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Some Recent Insights on Transfer Learning

P → Q?

Samory Kpotufe
Columbia University

Based on work with Guillaume Martinet, and (ongoing) Steve Hanneke
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Transfer Learning:

Given data {Xi, Yi} ∼i.i.d. P , produce a classifier for (X,Y ) ∼ Q.

Case study: Apple Siri’s voice assistant

- Initially trained on data from American English speakers ...

- Could not understand 30M+ nonnative speakers in the US!

Costly Solution ≡ 5+ years acquiring more data and retraining!

A Main Practical Goal:

Cheaply transfer ML software between related populations.
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Transfer is of general relevance:

AI for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities
(2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire

AI in medicine, Genomics, Insurance Industry, Smart cities,
...
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Many heuristics ... but no mature theory or principles
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Basic questions remain largely unanswered:

Suppose: ĥ is trained on source data ∼ P , to be transferred to target Q.

• Is there enough information in source P about target Q?

• If not, how much new data should we collect, and how?

• Would unlabeled target data suffice? Or help at least?
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Formal Setup:

Covariate-Shift: PX 6= QX but PY |X = QY |X .

Given: source data {Xi, Yi} ∼ PnP , target data {Xi, Yi} ∼ QnQ .

Goal: ĥ with small target error errQ(ĥ) = EQ 1(ĥ(X) 6= Y ).

What is the best errQ(ĥ) achievable in terms of nP , nQ?

Depends on distance(PX → QX)
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However, the right notion of distance(PX → QX) remains unclear
...
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easiest if P has sufficient mass
in regions of large Q-mass.

6= proportions of � and M
(e.g. 6= proportions of English accents)
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However, the right notion of distance(PX → QX) remains unclear
...

Basic intuition: Transfer is
easiest if P has sufficient mass
in regions of large Q-mass.

6= proportions of � and M
(e.g. 6= proportions of English accents)

Many foundational results quantify this intuition ...
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Common notions of distance(PX → QX):

• Extensions of TV: differences |PX(A)−QX(A)|, suitable A
(e.g. dA divergence/Y-discrepancy of S. Ben David, M. Mohri, ...)

• Density Ratios: ratio dQX/dPX over data space
(e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

How well do these notions measure transferability?
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Seminal results: (TV, dA, Y-disc, dQ/dP , KL, Rényi, Wasserstein)

The closer PX is to QX =⇒ the easier Transfer is ...

However: PX far from QX ���=⇒ Transfer is Hard

These notions can be pessimistic in measuring transferability ...
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We propose a new distance(P → Q) shown to control transfer ...
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Relating source P to target Q [Kpo., Martinet, COLT 18]

Main intuition: PX needs mass in regions of significant QX mass.

Transfer exponent γ ≥ 0:

∀Q x,∀ r ∈ (0, 1], P (B(x, r)) ≥ C · rγ ·QX(B(x, r))

γ captures a continuum of easy to hard transfer ...
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First let’s look at extremes γ =∞ or 0

Notice that γ
.
= γ(P → Q) is asymmetric

(unlike TV, dA, Y-discrepancy, Wasserstein, ...)
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The continuum 0 < γ <∞:
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The continuum 0 < γ <∞:

γ ≡ How fast PX shifts mass away from QX -dense regions.
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The continuum 0 < γ <∞:

γ ≡ How fast fQ/fP goes to ∞.
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The continuum 0 < γ <∞:

γ ≡ Difference in support dimension.
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Optimistic:
γ is often small when other measures are not

Large TV, dA, Y-disc ≈ 1/2

but here typically γ ≈ 0
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Optimistic:
γ is often small when other measures are not

Large dQX/dPX , KL-div ≈ ∞
but γ = 1 ≡ dim(PX)− dim(QX)
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γ captures performance limits (minimax rates) under transfer ...
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Performance depends on γ + hardness of Q:

Easy to hard Target QX,Y classification

Easy QX,Y Hard QX,Y

Essential: Noise in QY |X , and QX -mass near decision boundary
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Parametrizing easy to hard QX,Y :

Setup: X ∈ compact X , Y ∈ {0, 1}

Noise conditions on η(x) = E[Y |x]:

• Smoothness: |η(x)− η(x′)| ≤ λρ(x, x′)α.

• Noise Margin: QX (x : |η(x)− 1/2| < t) ≤ Ctβ.

2 types of regularity on QX :

• Near-uniform mass: for any ball Br, QX(Br) ≥ Crd.

• Support regularity: XQ has r-cover size ≤ Cr−d.

d above acts like the intrinsic dimension of QX , for X ∈ IRD.

Classification is easiest with large α, β, small d .... so is transfer
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Minimax rates of Transfer:

Given: labeled source and target data {Xi, Yi} ∼ PnP ×QnQ .
Excess error: EQ(ĥ) ≡ errQ(ĥ)− infh errQ(h).

Theorem. Define ĥ on {Xi, Yi}, even with knowledge of PX , QX :

inf
ĥ

sup
dist(P,Q)=γ

E EQ(ĥ) ≈
(
n
d0/(d0+γ/α)
P + nQ

)−(β+1)/d0
,

d0 = 2 + d/α for near-uniform QX , and d0 = 2 + β + d/α otherwise.

Immediate message:
Transfer is easiest as γ → 0, hardest as γ →∞ ...
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Transfer is easiest as γ → 0, hardest as γ →∞ ...
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- Target data most beneficial when nQ � n
d0/(d0+γ/α)
P .

- Unlabeled data does not improve rates beyond constants ...
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γ yields insights into adaptive sampling: (ongoing work)

Setup:
nP labeled samples from P , nQ unlabeled samples from Q.

Adaptive Sampling:

Sample in low-confidence regions A ⊂ X with large γ(A).

(γ(A)← compares PX and QX in region A)

Essentially label in Q-massive regions with few samples from P ...

Above refines a procedure of [Berlind, Urner, 15]
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Often in practice, a family H of predictors is fixed
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Consider regions of X most relevant to H (with S. Hanneke)

This yields H specific performance limits ...
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New Messages: [Kpo. & Hanneke, 19]

Near optimal heuristics for bounded VC classes:
(no need to estimate γ)

No Classification noise:

ERM on combined source and target data is minimax-optimal.

Any Level of Noise:

Minimize R̂Q(h) subject to R̂P (h) ≤ minh′ R̂P (h′) + ∆nP (h)

§ Hard to implement in general...
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Somehow we are still just scratching the surface of what’s possible
...

Results extend beyond covariate-shift to PY |X 6= QY |X

Mostly Open:

• More complex transfer regimes?

• Multitask, Curriculum, Lifelong, Fairness, Robustness ?
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