > 0$ $P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$

Local dimension

Figure: d-dimensional balls centered at x.

Volume growth:
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If
$$P_X$$
 is $\mathcal{U}(B(x,r))$, then $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$.

Def.: P_X is (C,d)-homogeneous on B(x,r) if $\forall r' \leq r, \epsilon > 0$ $P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$

Local dimension

Figure: d-dimensional balls centered at x.

Volume growth:
$$vol(B(x,r)) = C \cdot r^d = \epsilon^{-d} \cdot vol(B(x,\epsilon r)).$$

If
$$P_X$$
 is $\mathcal{U}(B(x,r))$, then $P_X(B(x,r)) \lesssim \epsilon^{-d} \cdot P_X(B(x,\epsilon r))$.

Def.:
$$P_X$$
 is (C,d) -homogeneous on $B(x,r)$ if $\forall r' \leq r, \epsilon > 0$,
$$P_X(B(x,r')) \leq C\epsilon^{-d} \cdot P_X(B(x,\epsilon r')).$$

The growth of P_X can capture the intrinsic dimension in B(x).

Location of query x matters! Size of neighborhood B matters!

The growth of P_X can capture the intrinsic dimension in B(x).

Location of query x matters!

Size of neighborhood *B* matters!

The growth of P_X can capture the intrinsic dimension in B(x).

Location of query x matters! Size of neighborhood B matters!

Size of neighborhood B matters!

For k-NN, or kernel reg, size of B depends on n and (k or h).

Size of neighborhood B matters!

For k-NN, or kernel reg, size of B depends on n and (k or h).

The growth of $P_X(B)$ can capture the intrinsic dimension locally.

The growth of $P_X(B)$ can capture the intrinsic dimension locally.

 \mathcal{X} can be a collection of subspaces of various dimensions.

Intrinsic d tightly captures the minimax rate:

Theorem: Consider a metric measure space (\mathcal{X}, ρ, μ) , such that for all $x \in \mathcal{X}, r > 0, \epsilon > 0$, we have $\mu(B(x,r)) \approx \epsilon^{-d}\mu(B(x,\epsilon r))$. Then, for any regressor f_n , there exists $P_{X,Y}$, where $P_X = \mu$ and $f(x) = \mathbb{E} Y|x$ is λ -Lipschitz, such that

$$\mathbb{E}_{\mathcal{P}_{X,Y}^n} \|f_n - f\|_{2,\mu}^2 \gtrsim \lambda^{2d/(2+d)} \cdot n^{-2/(2+d)}$$

Intrinsic d tightly captures the minimax rate:

Theorem: Consider a metric measure space (\mathcal{X}, ρ, μ) , such that for all $x \in \mathcal{X}, r > 0, \epsilon > 0$, we have $\mu(B(x, r)) \approx \epsilon^{-d}\mu(B(x, \epsilon r))$. Then, for any regressor f_n , there exists $P_{X,Y}$, where $P_X = \mu$ and $f(x) = \mathbb{E} Y|x$ is λ -Lipschitz, such that

$$\mathbb{E}_{\mathcal{P}_{2}^{n}, Y} \|f_{n} - f\|_{2, \mu}^{2} \gtrsim \lambda^{2d/(2+d)} \cdot n^{-2/(2+d)}.$$

NEXT:

I. Local notions of smoothness and dimension.

II. Local adaptivity to dimension: k-NN example.

III. Full local adaptivity: kernel example.

Main Assumptions:

- $X \in \mathsf{metric} \; \mathsf{space} \; (\mathcal{X}, \rho).$
- P_X is locally homogeneous with unknown d(x).
- f is λ -Lipschitz on \mathcal{X} , i.e. $\alpha = 1$.

k-NN regression: $f_n(x) = \text{weighted avg } (Y_i) \text{ of } k$ -NN(x).

Suppose $\mathcal{X} \subset \mathbb{R}^D$, the learner operates in \mathbb{R}^D ! No dimensionality reduction, no dimension estimation!

Main Assumptions:

- $X \in \mathsf{metric} \; \mathsf{space} \; (\mathcal{X}, \rho).$
- P_X is locally homogeneous with unknown d(x).
- f is λ -Lipschitz on \mathcal{X} , i.e. $\alpha = 1$.

k-NN regression: $f_n(x) = \text{weighted avg } (Y_i) \text{ of } k$ -NN(x).

Suppose $\mathcal{X} \subset \mathbb{R}^D$, the learner operates in \mathbb{R}^D ! No dimensionality reduction, no dimension estimation!

Bias-Variance tradeoff

$$\underset{(X_i,Y_i)_1^n}{\mathbb{E}}\left|f_n(x)-f(x)\right|^2 = \underbrace{\mathbb{E}\left|f_n(x)-\mathbb{E}\,f_n(x)\right|^2}_{\text{Variance}} + \underbrace{\left|\mathbb{E}\,f_n(x)-f(x)\right|^2}_{\text{Bias}^2}.$$

Fix $n \gtrsim k \gtrsim \log n$, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/k$
- (Bias of $f_n(x)$) $\approx r_k(x)$.

We have: $|f_n(x) - f(x)|^2 \le \frac{1}{2} + r_k(x)$

Fix $n \gtrsim k \gtrsim \log n$, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/k$.
- (Bias of $f_n(x)$) $\approx r_k(x)$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

Fix $n \gtrsim k \gtrsim \log n$, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/k$.
- (Bias of $f_n(x)$) $\approx r_k(x)$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

Fix $n \gtrsim k \gtrsim \log n$, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/k$.
- (Bias of $f_n(x)$) $\approx r_k(x)$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

Fix $n \gtrsim k \gtrsim \log n$, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/k$.
- (Bias of $f_n(x)$) $\approx r_k(x)$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{k} + r_k(x)^2$$
.

Choosing k locally at x- Intuition

Remember: Cross-valid. or dim. estimation at x are impractical.

Main technical hurdle: intrinsic dimension might vary with k

Choosing k locally at x- Intuition

Remember: Cross-valid. or dim. estimation at x are impractical.

Main technical hurdle: intrinsic dimension might vary with k.

Choosing k(x)- Result

Theorem: Suppose k(x) is chosen as above. The following holds w.h.p. simultaneously for all x.

Consider any B centered at x, s.t. $P_X(B) \gtrsim n^{-1/3}$. Suppose P_X is (C,d)-homogeneous on B. We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^2 \left(\frac{C \ln n}{n P_X(B)}\right)^{2/(2+d)}$$
.

As $n \to \infty$ the claim applies to any B centered at x, $P_X(B) \neq 0$.

Choosing k(x)- Result

Theorem: Suppose k(x) is chosen as above. The following holds w.h.p. simultaneously for all x.

Consider any B centered at x, s.t. $P_X(B) \gtrsim n^{-1/3}$. Suppose P_X is (C,d)-homogeneous on B. We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^2 \left(\frac{C \ln n}{n P_X(B)}\right)^{2/(2+d)}$$
.

As $n \to \infty$ the claim applies to any B centered at x, $P_X(B) \neq 0$.

NEXT:

I. Local notions of smoothness and dimension.

II. Local adaptivity to dimension: k-NN example.

III. Full local adaptivity: kernel example. (Recent work with Vikas Garg)

Main Assumptions:

- $X \in \mathsf{metric} \; \mathsf{space} \; (\mathcal{X}, \rho) \; \mathsf{of} \; \mathsf{diameter} \; 1.$
- P_X is locally homogeneous with unknown d(x).
- f is locally Hölder with unknown $\lambda(x), \alpha(x)$.

Kernel regression: $f_n(x) = \text{weighted avg } (Y_i) \text{ for } X_i \text{ in } B_{\rho}(x,h).$

Main Assumptions:

- $X \in \text{metric space } (\mathcal{X}, \rho) \text{ of diameter } 1.$
- P_X is locally homogeneous with unknown d(x).
- f is locally Hölder with unknown $\lambda(x)$, $\alpha(x)$.

Kernel regression: $f_n(x) = \text{weighted avg } (Y_i) \text{ for } X_i \text{ in } B_{\rho}(x,h).$

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/n_h(x)$
- (Bias of $f_n(x)$) $\approx h^{2\alpha}$.

We have
$$|f_n(x) - f(x)|^2 \approx \frac{1}{n_1(x)} + h$$

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/n_h(x)$.
- (Bias of $f_n(x)$) $\approx h^{2\alpha}$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/n_h(x)$.
- (Bias of $f_n(x)$) $\approx h^{2\alpha}$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/n_h(x)$.
- (Bias of $f_n(x)$) $\approx h^{2\alpha}$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

Fix 0 < h < 1, and consider neighborhood B(x) of dim. d.

Rate of convergence of $f_n(x)$ depends on:

- (Variance of $f_n(x)$) $\approx 1/n_h(x)$.
- (Bias of $f_n(x)$) $\approx h^{2\alpha}$.

We have:
$$|f_n(x) - f(x)|^2 \lesssim \frac{1}{n_h(x)} + h^{2\alpha}$$
.

From the previous intuition

Suppose we know $\alpha(x)$ but not d(x).

Monitor $\frac{1}{n_h(x)}$ and $h^{2\alpha}$.

Picking $h_d(x)$: $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$

From the previous intuition

Suppose we know $\alpha(x)$ but not d(x).

Monitor $\frac{1}{n_h(x)}$ and $h^{2\alpha}$.

Picking $h_d(x)$: $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$.

From Lepski

Suppose we know d(x) but not $\alpha(x)$.

Intuition:

For every $h < h^*$, $\frac{1}{nh^d} > h^{2\alpha}$ therefore for such h

$$|f_n(h;x) - f(x)|^2 \lesssim \frac{1}{nh^d} + h^{2\alpha} \le 2\frac{1}{nh^d}$$

From Lepski

Suppose we know d(x) but not $\alpha(x)$.

Intuition:

For every $h < h^*$, $\frac{1}{nh^d} > h^{2\alpha}$ therefore for such h

$$|f_n(h;x) - f(x)|^2 \lesssim \frac{1}{nh^d} + h^{2\alpha} \leq 2\frac{1}{nh^d}.$$

From Lepski

Suppose we know d(x) but not $\alpha(x)$.

All intervals
$$\left[f_n(h;x) \pm \sqrt{2\frac{1}{nh^d}}\right], h < h^*$$
 must intersect!

Picking
$$h_{\alpha}(x)$$
: $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$.

From Lepski

Suppose we know d(x) but not $\alpha(x)$.

All intervals $\left[f_n(h;x) \pm \sqrt{2\frac{1}{nh^d}} \right], h < h^*$ must intersect!

Picking $h_{\alpha}(x)$: $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$.

Combine Lepski with previous intuition

We know neither d nor α .

All intervals
$$\left[f_n(h;x) \pm \sqrt{2\frac{1}{n_h(x)}} \right], h < h_d$$
 must intersect!

Picking $h_{\alpha,d}(x)$: $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h_d) \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$.

Combine Lepski with previous intuition

We know neither d nor α .

All intervals
$$\left[f_n(h;x) \pm \sqrt{2\frac{1}{n_h(x)}} \right], h < h_d$$
 must intersect!

Picking $h_{\alpha,d}(x)$: $|f_n(x) - f(x)|^2 \approx \operatorname{err}(h_d) \approx \operatorname{err}(h^*) \lesssim n^{-2\alpha/(2\alpha+d)}$.

Choosing $h_{\alpha,d}(x)$ - Result

Tightness assumption on d(x): $\exists r_0, \forall x \in \mathcal{X}, \exists C, C', d \text{ such that } \forall r \leq r_0, \quad Cr^d \leq P_X(B(x,r)) \leq C'r^d.$

Theorem: Suppose $h_{\alpha,d}(x)$ is chosen as described. Let $n \geq N(r_0)$. The following holds w.h.p. simultaneously for all x. Let d, α, λ be the local problem parameters on $B(x, r_0)$. We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^{2d/(2\alpha+d)} \left(\frac{\ln n}{n}\right)^{2\alpha/(2\alpha+d)}$$
.

The rate is optimal

Choosing $h_{\alpha,d}(x)$ - Result

Tightness assumption on d(x): $\exists r_0, \forall x \in \mathcal{X}, \exists C, C', d \text{ such that } \forall r \leq r_0, \quad Cr^d \leq P_X(B(x,r)) \leq C'r^d.$

Theorem: Suppose $h_{\alpha,d}(x)$ is chosen as described. Let $n \geq N(r_0)$. The following holds w.h.p. simultaneously for all x. Let d, α, λ be the local problem parameters on $B(x, r_0)$. We have

$$|f_n(x) - f(x)|^2 \lesssim \lambda^{2d/(2\alpha+d)} \left(\frac{\ln n}{n}\right)^{2\alpha/(2\alpha+d)}$$

The rate is optimal.

Simulation on data with mixed spatial complexity

... the approach is promising, but remains expensive!

Simulation on data with mixed spatial complexity

... the approach is promising, but remains expensive!

Future direction:

Cheaper tree-based kernel implementations.

Initial experiments with tree-based kernel:

Without CValidation: automatically detect interval containing h^* .

Current directions:

Tradeoffs via data compression/quantization.

Estimating Robotic Torque:

Tradeoffs can be controlled by some α .

Current directions:

Tradeoffs via subsampling ...

Predicting Viral Tweets:

Denoised subsamples of 1-NN's: fast and accurate.

Other directions:

- Combine adaptive tuning with representation learning.
- Adaptive conf. bands (à la Belloni, Chernozukov, Lepski, Wasserman?)
- Other procedures (kernel machines, rand. forests, neural nets)

. . .

TAKE HOME MESSAGE:

- We can adapt to intrinsic $d(\mathcal{X})$ without preprocessing.
- Local-learners can self-tune optimally to local d(x) and $\alpha(x)$.

Results extend to plug-in classification!

Many potential future directions!

TAKE HOME MESSAGE:

- We can adapt to intrinsic $d(\mathcal{X})$ without preprocessing.
- Local-learners can self-tune optimally to local d(x) and $\alpha(x)$.

Results extend to plug-in classification!

Many potential future directions!

TAKE HOME MESSAGE:

- We can adapt to intrinsic $d(\mathcal{X})$ without preprocessing.
- Local-learners can self-tune optimally to local d(x) and $\alpha(x)$.

Results extend to plug-in classification!

Many potential future directions!

Thank you!