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1 Introduction

Monetary authorities seem to hold a long standing view that commodity prices have in�ationary

consequences and thus the ability to predict future commodity price movements can be important

for the time path of economic policies. As the Federal Reserve Chairman Ben Bernanke remarked,

Rapidly rising prices for globally traded commodities have been the major source of the

relatively high rates of in�ation we have experienced in recent years, underscoring the

importance for policy of both forecasting commodity price changes and understanding

the factors that drive those changes (Speech at the FRB of Boston, June 9, 2008).

In spite of the general view that commodity price movements have in�ation implications, the for-

mal link between in�ation and commodity prices is not thoroughly understood. Some argue that

commodity prices are leading indicators of in�ation because they respond more quickly to gen-

eral economic conditions. Others believe that idiosyncratic movements in commodity prices work

through the distribution channel and subsequently a¤ect prices in general. While both explanations

are plausible, the magnitude of the commodity price e¤ect on in�ation must necessarily depend on

what triggers changes in commodity prices. In particular, commodity prices can change as a result

of transactions, speculative, or precautionary demand, and each of these demand components can

have a di¤erent impact on in�ation.

At the empirical level, the price of oil and various aggregate commodity price indices have been

found to improve the in�ation forecasts upon a simple autoregressive (AR) benchmark for certain

countries and periods. However, the evidence is far from robust. Hooker (2002) �nds a statistically

signi�cant impact of oil prices on core U.S. in�ation only over the period 1962-1980 but not for

the post 1981 period. Several other studies also report an improved ability of commodity prices

for forecasting in�ation until the mid 1980s but a substantial deterioration in the predictive power

of commodity prices from 1985 onwards.1 Stock and Watson (2003) show that these forecasting

improvements are sporadic and unstable. The problem is partly that commodity prices tend to be

volatile and are themselves di¢ cult to forecast.

This paper develops a framework for analyzing commodity prices and in�ation. We use data on

commodity price futures in the form of convenience yields. While the evidence on the predictive

power of futures prices for commodity and general price movements is somewhat mixed, there is

a perception that commodity futures prices contain �...substantial amount of information about

the supply and demand conditions that are aggregated by futures markets�(Bernanke, 2008). Our

empirical approach is unique in that we extract information from a panel convenience yields via

1See Blomberg and Harris (1995), Furlong and Ingenito (1996), among others.
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principal components. These principal components in convenience yields have strong and system-

atic predictive power for commodity price changes and in�ation rates of the U.S. and other G-7

countries. The results hold up even when interest rate, trade-weighted exchange rate, demand pres-

sure variables (such as unemployment gap) and oil price are controlled for. In contrast, the IMF

aggregate commodity index has little predictive power for in�ation. We attribute this �nding to the

ability of the principal components in convenience yields to isolate those variations in commodity

prices that have in�ationary consequences.

The rest of the paper proceeds as follows. Section 2 establishes a relationship between commod-

ity prices and convenience yields from which a relation between in�ation and convenience yields

is obtained. The data and the construction of principal components are discussed in Section 3.

Section 4 presents a bootstrap procedure to assess the sampling error from using principal compo-

nents as regressors. Predictive regressions and out-of-sample forecasts of in�ation for U.S. and the

other G-7 countries are presented in Section 5. The relation of convenience yields with individual

commodity prices and the IMF commodity price index is studied in Section 6. Supplementary

results are provided in an appendix available on the authors�websites.

2 The Determination of Commodity Prices and In�ation

Commodities share similar characteristics with money in that they can be held for everyday use, can

be stored, and can be used as an asset. It is thus useful to think of the demand for commodities as

arising from one of three sources: (i) a component tied to current consumption and production; (ii) a

precautionary demand component that re�ects future needs, and (iii) an asset demand component

that depends on its risk over the holding period relative to its potential for capital gains. As

discussed in Deaton and Laroque (1992), the market clearing price for commodities is a function of

the availability (new production plus inventories) relative to expected total demand (current plus

precautionary plus asset demand).

2.1 A Model for Commodity Prices and In�ation

Let Sjt and Fjt;n denote the spot and futures price of commodity j for delivery at time t + n.

Also, let it;n be the nominal interest earned between period t and t + n. De�ne the basis to be

the di¤erence between the futures and the spot price, Fjt;n � Sjt. In the speculative storage model
of commodities, inventories are held only if the expected returns are positive. Thus, Sjt and Fjt;n

are both functions of the level of inventories. Kaldor (1939) posits that negative basis Fjt;n � Sjt

consists of two components: (i) an opportunity cost of forgone interest from having to borrow and

buy the commodity, and (ii) a (net of insurance and storage costs) convenience yield CYjt;n. With

the convention that CYjt;0 = 0, Fama and French (1987) formalize the relation between convenience
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yields and the basis as:

Fjt;n � Sjt = Sjtit;n � CYjt;n: (1)

Kaldor (1939) uses the convenience yield to re�ect the bene�t from using the stored commodity

whenever desired. However, in Pindyck�s (1993) model of rational commodity pricing, convenience

yields play the role of dividends that anticipate future changes in spot commodity prices. When the

timing or the level of consumption is stochastic, holding commodity inventories acts as an insurance

against unexpected price movements or demand shifts.2 Thus, the convenience yield CYjt;n is a

forward looking variable that contains information not exclusive to future demands. The negative

of CYjt;n is also referred to in the �nance literature as interest-adjusted basis (Fama and French,

1988). Although CYjt;n is unobserved, it can be computed from the observed spot price, futures

price and interest rate using (1). If the spot price is approximated by the price of the nearest

futures contract, the basis has the form of a futures price spread.

An alternative view of the basis is provided by the theory of normal backwardation according

to which risk averse investors earn a risk premium for the �uctuations in the future spot price. The

basis is then comprised of a risk premium component 	jt;n � EtSjt+n�Fjt;n and an expected price
change component EtSjt+n � Sjt so that

Fjt;n � Sjt = EtSjt+n � Sjt �	jt;n: (2)

When 	jt;n is positive, futures price is backwardated (at a discount). In the storage model, low

inventory leads to low basis and subsequently to low returns on owning the commodity.

Whereas equation (1) implicitly de�nes the convenience yield, equation (2) implicitly de�nes

the risk premium. Together, (1) and (2) imply

EtSjt+n � Sjt = Sjtit � CYjt;n +	jt;n:

Let cyjt;n = CYjt;n=Sjt,  jt;n = 	jt;n=Sjt, and Et�
nsjt+n = (EtSjt+n � Sjt)=Sjt. Then,

Et�
nsjt+n = it;n +  jt;n � cyjt;n: (3)

According to equation (3), the expected percentage change in commodity prices have three

components: (i) a component it;n related to the opportunity cost of buying and holding inventories,

(ii) a risk premium component  jt;n, and (iii) an expected marginal convenience yield component

cyjt;n. The intuition for the inverse relationship between the expected commodity price changes and

convenience yield is provided by Fama and French (1988), who suggest that a permanent increase

2Gorton, Hayashi and Rouwenhorst (2007) provide empirical evidence that convenience yields are a decreasing
and possibly nonlinear function of inventories. Alquist and Kilian (2010) show that shifts in uncertainty about
future excess demand are re�ected in the �uctuations of oil, which are in turn correlated with �uctuations in the
precautionary demand component of the real spot price of oil.
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in the current and future commodity demand has di¤erential impact on current and expected spot

prices. In particular, current spot prices should increase more than expected spot prices, especially

at low inventory levels because the demand and supply responses of consumers and producers tend

to partially o¤set the e¤ect of the shock on expected prices. As a consequence, higher convenience

yields and lower inventory levels are associated with lower expected spot prices.

The three components in (3) are not mutually uncorrelated as (1) and (2) are alternative

decompositions of the basis. It is useful to de�ne

�jt;n =  jt;n � Proj( jt;njit;n; cyjt;n)

to be the component of  jt;n that is orthogonal to the interest rate and the convenience yield.

Equation (3) can be represented as

Et�
nsjt+n = �j1cyjt;n + �j2it;n + �jt;n: (4)

Because �j1 and �j2 are now �reduced form�coe¢ cients, they are not constrained to the parameter

values implied by equation (3).

To link the determinants of commodity prices to in�ation, let Pt denote the economy�s general

price index and let qjt be de�ned as the real price of commodity j in the currency of country k

relative to its equilibrium. In particular, qjt = ~qjt�q�jt, where ~qjt = Sjt=Pt and q�jt is the equilibrium

value of ~qjt. Assuming that real commodity prices are mean reverting as in Frankel (2006), we can

write the n-period expected in�ation rate Et�npt+n = (EtPt+n � Pt)=Pt as

Et�
npt+n = �jqjt + Et�

nsjt+n

for some �j < 0. Substituting the expression for Et�nsjt+n in (4) yields the in�ation equation

Et�
npt+n = �jqjt + �j1cyjt;n + �j2it;n + �jt;n: (5)

If �j1 = ��j2 = �1, rearranging terms would imply that the disequilibrium in real commodity

price qjt is inversely proportional to the real carrying cost, which equals the real interest rate minus

the net convenience yield.

For open economies, Frankel (2006) suggests that a monetary expansion in country k will lead

to a lower interest rate, causing commodity prices in local currencies to rise until an expected

depreciation restores equilibrium. Chen, Rogo¤ and Rossi (2010) �nd that exchange rates forecast

commodity prices. This motivates the open economy analog of (4):

Et�
nsjt+n = �j1cyjt;n + �j2ijt;n + �j3�

nxkt + �jt;n; (6)
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where xkt denotes the nominal exchange rate between the U.S. and country k. The corresponding

in�ation equation is then given by

Et�
npt+n = �jqjt + �j1cyjt;n + �j2it;n + �j3�

nxkt + �jt;n: (7)

In this model for in�ation, cyjt;n is commodity speci�c by de�nition, and there is an exchange

rate with every trading partner. Because of the heterogeneous nature of the commodities, one can

expect the e¤ects of an aggregate measure of commodity prices on in�ation to be di¤erent than

those of the individual commodity prices. Indeed, Mishkin (1990) notes that individual convenience

yields (or basis) are too noisy to be useful predictors.

Let cyt denote an aggregate measure of convenience yields and qt be an aggregate measure of

disequilibrium real commodity price. Also, let xt be a (trade-weighted) average of exchange rates.

The aggregate analog of equation (7) is

Et�
npt+n = �qt + �1cyt + �2it;n + �3�

nxt + �t;n: (8)

This open-economy, commodity-based in�ation model (8) posits that the expected n-period ahead

in�ation is a function of the aggregate disequilibrium in real commodity prices, aggregate conve-

nience yield, interest and exchange rates. Note that the use of aggregate convenience yield for

predicting in�ation is new and has not been previously explored in the literature. In the analysis to

follow, we view convenience yields as an informational variable that re�ects future economic con-

ditions as perceived by the commodity market participants. However, we are agnostic about the

structural sources of variations in convenience yields, which could be due to production, hedging,

and speculative demand for commodities.

3 Data

This section discusses the data that will be used in the empirical work. The daily commodity price

data are obtained from the Commodity Research Bureau and are available at daily frequency for the

period March 1983 to July 2008. The data set contains spot and futures prices of 23 commodities

from 6 commodity groups: energy (crude oil, heating oil), foodstu¤s (cocoa, co¤ee, orange juice,

sugar), grains and oilseeds (canola, corn, oats, soybeans, soybean oil, wheat), industrials (cotton,

lumber), livestock and meats (cattle feeder, cattle live, hogs lean, pork bellies) and metals (copper,

gold, palladium, platinum, silver). This particular choice of a cross section of commodity prices

and time period is dictated by data availability. The spot price is approximated by the price of

the nearest futures contract and the futures price is the price of the next to the nearest futures

contract. The time separating the nearest and next to the nearest futures contracts typically di¤ers

across commodities and may not be equally spaced over the course of the year. As a result, we do
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not match exactly the contract maturities with the forecast horizon. Longer contracts are not used

due to lack of continuous and liquid record of the corresponding maturity futures prices over our

sampling period.

As consumer price data are observed at no higher than monthly frequency, monthly commodity

price series are constructed from daily data by averaging the daily prices in the corresponding

month. The real commodity prices qjt are obtained by de�ating the spot prices by the U.S. CPI

(seasonally adjusted) index obtained from the Bureau of Labor Statistics (BLS). The 3-month U.S.

T-bill rate and the exchange rate data (U.S. dollar trade-weighted index against major currencies)

are from the Federal Reserve Economic Database FRED R
. We use the IMF commodity non-fuel
price index to approximate the aggregate behavior of commodity spot prices.3 The detrended real

commodity price qjt is obtained as deviations from the Hodrick-Prescott (HP) trend estimate. The

smoothing parameter for the HP �lter is set to its default value for monthly data of 14,400. Results

based on data detrended by a one-sided exponentially weighted moving average �lter are similar.

As noted earlier, convenience yield is a forward looking variable. We proxy this forward looking

information using data on commodity price futures. Speci�cally, the percentage net convenience

yield for commodity j is computed as

cyjt;n =
(1 + it;n)Sjt � Fjt;n

Sjt
; (9)

using the three-month U.S. Treasury bill as it;n, adjusted for the time that separates the two

futures contracts. Note that while commodity spot and futures prices may be volatile and subject

to occasional spikes, the convenience yield (being the di¤erence between the two series) should be

less noisy. Furthermore, the data for spot and future prices tend to be highly persistent and possibly

non-stationary, while convenience yields exhibit milder persistence. Using convenience yields in the

empirical work also sidesteps inference issues that may arise when regressors are non-stationary.

To conserve space, we only highlight a few key features of the data.4 The convenience yields

are persistent, with most of the �rst-order autocorrelation coe¢ cients around 0.8, the largest being

0.936 for co¤ee. The detrended real commodity prices qjt are also persistent with autocorrelation

coe¢ cients between 0.743 and 0.912. Surprisingly, the qjt series in the food group are more volatile

than the real price of crude and heating oil. The convenience yields of precious metals such as

gold and silver have variances that are orders of magnitude smaller than those for the other com-

modities. The convenience yields of sugar, oats, hogs, pork bellies and industrials appear to be

most volatile. Fama and French (1987) suggest that the di¤erences in the variability of convenience

yields could arise from di¤erent seasonal variations and adjustments to demand and supply shocks.

3The data for CPI, interest and exchange rates, and commodity price index can be downloaded from
http://research.stlouisfed.org/fred2/ and http://www.imf.org/external/np/res/commod/index.asp.

4We refer the reader to the web appendix for full details.
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The summary statistics in the web appendix also reveal that the grains/oilseeds are typically in

contango, with prob(cyjt;n > 0) < 0:5. In contrast, livestock/meats and metals (except for silver)

are most of the time in backwardation, with prob(cyjt;n > 0) � 0:5.

3.1 Constructing cyt and qt by Principal Components

Our basic premise is that convenience yields contain information about commodity prices, and

commodity prices anticipate in�ation. The in�ation model presented in Section 2 uses aggregate

measures of commodity prices and convenience yields as predictors, but leaves open the question

how the aggregate measures are to be constructed. Boughton and Branson (1991) suggest that an

aggregate measure of commodity prices would not predict in�ation if idiosyncratic supply shocks

are not accommodated by the monetary authorities. They conjecture that future in�ation may be

better predicted by commodity prices which are driven primarily by demand shocks. Kilian (2009)

suggests that the macroeconomic e¤ects of oil price shocks depend on the source of the shock.

However, isolating the variations in commodity prices that have pure in�ationary consequences is

not a trivial exercise.

Hong and Yogo (2009) �nd that a simple average of the individual convenience yields helps to

predict commodity prices although it is uncorrelated with future stock and bond returns, as well as

short term interest rate, yields spread, and dividend yield. They attribute the predictive power of

the aggregate convenience yield across commodity groups to its ability to pick up di¤erent types of

shocks. To some extent, we share this view though our focus here is in�ation and not commodity

price forecasts.

We extract principal components from our panel of 23 convenience yields. Similarly, principal

components are extracted from 23 detrended real commodity prices. We denote these by pccyt and

pcqt, respectively. Prior to the computation of the principal components, the variables cyjt;n and

qjt are standardized. In brief, the �rst r principal components of the convenience yields are the

eigenvectors corresponding to the largest eigenvalues of the N�N matrix (NT )�1cy0ncyn, where cyn

is a T �N matrix of convenience yields, with N = 23. By construction, these principal components

are mutually orthogonal but are unique only up to a column sign change.5

The principal components are linear combinations of the individual series constructed to best

explain the total variation in the data. We use them as a statistical tool to extract the most

important information in convenience yields without insisting on the presence of a factor structure.

If convenience yields are indeed driven by latent common factors, then the principal components

consistently estimate the space spanned by the common factors as the number of commodities

5While the signs of the principal components can be set to be consistent with a micro-founded model of commodity
prices and in�ation, (4) and (5) are reduced form models.
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tends to in�nity. Pindyck and Rotemberg (1990) �nd excess co-movement in commodity prices,

while Tang and Xiong (2009) show that commodity prices have been increasingly exposed to macro

shocks; a factor representation of commodity prices is defensible though this is not crucial to the

analysis.

The �rst two principal components pccyt = (pccy
(1)
t ; pccy

(2)
t )

0 explain 23% of the variance in

convenience yields, computed as a ratio of the sum of the �rst two eigenvalues to the sum of all

eigenvalues. There is little evidence that additional principal components are needed in the predic-

tive regressions considered. Both pccy(1)t and pccy(2)t are persistent with �rst-order autocorrelation

coe¢ cients of 0.93 and 0.81, respectively. The two principal components for disequilibrium com-

modity prices pcqt = (pcq
(1)
t ; pcq

(2)
t )

0 explain about 31% of the variance in the panel of data on

qjt. The �rst-order autocorrelation coe¢ cients for the two principal components are 0.90 and 0.88,

respectively.

In results presented in the web appendix, we �nd that the �rst element of pccyt loads heavily on

corn, co¤ee, cotton, wheat and crude oil while the second principal component is highly correlated

with some metals (silver, copper) as well as soybeans, cocoa and heating oil. The �rst element of

pcqt is closely associated with the commodity group of grains and oilseeds, while its second element

captures the price variation of the metals group. These principal components have dynamics that

are distinct from those of the energy commodities.

4 Bootstrap Inference with Principal Components as Regressors

This section proposes a bootstrap method that can account for the fact that the principal com-

ponents are generated regressors, as well as small sample distortions that may arise from time

series estimation of predictive regressions. Several bootstrap procedures for factor models have

been suggested (without a proof of their asymptotic validity) for idiosyncratic errors that are iid

across units and over time, which is too restrictive for the data being analyzed. As well, we want

to allow for but do not want to impose a factor structure on the data. In other words, we want

to leave open the possibility that the principal components are simply weighted averages of the

individual convenience yields, which are meaningful predictors in their own right. Given these con-

siderations, a bootstrap procedure for estimation using principal components as predictors seems

more appropriate.

Let x be a generic N � T data matrix, where xit (i = 1; :::; N; t = 1; :::; T ) denotes the ith

observed series at time t; N is the total number of variables (convenience yields, detrended real

commodity prices) and T is the number of time series observations. The �rst r principal components

of matrix x; denoted by pcxt, are the eigenvectors corresponding to the largest eigenvalues of the

N �N matrix (NT )�1xx0.

8



Our interest lies in conducting statistical inference in the predictive regression

yt+h = �0pcxt + 

0wt + "t+h;

where wt denotes a p � 1 vector of other observable predictors (interest rate, exchange rate, real
oil price) as well as deterministic terms and lag values of yt; and the errors "t+h are possibly

autocorrelated and heteroskedastic. The predictive regression is estimated by OLS and the infer-

ence procedure on the estimated parameters should potentially take into account that pcxt are

�generated�regressors.

Under suitable regularity conditions (Bai and Ng, 2006), the OLS estimator (�̂
0
; 
̂0)0 is root-

T consistent and asymptotically normal. Furthermore, the presence of generated predictors pcxt

does not require any adjustments to the standard errors of the parameter estimates provided that
p
T=N ! 0: Unfortunately, in our analysis the cross-sectional dimension N is relatively small and

the regularity conditions of Bai and Ng (2006) may not hold. As a result, we resort to bootstrap

methods for inference that account for uncertainty associated with the estimation of principal

components. Our proposed bootstrap algorithm is based on a moving block resampling of the

original data.

More speci�cally, we stack the data from both stages, x1t, .., xNt, yt+h and wjt; j = 1; :::; p,

(after truncating the last h observations of xit); into the matrix

Z =

266664
x11 ::: xN1 yh+1 w11 ::: wp1
x12 ::: xN2 yh+2 w12 ::: wp2
::: ::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: ::: :::

x1(T�h) ::: xN(T�h) yT w1(T�h) ::: wp(T�h)

377775 :
The bootstrap samples (x�1t; :::; x

�
Nt; y

�
t+h; w

�
1t; :::; w

�
pt) for t = 1; :::; T � h are then obtained by

drawing with replacement blocks of m = mT 2 N (1 � m < T ) observations from matrix Z. This

ensures that the bootstrap samples preserve possible model misspeci�cation, serial correlation,

heteroskedasticity and cross-sectional dependence in the data: The block size m is allowed to grow,

but at a slower rate, with the time series dimension T .

Let zt be the tth row of the data matrix Z above. Also, let Bt;m = (zt; zt+1; :::; zt+m�1) denote

a block of m consecutive observations of zt; k = [T=m], where [a] signi�es the largest integer

that is less than or equal to a, and T = km. We resample with replacement k blocks from

(B1;m; B2;m; :::; BT�m+1;m) by drawing k iid uniform random variables [u1]; :::; [uk] on (1; k + 1):

Then, the bootstrap sample is given by Z� = [(z�1 ; z
�
2 ; :::; z

�
m); (z

�
m+1; z

�
m+2; :::; z

�
2m); :::; (z

�
T�m;

z�
T�m+1; :::; z

�
T
)] = (B[u1];m; B[u2];m; :::; B[uk];m):

For each bootstrap sample fx�itg (i = 1; :::; N; t = 1; :::; T ), the r principal components (denoted
by pcx�t ) are re-estimated as the largest eigenvalues of the N �N matrix (NT )�1x�x�0. These are
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plugged into the predictive regression for the bootstrap data

y�t+h = �̂
0
pcx�t + 
̂

�0w�t + "̂
�
t+h;

where �̂
�
and 
̂� are OLS estimates.

Let �̂l (l = 1; :::; r) denote the estimated coe¢ cient on the lth principal component from the

observed sample and �̂
�
l;j be the estimated coe¢ cient from the j

th bootstrap sample with correspond-

ing standard errors s:e:(�̂l) and s:e:(�̂
�
l;j) computed using a heteroskedasticity and autocorrelation

consistent (HAC) estimator. Due to the sign indeterminacy of the principal components, we set

the sign of pcx�t to be consistent with the dynamics of pcxt estimated from the original sample.

We then construct the sequence t��l;j = (�̂
�
l;j � �̂l)=s:e:(�̂

�
l;j); sort it in ascending order and let v

�
�

and v�(1��) denote the �
th and (1��)th elements of the sorted sequence for a pre-speci�ed nominal

level �. The 100(1� �)% equal-tailed percentile-t bootstrap con�dence interval for �l is obtained

as [�̂l � s:e:(�̂l)v
�
(1��=2); �̂l � s:e:(�̂l)v

�
�=2]: In addition to better approximating the small-sample

distribution of �̂l, these bootstrap con�dence intervals take into account the estimation uncertainty

for the generated regressors (principal components). Con�dence intervals for the remaining coef-

�cients are obtained in a similar manner. Note that this bootstrap procedure allows for possible

asymmetry in the �nite-sample distribution of the parameter of interest. In the empirical analysis,

we set m = 4 although the results are similar for other values of m in the range m 2 [4; 24]. The
number of bootstrap replication B is 4,999.

Since this inference procedure is used for both the aggregate commodity price and in�ation

equations, in the empirical analysis we stack the two dependent variables, 4hst+h and 4hpt+h,

along with all regressors in the matrix Z which is resampled as described above. We then select

the appropriate columns of the bootstrap matrix Z� to conduct the principal component analysis

and estimate the corresponding predictive regressions. Some Monte Carlo simulation results on the

coverage rates of the proposed bootstrap con�dence intervals are presented in the web appendix.

5 Convenience Yields as Predictors of In�ation

This section analyzes the predictive ability of convenience yields for the in�ation rates in the U.S.

and the other G-7 countries. We also report out-of-sample forecast results.

5.1 Results for the U.S.

In�ation is a notoriously challenging series to forecast, and it is not easy to �nd predictors that have

systematic predictive power when augmented to an univariate autoregression. Stock and Watson

(2007) �nd that an unobserved components model is often better at forecasting quarterly in�ation as

measured by the GDP de�ator than models that explicitly use observed predictors. The unobserved
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components model implies that �pt+1 ��pt has a negative moving average component. However,
Stock and Watson (2007) also report that the unobserved components model is less appropriate

for quarterly in�ation as measured by the (all items) CPI. Given that the commodity price data

are daily, our empirical exercise focuses on forecasting monthly CPI in�ation. We consider six

measures of in�ation based on: (i) CPI all items, (ii) CPI less food and energy, (iii) CPI less food,

(iv) CPI less energy, (v) CPI food only (vi) CPI energy only. The CPI series, taken from the BLS,

are seasonally adjusted. Since it is widely documented that U.S. in�ation is persistent, we start

with an AR model for in�ation and ask what variables have additional predictive power beyond

lags of in�ation. We also vary the prediction horizon, denoted by h, which may di¤er from the

futures contract maturity n.

According to the model given in Section 2, in�ation should be predicted by disequilibrium in

commodity prices which are related to convenience yields. Our predictive equation for h-period

in�ation �hpt+h = (Pt+h � Pt)=Pt is:

4hpt+h = b+ �0(L)4 pt + �1(L)
0pccyt + �2(L)

0pcqt + �3(L)zt + vt+h: (10)

In the base case, zt is empty. The Akaike information criterion (AIC) suggests that �1(L) = �1;

�2(L) = �2; and �0(L) is a second-order polynomial in the lag operator. This lag order is used for

all in-sample in�ation models and for all forecast horizons. Any remaining serial correlation, such

as serial correlation induced by overlapping data, is accounted for by computing HAC standard

errors.6 The optimal lag length will likely vary across models and forecast horizons. However, the

goal of these regressions is to assess which predictors are relevant, and imposing a common lag

length simpli�es the presentation of results. Optimal lags will be used in the subsequent out-of-

sample forecasting analysis.

Table 1 presents the parameter estimates from model (10) with h = 1; 3; 6 and 12, along with

their corresponding 90% bootstrap con�dence intervals. The statistically signi�cant coe¢ cients at

10% level are reported in bold font. The second principal components of convenience yields pccy(2)t
and real commodity prices pcq(2)t tend to be strongly signi�cant at short horizons. Furthermore,

pccy
(2)
t remains signi�cant at longer horizons. We attribute the signi�cance of pccy(2)t to the fact

that the principal components isolate those variations common across individual convenience yields

and real commodity prices that are relevant for predicting in�ation. Further investigation reported

in the web appendix reveals that of the 23 convenience yields cyjt;n, the estimated coe¢ cients of

cocoa, orange juice and copper are signi�cantly positive, while the estimated coe¢ cients of oats,

soybeans and silver are signi�cantly negative. The e¤ects of the other cyjt;n on in�ation are not

statistically signi�cant.

6We use Newey-West HAC standard errors with an automatic bandwidth selection.
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In the more general speci�cations, we let zt be the detrended real price of crude oil, and

other determinants (interest rate it and the log change of the trade-weighted USD exchange rate

index �xt) of commodity price movements. As in the baseline speci�cation, pccy
(2)
t appears to

contain important information for predicting in�ation at all forecasting horizons. The real oil price

possesses incremental explanatory power and captures some sharp movements in the in�ation rate

for all goods and services. While the interest rate is insigni�cant in a model with only autoregressive

dynamics, it is signi�cant in the augmented predictive regression. However, exchange rate is not

signi�cant at all horizons. Table 2 reports results using other measures of in�ation. As expected,

the detrended real oil price has predictive power for in�ation of CPI energy. It also helps predict the

in�ation of CPI less food. However, pccyt continues to predict other in�ation measures especially

those based on the CPI less food and energy, and CPI less energy.

Recall that the purpose of our new bootstrap procedure is to control for sampling uncertainty

associated with the estimated principal components, and to better approximate the �nite-sample

distribution of the t test. The equal-tailed percentile-t bootstrap method also accounts for the

skewness and miscentering in the �nite-sample distribution of the parameter that arise from possible

estimation bias. Bootstrap test statistics tend to be more conservative than asymptotic inference,

rendering the coe¢ cients less signi�cant or even insigni�cant. In spite of these stringent hurdles,

the estimates on pccy(2)t are still found statistically signi�cant.

Given the popularity of the Phillips curve as a forecasting equation for in�ation, we include in our

augmented model of in�ation the variable ut� u� proxied by the deviations of U.S. unemployment
rate (produced by the BLS) from its HP trend. The estimated coe¢ cients on this variable are

reported in Table 1 and are insigni�cant at all forecast horizons. We note that ut�u� is signi�cant
in the simple version of the Phillips curve that excludes pccyt. This suggests that pccyt captures

information about the economy that is typically re�ected in the output gap.

Our analysis has so far focused on aggregate measures of convenience yields constructed as

principal components of cyjt;n of all commodities. To investigate if alternative ways of aggregating

information are as e¤ective, we compute simple averages of convenience yields for each of the six

commodity groups: food, grains, industrials, meats, metals and energy. These cy(j)t for j = 1; :::; 6

are added as predictors in the in�ation model that contains two lags of in�ation, change in the

IMF commodity index �sIMF
t , pccy(1)t and pccy(2)t : The results in Table 3 show that the average

convenience yields for grains and especially for energy exhibit incremental predictive ability but

did not render pccyt irrelevant. On the other hand, the changes in aggregate commodity prices

are insigni�cant at all horizons, in line with the weak forecasting power in commodity prices for

in�ation found in the literature.

We also consider a regression of in�ation on only �sIMF
t and two lags of in�ation. The last
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row of Table 3 shows that the adjusted R2 for this regression is low for h � 3, with most of the

predictive power actually coming from lagged in�ation. However, replacing �sIMF
t by pccyt and cyt

increases the adjusted R2 substantially, reinforcing our thesis that it is the aggregate convenience

yield component of commodity prices that has strong predictive power for in�ation.

5.2 Out-of-Sample Forecast Performance

The foregoing results indicate that the principal components in convenience yields are statistically

signi�cant in-sample predictors. We now evaluate the pseudo out-of-sample predictive power of

convenience yields for U.S. in�ation.

We consider a recursive out-of-sample forecasting exercise by estimating the model using T1

observations (T1 = T0; T0 + 1;...; T � h) and producing h-period ahead forecasts for h = 1; 3; 6 and
12. The principal components are computed with information only up to time T1: We use a one-

sided two-year moving average �lter with exponentially decreasing weights �(1 � �)i for � = 0:15

and i = 1; :::; 24 to detrend real commodity prices. As a result, the initial sample uses the �rst 24

observations (March 1983 - February 1985) for the one-sided moving average �lter, while data from

March 1985 to December 1997 (T0 = 154 observations) are used for estimation of the parameters

and the principal components. The pseudo out-of-sample forecast exercise starts in January 1998,

and continues through July 2008.

Four forecasting models are considered. The �rst three models are models of pt+h � pt with

predictors: (i) pccy(1)t ; pccy
(2)
t , �pt and their lags (denoted by CY), (ii) pcq

(1)
t , pcq

(2)
t , qoil;t, �pt and

their lags (denoted by OIL), (iii)�pt and its lags (denoted by AR). The fourth model is an IMA(1,1)

model of �pt+1 whose h-period forecasts are obtained by aggregating the one-period forecast over

h periods. The lags for the �rst three models are selected by the AIC for each recursive sample with

the maximum lag set to 4 to avoid overparameterization. The AIC tends to select lags that are more

appropriate for forecasting. Stock and Watson (2007) present evidence that an IMA(1,1) model

often outperforms AR and backward-looking Phillips curve models in out-of-sample predictions.

Table 4 presents the root mean squared forecast errors (RMFSEs) relative to that of the AR

model. Numbers smaller than one indicate that the corresponding model outperforms the AR

benchmark. Results are reported for forecast horizons of up to one year for two measures of

in�ation (CPI all items, and CPI less food and energy). For the CPI (all items) in�ation rate,

model CY which incorporates pccyt evidently dominates in terms of RMFSE. The gains generated

by model CY increase with the forecast horizon and are as large as 9% compared to the best

performing competitor at one-year horizon. For the core in�ation, model CY continues to provide

relatively large forecast improvements over the AR and OIL models. However, it is dominated at

short horizons by the IMA(1,1) model.
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The good performance of the IMA(1,1) model for forecasting core in�ation can be explained by

the time series properties of this in�ation series. Speci�cally, the estimated AR and MA parameters

by �tting an ARMA(1,1) model to core in�ation over the whole sample are 0.990 and -0.905,

with standard errors of 0.007 and 0.027, respectively. In contrast, the corresponding AR and

MA estimates from an ARMA(1,1) model for CPI (all items) in�ation are -0.041 and 0.458, with

standard errors 0.132 and 0.117, respectively. As in Stock and Watson (2007), we also �nd that the

IMA(1,1) is not an appropriate model for CPI (all items). It is precisely in this case that model

CY dominates the IMA(1,1) in out-of-sample forecasts.

Together with results reported earlier, the predictive power of pccyt seems robust both in- and

out-of-sample. Figure 1 plots the actual and forecast values from model CY of twelve-month ahead

(all items and core) in�ation. When pccyt is used as predictor, the forecast tracks the local trends

and turning points in the actual in�ation dynamics closely.

5.3 G-7 In�ation Rates

In order to see if the predictability of in�ation by the convenience yields and real commodity prices

also holds for other countries, we use data on CPI (all items), provided by the OECD, to construct

in�ation rates for the rest of the G-7 countries: Canada, Japan, Germany, France, Italy, and UK.

Bilateral exchange rates are used to convert the commodity prices into local currencies. Interest

and exchange rate data for these countries are also obtained from the OECD database.

For each of these countries, we convert all commodity price variables in domestic currency using

the market exchange rate. Each country�s interest rate is used in (9) to construct the country-

speci�c convenience yield. Similarly, the real commodity prices are converted in local currency and

de�ated by the corresponding CPI index. For each country, we estimate a model that includes two

principal components of convenience yields and detrended real commodity prices as well as two lags

of the detrended real oil price and the dependent variable. Note that the conversion of convenience

yields into local currency may change the ordering and interpretation of the principal components

computed above with U.S. data.

The estimation results for each country at horizons h = 1 and 12 are presented in Table 5. At

one-month horizon, pccy(1)t and pcq(1)t as well as the real oil price appear to be statistically signi�cant

for almost all countries. For example, pccy(1)t is signi�cant at 10% level for all countries even after

accounting estimation uncertainty using bootstrap con�dence intervals. The predictive power of

pccy
(1)
t remains signi�cant for all countries at h = 12, but the e¤ects of the other determinants (real

commodity and oil prices) are substantially diminished. The in-sample predictive power of pccy(1)t
is robust across countries, in spite of the volatile dynamics of some of these monthly in�ation series.

To see if the predictive ability of the aggregate convenience yields continues to hold out-of-
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sample for the G-7 countries, Table 6 presents relative RMSFEs from the same four forecasting

models considered in Table 4. The CY model consistently dominates the competing models for

Canada, Japan, France and UK with forecasting gains of more than 19% for Japan and UK at

longer horizons. On the other hand, the IMA(1,1) model outperforms the CY model for Germany

and Italy. We attribute this �nding to the negative MA component in the in�ation data for Germany

and Italy. For example, when an ARMA(1,1) model is �tted to Italy�s in�ation, the AR and MA

estimates are 0.973 and -0.850 with standard errors of 0.010 and 0.036, respectively.7 These results

reinforce our earlier observation that the CY model yields systematic forecast improvements when

the negative moving average component in the in�ation series is not strong.

6 Commodity Prices and Convenience Yields

Convenience yields appear in our in�ation model because convenience yields are related to com-

modity prices. This section provides evidence in support of this link. The dynamics of commodity

price movements are of interest in its own right for a variety of reasons. For developing countries

that depend heavily on exports of commodities for revenue, �uctuations in commodity prices are

the main cause of income volatility. In other countries, commodity price movements are often

tied to real exchange rate appreciation and depreciation, depending on whether the country is an

exporter or an importer of commodities. For small open economies like Canada, New Zealand and

Australia, �uctuations in commodity prices are su¢ ciently important for the design of economic

policies that these central banks produce their own commodity price indices to appropriately re�ect

the commodities they produce.

Identifying robust predictors of commodity prices turns out to be a challenging problem since

these prices tend to be extremely volatile and have proven di¢ cult to forecast (Chen, Rogo¤ and

Rossi, 2010). The ability of convenience yields to predict in�ation raises the question of whether

the convenience yields can also forecast commodity prices. We begin with predictive regressions

for the individual commodity price changes:

�sjt+1 = a+ �j0(L)�sjt + �j1(L)cyjt;n + �j2(L)it + �j3(L)�xt + ejt+1:

For most commodities, the AIC selects �j1(L) = �j1; �j2(L) = �j2; �j2(L) = �j3 and �j0(L) is a

second-order polynomial in the lag operator. We adopt the same lag order for all commodities and

analyze the predictive ability of cyjt;n, it and �xt, conditional on the presence of the remaining

two determinants. Table 7 shows that the convenience yields have highly statistically signi�cant

7Ng and Perron (2001) document that a large autoregressive root and a large negative moving average component
are a characteristic of the in�ation series (GDP de�ators) of many G-7 countries.
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predictive power for most commodity prices but the interest and exchange rates do not. The

exceptions are those commodities in the metals group (precious metals).

The h-period predictive regression for IMF commodity price index is given by

�hsIMF
t+h = a+ �0(L)�s

IMF
t + �01pccyt + �2it + �3�xt + et+h: (11)

Table 8 presents results for h = 1; 3; 6; 12. The variable pccy(1)t is statistically signi�cant (at 10%

level) for all horizons except for h = 12. The second principal component is signi�cant at one- and

three-month horizons, but is insigni�cant at longer horizons. Chen, Rogo¤ and Rossi (2010) suggest

that foreign exchange values of commodity currencies can help predict the prices of commodities

they export. While the change of the U.S. trade-weighted exchange index is not signi�cant at

short horizons (one and three months), it becomes signi�cant at six- and twelve-month horizons.

A similar pattern is observed for the interest rate so that the exchange and interest rates are the

only statistically signi�cant predictors at one-year horizon.

To assess the out-of-sample predictive power of pccyt for �sIMF
t+h , we consider four models: CY is

a model of sIMF
t+h �sIMF

t on pccy(1)t ; pccy
(2)
t ;�sIMF

t and their lags; ER/IR is a model of sIMF
t+h �sIMF

t

on it;�xt, �sIMF
t and their lags; the third model is an AR model of sIMF

t+h � sIMF
t on �sIMF

t and

its lags; and the last model (RW) is a no-change model, i.e., E(sIMF
t+h �sIMF

t ) = sIMF
t �sIMF

t�h . The

lags for the �rst three models are selected by AIC with the maximum lag set to 4. Table 9 reports

relative RMSFEs with the AR model being the benchmark model. The results show that the largest

forecasting gains of the CY model occur for one- to six-month forecast horizons, likely because the

convenience yields are constructed using futures prices with one to �ve months to maturity. The

interest and exchange rates also possess some out-of-sample forecast ability especially at six- and

twelve-month horizons which is in line with our in-sample results.

Many explanations have been advanced for the surge in commodity prices between 2006 and

2007. Speci�cally, the IMF commodity price index rose by 30 percent between 2006 and 2007, and

by another 10 percent in 2007. Given that pccyt predicts commodity prices, it is of interest to ask

whether commodity price increases can be explained by the aggregate convenience yields. To this

end, we use the baseline model of �sIMF
t+1 (Table 8) to ask what would have been the level of the

IMF commodity price index if the convenience yields from January 2007 onwards were held at the

level of December 2006 but with it and �xt at their actual levels. This yields the counterfactual

commodity price denoted by ŝIMF
t+1jpccy. Similarly, it and �xt are held at the level of December 2006

one at a time to yield ŝIMF
t+1ji and ŝ

IMF
t+1j�x, respectively. A �nal exercise holds all three variables �xed

at their December 2006 level, giving ŝIMF
t+1jpccy;i;�x.

Figure 2 shows that the hypothetical prices ŝIMF
t+1jpccy and ŝ

IMF
t+1jpccy;i;�x, constructed by holding

pccy �xed, follow closely the trend of the actual index, while ŝIMF
t+1ji and ŝIMF

t+1j�x exhibit much
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slower growth. This suggests that some of the increases in 2007 and 2008 appear to be driven by

interest rate and exchange rate changes, as suggested by Hamilton (2008) and Frankel (2006, 2008).

However, there is no evidence that expectations about future economic conditions, as re�ected in

the convenience yields, were behind the substantial commodity price increases in 2007 and 2008.8

7 Concluding Remarks

We �nd that the principal components of individual convenience yields incorporate information

useful for the prediction of both in�ation and commodity prices. The fact that pccyt explains both

in�ation and the IMF commodity price index but that the latter has only weak predictive power

for in�ation underscores the point that commodity prices have multiple sources of variation and

not every one has in�ationary consequences.

In spite of the predictability of pccyt for in�ation and commodity prices, a formal economic

interpretation of why the coe¢ cients are signi�cant is beyond what our reduced form analysis

can o¤er because predictive regressions are not structural equations. Nonetheless, the convenience

yields of cocoa, orange juice and copper have a positive e¤ect on one-period ahead in�ation, while

those of soybeans, oats and silver have a negative e¤ect; the coe¢ cients on other convenience yields

are not statistically signi�cant. Accordingly, we form two new measures of aggregate convenience

yields by averaging the convenience yields of (i) copper, orange juice, and copper, and (ii) soybeans,

oats, and silver. We �nd that both variables have predictive of in�ation for all forecast horizons

and all in�ation measures similar to the two principal components. The two principal components

seem to be picking up information about in�ation and commodity prices in these two groups of

commodities.
8A similar counterfactual analysis for U.S. in�ation reveals that keeping the pccyt unchanged for the last 19 months

of the sample underpredicts the actual price level but incorporating the rise in commodity prices over this period
brings the predicted CPI closer to its actual level.
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Table 1. Estimation Results for U.S. In�ation (CPI All Items):

�hpt+h = b+
1X
k=0

�0k�pt�k +
2X
k=1

�1kpccy
(k)
t +

2X
k=1

�2kpcq
(k)
t + z0t�3 + vt+h:

h = 1 h = 3 h = 6 h = 12

(1) (2) (1) (2) (1) (2) (1) (2)

pccy
(1)
t -0.010

[-0.11,0.09]
0.085

[0.02,0.24]
-0.064
[-0.49,0.24]

0.150
[-0.11,0.54]

-0.177
[-1.20,0.42]

0.149
[-0.50,0.77]

-0.337
[-2.54,0.95]

0.163
[-1.36,1.46]

pccy
(2)
t -0.074

[-0.19,-0.00]
-0.087

[-0.20,-0.02]
-0.262

[-0.83,-0.00]
-0.285

[-0.76,-0.07]
-0.538

[-1.76,-0.09]
-0.556

[-1.83,-0.10]
-1.153

[-2.90,-0.59]
-1.143

[-2.59,-0.67]

pcq
(1)
t -0.009

[-0.06,0.03]
-0.050

[-0.11,-0.01]
-0.089
[-0.30,0.07]

-0.108
[-0.32,0.07]

-0.204
[-0.66,0.07]

-0.105
[-0.38,0.15]

-0.228
[-0.90,0.40]

0.128
[-0.38,0.79]

pcq
(2)
t 0.071

[0.03,0.14]
0.039

[-0.03,0.13]
0.178

[0.09,0.32]
0.143

[-0.02,0.33]
0.125

[-0.16,0.43]
0.167

[-0.16,0.50]
0.084

[-0.68,0.75]
0.336

[-0.24,0.95]

4pt 0.372
[0.28,0.59]

0.177
[0.12,0.34]

0.165
[-0.08,0.49]

-0.180
[-0.37,0.06]

0.261
[-0.01,0.61]

0.033
[-0.19,0.36]

0.695
[0.32,1.11]

0.603
[0.29,0.98]

4pt�1 -0.217
[-0.37,-0.08]

-0.138
[-0.31,-0.01]

-0.176
[-0.45,0.07]

0.004
[-0.27,0.26]

0.060
[-0.23,0.38]

0.288
[-0.11,0.75]

-0.029
[-0.55,0.55]

0.426
[-0.11,1.10]

zt
qoil;t - 1.184

[0.88,1.67]
- 1.853

[1.03,3.39]
- 1.047

[-0.05,2.83]
- 0.094

[-1.34,1.82]

qoil;t-1 - -1.095
[-1.45,-0.80]

- -2.204
[-3.39,-1.55]

- -2.374
[-4.09,-1.43]

- -3.540
[-5.60,-2.39]

it - 0.021
[0.01,0.03]

- 0.053
[0.02,0.09]

- 0.090
[-0.01,0.16]

- 0.148
[0.03,0.26]

�xt - 0.008
[-0.01,0.02]

- 0.008
[-0.02,0.04]

- 0.028
[-0.01,0.08]

- 0.031
[-0.03,0.09]

ut-u� - -0.010
[-0.05,0.12]

- -0.153
[-0.49,0.11]

- -0.225
[-0.90,0.37]

- -0.265
[-1.01,0.35]

R
2

0.160 0.302 0.066 0.220 0.114 0.282 0.175 0.409

Notes: Bold font indicates statistical signi�cance at 10% level. 90% bootstrap con�dence intervals
are reported in square brackets below the parameter estimates. R

2
denotes the adjusted R2.
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Table 2. Estimates and Bootstrap Con�dence Intervals for U.S. In�ation (Other Measures):

�hpt+h = b+
1X
k=0

�0k�pt�k +
2X
k=1

�1kpccy
(k)
t +

2X
k=1

�2kpcq
(k)
t +

1X
k=0

�3kqoi;t�k + vt+h:

less f & e less food less energy food energy
h = 1

pccy
(1)
t -0.079

[-0.196, -0.034]
0.011

[-0.083, 0.129]
-0.070

[-0.183, -0.025]
-0.041

[-0.182, 0.095]
1.141

[0.861, 2.224]

pccy
(2)
t -0.053

[-0.161, 0.010]
-0.087

[-0.197, -0.021]
-0.058

[-0.157, -0.001]
-0.101

[-0.236, -0.027]
0.021

[-0.761, 0.790]

pcq
(1)
t 0.022

[-0.008, 0.054]
-0.037

[-0.112, 0.008]
0.019

[-0.017, 0.050]
-0.011

[-0.151, 0.091]
-0.646

[-1.241, -0.331]

pcq
(2)
t 0.004

[-0.031, 0.035]
0.025

[-0.037, 0.093]
0.022

[-0.007, 0.062]
0.149

[0.094, 0.270]
0.228

[-0.586, 1.014]

qoil;t -0.068
[-0.173, 0.067]

1.451
[1.106, 1.939]

-0.065
[-0.170, 0.081]

-0.016
[-0.523, 0.472]

14.750
[11.956, 18.417]

qoil;t�1 0.080
[-0.047, 0.199]

-1.282
[-1.638, -0.951]

0.040
[-0.079, 0.147]

-0.196
[-0.524, 0.173]

-12.941
[-15.972, -10.024]

4pt 0.211
[0.137, 0.332]

0.139
[0.069, 0.273]

0.258
[0.181, 0.380]

0.127
[0.030, 0.260]

0.156
[0.057, 0.294]

4pt�1 0.222
[0.118, 0.346]

-0.099
[-0.301, 0.040]

0.145
[0.043, 0.277]

-0.063
[-0.145, 0.083]

-0.198
[-0.364, -0.054]

R
2

0.300 0.273 0.289 0.071 0.366
h = 3

pccy
(1)
t -0.213

[-0.545, -0.097]
-0.034

[-0.482, 0.369]
-0.213

[-0.544, -0.094]
-0.176

[-0.660, 0.149]
2.978

[1.659, 6.783]

pccy
(2)
t -0.155

[-0.470, 0.016]
-0.259

[-0.748, 0.009]
-0.181

[-0.504, -0.034]
-0.347

[-0.753, -0.186]
0.144

[-2.780, 3.133]

pcq
(1)
t 0.064

[-0.021, 0.169]
-0.066

[-0.321, 0.148]
0.052

[-0.043, 0.163]
-0.029

[-0.366, 0.286]
-1.663

[-3.528, -0.608]

pcq
(2)
t 0.022

[-0.077, 0.128]
0.149

[-0.023, 0.364]
0.065

[-0.044, 0.198]
0.398

[0.200, 0.798]
1.169

[-0.667, 3.205]

qoil;t -0.036
[-0.423, 0.327]

2.160
[1.202, 3.873]

-0.105
[-0.457, 0.239]

-0.262
[-1.059, 0.505]

23.948
[18.772, 32.798]

qoil;t�1 0.036
[-0.302, 0.389]

-2.409
[-3.740, -1.652]

-0.009
[-0.295, 0.277]

-0.574
[-1.166, 0.095]

-25.608
[-33.793, -18.417]

4pt 0.692
[0.495, 0.944]

-0.145
[-0.336, 0.113]

0.612
[0.417, 0.875]

0.030
[-0.152, 0.242]

-0.287
[-0.414, -0.137]

4pt�1 0.734
[0.514, 0.982]

0.122
[-0.227, 0.463]

0.599
[0.390, 0.837]

-0.108
[-0.321, 0.100]

0.030
[-0.286, 0.317]

R
2

0.526 0.143 0.481 0.153 0.206

Notes: Bold font indicates statistical signi�cance at 10% level. 90% bootstrap con�dence intervals
are reported in square brackets below the parameter estimates. R

2
denotes the adjusted R2.
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Table 3. Estimates and Bootstrap Con�dence Intervals for U.S. in�ation (CPI All Items):

�hpt+h = b+
1X
k=0

�0k�pt�k +
2X
k=1

�1kpccy
(k)
t +

6X
k=1

�2kcy
(k)
t + �3�s

IMF
t + vt+h:

h = 1 h = 3 h = 6 h = 12

pccy
(1)
t -0.210

[-0.509, -0.165]
-0.622

[-1.810, -0.412]
-0.891

[-3.598, -0.244]
-1.314

[-5.366, -0.050]

pccy
(2)
t -0.089

[-0.211, -0.011]
-0.362

[-0.908, -0.091]
-0.763

[-2.210, -0.168]
-1.412

[-3.092, -0.691]

cy
(1)
t (foodstu¤s) -0.000

[-0.025, 0.008]
0.006

[-0.051, 0.034]
-0.009

[-0.115, 0.030]
-0.002

[-0.174, 0.080]

cy
(2)
t (grains) -0.033

[-0.062, -0.018]
-0.085

[-0.176, -0.036]
-0.083

[-0.233, 0.014]
-0.165

[-0.365, -0.008]

cy
(3)
t (industrials) -0.009

[-0.022, -0.006]
-0.019

[-0.055, -0.006]
-0.025

[-0.090, 0.003]
-0.010

[-0.112, 0.024]

cy
(4)
t (meats) 0.002

[-0.008, 0.008]
-0.009

[-0.042, 0.016]
-0.013

[-0.069, 0.019]
0.009

[-0.071, 0.066]

cy
(5)
t (metals) 0.006

[-0.021, 0.025]
0.039

[-0.059, 0.097]
0.123

[-0.111, 0.233]
0.170

[-0.163, 0.313]

cy
(6)
t (energy) -0.010

[-0.032, -0.002]
-0.049

[-0.126, -0.027]
-0.094

[-0.247, -0.050]
-0.135

[-0.350, -0.072]

�sIMF
t 0.008

[-0.002, 0.018]
0.017

[-0.005, 0.042]
0.027

[-0.006, 0.081]
0.025

[-0.042, 0.090]

4pt 0.351
[0.276, 0.562]

0.105
[-0.077, 0.354]

0.172
[-0.041, 0.502]

0.451
[0.143, 0.921]

4pt�1 -0.239
[-0.392, -0.101]

-0.237
[-0.495, 0.005]

-0.027
[-0.301, 0.334]

-0.215
[-0.687, 0.409]

R
2
(all variables) 0.170 0.111 0.174 0.253

R
2
(�sIMF

t ;4pt;4pt�1) 0.144 0.001 0.022 0.042

Notes: cy(k)t is a simple average of cyjt;n; N�1
k

PNk
j=1 cyjt;n, for commodity group k. Bold font

indicates statistical signi�cance at 10% level. 90% bootstrap con�dence intervals are reported in
square brackets below the parameter estimates. R

2
denotes the adjusted R2. The last line reports

the R
2
from a regression of �hpt+h on �sIMF

t ; 4pt and 4pt�1 only.

Table 4. Recursive Out-of-Sample Forecasts for U.S. In�ation Rate (Relative RMSFEs) .

all items less food & energy
CY OIL IMA CY OIL IMA

h = 1 1.004 0.951 1.049 1.037 1.076 0.935
h = 3 0.967 0.975 1.007 0.964 1.048 0.920
h = 6 0.939 1.077 1.037 0.911 1.019 0.916
h = 12 0.909 1.125 1.148 0.878 1.019 0.900

Notes: The period for pseudo out-of-sample forecast evaluation starts in January 1998 and continues
through July 2008. CY is a model of pt+h � pt on pccy

(1)
t ; pccy

(2)
t ; �pt and their lags; OIL is a

model of pt+h � pt on pcq
(1)
t , pcq

(2)
t , qoil;t, �pt and their lags; the third model is an AR model of

pt+h � pt on �pt and its lags; and IMA is an IMA(1,1) model of in�ation �pt+1 whose h-period
forecast is obtained by aggregating the one-step forecast over h periods. The lags for the �rst three
models are selected using AIC. The reported RMSFEs are relative to the RMSFE of the AR model.
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Table 5. Estimates and Bootstrap Con�dence Intervals for G-7 In�ation Rates:

�hpt+h = b+
1X
k=0

�0k�pt�k +
2X
k=1

�1kpccy
(k)
t +

2X
k=1

�2kpcq
(k)
t +

1X
k=0

�3kqoi;t�k + vt+h:

Canada Japan France Germany Italy UK
h = 1

pccy
(1)
t -0.136

[-0.272, -0.001]
-0.157

[-0.255, -0.058]
-0.143

[-0.229, -0.056]
0.123

[0.019, 0.318]
-0.116

[-0.157, -0.042]
-0.234

[-0.391, -0.086]

pccy
(2)
t -0.057

[-0.307, 0.155]
0.001

[-0.201, 0.208]
0.064

[-0.114, 0.373]
-0.000

[-0.220, 0.200]
0.052

[-0.083, 0.221]
0.091

[-0.188, 0.438]

pcq
(1)
t -0.078

[-0.212, -0.005]
-0.109

[-0.175, -0.047]
-0.058

[-0.099, -0.017]
-0.078

[-0.135, -0.009]
-0.013

[-0.046, 0.034]
-0.158

[-0.250, -0.076]

pcq
(2)
t 0.117

[0.012, 0.247]
-0.027

[-0.124, 0.112]
-0.046

[-0.146, 0.049]
0.007

[-0.099, 0.162]
-0.019

[-0.097, 0.066]
-0.090

[-0.061, 0.228]

qoil;t 0.855
[0.360, 1.395]

0.564
[0.081, 1.153]

0.518
[0.132, 0.836]

0.465
[0.132, 0.872]

0.270
[0.076, 0.509]

0.626
[0.076, 1.200]

qoil;t�1 -0.687
[-1.267, 0.059]

-0.344
[-0.779, 0.062]

-0.756
[-1.048, -0.430]

-0.526
[-0.839, -0.187]

-0.249
[-0.444, -0.079]

-0.968
[-1.548, -0.400]

4pt 0.004
[-0.110, 0.152]

0.091
[-0.030, 0.227]

0.187
[0.120, 0.346]

-0.052
[-0.162, 0.097]

0.316
[0.248, 0.461]

0.065
[0.031, 0.179]

4pt�1 0.053
[-0.025, 0.168]

-0.308
[-0.382, -0.191]

-0.061
[-0.162, 0.109]

0.054
[-0.016, 0.173]

0.194
[0.104, 0.358]

-0.054
[-0.115, 0.026]

R
2

0.084 0.143 0.188 0.031 0.410 0.101
h = 12

pccy
(1)
t -1.851

[-2.459, -1.142]
-1.725

[-2.644, -0.925]
-1.013

[-1.571, -0.138]
1.176

[0.326, 3.125]
-1.470

[-2.027, -0.585]
-2.602

[-3.812, -1.332]

pccy
(2)
t -0.232

[-1.317, 0.920]
-0.253

[-2.374, 1.458]
0.596

[-0.510, 3.045]
0.817

[-0.685, 3.496]
-0.597

[-3.287, 1.062]
0.794

[-2.028, 5.101]

pcq
(1)
t -0.167

[-0.967, 0.306]
-0.570

[-1.119, -0.241]
-0.058

[-0.363, 0.330]
-0.037

[-0.478, 0.521]
-0.392

[-0.901, -0.062]
-0.560

[-1.126, 0.210]

pcq
(2)
t 0.197

[-0.532, 0.827]
0.089

[-0.627, 0.954]
-0.543

[-1.453, 0.095]
-0.105

[-0.844, 0.685]
-0.390

[-1.194, 0.702]
-0.880

[-1.894, 0.059]

qoil;t 1.198
[-0.635, 3.379]

1.450
[-0.195, 4.247]

-2.219
[-4.207, -0.567]

0.632
[-1.594, 3.717]

-0.439
[-2.331, 1.610]

-1.877
[-4.035, 0.396]

qoil;t�1 -2.365
[-4.422, -0.967]

-1.333
[-4.214, 0.040]

-0.169
[-1.590, 1.185]

-0.665
[-3.442, 1.570]

-1.773
[-3.395, -0.694]

0.197
[-2.203, 2.153]

4pt 0.242
[-0.265, 0.793]

0.084
[0.061, 0.391]

1.408
[0.823, 2.347]

0.633
[0.267, 1.118]

2.699
[2.382, 3.546]

0.598
[0.304, 1.126]

4pt�1 0.252
[-0.195, 0.753]

0.218
[0.095, 0.516]

1.572
[0.967, 3.071]

0.607
[0.188, 1.103]

2.640
[2.124, 3.792]

0.557
[0.242, 1.213]

R
2

0.326 0.374 0.422 0.234 0.688 0.450

Notes: Bold font indicates statistical signi�cance at 10% level. 90% bootstrap con�dence intervals
are reported in square brackets below the parameter estimates. R

2
denotes the adjusted R2.
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Table 6. Recursive Out-of-Sample Forecasts for G-7 In�ation Rates (Relative RMSFEs) .

Canada Japan France
CY OIL IMA CY OIL IMA CY OIL IMA

h = 1 0.996 1.003 1.007 0.884 1.065 1.015 0.966 0.950 1.027
h = 3 0.958 1.049 1.009 0.850 1.110 1.048 0.923 1.010 1.050
h = 6 0.973 1.036 1.013 0.805 1.155 1.049 0.862 0.992 1.030
h = 12 0.972 1.004 0.989 0.813 1.289 1.029 0.871 1.070 1.033

Germany Italy UK
CY OIL IMA CY OIL IMA CY OIL IMA

h = 1 0.979 0.994 0.967 1.013 1.109 0.933 0.849 1.001 1.006
h = 3 0.945 1.000 0.961 0.977 1.124 0.853 0.865 1.056 1.120
h = 6 1.114 1.058 0.938 0.954 1.142 0.744 0.811 1.099 1.135
h = 12 1.217 1.199 0.876 1.017 1.089 0.683 0.879 1.168 1.290

Notes: The period for pseudo out-of-sample forecast evaluation starts in January 1998 and continues
through July 2008. CY is a model of pt+h � pt on pccy

(1)
t ; pccy

(2)
t ; �pt and their lags; OIL is a

model of pt+h � pt on pcq
(1)
t , pcq

(2)
t , qoil;t, �pt and their lags; the third model is an AR model of

pt+h � pt on �pt and its lags; and IMA is an IMA(1,1) model of in�ation �pt+1 whose h-period
forecast is obtained by aggregating the one-step forecast over h periods. The lags for the �rst three
models are selected using AIC. The reported RMSFEs are relative to the RMSFE of the AR model.
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Table 7. Estimates and Standard Errors:

�sjt+1 = a+

1X
k=0

�j0k�sjt�k + �j1cyjt;n + �j2it + �j3�xt + ejt+1:

j �̂j1 �̂j2 �̂j3 R
2

Foodstu¤s
Cocoa -0.297 (0.169) -0.084 (0.181) -0.143 (0.222) 0.033
Co¤ee -0.117 (0.143) -0.194 (0.190) -0.043 (0.347) 0.035
Orange Juice -0.445 (0.146) 0.272 (0.189) -0.132 (0.174) 0.098
Sugar -0.495 (0.109) -0.476 (0.233) -0.243 (0.295) 0.125
Grains
Canola -0.533 (0.233) -0.003 (0.164) 0.266 (0.158) 0.169
Corn -0.634 (0.118) 0.216 (0.144) 0.063 (0.158) 0.210
Oats -0.339 (0.098) -0.359 (0.215) 0.226 (0.172) 0.060
Soybeans -0.958 (0.249) -0.260 (0.129) 0.166 (0.138) 0.187
Soybean Oil -0.433 (0.235) -0.111 (0.194) 0.200 (0.188) 0.138
Wheat -0.393 (0.092) 0.071 (0.140) 0.023 (0.189) 0.067
Industrials
Cotton -0.642 (0.111) 0.362 (0.158) -0.071 (0.201) 0.289
Lumber -0.422 (0.103) -0.273 (0.187) -0.021 (0.258) 0.090
Meats
Cattle, Feeder -0.506 (0.124) -0.026 (0.085) 0.081 (0.108) 0.154
Cattle, Live -0.484 (0.055) 0.061 (0.104) 0.027 (0.119) 0.242
Hogs -0.530 (0.041) 0.240 (0.133) 0.056 (0.196) 0.326
Pork Bellies -0.914 (0.106) -0.046 (0.204) 0.061 (0.244) 0.226
Metals
Copper -0.100 (0.158) -0.250 (0.127) 0.017 (0.176) 0.054
Gold 0.867 (0.869) -0.284 (0.069) -0.118 (0.127) 0.040
Palladium -0.361 (0.176) 0.062 (0.243) 0.422 (0.248) 0.030
Platinum 0.281 (0.237) -0.252 (0.118) -0.357 (0.152) 0.031
Silver 0.186 (0.916) -0.593 (0.152) 0.167 (0.185) 0.052
Energy
Crude Oil -0.512 (0.303) -0.144 (0.216) 0.043 (0.277) 0.076
Heating Oil -0.788 (0.171) -0.023 (0.184) 0.023 (0.244) 0.123

Notes: Newey-West HAC standard errors with automatic bandwidth selection in parentheses. Bold
font indicates statistical signi�cance at 10% level. R

2
denotes the adjusted R2.
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Table 8. Estimates and Bootstrap Con�dence Intervals:

�hsIMF
t+h = a+

1X
k=0

�10�s
IMF
t�k + �11pccy

(1)
t + �12pccy

(2)
t + �2it + �3�xt + et+h:

h = 1 h = 3 h = 6 h = 12

pccy
(1)
t 0.874

[0.079, 2.332]
3.218

[0.748, 8.184]
6.318

[1.372, 17.225]
5.795

[-3.127, 23.340]

pccy
(2)
t -1.259

[-3.035, -0.761]
-3.155

[-9.664, -0.679]
-3.660

[-15.855, 3.103]
-3.946

[-16.917, 5.351]

it -0.069
[-0.187, 0.040]

-0.237
[-0.573, 0.112]

-0.568
[-1.316, 0.259]

-1.770
[-2.699, -0.424]

�xt 0.017
[-0.150, 0.177]

-0.181
[-0.451, 0.070]

-0.435
[-0.924, -0.019]

-0.585
[-1.375, -0.039]

�sIMF
t 0.205

[0.088, 0.323]
0.270

[0.046, 0.492]
0.163

[-0.197, 0.593]
0.192

[-0.327, 0.699]

�sIMF
t�1 0.034

[-0.032, 0.092]
-0.012

[-0.200, 0.190]
-0.047

[-0.361, 0.268]
0.119

[-0.333, 0.707]

R
2

0.147 0.219 0.259 0.304

Notes: Bold font indicates statistical signi�cance at 10% level. 90% bootstrap con�dence intervals
are reported in square brackets below the parameter estimates. R

2
denotes the adjusted R2.

Table 9. Recursive Out-of-Sample Forecasts of Commodity Price Changes (Relative RMSFEs).

CY ER/IR RW
h = 1 0.955 1.013 1.180
h = 3 0.915 0.986 1.207
h = 6 0.893 0.946 1.266
h = 12 0.903 0.850 1.035

Notes: The period for pseudo out-of-sample forecast evaluation starts in January 1998 and continues
through July 2008. CY is a model of sIMF

t+h �sIMF
t on pccy(1)t ; pccy

(2)
t ; �sIMF

t and their lags; ER/IR
is a model of sIMF

t+h � sIMF
t on it;�xt, �sIMF

t and their lags; the third model is an AR model of
sIMF
t+h � sIMF

t on �sIMF
t and its lags; and RW is a no-change model, i.e., E(sIMF

t+h � sIMF
t ) =

sIMF
t � sIMF

t�h . The lags for the �rst three models are selected using AIC. The reported RMSFEs
are relative to the RMSFE of the AR model.
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Figure 1. Actual and forecast values of twelve-month in�ation (all items: top; less food and
energy: bottom). The forecast values are obtained recursively from model CY with pccy(1)t ; pccy

(2)
t ;

�pt and their lags as predictors.
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Figure 2. Actual and counterfactual values of the IMF commodity price index for January 2007
- July 2008. The counterfactuals hold (i) the two principal components of convenience yields, (ii)
interest rate, (iii) changes of USD trade-weighted index and (iv) all of these variables �xed at their
December 2006 values, respectively.
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