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Which aspects of a procedure/data, = fast/slow GeneralizationJ
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k-Nearest Neighbor Approach:
Use the k closest datapoints to = to infer something about x. J

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation,
Bandits, Manifold Learning, Clustering ...
Modern ML: Matrix Completion, Inference on Graphs, Time
Series Prediction ...

Of Practical Interest:
Which metric? Which values of k? Implementation and Tradeoffs?J

A lot of recent insights towards these questions ...
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Prediction: aggregate Y values in Neighborhood(x)

Similar Intuition: Classification Trees, RBF networks, Kernel machines.

Results by various authors help formalize the above intuition

Posner, Fix, Hodges, Cover, Hart, Devroye, Lugosi, Hero, Nobel, Gyorfi,
Kulkarni, Ben David, Shalev-Schwartz, Samworth, Gadat, H. Chen, Shah,
von Luxburg, Hein, Chaudhuri, Dasgupta ...
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Key questions:

1 Statistical issues: how well can NN perform?

® When is 1-NN enough?
® For k-NN, what should k be?

® |s there always a curse of dimension?

2 Algorithmic issues: how efficient can NN be?
® Which data structure to use?
® Can we parallelize NN?
® What do we tradeoff?
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Data representation is important:

Examples:

® Direct Euclidean
® Deep Neural Representation (image, speech)
® Word Embedding (text)

Representation = choice of metric or dissimilarity p(z, 2/) J

Properties of p influence Statistical and Algorithmic aspects
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e PART I: Basic Statistical Insights

e PART Il: Best Practice and Tradeoffs



PART I: Basic Statistical Insights

Universality

Behavior of k-NN Distances

From Regression to Classification
Classification is easier than regression

Multiclass and Mixed Costs
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it can fit anything, provided k grows (but not too fast) with sample size!

Let's make this precise in the context of regression ...

For simplicity, assume Py is continuous on IR? ... (i.e. no ties)
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k-NN Regression

i.i.d. Data: {(X;,Y;)}",,
Y = f(X) + noise

Learn: fi(z) = avg (Y;) of k-NN(z).

k-NN is universally consistent:

Suppose % — 0and k — oo, then | f,.(X) — f(X) 50

Any function f, Ef? < oo, no matter how complex.
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Asn 2, all {X(i)}’f move closer to x

- {X@}§ — x as long as k is fixed or grows slow (//1 — 0)
- Suppose f is continuous, then we also get {f(X(i))}]f — f(x)
- If i oo, then fi(z) = £ X (f (X)) + noise) — f(x)

Now, any f,Ef? < co can be approximated by continuous f's.
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Similar universality results for classification, density estimation, ...

Seminal results on k-NN consistency:

[Fix, Hodges, 51]: classification + regularity, R".

[Cover, Hart, 65, 67, 68]: classification + regularity, any metric.

[Stone, 77]: classification, universal, R

[Devroye, Wagner, 77]: density estimation + regularity , IR%.

[Devroye, Gyorfi, Kryzak, Lugosi, 94]: regression, universal, RY.

[Chaudhuri, Dasgupta, 14]: classification, nice metric/measure.

Main message: % should grow (not too fast) with n ... (e.g. k ~ logn)

But we need a more refined picture ...
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Why k-NN Distances?

Recall Intuition:
Closest neighbors of = should be mostly of similar type y = y(x) J

So we hope that k-NN(z) are close to x ... depends on k ...

Formally: let r;(x) = distance from z to k-th NN in i.i.d. {X;}]

Q: How small is 7 (z) = function of (Px,k,n)?
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By = B(z,rx(x)) = smallest ball containing k-NN(x)

- Assume no ties: P,(B;) = k/n.
-w.h.p. P, = Px — Px(B;)=~k/n.

Now: Px(B fB px (z")dr’ ~px(z fB dz’' = px(z) -vg - rp.(z)4.
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re(2) ~ (1 | k)”d

px(xz) n

Immediate messages:

® ri(z) / when local density px(x) N\,
® rip(z) / when input dimension d

Use smaller k for higher dimensional data ...

Curse of dimension: For 7, =~ € we need n ~ ¢~

Fortunately, d = intrinsic dimension(X) ...

d
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Suppose X € IR”, but lies on a d-dimensional space X ...

RD

o

Consider B, of radius r, centered on X:

Px(B) =~ px - ,/‘UM’ dr ~px -1’

Thus we’d have 1.() ~ (k/n)'/4, irrespective of D >> d.
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Quick Simulations:
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1-NN Distance

20 40 60 80 100

Fix d = 2: average NN distances are stable as D varies
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Refined analysis for 7 (z):
[J. Costa, A. Hero 04], [R. Samworth 12]

Implications:

ri(z) adaptive to d — NN methods adaptive to d ...

(d-sparse documents/images, Robotics data on d-manifold)
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Program:
1. Regression bounds

2. Reduce Classification to Regression
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k-NN Regression

Data: {(X;,Y;)}",, Y = f(X) + noise

Learn: fi.(x) = avg (Y;) of k-NN(z).

.| e . 5
Ideal Metric p: [ (x) ~ [(2)) if pla, ') ~ 0
.. e.g., assume f is Lipschitz:  |f(x) — f(2)] < \p(z, o).

Performance Goal:

Pick & such that ||fr — f[* = Ex | fx(X) — f(X)[* is small. }
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Intuition: E|Z —c>=E|Z -EZ]> +|c-EZ*.

So fix @, and fix {X;}, and let fi(z) = By, fu(2) ..

E|fi(x) = f(@)* = E|fs(z) = fu(@)]® + | [ (@) = fulz).

Variance Bias2
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Step 2: Bound the two terms

- Variance: recall fi(z) = %ZXiek—NN(a:) Y;

2
O'Y

Var(fr(z)) = % Z Var(Y;) =

X; € k-NN(z)

- Bias: note that fj,(z) = %ZXiek-NN(z) f(X5)

\f(Xi) = f(2))]

Z
Z p(Xi, )
k-NN(z)

??‘\»—\

fulw) = f(@)] <
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Step 3: Integrate over x and {X;}

1 k 2/d
We then get: E||f — f]? E <—> .

Tradeoff on k:

0 20 40 60

=Y
>

Pick k = O(n% ) to get B || f, — f]|* < n~?+) | optimal.

Best choice of £k " asn 7 and d \,

Choosing k by C-V yields same optimal rates. (under reg. on noise)
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Similar messages under generalizations of Lipschitz assumption:

- Hoélder continuity:  |f(z) — f(2')] < A p(x, 2”)*.
(avg. version leads to so-called Nikolskii, Sobolev conditions)

B
£ o 1

|z — a'|* gets flatter around x = 0 as a .

Additional messages (as o ):
- Local averages (as k-NN) not appropriate for smoother (easier) f.
- Local polynomials are best, but harder to implement in high-D.

(see e.g. [Gyorfi, Krzyzak, Walk, 02])



From bounds on () to error rates:

Program:

1. Regressionbeunds

2. Reduce Classification to Regression
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k-NN Classification

Data: {(X;,Y;)}",, Y € {0,1}.
Learn: 1 (x) = majority (Y;) of k-NN(z). .

Reduces to regression: let fi.(x) = avg (V;) of k-NN(x)
... then: hp(z) = 1{fr(z) > 1/2}.

Performance Goal:
Pick & such that err(hy) = P(hg(X) #Y) is small.

Equivalently, consider £(hy) = err(hy) — err(h™*).
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Remarks: [;(x) estimates [(z) = £ [V |z] = P(Y = 1]z),
and h*(z) = 1{f(xz) > 1/2}, while hy(z) = 1{fp(z) > 1/2}.

fi
x f

1
2

fe(x) = f(z) implies hi(x) = h*(x)

Formally: £(hy) = /h e 2/ f(x) —1/2|dPx <2|fr — fll.

For Lipschitz f:  EE&(hg) < /@) for | = @(nZ/(2+d))'

Similar messages on choice of k ...
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Suppose |f(z) —1/2] > & for most values z ...
Then |/ — f| < 0 implies 1, = h™ often ... no need for fi = f.

Tsybakov’s noise condition: Px (|f —1/2| < ) < 6°
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For Lipschitz f: E&(hy) < n-B+D/CHD) for | = @(n?/ (2+4),

® Choice of metric — Lipschitzness of f, and intrinsic d.

® |arge margin 8 mitigates effects of metric:
e.g. B>d/2 — rate of n=/2 (no curse of dimension!)

Technical Remarks:

- Above rates assume Py = Uniform.

([Chaudhuri, Dasgupta 14] [Gadat et al 14]).

- For non-uniform Px, rates get worse, but understudied.
([Gadat et al 14], [Cannings et al 17], [Kpo., Martinet 17]).
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k-NN extends naturally to multiclass

I | § 43
Data: {(X;,Y;)}', Y e{l,,...,L}. 7 3 3
Learn: hy(x) = majority (V;) of k-NN(x). 5 9 b
400

OO0 G &

I
S
s
250
Reduction: let [/(x) = proportion (Y = y) out of k-NN(z)
It estimates fY(z) = P(Y = y|x).

.. then: hy(x) = argmax,{f}(x)}, and h*(z) = argmax, {f¥(z)}

Previous insights naturally extends to multiclass ...



® Lipschitzness: ||f(x)

f@I < plx,2")

® Noise margin: At any x, we want f

(x) > f@(z) ...
assume Px <f (X)) < FOX) + ()) < f
Then: EE&(hi) < (n/log L)~ BHD/CHd) for | = ©(n?/(2+4)
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e Lipschitzness: ||f(z) — f(2')| < p(x,2’)
* Noise margin: At any z, we want f()(z) > @) (z) ...
assume Px <f(1)(X) < fA(x) —|—5> <

Then: E&(h;) < (n/log L)~ FHD/CHd) for | = @(n?/(2+4),

Same messages as earlier ...
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Mostly open:

Mixed costs regimes (e.g., medicine, finance, ...)

y < Expected cost when y is wrong # 1 — P(Y = y)

Natural extensions of previous insights considered in [Reeve, Brown 17]

Practical Q: Estimating costs in practice, and integrating with NN ...

Performance metric Elicitation in [S. Koyejo et.al. 19]
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Important Remark:

Continuity of f(z) = E[Y'|x] is unnatural in classification ...

® Piecewise Smoothness: Ben-David, Scott, Nowak, Castro
... (k-NN not well-understood in these settings)

¢ Volume-based smoothness: [Chaudhuri, Dasgupta 14]

F(B(x,r)) - £(2)| < Px(B(z,r)"/



End of Part |



