Nonparametric Analysis: Nearest Neighbors and Friends

Samory Kpotufe Statistics, Columbia University

Nonparametric Analysis:

Infinite capacity/number of parameters ⇒ no Generalization

Which aspects of a procedure/data, \implies fast/slow Generalization

Nonparametric Analysis:

Infinite capacity/number of parameters ⇒ no Generalization

Which aspects of a procedure/data, \implies fast/slow Generalization

Use the k closest datapoints to x to infer something about x.

Use the k closest datapoints to x to infer something about x.

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation Bandits, Manifold Learning, Clustering ...

Modern ML: Matrix Completion, Inference on Graphs, Time Series Prediction

Of Practical Interest:

Which metric? Which values of k? Implementation and Tradeoffs?

Use the k closest datapoints to x to infer something about x.

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation,

Bandits, Manifold Learning, Clustering ...

Modern ML: Matrix Completion, Inference on Graphs, Time

Series Prediction ...

Of Practical Interest:

Which metric? Which values of k? Implementation and Tradeoffs?

Use the k closest datapoints to x to infer something about x.

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation,

Bandits, Manifold Learning, Clustering ...

Modern ML: Matrix Completion, Inference on Graphs, Time

Series Prediction ...

Of Practical Interest:

Which metric? Which values of k? Implementation and Tradeoffs?

Use the k closest datapoints to x to infer something about x.

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation,

Bandits, Manifold Learning, Clustering ...

Modern ML: Matrix Completion, Inference on Graphs, Time

Series Prediction ...

Of Practical Interest:

Which metric? Which values of *k*? Implementation and Tradeoffs?

Use the k closest datapoints to x to infer something about x.

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation,

Bandits, Manifold Learning, Clustering ...

Modern ML: Matrix Completion, Inference on Graphs, Time

Series Prediction ...

Of Practical Interest:

Which metric? Which values of k? Implementation and Tradeoffs?

Use the k closest datapoints to x to infer something about x.

Ubiquitous in ML (implicit at times):

Traditional ML: Classification, Regression, Density Estimation, Bandits, Manifold Learning, Clustering ...

Modern ML: Matrix Completion, Inference on Graphs, Time

Series Prediction ...

Of Practical Interest:

Which metric? Which values of k? Implementation and Tradeoffs?

Closest neighbors of x should be mostly of similar type y = y(x) ...

Prediction: aggregate Y values in Neighborhood(x)

Similar Intuition: Classification Trees, RBF networks, Kernel machines.

Results by various authors help formalize the above intuition

Posner, Fix, Hodges, Cover, Hart, Devroye, Lugosi, Hero, Nobel, Györfi, Kulkarni, Ben David, Shalev-Schwartz, Samworth, Gadat, H. Chen, Shah von Luxburg, Hein, Chaudhuri, Dasgupta ...

Closest neighbors of x should be mostly of similar type y = y(x) ...

Prediction: aggregate Y values in Neighborhood(x)

Similar Intuition: Classification Trees, RBF networks, Kernel machines.

Results by various authors help formalize the above intuition

Posner, Fix, Hodges, Cover, Hart, Devroye, Lugosi, Hero, Nobel, Györfi, Kulkarni, Ben David, Shalev-Schwartz, Samworth, Gadat, H. Chen, Shah von Luxburg, Hein, Chaudhuri, Dasgupta ...

Closest neighbors of x should be mostly of similar type y = y(x) ...

Prediction: aggregate Y values in Neighborhood(x)

Similar Intuition: Classification Trees, RBF networks, Kernel machines.

Results by various authors help formalize the above intuition

Posner, Fix, Hodges, Cover, Hart, Devroye, Lugosi, Hero, Nobel, Györfi, Kulkarni, Ben David, Shalev-Schwartz, Samworth, Gadat, H. Chen, Shah, von Luxburg, Hein, Chaudhuri, Dasgupta ...

Closest neighbors of x should be mostly of similar type y=y(x) ...

Prediction: aggregate Y values in Neighborhood(x)

Similar Intuition: Classification Trees, RBF networks, Kernel machines.

Results by various authors help formalize the above intuition

Posner, Fix, Hodges, Cover, Hart, Devroye, Lugosi, Hero, Nobel, Györfi, Kulkarni, Ben David, Shalev-Schwartz, Samworth, Gadat, H. Chen, Shah, von Luxburg, Hein, Chaudhuri, Dasgupta ...

Closest neighbors of x should be mostly of similar type y=y(x) ...

Prediction: aggregate Y values in Neighborhood(x)

Similar Intuition: Classification Trees, RBF networks, Kernel machines.

Results by various authors help formalize the above intuition

Posner, Fix, Hodges, Cover, Hart, Devroye, Lugosi, Hero, Nobel, Györfi, Kulkarni, Ben David, Shalev-Schwartz, Samworth, Gadat, H. Chen, Shah, von Luxburg, Hein, Chaudhuri, Dasgupta ...

Key questions:

- 1 Statistical issues: how well can NN perform?
 - When is 1-NN enough?
 - For k-NN, what should k be?
 - Is there always a curse of dimension?
- 2 Algorithmic issues: how efficient can NN be?
 - Which data structure to use?
 - Can we parallelize NN?
 - What do we tradeoff?

Key questions:

- 1 Statistical issues: how well can NN perform?
 - When is 1-NN enough?
 - For k-NN, what should k be?
 - Is there always a curse of dimension?
- 2 Algorithmic issues: how efficient can NN be?
 - Which data structure to use?
 - Can we parallelize NN?
 - What do we tradeoff?

Key questions:

- 1 Statistical issues: how well can NN perform?
 - When is 1-NN enough?
 - For k-NN, what should k be?
 - Is there always a curse of dimension?
- **2 Algorithmic issues:** how efficient can NN be?
 - Which data structure to use?
 - Can we parallelize NN?
 - What do we tradeoff?

Examples:

- Direct Euclidean
- Deep Neural Representation (image, speech)
- Word Embedding (text)

. . .

Representation \equiv choice of metric or dissimilarity $\rho(x,x')$

Properties of ρ influence Statistical and Algorithmic aspects

Examples:

- Direct Fuclidean
- Deep Neural Representation (image, speech)
- Word Embedding (text)

. . .

Representation \equiv choice of metric or dissimilarity $\rho(x,x')$

Properties of ρ influence Statistical and Algorithmic aspects

Examples:

- Direct Euclidean
- Deep Neural Representation (image, speech)
- Word Embedding (text)

. . .

Representation \equiv choice of metric or dissimilarity $\rho(x, x')$

Properties of ρ influence Statistical and Algorithmic aspects

Examples:

- Direct Euclidean
- Deep Neural Representation (image, speech)
- Word Embedding (text)

. . .

Representation \equiv choice of metric or dissimilarity $\rho(x, x')$

Properties of ρ influence Statistical and Algorithmic aspects

Tutorial Outline:

PART I: Basic Statistical Insights

PART II: Best Practice and Tradeoffs

Tutorial Outline:

• PART I: Basic Statistical Insights

• PART II: Best Practice and Tradeoffs

PART I: Basic Statistical Insights

- Universality
- Behavior of k-NN Distances
- From Regression to Classification
- Classification is easier than regression
- Multiclass and Mixed Costs

k-NN as a universal approach:

it can fit anything, provided k grows (but not too fast) with sample size!

Let's make this precise in the context of regression ...

For simplicity, assume P_X is continuous on ${\rm I\!R}^d$... (i.e. no ties)

k-NN as a universal approach:

it can fit anything, provided k grows (but not too fast) with sample size!

Let's make this precise in the context of regression ...

For simplicity, assume P_X is continuous on ${\rm I\!R}^d$... (i.e. no ties)

k-NN as a universal approach:

it can fit anything, provided k grows (but not too fast) with sample size!

Let's make this precise in the context of regression ...

For simplicity, assume P_X is continuous on ${\rm I\!R}^d$... (i.e. no ties)

i.i.d. Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

k-NN is universally consistent:

Suppose
$$\frac{k}{n} \to 0$$
 and $k \to \infty$, then $\mathbb{E} \left| f_k(X) - f(X) \right| \xrightarrow{n \to \infty} 0$

i.i.d. Data:
$$\{(X_i,Y_i)\}_{i=1}^n$$
, $Y=f(X)+\mathsf{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

k-NN is universally consistent:

Suppose
$$\frac{k}{n} \to 0$$
 and $k \to \infty$, then $\mathbb{E} |f_k(X) - f(X)| \xrightarrow{n \to \infty} 0$

i.i.d. Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

k-NN is universally consistent:

Suppose
$$\frac{k}{n} \to 0$$
 and $k \to \infty$, then $\mathbb{E} |f_k(X) - f(X)| \xrightarrow{n \to \infty} 0$

i.i.d. Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

k-NN is universally consistent:

Suppose
$$\frac{k}{n} \to 0$$
 and $k \to \infty$, then $\mathbb{E}|f_k(X) - f(X)| \xrightarrow{n \to \infty} 0$

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k o f(x)$
- If $k o \infty$, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \mathsf{noise}) o f(x)$

Now, any $f,\mathbb{E}f^2<\infty$ can be approximated by continuous f's.

Consider the k-NN $\{X_{(i)}\}_1^k$ of some x

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k o f(x)$
- If $k \to \infty$, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \mathsf{noise}) \to f(x)$

Now, any $f, \mathbb{E}f^2 < \infty$ can be approximated by continuous f's.

As $n \nearrow$, all $\{X_{(i)}\}_1^k$ move closer to x

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k o f(x)$
- If $k \to \infty$, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \text{noise}) \to f(x)$

Now, any $f,\mathbb{E}f^2<\infty$ can be approximated by continuous f's.

As $n \nearrow$, all $\{X_{(i)}\}_1^k$ move closer to x

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k o f(x)$
- If $k o \infty$, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \mathsf{noise}) o f(x)$

Now, any $f,\mathbb{E}f^2<\infty$ can be approximated by continuous f's.

Intuition:

As $n \nearrow$, all $\{X_{(i)}\}_1^k$ move closer to x

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k \to f(x)$

- If
$$k o \infty$$
, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \mathsf{noise}) o f(x)$

Now, any $f, \mathbb{E}f^2 < \infty$ can be approximated by continuous f's.

Intuition:

As $n \nearrow$, all $\{X_{(i)}\}_1^k$ move closer to x

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k \to f(x)$
- If $k \to \infty$, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \text{noise}) \to f(x)$

Now, any $f, \mathbb{E}f^2 < \infty$ can be approximated by continuous f's.

Intuition:

As $n \nearrow$, all $\{X_{(i)}\}_{1}^{k}$ move closer to x

- $\{X_{(i)}\}_1^k o x$ as long as k is fixed or grows slow (k/n o 0)
- Suppose f is continuous, then we also get $\{f(X_{(i)})\}_1^k \to f(x)$
- If $k \to \infty$, then $f_k(x) = \frac{1}{k} \sum (f(X_{(i)}) + \text{noise}) \to f(x)$

Now, any $f, \mathbb{E} f^2 < \infty$ can be approximated by continuous f's.

Seminal results on k-NN consistency:

- [Fix, Hodges, 51]: classification + regularity, \mathbb{R}^d .
- [Cover, Hart, 65, 67, 68]: classification + regularity, any metric.
- [Stone, 77]: classification, universal, \mathbb{R}^d .
- [Devroye, Wagner, 77]: density estimation + regularity , \mathbb{R}^d .
- [Devroye, Gyorfi, Kryzak, Lugosi, 94]: regression, universal, \mathbb{R}^d .
- [Chaudhuri, Dasgupta, 14]: classification, nice metric/measure.

Main message: k should grow (not too fast) with n ... (e.g. $k \sim \log n$)

Seminal results on k-NN consistency:

- [Fix, Hodges, 51]: classification + regularity, \mathbb{R}^d .
- [Cover, Hart, 65, 67, 68]: classification + regularity, any metric.
- [Stone, 77]: classification, universal, \mathbb{R}^d .
- [Devroye, Wagner, 77]: density estimation + regularity, \mathbb{R}^d .
- [Devroye, Gyorfi, Kryzak, Lugosi, 94]: regression, universal, \mathbb{R}^d .
- [Chaudhuri, Dasgupta, 14]: classification, nice metric/measure.

Main message: k should grow (not too fast) with n ... (e.g. $k \sim \log n$)

Seminal results on k-NN consistency:

- [Fix, Hodges, 51]: classification + regularity, \mathbb{R}^d .
- [Cover, Hart, 65, 67, 68]: classification + regularity, any metric.
- [Stone, 77]: classification, universal, \mathbb{R}^d .
- [Devroye, Wagner, 77]: density estimation + regularity, \mathbb{R}^d .
- [Devroye, Gyorfi, Kryzak, Lugosi, 94]: regression, universal, \mathbb{R}^d .
- [Chaudhuri, Dasgupta, 14]: classification, *nice* metric/measure.

Main message: k should grow (not too fast) with n ... (e.g. $k \sim \log n$)

Seminal results on k-NN consistency:

- [Fix, Hodges, 51]: classification + regularity, \mathbb{R}^d .
- [Cover, Hart, 65, 67, 68]: classification + regularity, any metric.
- [Stone, 77]: classification, universal, \mathbb{R}^d .
- [Devroye, Wagner, 77]: density estimation + regularity, \mathbb{R}^d .
- [Devroye, Gyorfi, Kryzak, Lugosi, 94]: regression, universal, \mathbb{R}^d .
- [Chaudhuri, Dasgupta, 14]: classification, nice metric/measure.

Main message: k should grow (not too fast) with n ... (e.g. $k \sim \log n$)

Seminal results on k-NN consistency:

- [Fix, Hodges, 51]: classification + regularity, \mathbb{R}^d .
- [Cover, Hart, 65, 67, 68]: classification + regularity, any metric.
- [Stone, 77]: classification, universal, \mathbb{R}^d .
- [Devroye, Wagner, 77]: density estimation + regularity, \mathbb{R}^d .
- [Devroye, Gyorfi, Kryzak, Lugosi, 94]: regression, universal, \mathbb{R}^d .
- [Chaudhuri, Dasgupta, 14]: classification, nice metric/measure.

Main message: k should grow (not too fast) with n ... (e.g. $k \sim \log n$)

PART I: Basic Statistical Insights

- Universality
- Behavior of k-NN Distances
- From Regression to Classification
- Classification is easier than regression
- Multiclass and Mixed Costs

Recall Intuition:

Closest neighbors of x should be mostly of similar type $y=y(x)\,\dots$

So we hope that $k\text{-}\mathsf{NN}(x)$ are close to x ... depends on k ...

Formally: let $r_k(x) \equiv$ distance from x to k-th NN in i.i.d. $\{X_i\}_1^n$

Recall Intuition:

Closest neighbors of x should be mostly of similar type y=y(x) ...

So we hope that k-NN(x) are close to x ... depends on k ... Formally: let $r_k(x) \equiv$ distance from x to k-th NN in i.i.d. $\left\{X_i\right\}_1^n$

Recall Intuition:

Closest neighbors of x should be mostly of similar type y=y(x) ...

So we hope that k-NN(x) are close to x ... depends on k ...

Formally: let $r_k(x) \equiv$ distance from x to k-th NN in i.i.d. $\left\{X_i\right\}_1^n$

Recall Intuition:

Closest neighbors of x should be mostly of similar type y=y(x) ...

So we hope that k-NN(x) are close to x ... depends on k ...

Formally: let $r_k(x) \equiv$ distance from x to k-th NN in i.i.d. $\{X_i\}_1^n$

Recall Intuition:

Closest neighbors of x should be mostly of similar type y=y(x) ...

So we hope that k-NN(x) are close to x ... depends on k ...

Formally: let $r_k(x) \equiv$ distance from x to k-th NN in i.i.d. $\{X_i\}_1^n$

 $B_x \equiv B(x, r_k(x)) \equiv$ smallest ball containing k-NN(x)

- Assume no ties: $P_n(B_x) = k/n$
- w.h.p. $P_n pprox P_X \implies P_X(B_x) pprox k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') \ dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{n_V(x)} \cdot rac{k}{n}
ight)^{1/d}$$
 .

 $B_x \equiv B(x, r_k(x)) \equiv \text{smallest ball containing } k\text{-NN}(x)$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') \ dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{n_V(x)} \cdot rac{k}{n}
ight)^{1/d}$$
 .

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') \ dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(\frac{1}{p_X(x)} \cdot \frac{k}{n} \right)^{1/d}$$
 .

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') \ dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{p_X(x)} \cdot rac{k}{n}
ight)^{1/d}$$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n pprox P_X \implies P_X(B_x) pprox k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{p_X(x)} \cdot rac{k}{n}
ight)^{1/d}$$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{p_X(x)} \cdot rac{k}{n}
ight)^{1/d}$$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') \, dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{p_X(x)} \cdot rac{k}{n}
ight)^{1/d}.$$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') \, dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{p_X(x)} \cdot rac{k}{n}
ight)^{1/d}$$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) pprox \left(rac{1}{p_X(x)} \cdot rac{k}{n}
ight)^{1/d}$$

- Assume no ties: $P_n(B_x) = k/n$.
- w.h.p. $P_n \approx P_X \implies P_X(B_x) \approx k/n$.

Now:
$$P_X(B_x) \equiv \int_{B_x} p_X(x') dx' \approx p_X(x) \cdot \int_{B_x} dx' = p_X(x) \cdot v_d \cdot r_k(x)^d$$
.

Therefore, w.h.p.,
$$r_k(x) \approx \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$
.

$$r_k(x) pprox \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$

- ullet $r_k(x)$ \nearrow when local density $p_X(x)$ \searrow
- $r_k(x) \nearrow$ when input dimension $d \nearrow$ Use smaller k for higher dimensional data ...

Curse of dimension: For $r_k pprox \epsilon$ we need $n pprox \epsilon^{-d}$..

Fortunately, $\mathbf{d} \equiv \text{intrinsic dimension}(X)$...

$$r_k(x) \approx \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$

- $r_k(x) \nearrow$ when local density $p_X(x) \searrow$
- $r_k(x) \nearrow$ when input dimension $d \nearrow$ Use smaller k for higher dimensional data ...

Curse of dimension: For $r_k \approx \epsilon$ we need $n \approx \epsilon^{-d}$... Fortunately, $\mathbf{d} \equiv \operatorname{intrinsic} \operatorname{dimension}(X)$...

$$r_k(x) pprox \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$

- $r_k(x) \nearrow$ when local density $p_X(x) \searrow$
- $r_k(x) \nearrow$ when input dimension $d \nearrow$ Use smaller k for higher dimensional data ...

Curse of dimension: For $r_k \approx \epsilon$ we need $n \approx \epsilon^{-d}$... Fortunately, $\mathbf{d} \equiv \operatorname{intrinsic} \operatorname{dimension}(X)$...

$$r_k(x) pprox \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$

- $r_k(x) \nearrow$ when local density $p_X(x) \searrow$
- $r_k(x) \nearrow$ when input dimension $d \nearrow$ Use smaller k for higher dimensional data ...

Curse of dimension: For $r_k \approx \epsilon$ we need $n \approx \epsilon^{-d}$... Fortunately, $\mathbf{d} \equiv \operatorname{intrinsic dimension}(X)$...

$$r_k(x) pprox \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$

- $r_k(x) \nearrow$ when local density $p_X(x) \searrow$
- $r_k(x) \nearrow$ when input dimension $d \nearrow$ Use smaller k for higher dimensional data ...

Curse of dimension: For $r_k \approx \epsilon$ we need $n \approx \epsilon^{-d}$...

Fortunately, $\mathbf{d} \equiv \mathsf{intrinsic} \ \mathsf{dimension}(X) \dots$

$$r_k(x) pprox \left(\frac{1}{p_X(x)} \cdot \frac{k}{n}\right)^{1/d}$$

- $r_k(x) \nearrow$ when local density $p_X(x) \searrow$
- $r_k(x) \nearrow$ when input dimension $d \nearrow$ Use smaller k for higher dimensional data ...

Curse of dimension: For $r_k \approx \epsilon$ we need $n \approx \epsilon^{-d}$... Fortunately, $\mathbf{d} \equiv \operatorname{intrinsic dimension}(X)$...

Consider B, of radius r, centered on \mathcal{X} :

$$P_X(B) \approx p_X \cdot \int_{B \cap \mathcal{X}} dx \approx p_X \cdot r^d$$

Consider B, of radius r, centered on \mathcal{X} :

Consider B, of radius r, centered on \mathcal{X} :

$$P_X(B) \approx p_X \cdot \int_{B \cap \mathcal{X}} dx \approx p_X \cdot r^d$$

Consider B, of radius r, centered on \mathcal{X} :

$$P_X(B) \approx p_X \cdot \int_{B \cap \mathcal{X}} dx \approx p_X \cdot r^d$$

Consider B, of radius r, centered on \mathcal{X} :

$$P_X(B) \approx p_X \cdot \int_{B \cap \mathcal{X}} dx \approx p_X \cdot r^d$$

Consider B, of radius r, centered on \mathcal{X} :

$$P_X(B) \approx p_X \cdot \int_{B \cap \mathcal{X}} dx \approx p_X \cdot r^d$$

Quick Simulations:

Embed (d=2)-data into high-dimensional \mathbb{R}^D , $D \to \infty$

Quick Simulations:

Fix d = 2: average NN distances are stable as D varies

Refined analysis for $r_k(x)$:

[J. Costa, A. Hero 04], [R. Samworth 12]

Implications:

 $r_k(x)$ adaptive to $d \implies \mathsf{NN}$ methods adaptive to $d \dots$ $(d ext{-sparse documents/images, Robotics data on } d ext{-manifold}$

Refined analysis for $r_k(x)$:

[J. Costa, A. Hero 04], [R. Samworth 12]

Implications:

 $r_k(x)$ adaptive to $d \Longrightarrow NN$ methods adaptive to $d \ldots$ (d-sparse documents/images, Robotics data on d-manifold)

PART I: Basic Statistical Insights

- Universality
- Behavior of k-NN Distances
- From Regression to Classification
- Classification is easier than regression
- Multiclass and Mixed Costs

From bounds on $r_k(x)$ to error rates:

Program:

- 1. Regression bounds
- Reduce Classification to Regression

From bounds on $r_k(x)$ to error rates:

Program:

- 1. Regression bounds
- 2. Reduce Classification to Regression

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

Ideal Metric
$$\rho$$
: $f(x) \approx f(x')$ if $\rho(x, x') \approx 0$

... e.g., assume
$$f$$
 is Lipschitz: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')$.

Performance Goal:

Pick k such that $||f_k - f||^2 \equiv \mathbb{E}_X |f_k(X) - f(X)|^2$ is small.

Data: $\{(X_i, Y_i)\}_{i=1}^n$, Y = f(X) + noise

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

Ideal Metric ρ : $f(x) \approx f(x')$ if $\rho(x, x') \approx 0$

... e.g., assume
$$f$$
 is Lipschitz: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')$.

Performance Goal:

Pick k such that $||f_k - f||^2 \equiv \mathbb{E}_X |f_k(X) - f(X)|^2$ is small.

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

Ideal Metric
$$\rho$$
: $f(x) \approx f(x')$ if $\rho(x, x') \approx 0$

... e.g., assume
$$f$$
 is Lipschitz: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')$.

Performance Goal

Pick k such that $||f_k - f||^2 \equiv \mathbb{E}_X |f_k(X) - f(X)|^2$ is small.

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y = f(X) + \text{noise}$

Learn: $f_k(x) = \text{avg } (Y_i) \text{ of } k\text{-NN}(x).$

Ideal Metric
$$\rho$$
: $f(x) \approx f(x')$ if $\rho(x, x') \approx 0$

... e.g., assume
$$f$$
 is Lipschitz: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')$.

Performance Goal:

Pick
$$k$$
 such that $||f_k - f||^2 \equiv \mathbb{E}_X |f_k(X) - f(X)|^2$ is small.

Intuition:
$$\mathbb{E}|Z-c|^2 = \mathbb{E}|Z-\mathbb{E}Z|^2 + |c-\mathbb{E}Z|^2$$

So fix x, and fix $\{X_i\}$, and let $ilde{f}_k(x) = \mathbb{E}_{\{Y_i\}}f_k(x)$...

$$\mathbb{E} \left| f_k(x) - f(x) \right|^2 = \underbrace{\mathbb{E} \left| f_k(x) - \tilde{f}_k(x) \right|^2}_{\text{Variance}} + \underbrace{\left| f(x) - \tilde{f}_k(x) \right|^2}_{\text{Rias}^2}$$

Intuition:
$$\mathbb{E} |Z-c|^2 = \mathbb{E} |Z-\mathbb{E}Z|^2 + |c-\mathbb{E}Z|^2$$
.

So fix x, and fix $\{X_i\}$, and let $ilde{f}_k(x) = \mathbb{E}_{\{Y_i\}}f_k(x)$...

$$\mathbb{E} |f_k(x) - f(x)|^2 = \underbrace{\mathbb{E} |f_k(x) - \tilde{f}_k(x)|^2}_{\text{Variance}} + \underbrace{|f(x) - \tilde{f}_k(x)|^2}_{\text{Bias}^2}$$

Intuition:
$$\mathbb{E} |Z-c|^2 = \mathbb{E} |Z-\mathbb{E}Z|^2 + |c-\mathbb{E}Z|^2$$
.

So fix x, and fix $\{X_i\}$, and let $\tilde{f}_k(x) = \mathbb{E}_{\{Y_i\}} f_k(x)$...

$$\mathbb{E} |f_k(x) - f(x)|^2 = \underbrace{\mathbb{E} |f_k(x) - \tilde{f}_k(x)|^2}_{\text{Variance}} + \underbrace{|f(x) - \tilde{f}_k(x)|^2}_{\text{Bias}^2}$$

Intuition:
$$\mathbb{E} |Z-c|^2 = \mathbb{E} |Z-\mathbb{E}Z|^2 + |c-\mathbb{E}Z|^2$$
.

So fix x, and fix $\{X_i\}$, and let $\tilde{f}_k(x) = \mathbb{E}_{\{Y_i\}} f_k(x)$...

$$\mathbb{E}\left|f_k(x) - f(x)\right|^2 = \underbrace{\mathbb{E}\left|f_k(x) - \tilde{f}_k(x)\right|^2}_{\text{Variance}} + \underbrace{\left|f(x) - \tilde{f}_k(x)\right|^2}_{\text{Bias}^2}.$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} Y_i$

$$\operatorname{Var}(f_k(x)) = \frac{1}{k^2} \sum_{X_i \in k - \operatorname{NN}(x)} \operatorname{Var}(Y_i) = \frac{\sigma_Y^2}{k}$$

- Bias: note that $\tilde{f}_k(x) = \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \left| f(X_i) - f(x) \right) \\ &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{\pi}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = rac{1}{k^2} \sum_{X_i \,\in\, k ext{-NN}(x)} \mathsf{Var}(Y_i) = rac{\sigma_Y^2}{k}$$

- Bias: note that $\tilde{f}_k(x) = \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} |f(X_i) - f(x)) \\ &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{\tau}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} Y_i$

$$\operatorname{Var}(f_k(x)) = \frac{1}{k^2} \sum_{X_i \in k \text{-NN}(x)} \operatorname{Var}(Y_i) = \frac{\sigma_Y^2}{k}$$

- Bias: note that $ilde{f}_k(x) = rac{1}{k} \sum_{X_i \in k ext{-NN}(x)} f(X_i)$

$$\begin{split} \tilde{f}_k(x) - f(x) \Big| &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} |f(X_i) - f(x))| \\ &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{\tau}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = rac{1}{k^2} \sum_{X_i \,\in\, k ext{-NN}(x)} \mathsf{Var}(Y_i) = rac{\sigma_Y^2}{k}$$

- Bias: note that $ilde{f}_k(x) = rac{1}{k} \sum_{X_i \in k ext{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \left| f(X_i) - f(x) \right| \\ &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{n}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \in k ext{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = \frac{1}{k^2} \sum_{X_i \,\in\, k\text{-NN}(x)} \mathsf{Var}(Y_i) = \frac{\sigma_Y^2}{k}$$

- Bias: note that $ilde{f}_k(x) = rac{1}{k} \sum_{X_i \in k ext{-NN}(x)} f(X_i)$

$$\begin{split} \tilde{f}_k(x) - f(x) \Big| &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} |f(X_i) - f(x))| \\ &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{v}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = \frac{1}{k^2} \sum_{X_i \,\in\, k\text{-NN}(x)} \mathsf{Var}(Y_i) = \frac{\sigma_Y^2}{k}$$

- Bias: note that $\tilde{f}_k(x) = \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \left| f(X_i) - f(x) \right) \\ &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{\tau}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = rac{1}{k^2} \sum_{X_i \in k - \mathsf{NN}(x)} \mathsf{Var}(Y_i) = rac{\sigma_Y^2}{k}$$

- Bias: note that $\widetilde{f}_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \left| f(X_i) - f(x) \right) \\ &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{n}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = rac{1}{k^2} \sum_{X_i \in k - \mathsf{NN}(x)} \mathsf{Var}(Y_i) = rac{\sigma_Y^2}{k}$$

- Bias: note that $\widetilde{f}_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \left| f(X_i) - f(x) \right) \\ &\leq \frac{1}{k} \sum_{X_i \in k \text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{n}\right)^{1/d}. \end{split}$$

- Variance: recall $f_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} Y_i$

$$\mathsf{Var}(f_k(x)) = rac{1}{k^2} \sum_{X_i \in k - \mathsf{NN}(x)} \mathsf{Var}(Y_i) = rac{\sigma_Y^2}{k}$$

- Bias: note that $\widetilde{f}_k(x) = \frac{1}{k} \sum_{X_i \,\in\, k ext{-NN}(x)} f(X_i)$

$$\begin{split} \left| \tilde{f}_k(x) - f(x) \right| &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} |f(X_i) - f(x))| \\ &\leq \frac{1}{k} \sum_{X_i \in k\text{-NN}(x)} \rho(X_i, x) \\ &\leq r_k(x) \approx \left(\frac{k}{n}\right)^{1/d}. \end{split}$$

We then get:
$$\| \|f_k - f\|^2 \lesssim rac{1}{k} + \left(rac{k}{n}
ight)^{2/d}$$

Pick $h = h(n^{n/n-n})$ to get $h(h) = h(n^{n/n-n})$, optimal.

Best choice of
$$k \nearrow as n \nearrow and d$$

We then get:
$$\mathbb{E} \|f_k - f\|^2 \lesssim \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d}$$
.

Pick
$$k = \Theta(n^{2/(2+d)})$$
 to get $\mathbb{E} \|f_k - f\|^2 \lesssim n^{-2/(2+d)},$ optimal.

Best choice of
$$k \nearrow$$
 as $n \nearrow$ and $d \searrow$

We then get:
$$\mathbb{E} \|f_k - f\|^2 \lesssim \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d}$$
.

Pick
$$k = \Theta(n^{2/(2+d)})$$
 to get $\mathbb{E} \|f_k - f\|^2 \lesssim n^{-2/(2+d)}$, optimal.

Best choice of $k \nearrow$ as $n \nearrow$ and $d \searrow$

We then get:
$$\mathbb{E} \|f_k - f\|^2 \lesssim \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d}$$
.

Tradeoff on k:

Pick $k = \Theta(n^{2/(2+d)})$ to get $\mathbb{E} \|f_k - f\|^2 \lesssim n^{-2/(2+d)}$, optimal.

Best choice of $k \nearrow$ as $n \nearrow$ and $d \searrow$

We then get:
$$\mathbb{E} \|f_k - f\|^2 \lesssim \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d}$$
.

Tradeoff on k:

Pick
$$k = \Theta(n^{2/(2+d)})$$
 to get $\mathbb{E} \|f_k - f\|^2 \lesssim n^{-2/(2+d)}$, optimal.

Best choice of $k \nearrow$ as $n \nearrow$ and $d \searrow$

We then get:
$$\mathbb{E} \|f_k - f\|^2 \lesssim \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d}$$
.

Tradeoff on k:

Pick
$$k = \Theta(n^{2/(2+d)})$$
 to get $\mathbb{E} \|f_k - f\|^2 \lesssim n^{-2/(2+d)}$, optimal.

Best choice of $k \nearrow$ as $n \nearrow$ and $d \searrow$

We then get:
$$\mathbb{E} \|f_k - f\|^2 \lesssim \frac{1}{k} + \left(\frac{k}{n}\right)^{2/d}$$
.

Tradeoff on k:

Pick
$$k = \Theta(n^{2/(2+d)})$$
 to get $\mathbb{E} \|f_k - f\|^2 \lesssim n^{-2/(2+d)}$, optimal.

Best choice of $k \nearrow$ as $n \nearrow$ and $d \searrow$

- Hölder continuity: $|f(x)-f(x')| \leq \lambda \cdot \rho(x,x')^{\alpha}$. (avg. version leads to so-called Nikolskii, Sobolev conditions

- Hölder continuity: $|f(x)-f(x')| \leq \lambda \cdot \rho(x,x')^{\alpha}$. (avg. version leads to so-called Nikolskii, Sobolev conditions)

- Hölder continuity: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')^{\alpha}$.

(avg. version leads to so-called Nikolskii, Sobolev conditions)

 $|x-x'|^{\alpha}$ gets flatter around x=0 as $\alpha \nearrow$.

(see e.g. [Györfi, Krzyżak, Walk, 02])

- Hölder continuity: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')^{\alpha}$. (avg. version leads to so-called Nikolskii, Sobolev conditions)

 $|x-x'|^{\alpha}$ gets flatter around x=0 as $\alpha \nearrow$.

Additional messages (as $\alpha \nearrow$):

- Local averages (as k-NN) not appropriate for smoother (easier) f.
- Local polynomials are best, but harder to implement in high-D.

- Hölder continuity: $|f(x) - f(x')| \le \lambda \cdot \rho(x, x')^{\alpha}$. (avg. version leads to so-called Nikolskii, Sobolev conditions)

 $|x-x'|^{\alpha}$ gets flatter around x=0 as $\alpha \nearrow$.

Additional messages (as $\alpha \nearrow$):

- Local averages (as k-NN) not appropriate for smoother (easier) f.
- Local polynomials are best, but harder to implement in high-D.

(see e.g. [Györfi, Krzyżak, Walk, 02])

From bounds on $r_k(x)$ to error rates:

Program:

- 1. Regression bounds
- 2. Reduce Classification to Regression

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y \in \{0, 1\}$.

Learn:
$$h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x).$$

Reduces to regression: let $f_k(x) = \operatorname{avg}\ (Y_i)$ of $k\operatorname{-NN}(x)$

... then:
$$h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}$$
.

Performance Goal:

Pick k such that $err(h_k) \equiv \mathbb{P}(h_k(X) \neq Y)$ is small

Equivalently, consider $\mathcal{E}(h_k) = \operatorname{err}(h_k) - \operatorname{err}(h^*)$.

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y \in \{0, 1\}$.

Learn:
$$h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x).$$

Reduces to regression: let
$$f_k(x) = \text{avg } (Y_i)$$
 of $k\text{-NN}(x)$
then: $h_k(x) = \mathbb{E}[f_k(x) > 1/2]$

Performance Goal:

Pick k such that $err(h_k) \equiv \mathbb{P}(h_k(X) \neq Y)$ is small

Equivalently, consider $\mathcal{E}(h_k) = \operatorname{err}(h_k) - \operatorname{err}(h^*)$

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y \in \{0, 1\}$.

Learn:
$$h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x).$$

Reduces to regression: let $f_k(x) = avg(Y_i)$ of k-NN(x)

... then:
$$h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$$

Performance Goal:

Pick k such that $err(h_k) \equiv \mathbb{P}(h_k(X) \neq Y)$ is small

Equivalently, consider $\mathcal{E}(h_k) = \operatorname{err}(h_k) - \operatorname{err}(h^*)$.

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y \in \{0, 1\}$.

Learn:
$$h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x).$$

... then:
$$h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$$

Performance Goal:

Pick k such that $err(h_k) \equiv \mathbb{P}(h_k(X) \neq Y)$ is small.

Equivalently, consider $\mathcal{E}(h_k) = \operatorname{err}(h_k) - \operatorname{err}(h^*)$.

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y \in \{0, 1\}$.

Learn:
$$h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x).$$

... then:
$$h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}.$$

Performance Goal:

Pick k such that $err(h_k) \equiv \mathbb{P}(h_k(X) \neq Y)$ is small.

Equivalently, consider $\mathcal{E}(h_k) = \operatorname{err}(h_k) - \operatorname{err}(h^*)$.

Remarks: $f_k(x)$ estimates $f(x) \equiv \mathbb{E}[Y|x] = \mathbb{P}(Y=1|x)$,

and $h^*(x) = \mathbb{1}\{f(x) \ge 1/2\}$, while $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}$

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 \|f_k - f\|.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$. Similar messages on choice of k

Remarks: $f_k(x)$ estimates $f(x) \equiv \mathbb{E}\left[Y|x\right] = \mathbb{P}(Y=1|x)$,

and $h^*(x) = \mathbb{1}\{f(x) \ge 1/2\}$, while $h_k(x) \equiv \mathbb{1}\{f_k(x) \ge 1/2\}$.

$$f_k(x) \approx f(x)$$
 implies $h_k(x) = h^*(x)$

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 ||f_k - f||.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$ Similar messages on choice of k

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 \|f_k - f\|.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$ Similar messages on choice of k

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 \|f_k - f\|.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$. Similar messages on choice of k ...

$$f_k(x) \approx f(x)$$
 implies $h_k(x) = h^*(x)$

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 ||f_k - f||.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$. Similar messages on choice of k

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 \|f_k - f\|.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$. Similar messages on choice of k ...

$$f_k(x) \approx f(x)$$
 implies $h_k(x) = h^*(x)$

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 \|f_k - f\|.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

Similar messages on choice of k ...

Formally:
$$\mathcal{E}(h_k) = \int_{h_k \neq h^*} 2|f(x) - 1/2| dP_X \le 2 \|f_k - f\|.$$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-1/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$. Similar messages on choice of k ...

PART I: Basic Statistical Insights

- Universality
- Behavior of k-NN Distances
- From Regression to Classification
- Classification is easier than regression
- Multiclass and Mixed Costs

Suppose $|f(x) - 1/2| \ge \delta$ for most values x ...

Tsybakov's noise condition:
$$\mathbb{P}_X(|f-1/2|<\delta) \leq \delta^{\beta}$$
 if $|f_k-f|\leq \delta_n$, then $\mathbb{P}_X(h_k\neq h^*)\leq \mathbb{P}_X(|f-1/2|<\delta_n)\leq \delta^{\beta}$

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

Suppose $|f(x) - 1/2| \ge \delta$ for most values x ...

I sybakov's noise condition:
$$\mathbb{P}_X(|f-1/2|<\delta)\leq \delta^p$$
 If $|f_k-f|\leq \delta_n$, then $\mathbb{P}_X(h_k
eq h^*)\leq \mathbb{P}_X(|f-1/2|<\delta_n)\leq \delta_n^p$

For Lipschitz
$$f$$
: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

Suppose $|f(x) - 1/2| \ge \delta$ for most values x ...

Tsybakov's noise condition: $\mathbb{P}_X(|f-1/2|<\delta)\leq \delta^{\beta}$

If
$$|f_k-f|\leq \delta_n$$
, then $\mathbb{P}_X(h_k
eq h^*)\leq \mathbb{P}_X(|f-1/2|<\delta_n)\leq \delta_n^{\beta}$.

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

Suppose $|f(x) - 1/2| \ge \delta$ for most values $x \dots$

Tsybakov's noise condition: $\mathbb{P}_X(|f-1/2|<\delta)\leq \delta^{\beta}$

If
$$|f_k - f| \le \delta_n$$
, then $\mathbb{P}_X(h_k \ne h^*) \le \mathbb{P}_X(|f - 1/2| < \delta_n) \le \delta_n^{\beta}$.

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

- Choice of metric \rightarrow Lipschitzness of f, and intrinsic d.
- Large margin β mitigates effects of metric: e.g. $\beta \ge d/2 \implies$ rate of $n^{-1/2}$ (no curse of dimensio

- Above rates assume $P_X \equiv \mathsf{Uniform}$.
- ([Chaudhuri, Dasgupta 14] [Gadat et al 14]).
- For non-uniform P_X , rates get worse, but understudied
- ([Gadat et al 14], [Cannings et al 17], [Kpo., Martinet 17])

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

- Choice of metric \rightarrow Lipschitzness of f, and intrinsic d.
- Large margin β mitigates effects of metric: e.g. $\beta \geq d/2 \implies$ rate of $n^{-1/2}$ (no curse of dimension!

- Above rates assume $P_X \equiv \mathsf{Uniform}$.
- ([Chaudhuri, Dasgupta 14] [Gadat et al 14]).
- For non-uniform P_X , rates get worse, but understudied
- ([Gadat et al 14], [Cannings et al 17], [Kpo., Martinet 17])

For Lipschitz
$$f$$
: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

- Choice of metric \rightarrow Lipschitzness of f, and intrinsic d.
- Large margin β mitigates effects of metric: e.g. $\beta \ge d/2 \implies$ rate of $n^{-1/2}$ (no curse of dimension!

- Above rates assume $P_X \equiv \mathsf{Uniform}$.
- ([Chaudhuri, Dasgupta 14] [Gadat et al 14]).
- For non-uniform P_X , rates get worse, but understudied.
- ([Gadat et al 14], [Cannings et al 17], [Kpo., Martinet 17]).

For Lipschitz
$$f$$
: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

- Choice of metric \rightarrow Lipschitzness of f, and intrinsic d.
- Large margin β mitigates effects of metric: e.g. $\beta \ge d/2 \implies$ rate of $n^{-1/2}$ (no curse of dimension!)

- Above rates assume $P_X \equiv \mathsf{Uniform}$.
- ([Chaudhuri, Dasgupta 14] [Gadat et al 14]).
- For non-uniform P_X , rates get worse, but understudied.
- ([Gadat et al 14], [Cannings et al 17], [Kpo., Martinet 17]).

For Lipschitz f: $\mathbb{E} \mathcal{E}(h_k) \lesssim n^{-(\beta+1)/(2+d)}$, for $k = \Theta(n^{2/(2+d)})$.

- Choice of metric \rightarrow Lipschitzness of f, and intrinsic d.
- Large margin β mitigates effects of metric: e.g. $\beta \ge d/2 \implies$ rate of $n^{-1/2}$ (no curse of dimension!)

- Above rates assume $P_X \equiv \mathsf{Uniform}.$
- ([Chaudhuri, Dasgupta 14] [Gadat et al 14]).
- For non-uniform P_X , rates get worse, but understudied.
- ([Gadat et al 14], [Cannings et al 17], [Kpo., Martinet 17]).

PART I: Basic Statistical Insights

- Universality
- Behavior of k-NN Distances
- From Regression to Classification
- Classification is easier than regression
- Multiclass and Mixed Costs

Data:
$$\{(X_i, Y_i)\}_{i=1}^n$$
, $Y \in \{1, ..., L\}$.

Learn: $h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x)$.

```
It estimates f^y(x) = \mathbb{P}(Y = y|x).

then: h_x(x) = \operatorname{argmax} \{f^y(x)\} and h^*(x) = \operatorname{argmax} \{f^y(x)\}
```

Data:
$$\{(X_i,Y_i)\}_{i=1}^n$$
, $Y \in \{1,\dots,L\}$.

Learn: $h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x)$.

```
Reduction: let f_k^y(x) = \text{proportion} \ (Y = y) \text{ out of } k\text{-NN}(x)
It estimates f^y(x) = \mathbb{P}(Y = y|x).
... then: h_k(x) \equiv \operatorname{argmax}_n\{f_k^y(x)\}, and h^*(x) = \operatorname{argmax}_n\{f^y(x)\}
```

Data:
$$\{(X_i,Y_i)\}_{i=1}^n$$
, $Y \in \{1,\dots,L\}$.

Learn: $h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x)$.

Reduction: let
$$f_k^y(x) = \text{proportion } (Y = y) \text{ out of } k\text{-NN}(x)$$
 It estimates $f^y(x) = \mathbb{P}(Y = y|x)$ then: $h_k(x) \equiv \operatorname{argmax}_y\{f_k^y(x)\}$, and $h^*(x) = \operatorname{argmax}_y\{f^y(x)\}$

Data:
$$\{(X_i,Y_i)\}_{i=1}^n$$
, $Y \in \{1,\dots,L\}$.

Learn: $h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x)$.

Reduction: let
$$f_k^y(x) = \text{proportion } (Y = y) \text{ out of } k\text{-NN}(x)$$
 It estimates $f^y(x) = \mathbb{P}(Y = y|x)$.

... then:
$$h_k(x) \equiv \mathrm{argmax}_y\{f_k^y(x)\}$$
 , and $h^*(x) = \mathrm{argmax}_y\{f^y(x)\}$

Data:
$$\{(X_i,Y_i)\}_{i=1}^n$$
, $Y \in \{1,\dots,L\}$.

Learn: $h_k(x) = \text{majority } (Y_i) \text{ of } k\text{-NN}(x)$.

Reduction: let
$$f_k^y(x) = \text{proportion } (Y = y) \text{ out of } k\text{-NN}(x)$$
 It estimates $f^y(x) = \mathbb{P}(Y = y|x)$.

... then:
$$h_k(x) \equiv \operatorname{argmax}_y\{f_k^y(x)\}$$
, and $h^*(x) = \operatorname{argmax}_y\{f^y(x)\}$

- Lipschitzness: $||f(x) f(x')|| \le \rho(x, x')$
- Noise margin: At any x, we want $f^{(1)}(x) \gg f^{(2)}(x)$..

assume
$$\mathbb{P}_X\left(f^{(1)}(X) \leq f^{(2)}(X) + \delta
ight) \leq \delta^{eta}$$

Then:
$$\mathbb{E} \mathcal{E}(h_k) \lesssim (n/\log L)^{-(\beta+1)/(2+d)}$$
, for $k = \Theta(n^{2/(2+d)})$.

- Lipschitzness: $||f(x) f(x')|| \le \rho(x, x')$
- Noise margin: At any x, we want $f^{(1)}(x) \gg f^{(2)}(x)$...

assume
$$\mathbb{P}_X\left(f^{(1)}(X) \leq f^{(2)}(X) + \delta
ight) \leq \delta^{eta}$$

Then:
$$\mathbb{E}\,\mathcal{E}(h_k)\lesssim (n/\log L)^{-(\beta+1)/(2+d)}, \, ext{for} \,\, k=\Theta(n^{2/(2+d)}).$$

- Lipschitzness: $||f(x) f(x')|| \le \rho(x, x')$
- Noise margin: At any x, we want $f^{(1)}(x) \gg f^{(2)}(x)$...

assume
$$\mathbb{P}_X\left(f^{(1)}(X) \leq f^{(2)}(X) + \delta\right) \leq \delta^{\beta}$$

Then:
$$\mathbb{E} \mathcal{E}(h_k) \lesssim (n/\log L)^{-(\beta+1)/(2+d)}$$
, for $k = \Theta(n^{2/(2+d)})$.

- Lipschitzness: $||f(x) f(x')|| \le \rho(x, x')$
- Noise margin: At any x, we want $f^{(1)}(x) \gg f^{(2)}(x)$...

$$\text{assume} \quad \mathbb{P}_X \left(f^{(1)}(X) \leq f^{(2)}(X) + \delta \right) \leq \delta^\beta$$

Then:
$$\mathbb{E}\mathcal{E}(h_k) \lesssim (n/\log L)^{-(\beta+1)/(2+d)}$$
, for $k = \Theta(n^{2/(2+d)})$.

- Lipschitzness: $||f(x) f(x')|| \le \rho(x, x')$
- Noise margin: At any x, we want $f^{(1)}(x) \gg f^{(2)}(x)$...

$$\text{assume} \quad \mathbb{P}_X \left(f^{(1)}(X) \leq f^{(2)}(X) + \delta \right) \leq \delta^\beta$$

Then:
$$\mathbb{E} \mathcal{E}(h_k) \lesssim (n/\log L)^{-(\beta+1)/(2+d)}$$
, for $k = \Theta(n^{2/(2+d)})$.

- Lipschitzness: $||f(x) f(x')|| \le \rho(x, x')$
- Noise margin: At any x, we want $f^{(1)}(x) \gg f^{(2)}(x)$...

$$\text{assume} \quad \mathbb{P}_X \left(f^{(1)}(X) \leq f^{(2)}(X) + \delta \right) \leq \delta^\beta$$

Then:
$$\mathbb{E} \mathcal{E}(h_k) \lesssim (n/\log L)^{-(\beta+1)/(2+d)}$$
, for $k = \Theta(n^{2/(2+d)})$.

Mixed costs regimes (e.g., medicine, finance, ...)

 $y \leftarrow \mathsf{Expected}\ \mathsf{cost}\ \mathsf{when}\ y\ \mathsf{is}\ \mathsf{wrong} \neq 1 - \mathbb{P}(Y=y)$

Natural extensions of previous insights considered in [Reeve, Brown 17]

Practical Q: Estimating costs in practice, and integrating with NN ...

Mixed costs regimes (e.g., medicine, finance, ...)

 $y \leftarrow \text{Expected cost when } y \text{ is wrong } \neq 1 - \mathbb{P}(Y = y)$

Natural extensions of previous insights considered in [Reeve, Brown 17]

Practical Q: Estimating costs in practice, and integrating with NN ...

Mixed costs regimes (e.g., medicine, finance, ...)

 $y \leftarrow \mathsf{Expected}\ \mathsf{cost}\ \mathsf{when}\ y\ \mathsf{is}\ \mathsf{wrong} \neq 1 - \mathbb{P}(Y=y)$

Natural extensions of previous insights considered in [Reeve, Brown 17]

Practical Q: Estimating costs in practice, and integrating with NN ...

Mixed costs regimes (e.g., medicine, finance, ...)

Natural extensions of previous insights considered in [Reeve, Brown 17]

Practical Q: Estimating costs in practice, and integrating with NN ...

Mixed costs regimes (e.g., medicine, finance, ...)

Natural extensions of previous insights considered in [Reeve, Brown 17]

Practical Q: Estimating costs in practice, and integrating with NN ...

Important Remark:

Continuity of $f(x) = \mathbb{E}[Y|x]$ is unnatural in classification ...

- Piecewise Smoothness: Ben-David, Scott, Nowak, Castro ... (k-NN not well-understood in these settings)
- Volume-based smoothness: [Chaudhuri, Dasgupta 14]

$$|f(B(x,r)) - f(x)| \le P_X(B(x,r))^{\alpha/\alpha}$$

Important Remark:

Continuity of $f(x) = \mathbb{E}[Y|x]$ is unnatural in classification ...

- Piecewise Smoothness: Ben-David, Scott, Nowak, Castro ... (k-NN not well-understood in these settings)
- Volume-based smoothness: [Chaudhuri, Dasgupta 14]

$$|f(B(x,r)) - f(x)| \le P_X(B(x,r))^{\alpha/\alpha}$$

Important Remark:

Continuity of $f(x) = \mathbb{E}[Y|x]$ is unnatural in classification ...

- Piecewise Smoothness: Ben-David, Scott, Nowak, Castro
 ... (k-NN not well-understood in these settings)
- Volume-based smoothness: [Chaudhuri, Dasgupta 14]

$$|f(B(x,r)) - f(x)| \le P_X(B(x,r))^{\alpha/d}$$

End of Part I