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Abstract

Dynamic Stochastic General Equilibrium (DSGE) models are often solved and estimated under
specific assumptions as to whether the exogenous variables are difference or trend stationary. How-
ever, even mild departures of the data generating process from these assumptions can severely bias
the estimates of the model parameters. This paper proposes new estimators that do not require re-
searchers to take a stand on whether shocks have permanent or transitory effects. These procedures
have two key features. First, the same filter is applied to both the data and the model variables.
Second, the filtered variables are stationary when evaluated at the true parameter vector. The
estimators are approximately normally distributed not only when the shocks are mildly persistent,
but also when they have near or exact unit roots. Simulations show that these robust estimators
perform well especially when the shocks are highly persistent yet stationary. In such cases, linear
detrending and first differencing are shown to yield biased or imprecise estimates.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now accepted as the primary framework

for macroeconomic analysis. Until recently, counterfactual experiments were conducted by assigning

the parameters of the models with values that are loosely calibrated to the data. More recently, serious

efforts have been made to estimate the model parameters using classical and Bayesian methods. This

permits researchers to assess how well the models fit the data both in and out of samples. Formal

estimation also permits errors arising from sampling or model uncertainty to be explicitly accounted

for in counterfactual policy simulations. Arguably, DSGE models are now taken more seriously as a

tool for policy analysis because of such serious econometric investigations.

Any attempt to estimate DSGE models must confront the fact that macroeconomic data are highly

persistent. This fact often requires researchers to take a stand on the specification of the trends in

DSGE models. Specifically, to take the model to the data, a researcher needs to use sample analogs

of the deviations from steady states and, in doing so, must decide how to detrend the variables in

the model and in the data. Table 1 is a non-exhaustive listing of how trends are treated in some

notable papers.1 Some studies assume stochastic trends for the model and use first differenced data in

estimation. A number of studies specify deterministic trends for the model and use linearly detrended

data in estimation. Studies that apply the Hodrick-Prescott (HP) filter to the data differ in what

trends are specified for the model. Some assume simple linear trends, while others assume unit root

processes. Table 1 clearly demonstrates that a variety of trends have been specified for the model and

a variety of detrending methods have been used in estimation.

The problem for researchers is that it is not easy to ascertain whether highly persistent data are

trend stationary or difference stationary in finite samples. While many have studied the implications

for estimation and inference of inappropriate detrending in linear models,2 much less is known about

the effects of detrending in estimation of non-linear models. From simulation evidence of Doorn

(2006) for an inventory model, it seems that HP filtering can significantly bias the estimated dynamic

parameters. As well, while the local-to-unit framework is available to help researchers understand the

properties of the estimated autoregressive root when the data are strongly persistent, it is unclear

to what extent the framework can be used in non-linear estimation even in the single equation case.

What makes estimation of DSGE models distinct is that they consist of a system of equations and
1As of June 2009, these papers were cited almost 2500 times at the Web of Science (former Social Science Citation

Index) and almost 8000 times at Google Scholar.
2For example, Nelson and Kang (1981) showed that linear detrending a unit root process can generate spurious cycles.

Cogley and Nason (1995a) found that improper filtering can alter the persistence and the volatility of the series while
spurious correlations in the filtered data was documented in Harvey and Jaeger (1993). Singleton (1988) and Christiano
and den Haan (1996) discussed how inappropriate filtering can affect estimation and inference in linear models.
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misspecification in one equation can affect estimates in other equations.

This paper develops robust estimation procedures that do not require researchers to take a stand on

whether shocks in the model have an exact or a near unit root, and yet obtain consistent estimates of

the model parameters. All robust procedures have two characteristics. First, the same transformation

(filter) is applied to both the data and the model variables. Second, the filtered variables are stationary

when evaluated at the true parameter vector. The estimators have the classical properties of being
√
T consistent and asymptotically normal for all values of the largest autoregressive root.

Our point of departure is that the not too uncommon practice of applying different filters to the

model variables and the data can have undesirable consequences. Indeed, as we will show, estimates

of parameters governing the propagation and amplification mechanisms in the model can be severely

distorted when the trend specified for the model is not consistent with the one applied to the data.

Accordingly, we insist on estimators that apply the same transformation to both the model and the

data. This, however, may still lead to biased estimates if the filter does not remove the trends actually

present in the data. Accordingly, we need to work with filters that can remove both deterministic and

stochastic trends without the researcher taking a stand before solving and estimating the model. The

idea of applying robust filters to both the model and the data is not new. Christiano and den Haan

(1996) as well as Burnside (1998) applied the HP filter to both the model and the data, but they

had to resort to simulation estimation to get around the large state vector that the HP filter induces.

The filters we consider have the same desirable feature as the HP in that they adapt to the trends

in the data. However, they can be implemented with simple modifications to the state space system

while keeping the dimension of the state vector small. Specifically, we consider four transformations:

(i) quasi-differencing, (ii) unconstrained first differencing, (iii) hybrid differencing, and (iv) the HP

filter. All filters can be used in GMM estimation but not every method can be implemented in the

likelihood framework. Importantly, one can use standard asymptotic inference as the finite sample

distribution of the estimators are well approximated by the normal distribution not only when the

large autoregressive root is far from one, but also when it is near or on the unit circle. The procedures

can be applied to DSGE models whose solution can be shown to exist and is unique, and can be solved

using variations of the method discussed in Blanchard and Kahn (1980) and Sims (2002).

As discussed in Canova and Sala (2009), DSGE models are susceptible to identification failure, in

which case, consistent estimation of parameters is not possible irrespective of the treatment of trends.

In view of this consideration and to fix ideas, we use a basic stochastic growth model whose properties

are well understood. The model, which will be presented in Section 2, will also be used to perform

baseline simulation experiments. The new estimators are presented in Sections 3 and 4. Sections 5

and 6 use simulations to show that the robust approaches perform well especially when the shocks are
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highly persistent yet stationary. These results also hold up in larger models though some filters are

more sensitive to the number of shocks than others. In contrast, linear detrending and first differencing

often lead to severely biased estimates. Implementation issues and related work in the literature are

discussed in Section 7. Section 8 concludes.

2 Preliminaries

Consider the one sector stochastic growth model. The problem facing the central planner is:

maxEt
∞∑
t=0

βtϑ(Ct, Lt)

subject to

ϑ(Ct, Lt) = lnCt − θLt

Yt = Ct + It = Kα
t−1(ZtLt)(1−α)

Kt = (1− δ)Kt−1 + It

Zt = exp(ḡt) exp(uzt ), uzt = ρzu
z
t−1 + ezt , |ρz| ≤ 1

where Yt is output, Ct is consumption, Kt is capital, Lt is labor input, Zt is the level of technology,

ezt is an innovation in technology. Note that we allow ρz to be on the unit circle. The first order

conditions are:

θCt = (1− α)Kα
t−1Z

(1−α)
t L−αt

1 = Et

[
β
Ct
Ct+1

(
αKα−1

t (Zt+1Lt+1)(1−α) + (1− δ)
)]

Kα
t−1(ZtLt)(1−α) = Ct +Kt − (1− δ)Kt−1.

Let lower case letters denote the natural logarithm of the variables, e.g. ct = logCt. Let c∗t be such

that ct−c∗t is stationary; k∗t and z∗t are similarly defined. Given our assumptions, labor Lt is stationary

for all ρz ≤ 1 and thus l∗t = 0. Collect the observed model variables into the vector mt = (ct, kt, lt)

and denote the trend component of the model variables by m∗t = (c∗t , k
∗
t , l
∗
t ). In general, how we define

m∗t , how we linearize the model, and how we estimate the parameters will depend on whether ρz < 1

or ρz = 1.

When ρz < 1, we have c∗t = k∗t = ḡt, and thus m∗t = (ḡt, ḡt, 0). The detrended variables in the

model are m̂t = (ĉt, k̂t, l̂t) = (ct− ḡt, kt− ḡt, lt) = mt−m∗t . The log-linearized model in terms of m̂t is

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0
A1 A2 α− 1

ĉtk̂t
l̂t

+

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1

+

 0
−A0

0

Etuzt+1 +

1− α
0

α− 1

uzt
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where we have suppressed the constants terms and

A∗0 = 1− β 1− δ
1 + ḡ

, A0 = (α− 1)A∗0, A4 = −α− (1− δ)A3,

A3 =
αβ

(1 + ḡ)A∗0
, A2 = (1 + ḡ)A3, 1 = A1 +A2 − (1− δ)A3.

Solving the system of expectation equations yields the reduced form

m̂t = Πm̂t−1 +Buzt (1)

uzt = ρzu
z
t−1 + ezt .

We assume that all roots of Π are strictly less than one, so that non-stationarity can only arise because

ρz is on the unit circle. Note that when ρz = 1, the model needs to be linearized and solved with

m∗t = (ut + ḡt, ut + ḡt, 0) = (zt, zt, 0). Despite the fact that the permanent shock uzt is now part

of m∗t , (1) is still the reduced form representation for levels of the linearly detrended variables. In

other words, the reduced form representation for m̂t is continuous in ρz even though how we arrive

at this representation will depend on ρz. Hence, without loss of generality, we will always use the

representation (1) in subsequent discussions for all values of ρz.

Note that by definition, m̂t is the linearly detrended component of the model variables mt. In other

words, m̂t is a model concept. Hereafter, we let dt denote the data analog of mt. For the stochastic

growth model, dt = (ct, kt, lt) are the data collected for the empirical exercise. Let d̂t be obtained by

removing deterministic trends from dt. Then d̂t is the data analog of m̂t.

3 Robust Estimators

In this section, we present robust methods that do not require the researcher to take a stand on the

properties of trends in the data. We use the stochastic neoclassical growth model to illustrate the

intuition behind the proposed methods.

Many estimators have been used to estimate DSGE models.3 Our focus will be a method of

moments (MM) estimator that minimizes the distance between the second moments of data and

the second moments implied by the model, as in Christiano and den Haan (1996), Christiano and

Eichenbaum (1992). Adaptation to likelihood based estimation will be discussed in Section 6. Let Θ

denote the unknown structural parameters of the model and partition Θ = (Θ−, ρz). The generical

MM estimator can be summarized as follows:
3Likelihood and Bayesian based methods, (e.g. Fernandez-Villaverde and Rubio-Ramirez (2006) and Ireland (1997)),

two-step minimum distance approach (e.g., Sbordone (2006)), as well as simulation estimation (e.g., Altig et al. (2004))
have been used to estimate DSGE models. Ruge-Murcia (2007) provides a review of these methods.
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1: Apply a filter (if necessary) to dt and compute Ω̂d(j), the estimated covariance matrix of the

filtered series at lag j. Collect the data moments in the vector

ω̂d = (vech(Ω̂d(0))′ vec(Ω̂d(1))′ . . . vec(Ω̂d(M))′)′.

2: Solve the rational expectations model for a guess of Θ. Compute Ωm(j), the model implied

autocovariances of the filtered m̂t analytically or by simulation. Collect the model moments in

the vector

ωm = (vech(Ωm(0))′ vec(Ωm(1))′ . . . vec(Ωm(M))′)′.

3: Estimate the structural parameters as Θ̂ = argminΘ

∥∥ω̂d − ωm(Θ)
∥∥.

The choice of moments in MM can be important for identification (see e.g. Canova and Sala (2009)).

We use the unconditional autocovariances but matching impulse responses can also be considered.

Although MM is somewhat less widely used than maximum likelihood estimators in the DSGE liter-

ature, it does not require parametric specification of the error processes and it is easy to implement.

The more important reason for using MM is practical as it can be used with many popular filters. We

will return to this point subsequently.

The statistical properties of Θ̂ will depend on ρz and the filters used. The robust approaches we

consider always apply the same filter to the model and the data so that the filtered variables are

stationary when evaluated at the true parameter of ρz, which can be one or close to one. We now

consider four filters and then explore which of these have better finite samples properties. Properties

of estimators that do not have these features will also be compared.

3.1 The QD Estimator

Let ∆ρz = 1−ρzL be the quasi-differencing (QD) operator and let ∆ρzm̂t = (1−ρzL)m̂t. Multiplying

both sides of (1) by ∆ρz and using uzt = ρzu
z
t−1 + ezt gives

∆ρzm̂t = Π∆ρzm̂t−1 +Bezt . (2)

Note that the error term in the quasi-differenced model is an i.i.d. innovation. As ∆ρzm̂t is stationary

for all ρz ≤ 1, its moments are well defined. In contrast, the moments of m̂t are not well defined when

ρz = 1. This motivates estimation of Θ as follows:

1: Initialize ρz.
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2: Quasi-difference d̂t with ρz to obtain ∆ρz d̂t. Compute Ω̂d
∆ρz (j) = cov(∆ρz d̂t,∆ρz d̂t−j), the

sample autocovariance matrix of the quasi-differenced data at lag j = 0, . . . ,M . Define

Υ̂d
∆ρz (j) = Ω̂d

∆ρz (j)− Ω̂d
∆ρz (0)

and let ω̂d∆ρz = (vec(Υ̂d
∆ρz (1))′, . . . , vec(Υ̂d

∆ρz (M))′)′;

3: For a given ρz and Θ−, solve for the reduced form (1). Apply ∆ρz to m̂t and compute Ωm
∆ρz (j), j =

1, . . . ,M , the model implied autocovariance matrices of the quasi-differenced variables. Let

Υm
∆ρz (j) = Ωm

∆ρz (j)− Ωm
∆ρz (0)

Define ωm∆ρz (ρz) = (vec(Υm
∆ρz (1))′, . . . , vec(Υm

∆ρz (M))′)′;

4: Find the structural parameters Θ̂QD = arg minΘ

∥∥ω̂d∆ρz (ρz)− ωm∆ρz (Θ)
∥∥.

The QD estimator is based on the difference between the model and the sample autocovariances

of the filtered variables, normalized by the respective variance matrix Ω∆ρz (0). The QD differs from

a standard covariance estimator in one important respect. The parameter ρz now affects both the

moments of the model and the data since the latter are computed for the data quasi-differenced

at ρz. As ρz and Θ− are estimated simultaneously, the filter is data dependent rather than fixed.

The crucial feature is that the quasi-transformed data are stationary when evaluated at the true ρz,

which subsequently permits application of a central limit theorem. The normalization of the lagged

autocovariances by the variance amounts to using the moments

cov(∆ρz d̂t, ∆ρz d̂t −∆ρz d̂t−j)− cov(∆ρzm̂t, ∆ρzm̂t −∆ρzm̂t−j)

for estimation. The j-th difference of ∆ρz d̂t is always stationary and ensures that the asymptotic

distribution is well behaved. Finally, observe that since we solve the model in levels and use the

transformed variables only to compute moments, we preserve all equilibrium relationships between

variables.

3.2 The FD Estimator

If ∆ρzm̂t is stationary when ρz ≤ 1, the data vector is also stationary when quasi-differenced at

ρz = 1. Denote the first-differencing (FD) operator by ∆ = 1−L and consider the following estimation

procedure:

1: Compute Ω̂d
∆(j) = cov(∆d̂t,∆d̂t−j), the sample autocovariance matrix of the first differenced

data at lag j = 1, . . . ,M . Define ω̂d∆ = (vech(Ω̂d
∆(1))′, . . . , vec(Ω̂d

∆(M))′)′;
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2: For a given Θ, solve for the reduced form (1). Compute Ωm
∆(j), the model implied autocovariance

matrices of the first-differenced variables ∆m̂t. Define ωm∆ = (vech(Ωm
∆(0))′, . . . , vec(Ωm

∆(M))′)′;

3: Find the structural parameters Θ̂FD = arg minΘ

∥∥ω̂d∆ − ωm∆ (Θ)
∥∥.

To be clear, we compute autocovariances for first difference of the data and the model variables,

but ρz is a free parameter which we estimate. Note that the QD and FD estimators are equivalent

when ρz = 1. The key difference between FD and QD is that FD is a fixed filter while the QD is a

data dependent filter.

3.3 The Hybrid Estimator

One drawback of the FD estimator is that when ρz is far from unity, over-differencing induces a non-

invertible moving-average component. The estimates obtained by matching a small number of lagged

autocovariances may be inefficient. The QD estimator does not have this problem, but Ω̂d
∆ρz (j) is

quadratic in ρz. As will be explained below, this is why we normalize Ω̂d
∆ρz (j) by Ω̂d

∆ρz (0). These

considerations suggest a hybrid estimator:

1: Transform the observed data to obtain ∆ρz d̂t (as in QD) and ∆d̂t (as in FD).

2: Compute Ω̂d
QD,∆(j) = cov(∆ρz d̂t,∆d̂t−j), the covariance between ∆ρz d̂t and ∆d̂t−j . Define

ω̂dQD,∆ = (vec(Ω̂d
QD,∆(0))′, . . . , vec(Ω̂d

QD,∆(M))′)′;

3: For a given Θ, solve for the reduced form (1), and compute the model implied autocovariances

between the quasi-differenced and the first differenced variables. Define

ωmQD,∆ = (vec(Ωm
QD,∆(0))′, . . . , vec(Ωm

QD,∆(M))′)′;

4: Find the structural parameters Θ̂HD = arg minΘ

∥∥∥ω̂dQD,∆(ρz)− ωmQD,∆(Θ)
∥∥∥.

Notice that Ω̂d
QD,∆(j) is now linear in ρz, unlike Ω̂d

∆ρz (j). We denote this estimator with HD (hybrid

differencing).

3.4 The HP Estimator

Some linear filters such as the HP and the bandpass can also remove deterministic and stochastic

trends, see Baxter and King (1999) and King and Rebelo (1993). In this paper, we will focus only on

the HP filter, which is heavily used in empirical analysis. An HP detrended series is defined as

HP (L)dt =
λ(1− L)2(1− L−1)2

1 + λ(1− L)2(1− L−1)2
dt.
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Given this transformation, the procedure can be summarized as follows:

1: Compute the autocovariance matrices of the HP-filtered data Ω̂d
HP (0), . . . , Ω̂d

HP (M). Define

ω̂dHP = (vech(Ω̂d
HP (0))′, . . . , vec(Ω̂d

HP (M))′)′;

2: For a given guess of Θ, solve for the reduced form (1), and compute Ωm(j), the autoco-

variances of m̂t. Apply the Fourier transform to obtain the spectrum for m̂t at frequen-

cies 2πs/T , s = 0, . . . , T − 1. Multiply the spectrum by the gain of the HP filter. Inverse

Fourier transform to obtain ΩHP (j), the autocovariances of the HP(L)m̂t. Define ωmHP =

(vech(Ωm
HP (0))′, . . . , vec(Ωm

HP (M))′)′.

3: Find the structural parameters Θ̂HP = arg minΘ

∥∥ω̂dHP − ωmHP (Θ)
∥∥.

This approach is similar to Burnside (1998) who also applies the HP filter to both the model and

the data series, but he uses simulations to compute model-implied moments. Like the FD, the variables

in the model and the data will be stationary without ρz entering the filter. By construction of the HP

filter, both the filtered data and the filtered model variables are stationary for all ρz ≤ 1. Note that

HP filtering involves (implicitly or explicitly) estimation of many more autocovariances than the other

estimators considered above. Burnside (1998) reports that although the HP filter removes variation

potentially informative for estimation of the structural parameters, the HP filtered model and data

series have sufficient variability to discriminate competing theories of business cycles.

4 Properties of the Estimators

Let ω̂dj generically denote the j − th sample moments of the filtered variables while ωmj (Θ) denote the

model moment based on the same filter. Define

ḡj(Θ) = ω̂dj − ωmj (Θ)

and let ḡ(Θ) = (ḡ0(Θ), ḡ1(Θ), . . . , ḡM (Θ)). Then the MM estimator is Θ̂ = minΘ ||ḡ(Θ)|| is a non-

linear GMM estimator using an identity weighting matrix. This sub-optimal weighting matrix is used

because when there are fewer shocks than variables in the system, stochastic singularity will induce

collinearity in the variables resulting in a matrix of covariances that would be singular. Even if there

are as many shocks as endogenous variables, Abowd and Card (1989), Altonji and Segal (1996) and

others find that an identity matrix performs better than the optimal weighting matrix in the context of

estimating covariance structures. The optimal weighting matrix, which contains high order moments,

tends to correlate with the moments and this correlation undermines the performance of the estimator.
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Let Ḡ(Θ) be the matrix of derivatives of ḡ(Θ) with respect to Θ. In standard covariance structure

estimation, the parameters enter the model moments ωm(Θ) but not the sample ω̂d, so that if ω̂d

are moments of stationary variables, then under regularity conditions such as stated in Newey and

McFadden (1994), we have the conventional result that the estimators are consistent and

√
T (Θ̂−Θ0) d−→A ·N(0, S)

where A = (G′0G0)−1G′0 and
√
T ḡ(Θ0) d−→N(0, S), and G0 is the probability limit of Ḡ(Θ) evaluated at

Θ = Θ0. This distribution theory applies to the FD and the HP because these two filters do not depend

on unknown parameters and the filtered variables are always stationary. For the HD estimator, ω̂d

depends on ρz but its first derivative does not, so that a quadratic expansion of the objective function

can still be used to derive the asymptotic distribution of the estimator. Although Ḡ(Θ) for the HD

has a random limit when ρz = 1, ω̂d is a vector of covariances of stationary variables when evaluated

at the true value of ρz. Thus, the ’standardized’ estimator (or the t statistic) remains asymptotically

normal.

To understand the properties of the QD estimator, we need to explain why we normalize the

lagged autocovariances by the variance. Suppose we had used g̃j(Θ) = Ω̂d
∆ρz (j) − Ωm

∆ρz (j) instead

of ḡj(Θ) = ω̂d∆ρz (j) − ωm∆ρz (j) where ωd∆ρz (j) = Ω̂d
∆ρz (j) − Ω̂d

∆ρz (0), and ωm∆ρz is likewise defined.

Minimizing ||g̃(Θ)|| over Θ yields an estimator that we can call QD0. The problem here is that

Ω̂d
∆ρz (j) is a cross-product of data quasi-differenced at ρz, and is thus quadratic in ρz. The quadratic

expansion of ||g̃(Θ)|| around Θ0 contains terms that are not negligible when ρz is one. As such, the

sample objective function cannot be shown to converge uniformly to the population objective function.

In fact, we show in Gorodnichenko et al. (2009) in a simpler setting that the QD0 estimator for ρz is

consistent but it has a convergence rate of T 3/4 and is not asymptotically normal. The QD estimator

is motivated by the fact that the offending term in the quadratic expansion of Ω̂d
∆ρz (j) is collinear

with Ω̂d
∆ρz (0) when ρz = 1.

Proposition 1 Consider a DSGE model whose reduced form is given by (1) and all roots of Π less

than one. Let Θ be the unknown parameters of the model and let Θ̂QD be the QD estimator of Θ.

Then
√
T (Θ̂QD −Θ0) d−→N(0, Avar(Θ̂QD)).

A sketch of the argument is given in the Appendix for the baseline model whose closed-form solution

is known. By subtracting the variance from each lagged autocovariance, the quadratic terms in the

expansion of the objective function are asymptotically negligible. This leads to the rather unexpected

property that Θ̂ is asymptotically normal even when ρz = 1. From a practical perspective, the

primary advantage of the robust estimators is that when properly studentized, the estimators are
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normally distributed whether ρz < 1 or ρz = 1, which greatly facilitates inference. Since all estimators

are consistent and asymptotically normal, it remains to consider which estimator is more efficient in

finite samples.

4.1 Related Literature

Our approach is related to other methods considered in the literature. Cogley (2001) considers several

alternative estimation strategies and finds that using cointegration relationships in unconditional Euler

equations works quite well, as the moments used in GMM estimation remain stationary irrespective

of whether the data are trend or difference stationary. Our method is similar (and complementary)

to Cogley’s (2001) in that neither requires the researcher to take a stand on the properties of the

trend dynamics before estimation, but there are important differences. First, quasi-differencing can

easily handle multiple I(1) or highly persistent shocks. In contrast, using cointegration relationships

works only for certain types of shocks. For example, if the shock to disutility of labor supply is

an I(1) process, there is no cointegration vector to nullify a trend in hours. Second, cointegration

often involves estimating identities and therefore the researcher has to add an error term (typically

measurement error) to avoid singularity. Our approach does not estimate specific equations and hence

does not need to augment the model with additional, atheoretical shocks. Finally, using unconditional

cointegration vectors may make estimation of some structural parameters such as adjustment costs

impossible because adjustment costs are often zero by construction in the steady state. In contrast,

our approach utilizes short-run dynamics in estimation and thus can estimate the parameters affecting

short-run dynamics of the variables. Overall, our approach exploit different properties of the model

in estimation and hence can be used in a broader array of situations.

Fukac and Pagan (2006) consider how the treatment of trends might affect estimation of DSGE

models, but their analysis is confined to a single equation framework. They propose to use the

Beveridge-Nelson decomposition to estimate and remove the permanent components in the data. Apart

from the fact that the permanent component in the Beveridge-Nelson decomposition may be different

from actual trend and is derived under some strong assumptions, our approach is a one-step procedure

that can handle multiple I(1) shocks as we discussed above.

Canova (2008) explicitly treats the latent trends as unobserved components and estimates the

trends and cycles directly. While this allows the data to select the trend endogenously, the procedure

can be imprecise when the random walk component is small. Canova and Ferroni (2008) considered

many filters and treat each as the true cyclical component measured with error. They are primarily

concerned with the consequences of data filtering taking the model specification as given. We take

the view that the trends specified for the model should be consistent with the facts that we sought to
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explain. As such, it cannot be taken as given.

5 Simulations: Baseline Model

In this section we use the stochastic growth model to conduct Monte Carlo experiments. We generate

data with either deterministic trends (ρz < 1) or stochastic trends (ρz = 1) using the model equations

for m̂t. The model variables are then rescaled back to level form and treated as observed data dt =

(ct, kt, yt, lt), which we take as given in estimation. We use the variance and first order autocovariance

(including cross variances) of the four variables as moments. Thus, M = 1. We also experimented

with alternative choices of observed variables, such as excluding the capital stock series, and we found

very similar results.

We estimate Θ = (α, ρ, σ) and treat parameters (β, δ, θ) as known.4 We estimate only a handful

of parameters because we want to decouple the issues related to the treatment of trends from the

identification issues that might arise. We calibrate the model as follows: capital intensity α = 0.33;

disutility of labor θ = 1; discount factor β = 0.99; depreciation rate δ = 0.1; gross growth rate in

technology ḡ = γ̄ = 1.005. We restrict the admissible range of the estimates of α to [0.01,0.99]. We

vary the persistence parameter ρz to take values (0.95, 0.99, 1). We have only one shock in this

baseline model. Thus, we set the standard deviation of ezt to σz = 1 without loss of generality. We

perform 2,000 replications for each choice of parameter values. In each replication, we create series

with T=200 observations. Other sample sizes are also considered.

In all simulations and for all estimators, we set the starting values in optimization routines equal

to the true parameter values. The model is solved using the Anderson and Moore (1985) algorithm.

We allow mildly explosive estimates as solutions for otherwise ρ̂z will be truncated to the right at one,

making the distribution of ρ̂z highly skewed. We only keep as solution those sets of estimates that are

consistent with a unique rational expectations equilibrium.5

We report simulation results for the baseline neoclassical growth model in Table 2. The persistence

of technology shocks is given in the left column. The first and second rows indicate which filter

is applied to both the data and the model variables. Columns (1)-(4) report results for the four

estimators. By and large, all four filters yield estimates which are very close to the true values. Notice

that while ρz is always precisely estimated, the variance of the estimates varies substantially across

filters. The QD estimates has the lowest standard deviation while the HP estimates are two to five
4The average growth rate ḡ is estimated in the preliminary step when we project series on linear time trend.
5A rational expectations solution is said to be stable if the number of unstable eigenvalues of the system equals the

number of forward looking variables. Stability in this context refers to the internal dynamics of the system. This is
distinct from covariance stationarity of the time series data, which obtains when ρz < 1. It is possible for ρz to be mildly
explosive and yet the system has a stable, unique rational expectations equilibrium.
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times more variable than the QD. The HD is more precise than the FD but is less precise than the

QD. This pattern is recurrent in all simulations.

Figure 1 shows the root mean squared error (RMSE) for different estimators and sample sizes. The

QD estimator performs the best while the FD tends to have the largest RMSE in almost all cases.

The performance of the HP estimator varies with sample size. In small samples, the HP tends to lead

to large RMSE while in larger samples, the HP approaches the HD which is only slightly inferior to

the QD.

Figures 2 through 4 present the kernel density of the normalized estimator (ie.
√
T (Θ̂ − Θ))

for sample sizes of T=150 and 300. Results are also reported for T=2000 to study the asymptotic

properties of the estimators. Approximate normality of ρ̂z when ρz is close to one, is totally unexpected,

given that the literature on integrated regressors prepared us to expect super consistent estimators with

Dickey-Fuller type distributions that are skewed. Instead, all densities are bell-shaped and symmetric

for all ρz ≤ 1 with no apparent discontinuity as we increase ρz to one. The normal approximation is

not perfect in small samples, suggesting that some size distortion will occur if we use the t statistic for

inference. In results not reported, we construct t-statistics using Newey-West standard errors and find

that the rejection rates tend to be greater than the nominal size for all estimators except the HP, which

can be undersized. For example, the rejection rate of the QD estimator for the two-sided t-test of ρz
at the true value of 1 is 0.055 when T=200 while for testing α at the true value of 0.33, the rejection

rate is 0.21. This is larger than the nominal size of 0.05. As the sample size increases, the actual

size gets closer (and eventually converges) to the nominal rates. For example, at T=1000 for QD, the

two-sided t-test of ρz = 1 has a rejection rate of 0.05, while the t test for α = .33 is 0.10. The QD and

HD generally have better size than the FD and the HP. The finite sample size distortion seems to be

a general problem with covariance structure estimators and not specific to the estimator we consider.

Burnside and Eichenbaum (1996) reported similar results in covariance structure estimation with as

many overidentifying restrictions as we have, and also using the Newey-West estimator of the variance

of moments.

5.1 Variations to the Baseline Model

In response to the finding in Cogley and Nason (1995b) that the basic real business cycle model has

weak internal propagation, researchers often augment the basic model to strengthen the propagation

and to better fit the data at business cycle frequencies. One consideration is to introduce serial

correlation in the growth rate of shocks to technology by assuming ut = (ρz + κ)ut−1 − κρzut−2 + ezt .

This specification generates serial correlation of κ in the growth rate of technology when ρz ≈ 1. Our

baseline model corresponds to κ = 0. When we simulate data with κ = 0 and estimate κ freely, the
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QD, HD, FD, and HP correctly find that κ = 0 (Table 3, Panel A).

Habit in consumption is another popular way to introduce greater persistence in business cycle

models. Consider the utility function: ϑ(Ct, Ct−1, Lt) = ln(Ct − φCt−1) − θLt where φ measures the

degree of habit in consumption. We set φ = 0 and estimate φ along with other parameters to investigate

how the treatment of the trends might affect estimates of this internal propagation mechanism. The

robust estimators again find φ̂ to be numerically small and not statistically from zero for all values of

ρz (Table 3, Panel B).

We also augment our baseline model with a preference shock Qt such that the utility is ϑ(Ct, Lt) =

lnCt − θLt/Qt where qt = lnQt = ρqqt−1 + eqt and eqt ∼ iid(0, σ2
q ). In our simulations, we set ρq = 0.8

so that the preference shock is stationary. We let σq = (0.5, 1.0, 1.5). To conserve space, we only

report estimates for α in Table 3, Panel C. Consistent with the results thus far, the HP estimates have

the largest variability although the difference with other estimators is not as large as it was in the

baseline model. Note that as we increase σq, the difference across methods shrinks while the precision

for all estimators improves.

A recurrent result is that the HP estimates have the largest variability. One possibility is that the

HP filters out more low frequency variation than other filters, and the parameters φ and κ are identified

from these frequencies (see also discussion in Burnside (1998)). Another possibility is that the HP

implicitly uses estimated autocovariances at many more lags than other filters (recall that we apply the

inverse Fourier transform to many autocovariances). This extensive use of sample autocovariances can

also introduce variability to the estimator. In addition, we find that HP is much more computationally

intensive than other robust estimators.

6 Non-Robust Estimators and a Model with Multiple Rigidities

In this section, we report results of the non-robust estimators applied to different models to illustrate

how treatment of trends can lead to misleading conclusions about the propagating mechanism of

shocks. We also compare the estimators using a model with many more endogenous variables.

6.1 Alternative Detrending Procedures

Up to this point, we have considered approaches where the same transformation is applied to the data

and the model variables. Much has been written about the effects of filtering on business cycle facts.

King and Rebelo (1993) and Canova (1998) showed that the HP filtered data are qualitatively different

from the raw data. Canova (1998) showed that the stylized facts of business cycles are sensitive to the

filter used to remove the trending components. Gregory and Smith (1996) used a calibrated business

cycle model to investigate what type of trend can produce a cyclical component in the data that is
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similar to the cyclical component in the model. Although these authors did not estimate a DSGE

model on filtered data, they hinted that the estimates of the structural parameters can be adversely

affected by filtering.

We now investigate the consequences of using different and/or inappropriate filters by considering

four combinations:

A) The autocovariances are computed for linearly detrended model and data series;

B) The autocovariances are computed for the first differenced model and data series with imposed

ρz = 1;

C) The sample autocovariances are computed for HP filtered data but the model autocovariances

are computed for the linearly detrended variables;

D) The sample autocovariances are computed for HP filtered data. The model autocovariances are

computed for series normalized by the level of technology, i.e., mt − zt where zt is the level of

technology.

Each combination has been used in the literature (see e.g. Table 1). (A) and (B) are aimed to show the

effects of imposing incorrect assumptions about trends. (C) and (D) illustrate the consequences when

different trends are applied to the model and the data. As a general observation, the starting values

are very important for non-robust methods as the optimization routines can get stuck in local optima.

With the robust estimators, the converged estimates do not change as we start the optimization from

values other than the true parameters, though the search for global minimum was often long.

The results are reported in Table 2. For (A), which is reported in column (5), we see that when

ρz = 0.95, the parameter estimates are slightly biased. As ρz increases, the estimates are strongly

biased. This shows that when ρz is close to unity yet stationary, assuming trend stationarity still yields

imprecise estimates. At ρz = 1, the mean of ρ̂z is 0.694 (instead of 1), the mean of α̂ is approximately

0.905 (instead of 0.33), the mean of σ̂z is 19.8 (instead of 1). The case of ρz ≤ 1 is empirically relevant

because macroeconomic data are highly persistent and well approximated by unit root processes. Our

results show that linear detrending of nearly integrated data in non-linear estimation can lead to

biased estimates of the structural parameters. This resembles the univariate finding of Nelson and

Kang (1981) that projecting a series with a unit root on time trend can lead to spurious cycles.

Turning to (B) in column (6) of Table 2, we find that while the estimates are fairly precise when ρz
is indeed equal to one, as ρz departs from one, the estimates get increasingly biased. Hence imposing

a stochastic trend when the data generating process is trend stationary can lead to seriously distorted

estimates. Results for combination (C) are reported in column (7) of Table 2. The estimates of ρz are
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downward biased while α̂ and σ̂z are upward biased. Taken at face value, these estimates suggest a

significant role for capital as a mechanism for propagating shocks in the model.

Results for (D) are reported in column (8) of Table 2. Here, the estimates of α often hit the

boundary of the permissible space while estimates of σz are close to zero. The reason is that when zt

has a unit root, shocks to mt− zt are transitory. Thus, the endogenous variables such as consumption

adjust quickly to the permanent technology shock. But the HP filtered data are serially correlated.

Thus, the estimator is forced to produce parameter values that can generate a strong serial correlation

in the model variables. Results for (C) and (D) are consistent with the findings of Cogley and Nason

(1995a), King and Rebelo (1993) and Harvey and Jaeger (1993). These papers suggest that the HP

filter changes not only the persistence of the series but also the relative volatility and serial correlation

of the series. This translates into biased estimates of all parameters because the estimator is forced

to match the serial correlation of the filtered data.

Clearly, the large estimates of α will alert the researcher that the model is likely misspecified.

Suppose the researcher allows for serially correlated shocks in technology growth by estimating κ

freely. Panel A, Table 3 shows that the non-robust methods now yield estimates of α around 0.4-0.5,

which seem more plausible than when κ was assumed zero. However, these estimates are achieved by

having κ̂ strongly negative and statistically significant when the true value is zero. Suppose now the

researcher modifies the model by allowing for habits in consumption. Evidently, the estimated habit

formation parameter φ is sensitive to which non-robust estimator is used. In particular, (A) has a

strong downward bias, while (B) produces a negative bias in φ̂ when ρz departs from one. On the other

hand, (C) and (D) have a strong upward bias. With either modification, the fit of the misspecified

models improves relative to the correctly specified model. However, these modifications should not

have been undertaken as they do not exist in the data generating process. These examples indicate

how the treatment of trends can mislead the researcher to augment correctly specified models with

spurious propagation mechanisms to match the moments of the data.

Results for the model with an additional labor supply shock are reported in Table 3, Panel C. The

estimates continue to be biased although the biases tend to be smaller than in the baseline model

with a single persistent shock. In general, a smaller ρz and a larger σq lead to smaller biases. In some

cases, we find σ̂q > σ̂z, so that the researcher may be tempted to conclude that preference shocks have

larger volatility than shocks to technology while the opposite is true.

6.2 The Smets and Wouters Model

Although the baseline model is an illuminating laboratory to evaluate how the estimators work, it is

overly simplistic. We now consider the model of Smets and Wouters (2007) (henceforth SW). We use
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SW’s estimates for the post-1982 sample as the true values. We then simulate series of size T=150

and apply the estimators to the simulated series. To separate identification issues from issues related

to the treatment of trends, we estimate only four parameters: persistence of technology shocks ρz
whose true value varies across simulations, investment adjustment cost φ whose true value is 5.48,

external habit formation in consumption λ whose true value is 0.71, and Calvo’s probability of wage

adjustment ξw whose true value is 0.73.

The results are reported in Table 4. All robust methods yield precise estimates of the parameters.

Although the HP continues to be less precise, the difference with the other three robust estimators is

smaller than in the baseline model. This is similar to what we observed when we compare the two-

shock and one-shock neoclassical growth models. These differences between the baseline and the more

complicated models can occur for several reasons. First, the SW model has six other structural shocks

so that technology shocks explain only a fraction of variation in key macroeconomic variables. The HP

estimator may simply need more shocks to identify the parameters. Second, the SW model imposes

many cross equation restrictions on the handful of the parameters we estimate. These restrictions

may improve the efficiency of some estimators more than others. Third, some estimators may be more

sensitive to the size of the model than others. The general observation, however, is that our robust

estimators perform reasonably well for all values of ρz in simple and more complex models.

In contrast, the non-robust estimators (A) through (D) have dramatic biases in all four parameters

being estimated when (i) the filter used for the model and the data are different, when (ii) the assumed

trends are different from trends in the data generating process, or when (iii) the data are stationary

but highly persistent. Obviously, the impulse responses (and other analyses about the role of rigidities

in amplification and propagation of shocks in business cycle models) based on these biased estimates

of the structural parameters will be misleading. As an illustration, Figure 5 highlights the difference

between the true response of key macroeconomic variables to a technology shock in the SW model and

the responses based on parameter estimates from approaches (A) through (D). For instance, consider

the response of consumption. Estimates from approaches (A) and (C) imply grossly understated

responses. Estimates from approach (D) suggest a considerably more delayed consumption response

than the true one. The consumption response implied by approach (B) is qualitatively similar to the

true response, but the responses are noticeably different quantitatively especially when ρz is further

away from one.
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7 Extensions and Implementation Issues

7.1 Multiple shocks

The reduced form solution (1) can be easily generalized to other models and takes the form

m̂t = Πm̂t−1 +But (3)

ut = ρut−1 + Set,

where ut is now a vector of exogenous forcing variables, et is a vector of innovations in ut, and the

matrices Π, B, S, ρ are of conformable sizes.

Suppose there are J univariate shock processes, each characterized by

(1− ρjL)ujt = ejt, j = 1, . . . , J

where some J∗ of the ρj may be on the unit circle. Define

∆ρ(L) =
J∗∏
j=1

(1− ρjL).

Now the quasi-differencing operator is the product of the J∗ polynomials in lag operator. For example,

if one knows that shocks to tastes dissipate quickly while technology shocks zt are highly persistent, we

can still use (1− ρzL) as ∆ρ. Once the model is solved to arrive at (3), we can compute moments for

the quasi-differences of m̂t. Whether none, one, or more shocks are permanent, the autocovariances

of the transformed variables are well defined.

7.2 Likelihood Estimation

As likelihood and Bayesian estimation is commonly used in the DSGE literature, one may wonder how

the ideas considered in this paper can be implemented in likelihood based estimation. Conceptually,

if we can write the model in a state space form, we can specify the likelihood which makes MLE

and Bayesian estimation possible. This involves using the measurement equations to establish a strict

correspondence between the detrended series in the model and in the data.

As an example, consider the FD estimator for the generalized model (3). We can define the

measurement equation as

xt = Hst =
[
Ψ −Ψ 0

]
st, (4)

where xt is the vector of filtered variable, Ψ is the selection matrix, and s′t = (m̂t, m̂t−1, ut) is the state

vector. The corresponding transition equation is m̂t

m̂t−1

ut

 =

Π 0 Bρ
I 0 0
0 0 ρ

m̂t−1

m̂t−2

ut−1

+

BS0
S

 et
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or

st = Π∗st−1 +B∗et (5)

with et ∼ i.i.d.(0,Σ). The measured variable xt is stationary irrespective of whether m̂t has stochastic

or deterministic trends. For the QD0 estimator, H =
[
Ψ −ρΨ 0

]
. As with all quasi-differencing

estimators, the treatment of initial condition is important especially when there is strong persistence.

In simulations, we condition on the first observation being fixed and find that the MLE version of the

FD gives precise estimates, but the t statistics are less well approximated by the normal distribution

compared to MM-FD (see Figure 6).

For the other three estimators, the extension to MLE is either not possible or not practical. For

MLE-HP, we would need to write out the entire data density of the HP filtered data, and the Jacobian

transformation from the unfiltered to filtered data involves an infinite dimensional matrix. For the QD

estimator, recall that we normalized the autocovariances by the variance in constructing the QD. By

analogy, MLE-QD would require modifying the score vector. Although such modification is possible in

theory, it is beyond the scope of this paper. We leave this promising idea for future research. For the

HD estimator, the MLE implementation is cumbersome because HD exploits covariances of variables

computed with different filters. The difference between the MM and MLE really boils down to a choice

of moments, and the MM is more straightforward to implement.6

7.3 Computation

Computing Filtered Autocovariance Moments of the filtered model variables can be computed

analytically or by using simulations. We use the analytical moments whenever possible since it tends to

be much faster than simulations and it does not have simulation errors. Although there are a variety of

methods for analytical calculations, methods that exploit measurement equations are computationally

attractive especially in large models. Combining the measurement equation xt = Hst and the state

equation st = Π∗st−1 +B∗et, we have[
xt
st

]
=

(
0 HΠ∗

0 Π∗

)[
xt−1

st−1

]
+
(
HB∗

B∗

)
et.

Let w′t = (x′t, s
′
t). We have

wt = D0wt−1 +D1et.

6One practical drawback of GMM is perhaps that when many parameters have to be estimated, the objective function
can be ill behaved which frustrates convergence. However, Chernozhukov and Hong (2003) suggest a novel approach
by which GMM can take advantage of MCMC methods. Coibion and Gorodnichenko (2008) use Chernozhukov-Hong’s
MCMC method based on GMM to estimate a relatively large DSGE model.
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The variance matrix Ωw(0) = E(wtw′t) can be computed by iterating the equation

Ω(i)
w (0) = D0Ω(i−1)

w (0)D′0 +D1ΣD′1 (6)

until convergence. The autocovariance matrices can then be computed as Ωw(j) = Dk
0Ωw(0). Since we

are only interested in computing the moments of variables in the measurement vector xt, we iterate

equation (6) until the block that corresponds to xt converges, i.e. ‖Ω(i)
x (0)− Ω(i−1)

x (0)‖ < ε.7

Calculating moments of HP-filtered model series The HP filtered series can alternatively be

obtained as follows:

HP (L)dt = HP+(L)∆dt =
λ(1− L)(1− L−1)2

1 + λ(1− L)2(1− L−1)2
∆dt.

In practice, using HP+(L) and the autocovariances for ∆dt and ∆m̂t tend to give more stable results

when ρz is close to one. It is possible to speed up estimation based on HP filtered series by using a

smaller number of leads and lags. This modification however would deteriorate the HP’s approximation

to the desired filter removing low frequencies.8

Treatment of stationary variables Recall that in the stochastic growth model, m∗t = (ḡt, ḡt, 0)

when |ρz| < 1 and m∗t = (ut+ḡt, ut+ḡt, 0) when |ρz| = 1, where the third component of m∗t is the trend

for labor supply, lt. Since lt has no deterministic or stochastic trend component, the autocovariances

are computed for lt and not l̂t, though the results do not change materially if we had filtered these

series as well. In general, if the j-th component of m∗t is zero, it is understood that the autocovariances

are computed for the level of the variable both in the model and in the data. An alternative is to

deal with these non-trending variables through the measurement equation. Then some variables can

be quasi-differenced or first-differenced, while others require no transformation.

8 Concluding Remarks

A realistic situation encountered with estimation of DSGE model is that (a) the data are trending; (b)

deviations from the trend are persistent; (c) the researcher does not know whether the data generating

process is difference or trend stationary. We document that the treatment of trends can significantly

affect the parameter estimates of DSGE models and propose several robust approaches that produce
7Since parts of wt may be exploding, we found that it useful to limit the size of elements in the covariance matrix

Ω
(i)
w (0) by a fixed large number. This introduces an error in the calculated moments of xt but we found that this error

is negligible in practice.
8We also experimented with a simulation procedure. For each Θ, we use the model to generate j = 1, . . . , R samples

of size T . For each j we computed moments. Then we average the moments over j and use this average for ωmHP . This
procedure is computationally more intensive and the results are similar to the one considered here.
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precise estimates without the researcher having to take a stand of trend specification. The key is

to apply the same filter to the data and the model variables to yield well-defined moments for the

estimation of the structural parameters. We consider several filters that can be used in methods

of moments estimation, and the estimators have approximately normal finite sample distributions.

Undoubtedly, the estimators require further scrutiny and can be improved in various dimensions.9

Our analysis is a first step in the sparse literature on non-linear estimation when the data are highly

persistent.
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9 Appendix

Consistency of the estimators follow from Wu (1981):

Lemma 1 Let θ be the parameter of interest and let θ0 denote the true value of θ. Suppose that for
any δ > 0

lim inf
T→∞

inf
‖θ−θ0‖≥δ

(QT (θ)−QT (θ0)) > 0 a.s. or in probability.

Then θ̂T
a.s.−→θ0 (or in probability) as T →∞.

From solving the baseline model, the endogenous variable yt has solution

yt = vykkt−1 + vyzzt
kt = vkkkt−1 + vkzzt
zt = ρzt−1 + et.

It is straightforward to show that yt is an ARMA(2,1) with

yt(1− vkkL)(1− ρL) = (1− θyL)et

where θy = vkk − αvkz. Note that vkk does not depend on ρ, but vkz does. A similar equation holds
for consumption. Let the true parameters be denoted by a superscript 0 and to focus on the issue, we
assume σ2 and vkk are known. Generically, write

(1− ρ0L)(1− v0
kkL)yt = et + b(ρ0, v0

kk)et−1

where b(ρ, vkk) is continuous in ρ and vkk. Then the DGP is

yt = ρ0yt−1 + ut

where ut is ARMA(1,1). Let ỹ0
t = (1 − ρ0L)yt be yt quasi-differenced at the true ρ and let ỹt be yt

quasi-differenced at an arbitrary ρ. For any ρ that is assumed to be true, the analytical autocovariance
at lag j for ỹt is given by

γ0(ρ) = σ2 1 + b(ρ, vkk)2 + 2vkkb(ρ, vkk)
1− v2

kk

γ1(ρ) = σ2 (1 + vkkb(ρ, v0
kk))(vkk + b(ρ, vkk))
1− v2

kk

γj(ρ) = v0,j−1
kk γ1(ρ), j ≥ 2

The derivatives of γj(ρ) with respect to ρ exists and is well defined.
Let γTj(ρ) be the sample autocovariance of y quasi-transformed at an arbitrary ρ.

γTj(ρ) =
1
T

T∑
t=1

ỹ0
t ỹ

0
t−j − (ρ− ρ0)yt−1ỹ

0
t−j − (ρ− ρ0)yt−j−1ỹ

0
t + (ρ− ρ0)2yt−1yt−j−1.

Without loss of generality, consider j = 1 and focus on the last term of the expression above. Now
yt−1 = ρ0yt−2 + ut−1. At ρ0 = 1,

1
T

T∑
t=1

yt−1yt−2 − y2
t−1 = − 1

T

T∑
t=1

yt−1ut−1 = Op(1).
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It is easy to see that for any ρ in the 1√
T

neighborhood of ρ0,

√
T (γT1(ρ)− γT0(ρ)) =

[
T−1/2

T∑
t=1

ỹ0
t ỹ

0
t−1 − (ỹ0

t )
2

]

−
√
T (ρ− ρ0)

1
T

T∑
t=1

[
yt−1ỹ

0
t−1 + yt−2ỹ

0
t − 2yt−1ỹ

0
t

]
+ op(1)

since (ρ− ρ0)2T−1
∑T

t=1 ytut = Op(T−1/2). The scaled sample orthogonality condition is

√
T ḡ(ρ) =

[
1√
T

T∑
t=1

(
ỹ0
t ỹ

0
t−1 − γ1(ρ)

)
−
(

(ỹ0
t )

2 − γ0(ρ)
)]

−
√
T (ρ− ρ0)

1
T

T∑
t=1

[
yt−1ỹ

0
t−1 + yt−2ỹ

0
t − 2yt−1ỹ

0
t

]
+ op(1).

Let GT (ρ) = 1
T

∑T
t=1

[
yt−1ỹ

0
t−1 + yt−2ỹ

0
t − 2yt−1ỹ

0
t

]
. The first order condition is G′T (ρ̂)ḡ(ρ̂) = 0.

Evaluated at γ1(ρ0) and γ0(ρ0), the terms in the first square bracket obeys a central limit theorem.
Let ξ1 and ξ0 be two independent normal random variables. Then

√
T ḡ(ρ̂) = ξ1 − ξ0 +G′T (ρ0)

√
T (ρ̂− ρ0) + op(1)

Direct calculations yield
√
T (ρ̂− ρ0) = −(G′T (ρ̂)GT (ρ0))−1G′T (ρ0)(ξ1 − ξ0) + op(1).

Now ξ1 − ξ0 has variance 2σ4 and

GT (ρ) =
1
T

T∑
t=1

[
yt−1ỹ

0
t−1 + yt−2ỹ

0
t − 2yt−1ỹ

0
t

]

=
1
T

T∑
t−1

(yt−2 + ut−1)ut−1 + yt−2ut − 2yt−1ut → σ2

since T−1
∑T

t=1 yt−2ut−1, T−1
∑T

t=1 yt−1ut and T−1
∑T

t=1 yt−2ut all converge weakly to ω2
∫ 1

0 W (r)dW (r),
W (r) is a standard Brownian motion, and ω2 is the long run variance of ut. Thus

√
T (ρ̂−ρ0) d−→N(0, 2).

When other parameters are estimated, the asymptotic variance will be different but the developments
are analogous. A local to unity framework can be used to show that ρ̂ is also

√
T consistent when ρ0

is in the local neighborhood of one. A more rigorous analysis is given in Gorodnichenko et al. (2009).
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Table 1: Summary of Selected Work
Paper Equations Forcing Model Data Estimator

variable Filter Filter
Kydland and Prescott (1982) system ARMA(1,1) LT HP calibration

Altug (1989) system I(1) FD1 FD1 MLE
Christiano and Eichenbaum (1992) system I(1) zt HP GMM

Burnside et al. (1993) system AR(1) LT HP GMM
Burnside and Eichenbaum (1996) system I(1) zt HP GMM

McGrattan et al. (1997) system VAR(2) LT LT,HP MLE
Fuhrer (1997) equation not specified not specified HP,LT,QT GMM

Clarida et al. (2000) equation AR(1) not specified LT,HP,CBO GMM
Kim (2000) system AR(1) LT LT MLE

Ireland (2001) system AR(1) LT LT MLE
Smets and Wouters (2003) system AR(1) LT HP Bayesian

Dib (2003) system AR(1) LT LT MLE
Fuhrer and Rudebusch (2004) equation not specified not specified HP,CBO,QT MLE,GMM
Lubik and Schorfheide (2004) system AR(1) LT HP,LT Bayesian

Altig et al. (2004) system ARI(1,1) FD1 FD1 GMM
Ireland (2004) system I(1) FD1 FD1 MLE

Bouakez et al. (2005) system AR(1) LT LT MLE
Christiano et al. (2005) system not specified not specified VAR GMM
Del Negro et al. (2007) system ARI(1,1) FD1 FD1 Bayesian

Faia (2007) system AR(1) LT HP calibration
Smets and Wouters (2007) system AR(1) FD FD Bayesian

Note: CBO denotes actual series minus the Congress Budget Office’s measure of potential output.
I(1) and ARI(1,1) denote forcing variables with stochastic trends. VAR, AR and ARMA denote trend
stationary forcing variables. FD is first differencing, FD1 is first differencing with the restriction
that the forcing variable has a unit root (e.g., ρz = 1), LT is projection on linear time trend, QT
is projection on quadratic time trend, HP is Hodrick-Prescott filter, zt is detrending by the level of
technology. The second column shows whether a paper estimates a system of equations (“system”) or
a single structural equation (“equation”).
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Table 2. Neoclassical Growth Model
ρz data filter QD HD FD HP LT FD1 HP HP

model filer QD HD FD HP LT FD1 LT zt
(1) (2) (3) (4) (5) (6) (7) (8)

Estimate of α
0.95 mean 0.318 0.333 0.367 0.350 0.480 0.400 0.675 0.990

st.dev. 0.052 0.061 0.110 0.103 0.120 0.083 0.022
0.99 mean 0.308 0.324 0.372 0.360 0.810 0.377 0.789 0.990

st.dev. 0.053 0.066 0.115 0.120 0.201 0.109 0.024
1.00 mean 0.304 0.312 0.349 0.351 0.905 0.357 0.817 0.990

st.dev. 0.054 0.061 0.105 0.115 0.183 0.113 0.022
Estimate of ρz

0.95 mean 0.949 0.949 0.950 0.950 0.914 1.000 0.541 1.000
st.dev. 0.006 0.014 0.017 0.015 0.042 0.049

0.99 mean 0.989 0.990 0.991 0.991 0.864 1.000 0.485 1.000
st.dev. 0.002 0.005 0.007 0.016 0.094 0.041

1.00 mean 0.999 1.000 0.998 1.000 0.694 1.000 0.461 1.000
st.dev. 0.001 0.003 0.005 0.011 0.123 0.039

Estimate of σz
0.95 mean 0.981 1.021 1.157 1.076 1.135 1.334 1.949 0.046

st.dev. 0.123 0.187 0.441 0.291 0.283 0.285 0.167 0.006
0.99 mean 0.962 1.001 1.154 1.107 4.348 1.185 2.912 0.042

st.dev. 0.111 0.170 0.367 0.303 2.169 0.347 0.397 0.006
1.00 mean 0.955 0.974 1.073 1.087 19.803 1.107 3.289 0.041

st.dev. 0.108 0.145 0.295 0.513 10.681 0.341 0.478 0.005

Note: The number of simulations is 2,000. Sample size is T=200. LT is linear detrending, HP
is Hodrick-Prescott filter, FD is first differencing, FD1 is first differencing with the restriction that
ρz = 1, QD is quasi differencing, HD is hybrid differencing, zt is detrending by the level of technology.
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Table 3. Augmented Versions of the Neoclassical Growth Model
data filter QD HD FD HP LT FD1 HP HP

ρz model filer QD HD FD HP LT FD1 LT zt
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: serially correlated growth rate in technology
Estimate of κ = 0

0.95 mean -0.010 -0.001 0.001 -0.019 -0.180 -0.100 -0.224 -0.369
st.dev. 0.063 0.058 0.050 0.160 0.165 0.035 0.038 0.106

0.99 mean -0.014 -0.003 0.002 -0.016 -0.498 -0.021 -0.255 -0.429
st.dev. 0.044 0.046 0.041 0.155 0.088 0.030 0.038 0.070

1.00 mean -0.014 -0.003 0.003 -0.020 -0.600 -0.002 -0.256 -0.446
st.dev. 0.038 0.039 0.035 0.161 0.029 0.028 0.038 0.058

Panel B: habit formation in consumption
Estimate of φ = 0

0.95 mean 0.020 0.008 0.006 -0.014 -0.410 -0.086 0.193 0.679
st.dev. 0.075 0.073 0.071 0.255 0.339 0.066 0.382 0.074

0.99 mean 0.019 0.009 0.008 0.023 -0.647 -0.018 0.495 0.637
st.dev. 0.070 0.074 0.069 0.168 0.241 0.083 0.400 0.070

1.00 mean 0.018 0.023 0.011 0.025 -0.702 0.011 0.603 0.622
st.dev. 0.067 0.087 0.076 0.156 0.174 0.095 0.373 0.068

Panel C: preference shocks qt
Estimate of α = 0.33

σq = 0.5
0.95 mean 0.344 0.335 0.361 0.329 0.465 0.299 0.591 0.337

st.dev. 0.040 0.025 0.080 0.075 0.126 0.043 0.037 0.137
1.00 mean 0.353 0.342 0.352 0.335 0.508 0.352 0.665 0.485

st.dev. 0.052 0.034 0.067 0.072 0.357 0.063 0.050 0.265

σq = 1.0
0.95 mean 0.339 0.341 0.349 0.331 0.431 0.316 0.504 0.344

st.dev. 0.023 0.030 0.049 0.060 0.103 0.022 0.031 0.022
1.00 mean 0.347 0.347 0.357 0.340 0.611 0.341 0.529 0.364

st.dev. 0.028 0.034 0.050 0.055 0.257 0.025 0.036 0.023

σq = 1.5
0.95 mean 0.338 0.343 0.349 0.333 0.399 0.326 0.469 0.378

st.dev. 0.021 0.030 0.042 0.053 0.078 0.017 0.020 0.024
1.00 mean 0.341 0.346 0.353 0.338 0.515 0.338 0.477 0.391

st.dev. 0.020 0.029 0.038 0.049 0.203 0.017 0.021 0.023

Note: Panels A and B: other parameters fixed at α = 0.33 and σz = 1. Panel C: five parameters
are estimated (α, ρz, ρq, σz, σq). The number of simulations is 2,000. Sample size is T=200. LT is
linear detrending, HP is Hodrick-Prescott filter, FD is first differencing, FD1 is first differencing with
the restriction that ρz = 1, QD is quasi differencing, HD is hybrid differencing, zt is detrending by the
level of technology.
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Table 4. Smets and Wouters (2007) model.
data filter QD HD FD HP LT FD1 HP HP

ρz model filer QD HD FD HP LT FD1 LT zt
(1) (2) (3) (4) (5) (6) (7) (8)

Estimate of persistence in technology shocks ρz
0.95 mean 0.965 0.967 0.962 0.945 0.864 1.000 -0.100 1.000

st.dev. 0.038 0.037 0.044 0.137 0.142 0.157
0.99 mean 0.986 0.984 0.986 0.967 0.836 1.000 -0.114 1.000

st.dev. 0.027 0.027 0.028 0.123 0.227 0.090
1.00 mean 0.990 0.989 0.993 0.971 0.744 1.000 -0.123 1.000

st.dev. 0.027 0.026 0.025 0.123 0.305 0.075
Estimate of investment adjustment cost φ = 5.48

0.95 mean 5.057 5.381 5.227 5.066 3.932 4.700 4.447 9.818
st.dev. 2.236 2.548 2.306 3.354 1.917 2.487 0.265 0.609

0.99 mean 5.432 5.563 5.373 5.095 5.595 5.236 4.366 9.662
st.dev. 2.321 2.463 2.404 3.012 2.647 2.794 0.257 0.588

1.00 mean 5.863 6.253 6.014 5.617 6.173 6.049 4.377 9.541
st.dev. 2.375 2.775 2.781 3.279 2.983 3.046 0.230 0.548

Estimate of habit formation λ = 0.71
0.95 mean 0.725 0.730 0.749 0.753 0.730 0.864 3.932 0.673

st.dev. 0.057 0.063 0.062 0.049 0.063 0.142 1.917 0.134
0.99 mean 0.699 0.718 0.719 0.718 0.543 0.744 0.908 0.941

st.dev. 0.056 0.053 0.062 0.134 0.177 0.053 0.033 0.006
1.00 mean 0.686 0.711 0.716 0.709 0.470 0.731 0.912 0.940

st.dev. 0.056 0.055 0.064 0.145 0.261 0.057 0.028 0.005
Estimate of wage adjustment probability ξw = 0.73

0.95 mean 0.704 0.730 0.734 0.686 0.657 0.759 0.484 0.220
st.dev. 0.073 0.063 0.075 0.117 0.105 0.077 0.085 0.019

0.99 mean 0.686 0.704 0.709 0.659 0.530 0.718 0.458 0.213
st.dev. 0.081 0.065 0.079 0.125 0.214 0.084 0.078 0.016

1.00 mean 0.673 0.697 0.700 0.641 0.457 0.700 0.444 0.210
st.dev. 0.092 0.068 0.083 0.138 0.262 0.091 0.072 0.015

Note: The number of simulations is 2,000. Sample size is T=150. LT is linear detrending, HP
is Hodrick-Prescott filter, FD is first differencing, FD1 is first differencing with the restriction that
ρz = 1, QD is quasi differencing, HD is hybrid differencing, zt is detrending by the level of technology.
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Figure 6: Density of simulated t-statistic for MLE and MM estimators.
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