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Abstract

It is known that the common factors in a large panel of data can be consistently estimated by
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1 Introduction

A low rank component is characteristic of many economic data. In analysis of international business

cycles, the component arises because of global shocks. In portfolio analysis, the component arises

because of non-diversifiable risk. One way of modeling this component when given a panel of data

X collected for N cross-section units over a span of T periods is to impose a factor structure. If

the data have r factors, the r largest population eigenvalues of X should increase with N . In a

big data (large N large T ) setting, it has been shown that the space spanned by the factors can

be consistently estimated by the eigenvectors corresponding to the r largest eigenvalues of XX ′

or X ′X. But it is not always easy to decisively separate the small from the large eigenvalues

from the data. Furthermore, the eigen-space is known to be sensitive to outliers even if they

occur infrequently. Sparse spikes, not uncommon in economic and financial data, may inflate the

estimated number of factors. It would be useful to recognize such variations in factor estimation.

It is known that eigenvectors, and hence the factor estimates, can be obtained by iterative least

squares regressions of X on guesses of the factor scores and of the loadings. This paper considers an

estimator that can be understood as performing iterative ridge instead of least squares regressions.

Ridge regressions are known to shrink the parameter estimates of a linear model towards zero. They

are biased but are less variable. In the present context, iterative ridge regressions will shrink the

eigenvalues of the common component towards zero. Hastie et al. (2015) shows that when combined

with a cleanup step that explicitly sets the small eigenvalues to zero, it implements singular value

thresholding (SVT) and delivers robust principal components (RPC) as output.

Our interest in SVT stems from its ability to estimate approximate factor models of minimum

rank. Researchers have long been interested in minimum-rank factor analysis, though the effort to

find a solution has by and large stopped in the 1980s because of computationally challenges. SVT

overcomes the challenge by solving a relaxed surrogate problem and delivers a robust estimate of

the common component. But while worse case error bounds for RPC that are uniformly valid over

models in that class are available, these algorithmic properties make no reference to the probabilistic

structure of the data. Their use in classical statistical inference is limited. We approach the problem

from the perspective of a parametric factor model. Since we make explicit assumptions about the

data generating process, we can obtain parametric rates of convergence and make precise the effects

of singular value thresholding on the factor estimates. Our results are asymptotic, and present an

alternative perspective to the algorithmic ones obtained under the assumption of a fixed sample.

This paper makes several contributions. The first is to provide a statistical analysis of RPC

that complements the results developed from a machine learning perspective.1 Constrained esti-

1The literature on PC is vast. See, for example, Jolliffe (2002). Some recent papers on SVT are Udell et al. (2016),
Agarwal et al. (2012), Yang et al. (2014), Hastie et al. (2015).
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mation generally leads to estimates that are less variable, but at the cost of bias. As we will see,

rank constrained estimation is no exception. Our second contribution is to provide a frequentist

framework for regularized factor analysis. Economic theory often suggests a priori restrictions in

the form of single or cross-equation restrictions. We provide the inferential theory that permits

testing of economic hypothesis in the form of general linear restrictions on the loadings, with or

without rank constraints.

Our third contribution is to incorporate minimum rank consideration into the selection of the

number of factors. We propose a new criterion that implicitly adds a data dependent term due to

the desire for a minimal rank common component to the deterministic penalty introduced in Bai

and Ng (2002). Simulations suggest that the resulting criterion gives a more conservative estimate

of the number of factors when there are outliers in the data, and when the contributions of some

factors to the common component are small. An appeal of the new procedure is that we do not

need to know which the assumptions in the factor model are violated.

The follow notation will be used in what follows. We use the (T,N) to denote sample size of X

in statistical factor analysis, but (m,n) to denote dimension of a matrix Z when we are considering

algorithms. For an arbitrary m × n matrix Z, the full singular value decomposition (svd) of Z is

Z = UDV ′ where U = [u1, . . . , um) is m×m and V = [v1, . . . , vn] is n× n, U ′U = Im, V ′V = In,

and D is a m × n matrix of zeros except for its min(m,n) diagonal entries which are taken by

the non-zero population singular values d1, d2, . . . , dmin(m,n) of Z. The left singular vectors of ZZ ′

are the same as those of Z since ZZ ′ = UD2U ′. The nuclear norm ‖Z‖∗ =
∑n

i=1 di(Z) is the

sum of the singular values of Z. The singular values are ordered such that d1(Z) is the largest.

Let ‖Z‖1 =
∑

i,j |Zij | be the component-wise 1-norm, and let ‖Z‖2F =
∑m

i=1

∑n
j=1 |Zij |2 denote

the Frobenius (or component-wise-2) norm. The rank of Z is the largest number of columns of

Z that are linearly independent and can be evaluated by the number of non-zero singular values,

which can also represented as ‖d(Z)‖0. If Z has rank r, we use the partition U = [Ur;Un−r] and

V = [Vr, Vn−r] where Ur consists of the first r columns, while Un−r consists of the last (n − r)
columns of U . A similar partition holds for V . Since Z = UrDrVr

′ + Un−rDn−rVn−r
′, it suffices to

consider the truncated SVD of Z, being UrDrVr
′, when dj = 0 for j > r. If the rank of Z is no

smaller than r, then UrDrV
′
r is the optimal rank-r approximation of Z under the Frobenius norm.

An important step in our analysis is to make use of results derived previously for the method

asymptotic principal components (APC). In the next section, we show that variants of principal

components differ from APC by the normalization used.
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2 Estimation of Approximate Factor Models

We use i = 1, . . . N to index cross-section units and t = 1, . . . T to index time series observations.

Let Xi = (Xi1, . . . XiT )′ be a T × 1 vector of random variables. The T ×N data matrix is denoted

X = (X1, X2, . . . , XN ). The factor representation of the data is

X = F 0Λ0′ + e (1)

where F is a T × r matrix of common factors, Λ is a N × r matrix of factor loadings and whose

true values are F 0 and Λ0. We observe X, but not F , Λ, or e. The variations in the common

component C = FΛ′ are pervasive, while those in the idiosyncratic errors e are specific. The

population covariance structure of Xt = (X1t, X2t, ..., XNt)
′ is

ΣX = ΣC + Σe.

where ΣC = ΛΣFΛ′. A strict factor model assumes that Σe is diagonal. Under the assumption

that T tends to infinity with N fixed, Anderson and Rubin (1956), Joreskog (1967), and Lawley

and Maxwell (1971) show that the factor loadings estimated by maximum likelihood or covariance

structure methods are
√
T consistent and asymptotically normal.

2.1 Asymptotic Principal Components (APC): (F̃ , Λ̃)

The assumption that Σe is diagonal is restrictive for many economic applications. The approximate

factor model of Chamberlain and Rothschild (1983) relaxes this assumption. A defining character-

istic of an approximate factor model with r factors is that the r largest population eigenvalues of

ΣX diverges as N increases, while the r+ 1 largest eigenvalue is bounded. We study estimation of

an approximate factor model under the assumptions in Bai and Ng (2002) and Bai (2003).

Assumption A There exists a constant M <∞ not depending on N,T such that

a. (Factors and Loadings): E||F 0
t ||4 ≤M , ||Λi|| ≤ Λ, F 0′F 0

T

p−→ΣF > 0, and Λ0′Λ0

N

p−→ΣΛ > 0.

b. (Idiosyncratic Errors): Time and cross-section dependence

(i) E(eit) = 0, E|eit|8 ≤M ;

(ii) E( 1
N

∑N
i=1 eiteis) = γN (s, t), |γN (s, s)| ≤M for all s and 1

T

∑T
s=1

∑T
t=1 |γN (s, t)| ≤M ;

(iii) E(eitejt) = τij,t, |τij,t| ≤ |τij,t| for some τij,t and for all t, and 1
N

∑N
i=1

∑N
j=1 |τij,t| ≤M ;

(iv) E(eitejs) = τij,st and 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| < M ;

(v) E|N−1/2
∑N

i=1 |
∑N

i=1[eiseit − E(eiseit)]
4 ≤M for every (t, s).
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c. (Central Limit Theorems): for each i and t, 1√
N

∑N
i=1 Λ0

i eit
d−→N(0,Γt) as N → ∞, and

1√
T

∑T
t=1 F

0
t eit

d−→N(0,Φi) as T →∞.

Assumption A allows the factors to be dynamic and the errors to be serially and cross-sectionally

dependent as well as heteroskedastic. The loadings can be fixed or random. While Σe need not be

a diagonal matrix, (b) also requires it to be sufficiently sparse (the correlations to be weak). Thus

Assumption A imposes a strong factor structure via positive definiteness of ΣF and ΣΛ. Part (a) and

(b) imply weak dependence between the factors and the errors: E( 1
N

∑N
i=1 ||

1√
T

∑T
t=1 F

0
t eit||2) ≤M .

Bai and Ng (2002) shows that r can be consistently estimated. In estimation of the F and Λ, the

number of factors r is typically treated as known.

For given r, the method of APC solves the following problem:

min
F,Λ,F

′F
T

=Ir

1

NT

N∑
i=1

T∑
t=1

(Xit − Λi
′Ft)

2 = min
F,Λ

1

NT

∥∥X − FΛ′
∥∥2

F
. (2)

If we concentrate out Λ and use the normalization F ′F
T = Ir, the problem is the same as maximizing

tr(F ′(XX ′)F subject to F ′F/T = Ir. But the solution is not unique. If F is a solution, then

FQ is also a solution for any orthogonal r × r matrix Q (QQ′ = Ir). However, if we put the

additional restriction that Λ′Λ is diagonal, then the solution becomes unique (still up to a column

sign change).

The APC estimates, denoted (F̃ , Λ̃), are defined as2

F̃ =
√
TUr (3a)

Λ̃ = X ′F̃ /T (3b)

That is, the matrix of factor estimates is
√
T times the eigenvectors corresponding to the r largest

eigenvalues of XX ′/(NT ). It can be verified that Λ̃′Λ̃/N = D2
r , a diagonal matrix of the r largest

eigenvalues of XX′

NT . Bai and Ng (2002) shows that as N,T →∞,

min(N,T )
1

T

T∑
t=1

||F̃t − H̃NTF
0
t || = Op(1).

That is to say, F̃t consistently estimates F 0
t up to a rotation by the matrix H̃NT , defined as

H̃NT =

(
Λ0′Λ0

N

)(
F

0′
F̃

T

)
D−2
r (4)

2The non-zero eigenvalues XX ′ and X ′X are the same. An alternative estimator is based on the eigen-
decomposition of the N ×N matrix X ′X with normalization Λ′Λ

N
= Ir.
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This ‘big data blessing’ has generated a good deal of econometric research in the last two

decades.3 As as explained in Bai and Ng (2013), H̃NT will not, in general, be an identity matrix

implying that the j-th factor estimate F̃j will not, in general, equal F 0
j even asymptotically. The

exception is when the true F 0 is such that F 0′F 0

T = Ir and Λ0′Λ0 is diagonal. Of course, it would

be unusual for F 0 to have second moments that agree with the normalization used to obtain F̃ .

Nonetheless, in applications when interpretation of F is not needed as in forecasting, the fact that

F̃ consistently estimates the space spanned by F 0 enables F̃ to be used as though F 0 were observed.

Theorem 1 of Bai (2003) shows that if
√
N/T → 0 as N,T →∞, then plim N,T→∞

F̃ ′F 0

T = Qr,

plim N,T→∞D
2
r = D2

r , and

√
N(F̃t − H̃ ′NTF 0

t )
d−→ N

(
0,D−2

r QrΓtQr
′D−2
r

)
≡ N (0,Avar(F̃t))

√
T (Λ̃i − H̃−1

NTΛ0
i ) =

d−→ N
(

0, (Qr
′)−1ΦiQ−1

r

)
≡ N (0,Avar(Λ̃i))

where Qr = DrVrΣ
−1/2
Λ , and D2

r and Vr are the eigenvalues and eigenvectors of the r × r ma-

trix Σ
1/2
Λ ΣFΣ

1/2
Λ , respectively. The asymptotic inference of the factors ultimately depends on the

eigenvalues and eigenvectors of the true common component.

While H̃NT is widely used in asymptotic analysis, it is difficult to interpret. It is useful to

consider the following asymptotically equivalent rotation matrices:

Lemma 1 Let H̃1,NT = (Λ0′Λ0)(Λ̃′Λ0)−1 and H̃2,NT = (F 0′F 0)−1(F 0′F̃ ). Then (i): H̃NT =

H̃1,NT + op(1) and (ii): H̃NT = H̃2,NT + op(1).

From Lemma 1, we see that the inverse of H̃1,NT is the regression coefficient of Λ̃ on Λ0, while

H̃2,NT is the regression coefficient of F̃ on F 0. Theorem 1 of Bai (2003) remains valid when H̃NT

is replaced by either H̃1,NT or H̃2,NT . In addition to being interpretable, these simpler rotation

matrices may simplify proofs in future work, hence of independent interest.

2.2 Principal Components (PC): (F̂ , Λ̂)

Whereas the eigenvectors of XX ′ are known in the economics literature as APC, principal com-

ponents (PC) are sometimes associated with the eigenvectors of X. In statistical modeling, APC

tends to emerge from a spiked-covariance analysis, while PC tends to follow from a spiked-mean

analysis. At a more mechanical level, F̃ defined above depends only on the eigenvectors but does

not depend on Dr. This is a somewhat unusual definition, as textbooks such as Hastie et al. (2001)

3The method of APC is due to Connor and Korajzcyk (1986). Forni et al. (2000) and Stock and Watson (2002a,b)
initiated interests in large dimensional factor models. See Bai and Ng (2008) for a review of this work. Fan et al.
(2013) shows consistency of the factor estimates when the principal components are constructed from the population
covariance matrix.
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define principal components as UrDr. Nonetheless, both definitions are valid and differ in the nor-

malization used. We now consider yet another definition of principal components for reasons that

will soon be obvious.

If we write the SVD of X as X = UD̆V ′, the singular values in D̆r are of Op(
√
NT ) magnitude.

To facilitate asymptotic analysis, we consider the scaled data

Z =
X√
NT

, svd(Z) = UDV ′, D =
D̆√
NT

.

Note that the left and right eigenvectors of Z are the same as those for X. However, while the first

r singular values of X (i.e. D̆r) diverge and the remaining N − r are bounded as N,T →∞, the r

singular values of Z (i.e. Dr) are bounded and the remaining N − r singular values tend to zero.

The model for the scaled data Z is

Z = F ∗Λ∗′ + e∗ (5)

where F ∗ = F 0
√
T

, Λ∗ = Λ0
√
N

, and e∗ = e√
NT

. Based on the svd of Z = UDV ′, we define the PC

estimates as:

F̂z = UrD
1/2
r (6a)

Λ̂z = VrD
1/2
r . (6b)

Notably, the PC and the APC estimates are equivalent up to a scale transformation. In particu-

lar, F̂z = F̃ D
1/2
r√
T

and Λ̂z = Λ̃D
−1/2
r√
N

. One can construct the APC factor estimates directly from a svd

of XX ′ and rescale the eigenvalues, or one can construct the PC factor estimates from a svd of the

rescaled data Z.4 While (F̂z, Λ̂z) emerges from the optimization problem of minF,Λ ‖Z−FΛ′‖2F , F̂z

is an estimate for F ∗ = F 0
√
T

, not for F 0. Similarly, Λ̂z is an estimate for Λ∗ = Λ0
√
N

. For estimation

of F 0 and Λ0, we define

F̂ =
√
T UrD

1/2
r (7a)

Λ̂ =
√
N VrD

1/2
r . (7b)

That is to say, F̂ =
√
T F̂z and Λ̂ =

√
N Λ̂z. It follows that

F̂ ′F̂

T
=

Λ̂′Λ̂

N
= Dr, F̂ = F̃D1/2

r , Λ̂ = Λ̃D−1/2
r

In contrast, APC uses the normalization F ′F
T = Ir, and Λ′Λ is diagonal. The unit length normal-

ization makes it difficult to impose restrictions on the APC estimates of F , a limitation that is

important for the analysis to follow.

4There may be numerical advantages to using PC over APC. The documentation of prcomp in R notes ’the
calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using
eigen on the covariance matrix. This is generally the preferred method for numerical accuracy.
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To establish the large sample properties of the PC estimates, we need to compare the estimates

with a rotation of the true factors. Given the relation between F̃ and F̂ , it is natural to define the

new rotation matrix as

ĤNT = H̃NTD
1/2
r .

This leads to the identities

√
N(F̂t − Ĥ ′NTF 0

t ) =
√
ND1/2

r (F̃t − H̃NT
′F 0
t ),

√
T (Λ̂i − Ĥ−1

NTΛ0
i ) =

√
TD−1/2

r (Λ̃i − H̃−1
NTΛ0

i ).

From the limiting distributions of F̃t and Λ̃i, we obtain:

Proposition 1 Suppose that the data are generated by (1) and Assumption A holds and both N

and T go to infinity. Then the PC-estimates F̂ and Λ̂ satisfy:

(i)
√
N(F̂t − Ĥ ′NTF 0

t )
d−→N

(
0, D1/2

r Avar(F̃t)D
1/2
r

)
≡ N

(
0,Avar(F̂t)

)
;

(ii)
√
T (Λ̂i − Ĥ−1

NTΛ0
i )

d−→N
(

0, D−1/2
r Avar(Λ̃i)D

−1/2
r

)
≡ N

(
0,Avar(Λ̂i)

)
.

Following arguments in Bai and Ng (2006), F̂ can be used in subsequent regressions as though they

were F 0 provided
√
T
N → 0.

Analogous to Lemma 1, we can define asymptotically equivalent rotation matrices. Let Ĥ1,NT =

(Λ0′Λ0)(Λ̂′Λ0)−1 and Ĥ2,NT = (F 0′F 0)−1(F 0′F̂ ). Proposition 1 holds with ĤNT replaced by either

Ĥ1,NT or Ĥ2,NT .

3 Rank and Nuclear-Norm Minimization

In large dimensional factor analysis, it is customary to choose an r ∈ [0, rmax] that provides a good

fit while taking model complexity into account. Bai and Ng (2002) suggests a class of consistent

factor selection criteria, that is, rules that yield r̂ such that prob(r̂ = r) → 1 as N,T → ∞.

While criteria in this class have little difficulty singling out the dominant factors, they tend to

be too liberal. Over-estimating the number of factors is possible when validity of Assumption A

is questionable. The two leading causes are weak loadings, and idiosyncratic errors with large

variances. The first has the implication that the smaller eigenvalues do not increase sufficiently

fast with N , an issue emphasized in Onatski (2011) and others. The second has the implication

that r + 1-th eigenvalue (which should not increase with N) is not well separated from the r-th

eigenvalue (which should increase with N). This is because outliers can increase the variance in

an otherwise uninformative direction, and PCA is blind to the source of the variance, Hubert and
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Rousseeuw (2005). The problem is well known, but is not given attention in the econometrics

literature. As will be shown below, the Bai-Ng criteria tend to find more factors than are the truth

when there are weak factors and/or outliers. A more conservative criteria that guard against these

without pre-specifying the source of over-estimation is desirable. Such a problem has actually been

considered under different motivations. We briefly three: minimum rank factor analysis, matrix

completion, and low rank matrix decompositions.

Factor analysis has its roots in the study of personality traits. The original goal of factor

analysis was to decompose ΣX into a non-negative definite low rank communality matrix ΣC , and

a diagonal matrix Σe that is positive definite so that the Haywood case of negative error variances

does not arise. The smallest rank that solves this problem is known as the minimum rank.5 But

research such as by Guttman (1958) suggested that the number of factors in the data is rather

large, making the notion of a minimum rank empirically vacuous. Additionally, the rank of a

matrix is the number of non-zero singular values, or ||D||0. The rank (or cardinality) function is

non-convex and non-differentiable. Imposing a minimum rank constraint on the decomposition is a

NP hard problem. Though interests in minimum rank factor models have waned, two subsequent

developments are of interest. The first is minimum trace factor analysis (MTFA) due to Bentler

(1972). MFTA finds a diagonal matrix Σe to minimize trace(ΣX − Σe) =
∑n

i=1Dii(ΣX − Σe)

subject to the constraints that ΣX = ΣC + Σe, ΣX −Σe � 0, Σe � 0 and diagonal.6 The second is

the (approximate) minimum rank factor analysis (MFRA) due to ten Berge and Kiers (1991), and

Shapiro and ten Berge (2000). MFRA starts with the premise that though many common factors

many exist, only part of ΣC will be explained. In their setup,

ΣX = ΣC∗ + (ΣC − ΣC∗) + Σe.

The quantity ΣC∗ , of rank r∗ ≤ r, is an approximation of ΣX − Σe. MFRA then minimizes∑n
i=r+1Dii(ΣX − Σe), which is the unexplained common variance, subject to the constraints that

ΣX − Σe � 0, Σe � 0.

What makes MFTA and MFRA interesting is that the sum of eigenvalues are convex functions.

Instead of tackling the original problem that is NP hard, they solve surrogate problems that can

take advantage of interior point and semi-definite algorithms used in convex optimization. Even

though the proposed algorithms for solving MTFA and MRFA are no longer efficient given today’s

know how, convex relaxation of the rank function is also the key insight of recent work on matrix

5ten Berge and Kiers (1991) define the approximate minimum rank of a n × n matrix ΣX to be the smallest r
s.t. for some tolerance δ ≥ 0, the minimum of f(Σe) =

∑n
i=r+1 Dii(ΣX − Σe) ≤ δ, and (i) ΣX − Σe ≥ 0, (ii)Σe ≥ 0.

Minimum rank is a special case with δ = 0.
6.When the constraint Σe > 0 is added, it is known as CMFTA. See Bentler and Woodward (1980); Shapiro

(1982); Shapiro and ten Berge (2000).
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recovery that we will subsequently use to estimate factor models with minimum rank. We now turn

to this work.7

3.1 Singular-Value Thresholding (SVT)

Many problems of interest in the big data era are concerned with recovery of a low rank matrix

from limited or noisy information. For example, compressive sensing algorithms seek to reconstruct

a signal from a system of underdetermined linear equations. In face recognition analysis, the goal

is to recover a background image from frames taken under different conditions. Perhaps the best

known example of matrix recovery is the Netflix challenge. Contestants were given a small training

sample of data on movie ratings by a subset of Netflix users and were asked to accurately predict

ratings of all movies in the evaluation sample. Without any restrictions on the completed matrix,

the problem is under-determined since the missing entries can take on any values. To proceed,

it is assumed that the matrix M to be recovered has low rank. For the Netflix problem, the low

rank assumption amounts to requiring that preferences are defined over a small number of features

(such as genres, leading actor/actress). The Netflix problem is then to complete M by finding a

Z that is factorizable into two matrices (for preference and features) with smallest rank possible,

and such that Zij = Mij for each (i, j) that is observed. But, as noted earlier, rank minimization

is NP-hard. The breakthrough is to replace rank minimization by the nuclear norm minimization.

This is important because the nuclear norm, which is also the sum of the eigenvalues, is convex.

Candes and Recht (2011) shows M can be recovered with high probability if the number of observed

entries satisfies a lower bound, and that the unobserved entries are missing uniformly at random.

In exact matrix completion, the problem arises because of incomplete observations, but the

the data are perfectly measured whenever they are observed. A different matrix recovery problem

arises not because of missing values, but because the data are observed with errors, also referred

to as noise corruption. Generically, a m× n matrix Z can be decomposed as

Z = L+ S

where L is a matrix of reduced rank r, and S is a sparse noise matrix. A measure of sparsity is

cardinality, which is the number of non-zero entries, written ‖S‖0. The goal is to recover L from data

that are sparsely corrupted by noise. While the Eckart-Young theorem states that UrDrVr
′ provides

the best low rank approximation of Z in the spectral norm, eigen-decompositions are known to be

sensitive to large errors in practice, even if there are few of them. For example, if the data have

fat tails, a small number of extreme values can account for a significant amount of variation in the

7The connection between factor analysis and low rank matrix decompositions was a focus of Saunderson et al.
(2012) and a recent paper by Bertsimas et al. (2016).
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data.8 Since PCA is blind to the source of large variations, large noise contamination can corrupt

the low rank component being identified, as will be seen in the simulations to follow.

To reduce noise corruption, one may want to penalize S and solve the regulated problem

rank(L) + γ‖S‖0, s.t. Z = L+ S.

This is challenging because rank and cardinality are both non-convex functions. Wright et al.

(2009); Candes et al. (2011) show that under an incoherence on L and a cardinality condition on

S, both L and S can be recovered exactly with high probability by solving what is known as the

program of principal pursuit (PCP):

min
L,S
‖L‖∗ + γ‖S‖1 subject to L+ S = Z

where γ = (max(m,n))−1/2 is a regularization parameter. The output of the low rank component

is referred to as robust principal components (RPC). Compared to the original problem, the rank

constraint on L and the cardinality constraint on S have been replaced by convex functions. The

incoherence condition on the singular vectors of L prevents the low rank component from being

too sparse. The cardinality condition requires the support of S to be selected uniformly at random

so that S is not low rank.9 Zhou et al. (2010) allows for the presence of small noise W . With

Z = L+S+W , it is shown that L and S can still be recovered with high probability upon solving

the convex program

min
L,S
‖L‖∗ + γ ‖S‖1 s.t. ‖Z − L− S‖F ≤ δ

if, in addition to the incoherence and cardinality conditions, ‖W‖ ≤ δ holds for some known δ.

This result establishes that RPC is stable in the presence of small entry-wise noise, a setup that

seems appropriate for factor analysis. In summary, the main insight from matrix recovery problems

is that while rank minimization is NP hard, the surrogate problem of nuclear-norm minimization

still permits recovery of the desired low rank matrix with high probability.

In terms of implementation, singular value thresholding algorithm (SVT) plays an important

role in the reparameterized problem. For a m × n matrix Z of rank r and svd(Z) = UrDrVr
′ +

Un−rDn−rV
′
n−r, define

Dγ
r =

[
Dr − γIr

]
+

≡ max(Dr − γIr, 0). (8)

8See Delvin et al. (1981), Li and Chen (1985), Ma and Genton (2001), Hubert et al. (2005), among others.
9More precisely, Theorem 1.1 of Candes et al. (2011) shows that incoherent low-rank matrix can be recovered from

non-vanishing fractions of gross errors in polynomial time. The proof assumes that S is uniformly distributed on the
set of matrices with support of a fixed cardinality.
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Importantly, the SVT is the proximal operator associated with the nuclear norm.10 Theorem 2.1

of Cai et al. (2008) shows that

UrD
γ
rV
′
r = min

L
γ ‖L‖∗ +

1

2
‖Z − L‖2F . (9)

In other words, the optimal approximation of the low rank component of Z under rank constraint

is UrD
γ
rV ′r where Dγ

r is a matrix of thresholded singular values. Compared with the unregulated

estimate of UrDrV
′
r , the only difference is that the singular values are thresholded. It is possible

for Dγ
r to have rank r∗ < r because of thresholding. As a consequence, the rank of the regulated

estimate of the low rank component can be smaller than the unregulated estimate.11

3.2 Relation to Factor Models

The previous subsection provides results for recovery of the low rank and spares components, L

and S. Since L has rank r, it can be factorized as a product of two rank r matrices, A and B,

that is, L = AB′. This subsection discusses the recovery of A and B. This is useful since we are

eventually interested in the factors and the loadings of a minimum-rank factor model, not just the

common component.

The key step that ties a low rank decomposition to factor analysis is to establish that the

regularized problem with γ as threshold parameter, i.e.

min
A,B

1

2

∥∥Z −AB′∥∥2

F
+ γ

∥∥AB′∥∥∗ (10)

has solution

A = Ur(D
γ
r )1/2, B = Vr(D

γ
r )1/2, (11)

and that L = A B
′

also solves (9). The result that (A,B) solves the problem (10) if and only

if L = A B′ solves (9) was first noted in Rennie and Srebro (2005). Detailed proofs are given in

Hastie et al. (2015) and Boyd et al. (2010). A sketch of the idea is as follows.

Since AB′ = UrDrVr
′, and Ur and Vr are orthonormal, then by Cauchy-Schwarz inequality,

trace(Dr) = trace(Ur
′AB′Vr) ≤ ‖A‖F ‖B‖F

≤ 1

2

(
‖A‖2F + ‖B‖2F

)
.

But since L = AB′ by definition, it follows that ‖L‖∗ = trace(Dr) and the above implies

‖L‖∗ ≤
1

2

(
‖A‖2F + ‖B‖2F

)
10A proximal operator specifies the value that minimizes an approximation to a regularized version of a function.

Proximal methods are popular in convex optimizations. See, for example, Boyd et al. (2010).
11Algorithms that solve (9) include Augmented Lagrange Multiplier and Accelerated Proximal Gradient (Lin et al.

(2013)), ADMM (Boyd et al. (2010)), and CVX (Grant and Boyd (2015)).
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with equality when A = UrD
1/2
r and B = VrD

1/2
r . Hence (10) is just a reformulation of (9) in terms

of A and B. Consider now the first order conditions associated with (10). If A and B are solutions,

it must be that −(Z − AB′)B + γA = 0 and −(Z − AB′)′A + γB = 0. Left multiplying the first

condition by A′ and the second by B′, we see that A′A = B′B when the first order conditions hold.

Rearranging terms, we obtain (
−γI Z
Z ′ −γI

)(
A

B

)
=

(
A

B

)
A′A.

This has the generic structure ZV = VX, which is an eigenvalue problem. In particular, the

eigenvalues of X are those of Z, and V are the corresponding eigenvectors. In the present context,

the eigenvalues of A′A are those of the first matrix on the left, and (A,B) are the corresponding

left and right eigenvectors. Though −γ ± di are two possible solutions for every i, we only accept
√
di − γ for positivity. Collecting the thresholded singular-values into Dγ

r , the solution defined in

(11) obtains. These are the robust principal components of Z under the assumed normalization

that A
′
A = B

′
B = D

γ
r .12

4 Constrained Approximate Factor Models

An important result in large dimension factor modeling is that the factor space can be consistently

estimated by principal components when N and T are large, as reviewed in Section 2. A key

finding in the unsupervised learning literature is that robust principal components can be obtained

via SVT for a given sample of data, as reviewed in Section 3. One might expect RPC to play a

role in rank constrained factor analysis. Indeed there is one, and this section makes this precise.

Given that RPC is a method developed in the machine learning literature, we start by clarifying

some differences between the statistical and the algorithmic approach to low rank modeling.

Notably, the decomposition Z = L+S is consistent with many probabilistic structures. Statis-

tical factor analysis specifies one particular representation: X = FΛ′ + e. We use Assumption A

to restrict the factors, loadings, and the idiosyncratic noise so that the eigenvalues of the common

component C = FΛ′ diverge with N . We find F and Λ to minimize the sum of squared residuals

and let e be residually determined. We establish that F̂ is consistent at rate
√
N , Λ̂ at rate

√
T ,

and Ĉ at rate min(
√
N,
√
T ) assuming that the factor model is correctly specified.

In contrast, machine learning analysis is ‘distribution free’ and the data generating process is

left unspecified. Often, S is explicitly chosen together with L, not residually determined. For

Netflix type problems when a low rank matrix is to be recovered from data with missing values,

the probability of exact recovery is typically obtained under an incoherence condition that makes

12Udell et al. (2016) referred to (10) as quadratically regularized PC. See their Appendix A for a complete proof.
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no reference to eigenvalues. But when the data are noisy rather missing, one can only hope to

recover an approximate (rather than the exact) low rank component.13 What matters most then is

the singular vectors associated with the large singular values. For such problems, which seem more

comparable to our setup, Agarwal et al. (2012) obtains an error bound in the Frobenius norm for

L and for S under the assumption that ‖L‖∞ ≤
α√
mn

. But recall that ‖L‖∞ = maxi,t |Lit| and

‖L‖2F =
∑m

i=1

∑n
t=1 |Lit|2 =

∑r
i=1 d

2
L,i. The condition ‖L‖∞ ≤

α√
mn

is effectively a restriction on

the sum of the eigenvalues of the low rank component L.

What transpires from the above discussion is that machine learning methods restrict the sample

eigenvalues of L and obtain finite sample error bounds. In contrast, approximate factor analysis puts

restrictions on the population eigenvalues of the common component C through moment conditions

collected into Assumption A, which also enable precise parametric convergence rate to be obtained.

Interestingly, Corollary 2 of Agarwal et al. (2012) suggests that for the spike mean model, the error

of the low rank component is of order N+T
NT ≈ min(N,T )−1 with high probability. This agrees with

the asymptotic convergence rate obtained in our previous work on the unconstrained case.

A machine learning analysis closest in spirit to ours is Bertsimas et al. (2016). This paper

reformulates estimation of minimum rank factor model for iid data as one of smooth optimization

under convex compact constraints. Via lower bounds, the solutions are shown to be certifiably

optimal in many cases, requiring only that ΣX = ΣC + Σe, where Σe is diagonal. Our data need

not be iid, and Σe need not be diagonal, but we invoke more assumptions to provide parametric

convergence rates. The results provide different perspectives to a related problem.

4.1 Robust Principal Components (RPCA): (F ,Λ)

This subsection considers estimation of at most r factors. In some cases, economic theory may

suggest r factors but only r∗ < r may be empirically relevant. In other cases, economic theory may

suggest r∗ factors, as in affine term structure models for interest rates. But financial data tend to

have fat tails. Extreme values may lead us to the discovery of more than r∗ factors from the data.

As principal components are blind as to whether pervasive variations or extreme events underlie

the components, it is desirable to have a way to guard against noise corruption.

One way to think about the noise-corruption problem is that the principal component estimates

are not efficient when there is significant heterogeneity in the idiosyncratic errors. Boivin and

Ng (2006) considers re-weighting each series by the standard-deviation of the idiosyncratic error,

obtained from a preliminary (unweighted) estimation of the factor model. A drawback is that these

weights are themselves sensitive to outliers. A second approach is the POET estimator considered

13For application of the incoherence condition in matrix completion, see Candes et al. (2011). For general matrix
recovery problems, see Agarwal et al. (2012) and Negahban and Wainwright (2012), .
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in Fan et al. (2013), which uses thresholding to enforce sparsity of the idiosyncratic errors of a

spiked-covariance matrix.

We propose to to apply thresholding to ΣC rather than Σe. This is appealing because the

common component is the object of interest, not the idiosyncratic errors. To do so requires that

we map the scaled factor model given in (5) into the problem defined in (10). Consider the goal of

recovering C∗ in the decomposition

Z = C + e = C∗ + C− + e C∗ = F ∗Λ∗
′
.

As in ten Berge and Kiers (1991), the common-component is decomposed into C = C∗+C−. While

C has rank r, it is well approximated by C∗ whose rank is r∗, and we want to estimate C∗ by the

method of robust principal components (RPC). From the previous subsection, the rank regularized

problem is

(F z,Λz) = argminF,Λ
1

2

(∥∥Z − FΛ′
∥∥2

F
+ γ ‖F‖2F + γ ‖Λ‖2F

)
, (12)

with optimal solution,

F z = Ur(D
γ
r )1/2, Λz = Vr(D

γ
r )1/2 (13)

where Dγ
r = [Dr−γIr]+. As in the unconstrained case, we work with normalized factors F =

√
TF z

and Λ =
√
NΛz:

14

F =
√
TUr(D

γ
r )1/2 (14a)

Λ =
√
NVr(D

γ
r )1/2. (14b)

The restricted and the unrestricted estimates are related by

F = F̂ ∆NT

Λ = Λ̂ ∆NT

where

∆2
NT = Dγ

rD
−1
r = diag

(
(d1 − γ)+

d1
, ...,

(dr − γ)+

dr

)
. (15)

Hence while F̂ ′F̂
T = Λ̂′Λ̂

N = Dr, now F ′F
T = Λ′Λ

N = Dγ
r . Define the rotation matrix for F by

HNT = ĤNT∆NT

14These are also the optimal solutions from the following optimization problem

(F ,Λ) = argminF,Λ

( 1

NT

∥∥X − FΛ′
∥∥2

F
+
γ

T
‖F‖2F +

γ

N
‖Λ‖2F

)
.

Though (FQ,ΛQ) is also a solution for any orthonormal matrix Q, (F ,Λ) as defined in (14a) and (14b) is the only

solution (up to a column sign change) that satisfies F ′F
T

= Λ′Λ
N

= Dγ
r , assuming that the diagonal elements of Dγ

r are
distinct.
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From the relationship between F and F̂ ,

F t −H
′
NTF

0
t = ∆NT (F̂t − Ĥ ′NTF 0

t ). (16)

Hence F t estimates a rotation of F 0
t . But the inverse of HNT is not the rotation matrix for Λ. As

shown in Appendix,

Λi −GNTΛ0
i = ∆NT [Λ̂i − Ĥ−1

NTΛ0
i ] (17)

where the rotation matrix for Λ is

GNT = ∆2
NT (HNT )−1 = ∆NT Ĥ

−1
NT

Denote the probability limit of ∆NT as ∆∞ = (DγrD−1
r )1/2, where D2

r is the diagonal matrix

consisting of the eigenvalues of Σ
1/2
Λ ΣFΣ

1/2
Λ , and Dγr = (Dr− γIr)+. Using Proposition 1, (16), and

(17), we obtain the following result.

Proposition 2 Let (F ,Λ) be given in (14a) and (14b) with threshold parameter γ > 0. Suppose

that Assumption A holds and N,T →∞. Then

(i)
√
N(F t −H

′
NTF

0
t )

d−→N
(

0,∆∞Avar(F̂ )∆∞

)
≡ N(0,Avar(F ))

(ii)
√
T (Λi −GNTΛ0

i )
d−→N

(
0,∆∞Avar(Λ̂)∆∞

)
≡ N(0,Avar(Λ)).

Since the diagonal elements of ∆∞ are less than 1, Proposition 2 implies that Avar(F ) ≤ Avar(F̂ ),

and Avar(Λ) ≤ Avar(Λ̂).

Turning to the common component C0 = F 0Λ0′, the RPC estimate is C = F Λ′ and the PC

estimates is Ĉ = F̂ Λ̂′. Using ∆2
NT defined in (15), we see that

C = F Λ
′
= F̂∆2

NT Λ̂′ 6= F̂ Λ̂′ = Ĉ.

Since Ĉ is an asymptotically unbiased estimate for the corresponding element of C0, it follows that

the elements of C are biased towards zero. Recalling that ||C||2F =
∑N

i=1

∑T
t=1C

2
it = trace(C ′C),

trace(CC
′
)

trace(XX ′)
=

trace((Dγ
r )2)

trace(D2)
<

trace(D2
r)

trace(D2)
=

trace(Ĉ ′Ĉ)

trace(XX ′)
.

Thus C accounts for a smaller fraction of the variation in X.

Though C is an asymptotically biased estimator for C0, its asymptotic mean squared errors

Amse may be smaller than that of the unbiased estimator Ĉ. To see why, consider (i, t)-th element:

Cit = f
′
tΛi = f̂ ′t∆

2
NT Λ̂i. Suppose that there is only a single factor r = 1, then

Cit =

(
(d1 − γ)+

d1

)
Ĉit ≡ δ1Ĉit.
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Because Ĉit is asymptotically unbiased for C0
it, Amse(Ĉit) = Avar(Ĉit). The asymptotic bias and

variance of Cit are, respectively,

Abias(Cit) = (δ1 − 1)C0
it

Avar(Cit) = δ2
1Amse(Ĉit).

Thus the MSE of Cit is Amse(Cit) = (δ1 − 1)2(C0
it)

2 + δ2
1Amse(Ĉit) so that

Amse(Cit)

Amse(Ĉit)
= (δ1 − 1)2 (C0

it)
2

Amse(Ĉit)
+ δ2

1 .

As shown in Bai (2003), the asymptotic MSE of Ĉit depends on ΣΛ and ΣF , and on the variance

of idiosyncratic errors. Hence the relative Amse can be less than one when the signal of the

common component is weak, which can be due to a small ΣΛ and/or a small ΣF , or when the

idiosyncratic error variance is large. These correspond to cases of small eigenvalues in the low

rank component and noise corruption that motivated RPCA in machine learning. Here, we find

that from a statistical perspective, it is also beneficial to use the regularized principal components

analysis when the data are noisy and when the pervasive signals are weak.

It is noteworthy that soft-thresholding of the eigenvalues is distinct from regularization of the

eigenvectors for a given rank of the low rank component, referred to in the literature as sparse

principal components (SPC). The thresholding operation in SPC analysis does not change the rank

of the factor estimates. It only performs shrinkage.15 In constrast, SVT constrains the rank of the

low rank component to be no larger than r as any factor corresponding to di ≤ γ will effectively be

dismissed. It has efficiency implications since Dr −Dγ
r ≥ 0 by construction. As a consequence, the

asymptotic variance F jt cannot exceed that of the unrestricted estimates F̂jt for all j = 1, . . . r.

4.2 Selection of Factors

The problem defined in (12) penalizes components with small contributions to the low rank com-

ponent. Optimality is defined from an algorithmic perspective that does not take into account

that (F ,Λ) are estimates. The large is r, the better is the fit, but variance also increases with the

number of factors be estimated. Bai and Ng (2002) suggests to determine the number of factors

using criteria that take into account model complexity (hence sampling uncertainty). These take

the form

r̂ = min
k=0,...,rmax

ÎC(k), ÎC(k) = log(ssrk) + kg(N,T ).

The ÎC2 criterion, often used in empirical work, obtains when

g(N,T ) =
(N + T )

NT
log

(
NT

N + T

)
. (18)

15Sparse PCA is often motivated by easy interpretation of the factors. See, for example, Shen and Huang (2008).
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The ssr term in the criterion function is the sum of squared residuals from fitting a model with k

factors. Suppose that each series in standardized, then ‖Z‖2F = 1; together with ||F̂ Λ̂′|| = ‖Dr‖,
ssrk can be written as

ssrk = 1−
k∑
j=1

d2
j =

∥∥∥Z − F̂kΛ̂′k∥∥∥2

F
.

In the constrained problem (12) yields
∥∥F Λ′

∥∥2

F
= ‖Dγ

r ‖2F . For given k and γ > 0,

ssrk(γ) = 1−
k∑
j=1

(dj − γ)2
+ =

∥∥∥Z − F kΛ′k∥∥∥2

F
.

This suggests to define a class of criteria that takes into account both the rank of the common

component and sampling uncertainty as follows:

r = min
k=0,...,rmax

log

(
1−

k∑
j=1

(dj − γ)2
+

)
+ kg(N,T ). (19)

In other words, ssrk is evaluated at the rank restricted estimates (F ,Λ). Taking the approximation

log(1 + x) ≈ x, we see that

IC(k) = ÎC(k) + γ

k∑
j=1

(2dj − γ)

ŝsrk
.

Since dj ≥ dj − γ ≥ 0, the penalty is heavier in IC(k) than ÎC(k). The rank constraint adds

a data dependent term to each additional factor, hence a more conservative estimate of r. An

appeal of the criterion is that the data-dependent adjustment does not require the researcher to be

precise about the source of the small eigenvalues. They can be due to genuine weak factors, noise

corruption, omitted lagged and non-linear interaction of the factors that are of lesser importance.

The larger is γ, the stronger is the penalty. A natural question to ask is how to determine

γ. Since X is standardized and Z = X√
NT

, we have ‖Z‖2F = 1 by construction. Thus |dj |2 is

the total variation of Z that the j-th unconstrained factor will explain. Regularization reduces its

contribution in a non-linear way. In applications, we set γ to 0.05. If d1 = 0.4, the contribution of

F1 will fall from .42 = 0.16 to (.4− .05)2 = .1225. If d2 = 0.2, the contribution of F2 will fall from

0.04 to 0.025, a larger percentage drop than F1. Any dj < .05 will be truncated to zero. While

γ = 0.05 is a small penalty to dj ,
∑k

j=1(2dj−γ) makes a non-trivial difference to the determination

of r as we will see in simulations as we will see below.

4.3 Practical Considerations

Consider the infeasible linear regression yt+h = α′Ft+β
′Wt+εt+h where Wt are observed predictors.

The regression is infeasible because F is latent. Bai and Ng (2006) shows that the APC estimate F̃
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can be used in place of the latent F , and inference can proceed as though F was known provided
√
T
N → 0. Section 2 shows that it is equally valid to replace F with the PC estimate F̂ .

What happens if we replace F by the RPC estimate F? It may be tempting to think that

F will reduce the goodness of fit because var(F ) < var(F̂ ). This, however, is not true. Least

squares estimation will give identical fit whether we use F̃ , F̂ , or F as regressors. To appreciate

this point, there are two cases to consider. First, suppose that SVT shrinks but does not threshold

the eigenvalues so that F and F̂ have the same rank. Then F̃ , F̂ and F are all spanned by Ur. In

other words, they are perfectly correlated. The estimates of α will simply adjust to compensate for

the difference in scale. In the second case when r∗ = dim(F ) < dim(F̂ ) = r because of thresholding,

the fit provided by F remains identical to the fit provided by the first r∗ columns of F̂ by virtual

of the fact the omitted factors are orthogonal to the included ones.

The upshot of the above discussion is that use of the rank restricted estimate F will make

no difference to factor augmented regressions unless an effort is made to shrink the coefficients

associated with the factors towards zero. This can be achieved by replacing least squares with

ridge regressions. As an example, suppose that Wt is empty and we regress y on F only. Let αOLS

and αR be the OLS and ridge estimator for α respectively. For given κ and κT = κ
T ,

αols = (F ′F )−1Fy = (Dγ
r )−1/2U ′y/

√
T

αR = (F ′F + κIr)
−1Fy

= (TDγ
r + κIr)

−1(Dγ
r )1/2

√
TU ′y = (Dγ

r + κT Ir)
−1(Dγ

r )1/2Ury/
√
T

= (Dγ
r + κT Ir)

−1Dγ
rαOLS = (Ir + κT (Dγ

r ))−1 αOLS

≈ (Ir − κTDγ
r )αOLS .

While SVT implements the rank constraint on F via Dγ
r , ridge regression shrinks α̂OLS towards

zero so that the contribution of α′RF t is smaller than α′OLSF t. Note that αR can be constructed

from the least squares estimator, Dγ
r , and κ. Explicit ridge estimation is actually not necessary.

The second practical issue concerns construction of the factors. Whether we are interested

in the APC, PC, or RPC estimates, the eigenvectors Ur required. Many numerical methods are

available to compute eigenvectors when Z is large in dimension. To compute the first eigenvector,

the method of power iteration starts from an initial vector that has a non-zero component in the

direction of the target eigenvector. It then recursively updates and re-normalizes the vector till

convergence. The resulting vector is the largest eigenvector. The idea can be extended to compute

the invariant subspace of all singular vectors. As suggested in Hastie et al. (2015), the algorithm

can be modified to construct robust principal components. The following algorithm is from Hastie

et al. (2015).16

16Our algorithm differs only in that we do svd of F and Λ in Steps (ii) and (iv) instead of FD and ΛD.

18



Algorithm RPC (Iterative Ridge): Given a m×n matrix Z, initialize a m×r matrix F = UD
where U is orthonormal and D = Ir.

A. Repeat till convergence

i. (solve Λ given F ): Λ̃ = Z ′F (F ′F + γIr)
−1.

ii (orthogonalize): Do svd(Λ̃) = ŨΛD̃ΛṼΛ
′ and let Λ = ŨΛD̃Λ and D = D̃Λ.

iii (solve F given Λ): F̃ = ZΛ(Λ′Λ + γIr)
−1.

iv (orthogonalize): Do svd(F̃ ) = ŨF D̃F ṼF ′ and let F = ŨF D̃F and D = D̃F .

B. (Cleanup) From svd(ZUΛ) = UrDrV′, let Vr = UΛV, Dγ
r = (Dr − γIr)+.

Algorithm RPC uses iterative ridge regressions to construct the factors and the loadings. The two

svd steps ensure that the factors and loadings are mutually orthogonal. The converged result of

Step A gives (F z,Λz), which is the solutions to the nuclear norm minimization problem stated

in (12). In theory, this is all that is needed for construction of F =
√
TFz and Λ =

√
NΛz.

But improved estimates of the left and right eigenvectors can be obtained using Step B, which

also explicitly thresholds the singular values.17 The final estimates of the factors and loadings

that emerge from from step B are F z = Ur(D
λ
r )1/2 and Λz = Vr(D

λ
r )1/2. The entire procedure

only involves SVD for matrices of dimension m × r and n × r, not dimension of m × n. This is

important when both m and n are large. When Z is not huge in dimension, (F z,Λz) can be directly

computed from an svd of Z, and the algorithm is not necessary. The ridge regression perspective

is nonetheless useful in highlighting the role that regularization plays in RPC.

5 Linear Constraints

The minimization problem in (12) has a unique solution under the normalization F ′F = Λ′Λ = Dr.

However, the unique solution may or may not have economic interpretations. This section considers

m linear restrictions on Λ of the form

R vec(Λ) = φ (20)

where R is m×Nr, and φ is m× 1. Both R and φ are assumed known a priori. Economic theory

may imply lower triangularity of the top r × r sub-matrix of Λ when the data are appropriately

ordered. By suitable design of R, the causality restriction can be expressed as R vec(Λ) = φ without

ordering the data a priori. Cross-equation restrictions are allowed, such as due to homogeneity of

the loadings across individuals or a subgroup of individuals suggested by theory. Other restrictions

17In principle, the converged ŨΛ should be Vr. Step B essentially computes an improved estimate by performing a
svd of ZUΛ = UrDrVr

′UΛ, and then recovers Vr from the right eigenvector of ZUΛ.
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are considered in Stock and Watson (2016). The Appendix provides an example how to implement

the restrictions in matlab.

The linear restrictions on the loadings considered here contrasts with sparse principal compo-

nents (SPC) estimation which either imposes lasso type penalty on the loadings, or shrinks the

individual entries to zero in a data dependent way, as our constraints are known a priori.18 Note

that if we regard the diagonality of F ′F and Λ′Λ as identification restrictions (rather than statistical

normalizations), the linear constraints on the loadings (20) constitute over-identifying restrictions

with which we can use to test economic hypothesis. However, it is now possible to relax some of the

diagonality restrictions, so long as they are replaced by a sufficient number of linear restrictions;

identification is then still possible. A theory of identification for high dimensional factor models is

given in Bai and Wang (2014).

The constrained factor estimates (F γ,τ ,Λγ,τ ) are defined as solutions to the penalized problem

(F γ,τ ,Λγ,τ ) = min
F,Λ

1

2

∥∥Z − FΛ′
∥∥2

F
+
γ

2

(
‖F‖2F + ‖Λ‖2F

)
+
τ

2
‖R vec(Λ)− φ‖22 (21)

where γ and τ are regularization parameters. The linear constraints can be imposed with or without

the rank constraints. Imposing cross-equation restrictions will generally require iteration till the

constraints are satisfied.

The first order condition with respect to F for a given Λ is unaffected by the introduction of

the linear constraints on Λ. Hence, the solution

F γ,τ = ZΛ(Λ′Λ + γIr)
−1, ∀τ ≥ 0 (22)

can be obtained from a ridge regression of Z of Λ. To derive the first order condition with respect

to Λ, we rewrite the problem in vectorized form:

‖Z − FΛ′‖2F = ‖vec(Z ′)− (F ⊗ IN )vec(Λ)‖22, ‖Λ‖2F = ‖vec(Λ)‖22.

The first order condition with respect to vec(Λ) is

0 = −(F ′ ⊗ IN )
[
vec(Z ′)− (F ⊗ IN )vec(Λ)

]
+ γ vec(Λ) + τR′[R vec(Λ)− φ]

= −vec(Z ′F )− τR′φ+ (F ′F ⊗ IN ) vec(Λ) + γ vec(Λ) + τR′R vec(Λ).

Solving for vec(Λ) and and denoting the solution by vec(Λγ,τ ), we obtain

Λγ,τ =
(

(F ′F ⊗ IN ) + γINr + τR′R
)−1[

vec(Z ′F ) + τR′φ
]

(23)

=
(

(F ′F + γIr)⊗ IN + τR′R
)−1

[
vec(Z ′F + τR′φ)

]
18For SPC, see Jolliffee et al. (2003), Ma (2013), Shen and Huang (2008), and Zou et al. (2006). The SPC is in

turn different from the POET estimator of Fan et al. (2013) which constructs the principal components from a matrix
that shrinks the small eigenvalues towards zero.
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where the last line follows from the fact that (F ′F ⊗ IN ) + γINr = (F ′F + γIr) ⊗ IN . Equations

(22) and (23) completely characterize the solution under rank and linear restrictions. In general,

the solution will need to be solved by iterating the two equations until convergence. A reasonable

starting value is (F ,Λ), the solution satisfying the rank constraint and before the linear restrictions

are imposed. However, while F ′F = Λ′Λ = Dγ
r and Dγ

r is diagonal, F
′
γ,τF γ,τ and Λ

′
γ,τΛγ,τ will not,

in general, be diagonal when linear restrictions are present.

These constraint will not bind unless τ = ∞, and we denote by Λγ,∞ the binding solution.

Observe that in the absence of linear constraints (i.e. τ = 0),

vec(Λγ,0) =
(

(F ′F + γIr)⊗ IN
)−1

vec(Z ′F ) (24)

which is a ridge estimator. Furthermore, (22) and (24) are nothing but the RPCA estimates. The

following is an estimator that satisfies both the rank constraint and R vec(Λ) = φ.

Proposition 3 For given F , let Λγ,∞ be the solution to (21) with τ = ∞. Also let Λγ,0 be the

solution with τ = 0. Then two solutions are related as follows:

vec(Λγ,∞) = vec(Λγ,0)−[(F ′F+γIr)
−1⊗IN ]R′·

[
R[(F ′F+γIr)

−1⊗IN ]R′
]−1(

R vec(Λγ,0)−φ
)

(25)

Proposition 3 says that for given F , a restricted estimate of Λ that satisfies both the rank and linear

restrictions can be obtained by imposing the linear restrictions on RPCA solution of Λ that only

imposes rank restrictions. It is easy to verify Λγ,∞ satisfies restriction (20). Once the restricted

estimates are obtained, F needs to be re-estimated based on (22). The final solution is obtained

by iterating (22) and (25). We note again that F
′
γ,∞F γ,∞ and Λ

′
γ,∞Λγ,∞ will not, in general, be

diagonal matrices in the presence of linear restrictions.

Finally, a more general regularized problem we can consider is:

(F γ1,γ2,τ ,Λγ1,γ2,τ ) = argminF,Λ

(
1

2
||Z − FΛ′||2F +

γ1

2
||F ||2F +

γ2

2
||Λ||2F +

τ

2
||Rvec(Λ)− φ)||22

)
.

Let

D
γ
r = (Dr −

√
γ1γ2 Ir)+.

Relaxing the constraint that γ1 = γ2 with τ = 0 yields the general solution

F γ1,γ2,τ=0 =
(γ2

γ1

)1/4
Ur(D

γ
r )1/2 (26a)

Λγ1,γ2,τ=0 =
(γ1

γ2

)1/4
(D

γ
r )1/2. (26b)

The corresponding common component is

Cγ1,γ2,0 = UrD
γ
rV
′
r
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When γ1 = γ2 = γ, the solution coincides with (13), which can be computed by Algorithm RPC.

Once the rank constrained solutions are obtained, Proposition 3 can be used to impose linear

constraints (τ = ∞). For other values of τ , optimal solutions can be obtained via iterated ridge

regressions, for which γ is replaced by γ1 in equation (22), and by γ2 in equation (23).

6 Simulations and Application

A small simulation exercise is used to highlight the issues. Data are generated according to

Xit = F 0′
t Λ0

i + eit + sit, eit ∼ (0, 1)

where the sparse error sit ∼ N(µ, ω2) if (i, t) ∈ Ω and zero otherwise, Ω is an index set containing

(i, t) positions with non-zero values of sit. It is assumed a fraction κN of cross-section units have

outliers in a fraction κT of the sample. In the simulatios, we let (κN , κT ) = (0.1, 0.03), µ = 5. Two

data generating processes both with r = 5 are considered.

• DGP1: F 0
t ∼ N(0, Ir), Λ0

i ∼ N(0, Ir), with ω ∈ (5, 10, 20);

• DGP2: F 0 = UrD
1/2
r , Λ0 = VrD

1/2
r , with diag(Dr) = [1, 0.8, 0.5, 0.3, 0.2θ], and ω = 5. Three

values of θ are considered: (1, 0.75, 0.5).

The first DGP is designed to study the effect of outliers, which is expected to lead to an over-

estimation of r. The second DGP varies the contribution of the smallest factor by the parameter

θ. The minimum rank is expected to decrease with θ. We define r∗ to be the number of factors

that contributes at least a fraction c(s) = var(S)
var(X) of the variance of the common component of X.

Note that r∗ is also the rank of Dγ
r . With c(S) = 0.05, DGP has r∗ = 5 and DGP 2 has r∗ = 3.

The properties of the factor selection rules depend on the strength of the factors as well as the

extent of noise contamination. We summarize these features using three statistics. The first is Cr,

which denotes the fraction of population variance X due to all r factors. The second is Cr, which

denotes the fraction of variance due to r-th (i.e. smallest) factor. These two indicate the relative

importance of the common component and the smallest factor in the data, respectively. The third

is c(S), which denotes the fraction of variance of Z due to the outliers in S. We report the mean of

r̂ and r, the probability that r̂ = r and r = r in 5000 replications with rmax set to 8. To evaluate

how well the estimated factors approximate the space spanned by the true factors, we regress the

smallest factor estimated on all r∗ eigenvectors of the true common component. If the factor space

is precisely estimated, the R2 of this regression should be close to one. These are denoted R̂2 and

R
2

for the PC and RPC estimates of F , respectively.

Table 1 shows that in the absence of outliers, i.e. c(S) = 0, the IC performs well and always

correctly selects r = 5 factors when N and T are both reasonably large. Rank regularization does
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not affect the number of factors selected in this setting. However, when noise corruption is present

and c(S) > 0 , r̂ tends to exceed r and has a mean of over 6. The higher is c(S), the larger is the

contribution of the outliers, and the larger is r̂. However, r is more robust and correctly selects five

factors in many cases.

Table 2 shows results for which has r = 5 but r∗ = 3. This means that the smallest two factors

contribute less than c(S) = 0.05 of the variation in C. Even in the absence of measurement noise,

r̂ has a mean of four, implying that it tends to accept at least one of the small factors as valid. In

contrast, r which has a mean of three tends to disregard both small factors. When measurement

errors are allowed as in the bottom panel, r̂ tends to estimate find an additional factor compared

to the top panel. In contrast, r is unaffected by noise contamination. Of course, for this DGP, the

true factor is r and one can argue that r̂ yields the correct estimate. As there is a tension between

consistent estimation of r and parsimony, it is up to the user whether to use r̂ or r. In applications,

researchers tend to focus on the dominant ones. Our IC2 criterion provides a way to determine

the minimum number of factors that should be used.

We also estimate the factors using data from FRED-MD (McCracken and Ng (2016)), a macroe-

conomic database consisting of a panel of 134 series over the sample 1960M1-2016M08. Consistent

with previous studies, some series are transformed by taking logs and first differencing before the

factors are estimated. The panel is not balanced, we use the EM algorithm suggested in Stock and

Watson (2002a) which imputes the missing values from the factor model and iterate till conver-

gence. The unbalance panel has N = 128 variables with T = 676 observations. We also consider a

balanced panel with N = 92 series.19

The squared-eigenvalue values can be interpreted as the percent contribution of the factor to

the variation of Z. As noted above, regularization shrinks the eigenvalues and hence the length

of the factors and the loadings towards zero. Hence the unregularized eigenvalues d
2
i are always

smaller than the unregularized ones by roughly γ2 = (0.05)2. The original ÎC2 finds eight factors

for the balanced panel. After regularization, IC2 finds three factors. In Gorodnichenko and Ng

(2017), this difference between r̂ and r is attributed to interactions of the level factors disguising

as separate factors. Instability in the loadings, along with outliers may also contribute to the

difference. We then use eight factors to impute missing values in the non-balanced panel. The IC2

criterion continues to find three factors in the resulting balanced panel. In this data, the first factor

loads heavily on real activity variables, the second on interest rate spreads, and the third on prices.

Eigenvalues of FredMD data

19One idea is to use matrix completion algorithms to fill the missing values. But the data are not ‘missing at
random’, and we leave it for future work.
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F Balanced Panel Non-Balanced Panel

d̂2
1 d

2
1 d̂2

1 d
2
1

1 0.1828 0.1426 0.1493 0.1131
2 0.0921 0.0643 0.0709 0.0468
3 0.0716 0.0473 0.0682 0.0446
4 0.0604 0.0384 0.0561 0.0349
5 0.0453 0.0265 0.0426 0.0245
6 0.0416 0.0237 0.0341 0.0182
7 0.0301 0.0152 0.0317 0.0164
8 0.0287 0.0143 0.0268 0.0129

r∗ 8 3 8 3

7 Conclusion

This paper considers estimation of approximate factor models by regularized principal components

with focus on two problems. The first problem is rank regularization with RPCA as output. This

is useful when the idiosyncratic errors have large eigenvalues such as due to extreme outliers, or

when some factors have small eigenvalues, such as when the loadings are small. A new class of

factor selection criteria is proposed that will give more conservative estimates when the strong

factor assumption is questionable. The second problem is linear restrictions such as motivated by

economic theory. We show that the solution is a transformation of the unrestricted estimates. Our

analysis provides a statistical view of matrix recovery algorithms and complements results in the

machine learning literature.
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Table 1: DGP 1

parameters signal noise mean prob. = r prob. = r∗ spanning

N T r∗ ω Cr Cr c(S) r̂ r r̂ r r̂ r R̂2 R
2

100 100 5 5.00 0.83 0.12 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 100 5 10.00 0.83 0.12 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 100 5 20.00 0.83 0.12 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 200 5 5.00 0.83 0.13 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 200 5 10.00 0.83 0.13 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 200 5 20.00 0.83 0.13 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 400 5 5.00 0.83 0.13 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 400 5 10.00 0.83 0.13 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
100 400 5 20.00 0.83 0.13 0.00 5.00 5.00 1.00 1.00 1.00 1.00 0.98 0.98
50 100 5 5.00 0.83 0.10 0.00 5.00 4.95 1.00 0.95 0.00 0.05 0.95 0.95
50 100 5 10.00 0.83 0.10 0.00 5.00 4.95 1.00 0.95 0.00 0.05 0.95 0.95
50 100 5 20.00 0.83 0.10 0.00 5.00 4.95 1.00 0.95 0.00 0.05 0.95 0.95
50 200 5 5.00 0.83 0.11 0.00 5.02 5.00 0.98 1.00 0.00 0.00 0.93 0.96
50 200 5 10.00 0.83 0.11 0.00 5.02 5.00 0.98 1.00 0.00 0.00 0.93 0.96
50 200 5 20.00 0.83 0.11 0.00 5.02 5.00 0.98 1.00 0.00 0.00 0.93 0.96
50 400 5 5.00 0.83 0.11 0.00 5.05 5.00 0.95 1.00 0.95 1.00 0.91 0.96
50 400 5 10.00 0.83 0.11 0.00 5.05 5.00 0.95 1.00 0.95 1.00 0.91 0.96
50 400 5 20.00 0.83 0.11 0.00 5.05 5.00 0.95 1.00 0.95 1.00 0.91 0.96

100 100 5 5.00 0.81 0.12 0.02 5.36 5.00 0.64 1.00 0.64 1.00 0.63 0.98
100 100 5 10.00 0.78 0.12 0.06 5.79 5.00 0.28 1.00 0.28 1.00 0.28 0.98
100 100 5 20.00 0.69 0.12 0.17 6.81 5.00 0.00 1.00 0.00 1.00 0.01 0.97
100 200 5 5.00 0.81 0.13 0.02 5.67 5.00 0.33 1.00 0.33 1.00 0.32 0.98
100 200 5 10.00 0.78 0.13 0.06 5.91 5.00 0.19 1.00 0.19 1.00 0.19 0.98
100 200 5 20.00 0.69 0.13 0.17 7.13 5.00 0.00 1.00 0.00 1.00 0.00 0.98
100 400 5 5.00 0.81 0.13 0.02 5.88 5.00 0.12 1.00 0.12 1.00 0.12 0.98
100 400 5 10.00 0.78 0.13 0.06 5.90 5.00 0.17 1.00 0.17 1.00 0.16 0.98
100 400 5 20.00 0.69 0.13 0.18 7.15 5.00 0.00 1.00 0.00 1.00 0.00 0.98
50 100 5 5.00 0.81 0.10 0.02 5.32 4.92 0.68 0.92 0.00 0.08 0.65 0.95
50 100 5 10.00 0.78 0.10 0.06 5.69 4.89 0.36 0.90 0.00 0.10 0.35 0.95
50 100 5 20.00 0.69 0.10 0.17 6.39 4.83 0.02 0.83 0.00 0.17 0.04 0.94
50 200 5 5.00 0.81 0.11 0.02 5.42 4.99 0.59 0.99 0.00 0.01 0.57 0.95
50 200 5 10.00 0.78 0.11 0.06 5.71 4.99 0.36 0.99 0.00 0.01 0.35 0.95
50 200 5 20.00 0.69 0.11 0.17 6.58 4.98 0.03 0.98 0.00 0.02 0.04 0.94
50 400 5 5.00 0.81 0.11 0.02 5.54 5.00 0.49 1.00 0.00 0.00 0.47 0.95
50 400 5 10.00 0.78 0.11 0.06 5.71 5.00 0.36 1.00 0.00 0.00 0.35 0.95
50 400 5 20.00 0.69 0.11 0.17 6.66 5.00 0.03 1.00 0.00 0.00 0.04 0.94

Notes: Xit = F 0′
t Λ0

i+eit+sit, eit ∼ (0, 1), sit ∼ (0, ω2). Ft is r×1, r = 5. Let C0 = F 0Λ0′ = UrDrV
′
r .

Then r∗ =
∑r

j=1 1(
d2
i∑r

k=1 d
2
i
> γ) with γ = 0.05, Cr = var(C0)

var(X) , Cr = var(FrΛ′r)
var(X) , c(S) = var(S)

var(X) . The

column labeled ‘spanning’ is the R2 from a regression of the smallest factor on Ur.
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Table 2: DGP 2

parameters signal noise mean prob. = r prob. = r∗ spanning

N T r∗ ω Cr Cr c(S) r̂ r r̂ r r̂ r R̂2 R
2

100 100 3 1.00 0.67 0.02 0.00 3.94 3.00 0.00 0.00 0.06 1.00 0.07 0.95
100 100 3 0.75 0.67 0.01 0.00 3.95 3.00 0.00 0.00 0.05 1.00 0.05 0.95
100 100 3 0.50 0.67 0.01 0.00 3.97 3.00 0.00 0.00 0.03 1.00 0.04 0.95
100 200 3 1.00 0.67 0.02 0.00 4.01 3.00 0.01 0.00 0.00 1.00 0.00 0.95
100 200 3 0.75 0.67 0.01 0.00 4.00 3.00 0.00 0.00 0.00 1.00 0.00 0.95
100 200 3 0.50 0.67 0.01 0.00 4.00 3.00 0.00 0.00 0.00 1.00 0.00 0.95
100 400 3 1.00 0.67 0.02 0.00 4.26 3.00 0.26 0.00 0.00 1.00 0.00 0.95
100 400 3 0.75 0.67 0.01 0.00 4.00 3.00 0.00 0.00 0.00 1.00 0.00 0.95
100 400 3 0.50 0.67 0.01 0.00 4.00 3.00 0.00 0.00 0.00 1.00 0.00 0.95
50 100 3 1.00 0.67 0.02 0.00 3.55 2.57 0.00 0.00 0.45 0.57 0.41 0.93
50 100 3 0.75 0.67 0.01 0.00 3.60 2.62 0.00 0.00 0.40 0.62 0.37 0.93
50 100 3 0.50 0.67 0.01 0.00 3.64 2.66 0.00 0.00 0.36 0.66 0.33 0.93
50 200 3 1.00 0.67 0.02 0.00 3.95 2.97 0.00 0.00 0.06 0.97 0.06 0.91
50 200 3 0.75 0.67 0.01 0.00 3.96 2.98 0.00 0.00 0.04 0.98 0.04 0.91
50 200 3 0.50 0.67 0.01 0.00 3.97 2.98 0.00 0.00 0.03 0.98 0.04 0.91
50 400 3 1.00 0.67 0.02 0.00 4.00 3.00 0.00 0.00 0.01 1.00 0.01 0.91
50 400 3 0.75 0.67 0.01 0.00 4.00 3.00 0.00 0.00 0.01 1.00 0.01 0.91
50 400 3 0.50 0.67 0.01 0.00 4.00 3.00 0.00 0.00 0.00 1.00 0.01 0.91

100 100 3 1.00 0.60 0.02 0.11 4.81 2.93 0.81 0.00 0.00 0.93 0.01 0.93
100 100 3 0.75 0.59 0.01 0.11 4.84 2.95 0.84 0.00 0.00 0.95 0.01 0.93
100 100 3 0.50 0.59 0.01 0.11 4.86 2.96 0.86 0.00 0.00 0.96 0.01 0.93
100 200 3 1.00 0.60 0.02 0.11 5.01 3.00 0.99 0.00 0.00 1.00 0.01 0.93
100 200 3 0.75 0.59 0.01 0.11 5.00 3.01 1.00 0.00 0.00 0.99 0.01 0.93
100 200 3 0.50 0.59 0.01 0.11 5.00 3.01 1.00 0.00 0.00 0.99 0.01 0.93
100 400 3 1.00 0.60 0.02 0.11 5.21 3.10 0.80 0.00 0.00 0.90 0.00 0.84
100 400 3 0.75 0.59 0.01 0.11 5.00 3.12 1.00 0.00 0.00 0.88 0.00 0.83
100 400 3 0.50 0.59 0.01 0.11 5.00 3.13 1.00 0.00 0.00 0.87 0.00 0.82
50 100 3 1.00 0.60 0.02 0.11 4.18 2.27 0.34 0.00 0.16 0.27 0.16 0.94
50 100 3 0.75 0.59 0.01 0.11 4.23 2.31 0.38 0.00 0.15 0.31 0.15 0.93
50 100 3 0.50 0.59 0.01 0.11 4.28 2.34 0.41 0.00 0.13 0.34 0.14 0.93
50 200 3 1.00 0.60 0.02 0.11 4.82 2.83 0.82 0.00 0.01 0.83 0.02 0.89
50 200 3 0.75 0.59 0.01 0.11 4.84 2.86 0.84 0.00 0.01 0.86 0.02 0.89
50 200 3 0.50 0.59 0.01 0.11 4.86 2.87 0.86 0.00 0.01 0.87 0.02 0.89
50 400 3 1.00 0.60 0.02 0.11 4.97 2.97 0.96 0.00 0.00 0.97 0.01 0.89
50 400 3 0.75 0.59 0.01 0.11 4.96 2.98 0.97 0.00 0.00 0.98 0.01 0.89
50 400 3 0.50 0.59 0.01 0.11 4.97 2.98 0.97 0.00 0.00 0.98 0.01 0.89

Notes: X = C0 + e + s, eit ∼ (0, 1), sit ∼ (0, ω2), C0 = UrDrV
′
r , Dr = [1, .8, .5, .3, .2]. Then

r∗ =
∑r

j=1 1(
d2
i∑r

k=1 d
2
i
> γ) with γ = 0.05, Cr = var(C0)

var(X) , Cr = var(FrΛ′r)
var(X) , c(S) = var(S)

var(X) . The

column labeled ‘spanning’ is the R2 from a regression of the smallest factor on Ur.
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Appendix A

Linear Restrictions in matlab

The factor model is Xit = F1tΛi1 + F2tΛi2 + F3tΛi3 + eit. Consider the restrictions (i) (i) Λ12 = 0,

(ii)) Λ13 = 0, (iii) (v) Λ21 = Λ31. Given unrestricted estimates of the factor loadngs Lhatu, the

following returns the restricted loadings Lhatrv.

R.cmat{1}=zeros(N,r); R.cmat{1}(1,2)=1.0; R.phi{1}=0.0;

R.cmat{2}=zeros(N,r); R.cmat{2}(1,3)=1.0; R.phi{2}=0.0;

R.cmat{3}=zeros(N,r); R.cmat{3}(2,1)=1.0; R.cmat{3}(3,1)=-1;R.phi{3}=0.0;

Rvec=[];

phivec=[];

for j=1:length(R.cmat);

Rvec=[Rvec vec(R.cmat{j})];

phivec=[phivec; R.phi{j}];

end;

Rvec=Rvec’;

dum1=kron(inv(Fhat’*Fhat),eye(N));

dum2= Rvec*dum1*Rvec’;

adj=dum1*Rvec’*inv(dum2)*(Rvec*vec(Lhatu)-phivec);

Lhatrv=vec(Lhatu)-adj;

% one more iteration

L_u=Lhatu;

F_u=Fhat;

it=1; maxit=100; done=0;

while done==0 & it<=maxit;

dum1=kron(inv(F_u’*F_u),eye(N));

dum2= Rvec*dum1*Rvec’;

adj=dum1*Rvec’*inv(dum2)*(Rvec*vec(L_u)-phivec);

Lamrv=vec(L_u)-adj;

L_r=reshape(Lamrv,N,r);

F_r=X*L_r*inv(L_r’*L_r);

err1=norm(F_r’*F_r-F_u’*F_u,’fro’);

err2=norm(L_r’*L_r-L_u’*L_u,’fro’);

if err1+err2> 1e-8;

F_u=F_r;

L_u=L_r;

disp(sprintf(’%d %f %f ’,it,err1,err2));

it=it+1;

else;

disp(sprintf(’Converged: %d %f %f ’,it,err1,err2));

done=1;

end;

end;

disp(’Converged ’);

disp(’estimates: unrestricted restricted’);

disp([Lhatu Lhatr]);

disp([’Restricted LL FF’]);

disp([L_r’*L_r F_r’*F_r]);

for i=1:r;

c1=corr(Fhat(:,i),F_r(:,i));

c2=corr(Lhatu(:,i),L_r(:,i));

mymprint([c1 c2 ]);

end;


4.70 −1.13 0.89
1.21 0.77 2.41
−3.67 0.05 1.73
−1.27 −3.71 0.45

0.16 −0.81 −0.93




4.70 0.00 0.00
−1.23 0.77 2.41
−1.23 0.05 1.73
−1.27 −3.71 0.45

0.16 −0.81 −0.93


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Appendix B

Proof of Lemma 1. Proof of part (i).

H̃NT = (Λ0′Λ0/N)(F 0′F̃ /T )D−2
r

By the fact that D2
r is the matrix of eigenvalues of XX′

NT associated with the eigenvectors F̃ (and

noting the normalization F̃ ′F̃ = TIr, we have F̃ ′(XX
′

NT )F̃ = TD2
r . Substituting X = F 0Λ0′ + e into

the above, we have

D2
r = (F̃ ′F 0/T )(Λ0′Λ0/N)(F 0′F̃ /T ) +

1

T
F̃ ′ee′F̃ /(NT ).

Since the second term is op(1), we can substitute D−2
r = (F 0′F̃ /T )−1(Λ0′Λ0/N)−1(F̃ ′F 0/T )−1 +

op(1) into H̃NT to give

H̃NT = (F̃ ′F 0/T )−1 + op(1).

Denote

H̃1,NT = (Λ0′Λ0/N)(Λ̃′Λ0/N)−1

Left and right multiplying X = F 0Λ0′ + e by F̃ ′ and Λ0 respectively, dividing by NT , and using

Λ̃ = F̃ ′X/T , we obtain

Λ̃′Λ0

N
=
F̃ ′F 0

T

Λ0′Λ0

N
+ op(1).

Substituting
(

Λ̃′Λ0

N

)−1
=
(

Λ0′Λ0

N

)−1(
F̃ ′F 0

T

)−1
+ op(1) into H̃1,NT , we obtain

H̃1,NT =
( F̃ ′F 0

T

)−1
+ op(1).

Thus H̃NT and H̃1,NT have the same asymptotic expression. This proves part (i).

Proof of part (ii). The proof of part (i) shows that

(Λ0′Λ0/N)(Λ̃′Λ0/N)−1 = (F̃ ′F 0/T )−1 + op(1)

Take transpose and inverse, we have

F 0′F̃ /T = (Λ0′Λ0/N)−1(Λ0′Λ̃/N) + op(1)

Substitute this expression into the original definition of H̃NT , we have

H̃NT = (Λ0′Λ̃/N)D−2
r + op(1)

Now left multiply the equation X = F 0Λ0′ + e by F 0′ and right multiply it by Λ̃, divide by NT ,

we obtain

F 0′XΛ̃/(NT ) = (F 0′F 0/T )(Λ0′Λ̃/N) + F 0′eΛ̃/(NT )
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But

XΛ̃ = XΛ̃(Λ̃′Λ̃)−1(Λ̃′Λ̃) = F̃ (Λ̃′Λ̃) = F̃D2
rN

Thus we have

(F 0′F̃ /T )D2
r = (F 0′F 0/T )(Λ0′Λ̃/N) + op(1)

Equivalently,

(F 0′F 0/T )−1(F 0′F̃ /T ) = (Λ0′Λ̃/N)D−2
r + op(1)

But the left hand side is equal to H̃NT + op(1). This completes the proof of (ii).

Analogously, Ĥ1,NT = ĤNT + op(1) and Ĥ2,NT = ĤNT + op(1). Consider the first claim. From

Λ̂ = Λ̃D
−1/2
r , we have

(Λ0′Λ0)(Λ̂′Λ0)−1 = (Λ0′Λ0)(Λ̃′Λ0)−1D1/2
r = H̃NTD

1/2
r + op(1) = ĤNT + op(1)

the second equality uses Lemma 1(i), and the last equality uses the definition of ĤNT . The proof

of for the second claim is similar by using F̂ = F̃D
1/2
r .

Proof of (17).

Λi = ∆NT Λ̂i

= ∆NT (Λ̂i − Ĥ−1
NTΛ0

i + Ĥ−1
NTΛ0

i )

= ∆NT (Λ̂i − Ĥ−1
NTΛ0

i ) + ∆NT Ĥ
−1
NTΛ0

i

= ∆NT (Λ̂i − Ĥ−1
NTΛ0

i ) + ∆2
NT (H

γ
NT )−1Λ0

i

Moving the second term to the left hand side, we obtain (17).

Proof of Proposition 3. The estimator by direction calculations is given by

vec(Λγ,∞) = vec(Λγ,0)−∆(γ, φ)

where ∆(γ, φ) = ((F+⊗ IN )′(F+⊗ IN ))−1R′
[
R
(

(F+⊗ IN )′(F+⊗ IN )
)−1

R′
]−1(

R vec(Λγ,0)−φ
)
.

But (
(F+ ⊗ IN )′(F+ ⊗ IN )

)−1

R′ =
(

(F ′F + γIr)
−1 ⊗ IN

)
R′

R

[
(F+ ⊗ IN )′(F+ ⊗ IN )

]−1

R′ = R
[
(F ′F + γIr)

−1 ⊗ IN
]
R′.

Hence

∆(γ, φ) = [(F ′F + γIr)
−1 ⊗ IN ]R′ ·

[
R[(F ′F + γIr)

−1 ⊗ IN ]R′
]−1(

R vec(Λγ,0)− φ
)
.
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Proof of (26a) and (26b). With τ = 0, the objective function becomes

‖Z − FΛ′‖2F + γ1‖F‖2F + γ2‖Λ‖2F

Consider a change of variables F = (γ2/γ1)1/4F̈ and Λ = (γ1/γ2)1/4Λ̈. Then the objective function

can be rewritten as

‖Z − F̈ Λ̈′‖2F +
√
γ1γ2‖F̈‖2F +

√
γ1γ2‖Λ̈‖2F

This is an objective function with equal weights, we know the optimal solution is

F̈ = Ur[(Dr −
√
γ1γ2Ir)+]1/2, Λ̈ = Vr[(Dr −

√
γ1γ2Ir)+]1/2

In terms of the original variables, the optimal solution is

F = (γ2/γ1)1/4Ur[(Dr −
√
γ1γ2Ir)+]1/2, Λ = (γ2/γ1)1/4Vr[(Dr −

√
γ1γ2Ir)+]1/2

This gives (26a) and (26b).
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