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Case study: Apple Siri’s voice assistant

- Initially trained on data from American English speakers ...
- Could not understand 30M+ nonnative speakers in the US!

Costly Solution = 5+ years acquiring more data and retraining!

A Main Practical Goal:
Cheaply transfer ML software between related populations. J
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Al for Judicial Systems

- Source Population: prison inmates

- Target Population: everyone arrested

Over 60% inaccurate risk assessments on minorities
(2016 Pro-Publica study)

Main Issue: Good Target data is hard or expensive to acquire

Al in medicine, Genomics, Insurance Industry, Smart cities,




Many heuristics ... but no mature theory or principles
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Basic questions remain largely unanswered:

Suppose: h is trained on source data ~ P, to be transferred to target Q.
® |s there enough information in source P about target Q7
® |f not, how much new data should we collect, and how?

® Would unlabeled target data suffice? Or help at least?
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Formal Setup:
Covariate-Shift: Py # Qx but Py|x = Qy|x-
Given: source data {X;,Y;} ~ P"P, target data {X;, .} ~ Q"2.
Goal: 7 with small target error errg(h) = Eq 1(h(X) # Y).

What is the best err(g(i)) achievable in terms of np,ng?

Depends on distance(Px — Qx)
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Many foundational results quantify this intuition ...
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¢ Extensions of TV: differences |Px(A) — Qx(A)], suitable A
(e.g. da divergence/Y-discrepancy of S. Ben David, M. Mohri, ...)

¢ Density Ratios: ratio dQ)x/dPx over data space
(e.g., Sugiyama, Belkin, Jordan, Wainwright, ...)

How well do these notions measure transferability?
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Seminal results: (TV, d4, Y-disc, dQ/dP, KL, Rényi, Wasserstein)
The closer Px is to Qx — the easier Transfer is ...

J

However: Px far from ()x = Transfer is Hard
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These notions can be pessimistic in measuring transferability ...



We propose a new distance(P — Q) shown to control transfer ...
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Relating source P to target () [Kpo., Martinet, COLT 18]

Main intuition: Px needs mass in regions of significant () x mass.

Transfer exponent v > 0:
Ve Vr e (0,1], P(B(z,r)) > C-r" Qx(B(z,r))
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~ captures a continuum of easy to hard transfer ...
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First let's look at extremes v = oo or 0

Y =00 7=0
Bad Coverage Good Coverage

Notice that v = (P — Q) is asymmetric
(unlike TV, d_4, Y-discrepancy, Wasserstein, ...)
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The continuum 0 < v < oo:

Xp

~ = Difference in support dimension.
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Optimistic:
~ is often small when other measures are not
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Large dQx /dPx, KL-div ~ co
but v =1 =dim(Px) — dim(Qx)



~ captures performance limits (minimax rates) under transfer ...
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Performance depends on v + hardness of ():

Easy to hard Target () x y classification
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Essential: Noise in Qy|x, and @ x-mass near decision boundary
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Setup: X € compact X, Y € {0,1}

Noise conditions on n(zx) = E[Y|z]:
® Smoothness: |n(z) —n(z")| < Ap(z, z")“.
e Noise Margin: Qx (z: [n(z) —1/2| < t) < Ct5.

2 types of reqularity on Qx:
® Near-uniform mass: for any ball B,, Qx(B,) > Cr?.
® Support regularity: Xq has r-cover size < Cr—¢.

d above acts like the intrinsic dimension of Qx, for X € RP.

Classification is easiest with large «, 3, small d .... so is transfer
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Minimax rates of Transfer:
Given: labeled source and target data {X;,Y;} ~ PP x Q"Q.
Excess error: &£)(h) = errg(h) — inf), errg(h).

Theorem. Define h on {X,,Y;}, even with knowledge of Px,Qx:

- —(B+1)/d
inf sup E SQ(h) ~ (nclg()/(do-i-v/a) + nQ) ( 0 7
b dist(P,Q)=v

dp = 2 + d/« for near-uniform Qx, and dy = 2 + 5 + d/« otherwise.

Immediate message:
Transfer is easiest as v — 0, hardest as v — oo ...
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Simulations with increasing ~:

kNN Classification Tree Classification
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ns = Source sample size (no target sample used)

Transfer requires more source data for larger ~ values.
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Main Ingredients:

- Established techniques based on Fano's inequality.

- h has access to (P, Q) samples, but has to do well on just @ ...
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Upper-bound analysis:

Rate achieved by k-NN on combined source and target data.

Main ingredient: show that NN distances depend on p.

One open problem we had to solve:

Rates for Vanilla k-NN without uniform density assumption
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Many new messages:

(dotafe) |, Q) (D do

Recall Minimax Rates =~ <n%’/

- Fast rates O(1/n) are possible even with large ~.

- Target data most beneficial when n¢ > n%/(%0+7/2)

- Unlabeled data does not improve rates beyond constants ...
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Can we automatically decide how much target data to sample?
(Ongoing work...)
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v yields insights into adaptive sampling: (ongoing work)

Setup:
np labeled samples from P, ng unlabeled samples from Q.

Adaptive Sampling:
Sample in low-confidence regions A C X with large v(A).
(v(A) < compares Px and Qx in region A)

Essentially label in (Q-massive regions with few samples from P ...

Above refines a procedure of [Berlind, Urner, 15]
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Results

Source has 0.5% cat or dog images
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Best performance achieved after relatively few label requests ...
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New direction: refining v ...

Often in practice, a family H of predictors is fixed
(NN, trees, SVMs, Neural Nets ...)

Intuition:
Consider regions of X most relevant to 7/ (with S. Hanneke) J

In particular:

Consider disagreements between classifiers

aantlll

v: Px(h#1)ZQx(h#h)™

Set A where 2 half-spaces disagree
This yields H specific performance limits ...
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New Messages: [Kpo. & Hanneke, 19]

Near optimal heuristics for bounded VC classes:
(no need to estimate )

No Classification noise:
ERM on combined source and target data is minimax-optimal.

Any Level of Noise:

Minimize Rq(h) subject to Rp(h) < ming Rp(h') + Ap, (h)

©  Hard to implement in general...
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Somehow we are still just scratching the surface of what's possible

Results extend beyond covariate-shift to Py|x # Qy|x

Mostly Open:

® More complex transfer regimes?

e Multitask, Curriculum, Lifelong, Fairness, Robustness ?
Thanks!



