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1 Introduction

This chapter considers linear models for explaining a scalar variable when a researcher is given

T historical observations on N potentially relevant predictors but that the population regression

function is well approximated by a set of empirically relevant predictors whose composition is

unknown. The problem is to determine the identity of these predictors. I consider the variable

selection problem both when the number of potentially relevant predictors is small and when it is

large. I distinguish models with few relevant predictors from those with many relevant predictors

that may possibly have a factor structure. The common factors in the predictor set are distinguished

from those in the variable of interest. I also distinguish between discretionary and ‘must have’

regressors to accommodate variables (such as lags) that practitioners for one reason or another

choose to keep.

Three types of variable (model) selection procedures are distinguished:- criterion based methods,

regularization, and dimension reduction procedures. Section 2 begins with a discussion of informa-

tion criteria and sequential testing procedures in the classical setting when N is small relative to T .

I then turn to the data-rich case when N is large. Regularization methods are discussed in section

3 with special focus on L1 type penalties. Section 4 concerns constructing components to reduce

the dimension of the predictor set. The relation between factor analysis, principal components,

and partial least squares is reviewed. Section 5 discusses some unresolved issues, in particular,

whether to target components/factors to the variable of interest, and whether constructed pre-

dictors should be treated like the observed ones. The analysis wraps up with a discussion of the

tension between optimal prediction and consistent model selection. These issues are illustrated by

means of monte-carlo simulations.

The discussion on a variety of methods reflects my view that which procedure is best will likely

depend on the true data structure which we unfortunately do not know. Regularization seems to

better suit situations when all but a few observed predictors have non-zero effects on the regression

function while dimension reduction methods seem more appropriate when the predictors are highly

collinear and possibly have a factor structure. The best model may not be identified if the set

of candidate models is narrowed by the method used to select predictors. Nonetheless, in spite

of considering a broad array of methods, the review remains incomplete and far from exhaustive.

The discussion is presented at a general level leaving the readers to references for technical details

and assumptions. Cross-validation, bayesian methods, model averaging and forecast combinations

as well as many issues related to the general-to-specific modeling strategy outlined in Campos,

Ericsson, and Hendry (1994) are omitted. I also do not provide empirical or monte-carlo forecast

comparisons; such results can be found in Stock and Watson (2006, 2010), Kim and Swanson (2010),
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as well as Pesaran, Pick, and Timmermann (2011). These papers also contain useful references to

applications of methods being reviewed.

The following notation will be adopted. For an arbitrary m × n matrix A, let Aj be the j-th

column of A. The submatrix formed from the first r columns of A is denoted A1:r. For a N × 1

vector z ∈ Rn, the L2 norm is ‖z‖22 =
∑N

i=1 z
2
i , the L1 norm is ‖z‖1 =

∑N
i=1 |zi|, and the L0 norm

is ‖z‖0 =
∑N

j=1 Izj 6=0. The singular value decomposition of a T × N matrix X when T > N is

X = UXDXV
′
X where DX is a diagonal matrix of singular values with dX,1 ≥ dX,2 . . . ≥ dX,N along

the diagonal, UX and VX are T × N and N × N orthogonal matrices spanning the column and

row space of X respectively, with (V ′X)−1 = VX , U
′
XUX = IN and V ′XVX = VXV

′
X = IN . Also let

x+ = max(x, 0), x− = min(−x, 0), sgn (x) = 1 if x > 0, sgn (x) = −1 if x < 0, sgn (x) = 0 if

x = 0. To conserve on notation, I use εt to generically denote the error of the predictive regression

irrespective of the predictors and E is its vector analog.

In the statistics and machine learning literature, the exercise of using inputs (Z) to learn about

an outcome (y) is known as supervised learning. This is to be contrasted with unsupervised learning

which concerns how an outcome is organized or clustered without reference to observed inputs. The

exercise of model based economic forecasting is a form of supervised learning in which the object

of interest is the value of y at some time T + h and for which historical data on (y1, . . . , yT )′ and

other inputs are available. Denote by Wt = (w1t, . . . , wMt)
′ a set of M ‘must have’ predictors

that typically include lags of yt and deterministic terms such as dummy variables that control for

irregular events in the sample. Often, researchers also have at their disposal a set of N potentially

relevant predictors Xt =
(
x1t x2t . . . xNT

)′
. These regressors are predetermined and chosen

with the forecast horizon h in mind. To simplify notation, reference of the predictors and yt to

h will be suppressed. Let Zt = (W ′t X
′
t)
′. Throughout, each yt is assumed to be mean zero,

the regressors are demeaned and scaled so that for each i = 1, . . . ,M + N ,
∑T

t=1 zit = 0 and∑T
t=1 z

2
it = 1.

A predictive regression that includes all available predictors is

yt = W ′tα+X ′tβ + εt, (1)

where for t = 1, . . . T , εt is white noise with variance σ2. Let Y = (y1, . . . , yT )′ and δ = (α′ β′)′.

The predictive regression in matrix form is

Y = Wα+Xβ + E = Zδ + E .

The best linear unbiased h period forecast given information up to period T is given by the

linear projection:

yT+h|T = W ′T+h|Tα+X ′T+h|Tβ.
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Equation (1) is of interest in a variety of applications. For example, an out-of-sample forecast

of inflation with h > 0 can be obtained with Wt being lags of inflation and Xt being indicators of

slackness in the goods and labor markets. Many econometric exercises involve the in-sample pre-

diction with h = 0. In instrumental variable estimation, yt would be one of the many endogenous

variable in the system, Wt would be exogenous variables, and Xt would be the potentially valid

instruments of the endogenous regressor yt. In risk-return analysis, yt could be the excess return or

volatility for holding an asset over h periods. Given information Wt and Xt available to econome-

tricians, predictive regressions can be used to construct the conditional mean and volatility of asset

returns. A central question in these applications is the robustness of these estimates to the choice

of predictors. Predictive regressions are also useful for testing hypothesis such as rational expecta-

tions and/or market efficiency. For example, if theory suggests that bond risk premia reflects real

macroeconomic risk, a finding that financial variables appearing as Xt in (1) are significant would

be at odds with theory. As discussed in Ludvigson and Ng (2011), whether one accepts or rejects

the hypothesis often rests on the choice of predictor set Xt.

The best linear prediction is clearly infeasible because δ = (α′ β′)′ is unknown. Assuming that

Z is full column rank, δ can be replaced by the least squares estimates:

δ̂LS = argminδ‖Y − Zδ‖22 = (Z ′Z)−1Z ′Y.

Since Z ′Z = VZD
2
ZV
′
Z , it follows that

δ̂LS = VZD
−1
Z U ′ZY =

N+M∑
i=1

U′Z,iY

dZ,i
VZ,i.

The in-sample least squares fit is

ŶLS = Zδ̂LS = UZU
′
ZY (2)

and assuming that WT+h|T and XT+h|T are available, the feasible h-period ahead prediction is

ŷT+h|T = W ′T+h|T α̂+X ′T+h|T β̂ = Z ′T+h|T δ̂LS .

Although the least squares estimate δ̂LS is
√
T consistent for δ, the mean-square forecast error is

increasing in dim(β) for given dim(α), and not every potentially important predictor is actually

relevant. Retaining the weak predictors can introduce unwarranted sampling variability to the pre-

diction. The objective of the exercise is to form an accurate forecast using the available information.

I focus on quadratic loss and hence accuracy is measure is defined in terms of mean-squared forecast

error.

Let A be an index set containing the positions of the variables deemed empirically relevant.

Henceforth, XA will be referred to as the ‘empirically relevant’ or ‘active set’ of predictors. Let β̂A
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be a N × 1 vector of estimates whose j-th element is zero if the corresponding regressor’s index

is not in A, and equal to the least square estimates otherwise. Two ways of forecasting can be

envisioned. In the first case, only a small subset of X has predictive power. In the second case, the

best forecast is achieved by using information in a large number of predictors, however small the

contribution of each series is in explaining Y . Belloni and Chernozhukov (2011) refer to sparsity as

the condition when the number of non-zero entries in the population coefficient vector β is much

smaller than the dimension of β. Following these authors, the predictor set in first situation is said

to be sparse. It is then fitting to characterize the predictor set in the second situation as dense.

The difference between the two comes down to the dimension of XA relative to the sample size T .

2 Criterion Based Methods when N < T

Mallows (1973) is amongst the first to determine XA on the basis of prediction accuracy. His

criterion is the scaled sum of squared errors:

SSRp
σ2

=
1

σ2

(
δ − δ̂A

)′
Z ′Z

(
δ − δ̂A

)
where SSRp is the sum of squared residuals in a regression of Y on W and XA. The subscript

p refers to the number of regressors included in the regression. In the framework given by (1),

p = dim(α̂) + dim (A) is less than T . Assuming that the regressors Z are non-random and that the

errors are homoskedastic, Mallows (1973) shows that a useful estimate of E(
SSRp

σ2 ) is

CPp =
1

σ̂2
SSRp − T + 2p,

where σ̂2 is an accurate estimate of σ2. He also proposes two multivariate generalization of CP:

one that replaces
SSRp

σ2 by a weighted sum of squared errors, and another that uses an estimate δA

that is not least squares based.

The CP criterion defines XA as the subset of explanatory variables that corresponds to the

lowest point in the plot of CP against p. Mallows (1973) does not recommend to blindly follow this

practice because the rule will not be reliable when a large number of subsets are close competitors to

the minimizer of CP. Li (1987) considers the squared difference between the true and the estimated

conditional mean LT (p) = 1
T ‖yT+h|T − ŷT+h|T ‖

2 as the criterion for prediction accuracy. He relates

the CP to cross-validation methods and shows that it is optimal when the regression errors are

homoskedastic in the sense that LT (p̂)
infp∈P LT (p)

p−→1, where P = (1, 2, . . . , N + M) is an index set.

These results are extended to allow for heteroskedastic errors in Andrews (1991).

The CP criterion is related to a large class of information criteria that determines the size of a

model as follows:

pIC = argmin p=1,...pmaxICp, ICp =

[
log σ̂2p + p

CT
T

]
,
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where pmax is the maximum number of variables considered. The criterion function has three

components. The first is σ̂2p, which measures the fit of a model with p parameters. The second

is p, which defines the complexity of the model. The third is CT
T , a term that penalizes model

complexity in favor of parsimony. The factor of T in the penalty term is appropriate whenever the

variance of δ̂ tends to zero at rate T . The choice of CT is crucial and will be discussed below.

Model selection procedures are probably most analyzed in the context of autoregressions in

which case Zt = Xt = (yt−1, . . . , yt−p)
′, Wt is empty, and p is small relative to the sample size T .

Because the predictors in an autoregression have a natural (time) ordering, the varaible selection

problem is computationally simple. A p-th order autoregression uses p lags and the model selection

problem reduces to the determination of the lag length, p. Akaike (1969, 1970) propose to measure

adequacy by the final prediction error E (yT+h − ŷT+h)2 which can be viewed as a weighted version

of Mallows’ criterion with all weight given to the final observation. Assuming that a constant is

included in the autoregression and that the true order of the autoregression p is known, Akaike

suggests the large sample approximation:

E (yT+h − ŷT+h)2 ≈
(

1 +
p+ 1

T

)
σ2.

To make the criterion operational, Akaike first replaces σ2 in the above expression by 1
T−p−1SSRp

and then chooses p to minimize the statistic:

FPEp =

(
1 +

p+ 1

T

)
SSRp

T − p− 1
≡ T + p+ 1

T − p− 1
σ̂2p,

where σ̂2p = 1
T SSRp. Note that as T →∞, such a strategy is equivalent to choosing p by minimizing

logFPEp = log σ̂2p + 2p
T . Assuming that the true p increases with T , Shibata (1981) shows that the

FPE and CP are asymptotically equivalent.

Phillips (1979) and others note that minimizing the conditional mean squared forecast error

CMSFE= E
[
(yT+h − ŷT+h)2 |y1, . . . , yT

]
may be more relevant in practice as researchers only

observe one draw of the data. Ing and Yu (2003) approximate the CMSFE by

Vp = (1 +
p

T
)σ̂2p +

1

T
X′1:pS

−1
XXX1:pσ̂

2
p

where SXX = 1
TX
′
1:pX1:p, and X1:p is a matrix consisting of p lags of the dependent variable. The

authors show that Vp has a stronger correlation with CMSFE than the FPE.

Taking advantage of the ordered nature of time series data, many theoretical results are also

available for selection of parametric time series models. Hannan and Deistler (1988) show that the

pIC chosen for autoregressions is asymptotically proportional to log T when the observed data are

stationary ARMA processes. This logarithmic rate of increase extends to ARMAX and multivariate
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models. Practical issues in using information criteria are discussed in Ng and Perron (2005). In

particular, all autoregressions of order p must be estimated using T -pmax observations even if

p < pmax. This is necessary for the goodness of fit component of information criteria to not depend

on the complexity component of the criteria.

Sequential testing procedures can also be used to select models. It is generally used when the

number of candidate models to be considered is small, as is the case of autoregressions. A general-

to-specific (top-down) method starts from the largest model which in the case of autoregression

would be the pmax lags of the dependent variable. One checks if the coefficient on the last (ie. pmax-

th) lag is zero at some prescribed significance level. If it is not significant, the model with pmax− 1

lags is estimated and the last lag in this regression (ie. pmax − 1) is tested. If it is not, a model

with pmax − 2 lags is estimated, and so on. The test on the last lag is repeated until the estimated

coefficient on the last lag is found significant. General to specific procedures are detailed in Hendry

and Doornik (2001). It is also possible to consider a specific-to-general (bottom-up) approach that

starts with the smallest model possible. However, Hall (1994) finds that such a specific-to- general

approach is generally not valid for pure AR models and its finite sample properties are inferior to

general-to-specific approaches.

Sequential t tests and information criteria are stepwise, data dependent, rules that start by

setting all coefficients equal to zero, and then build a sequence of models that include one additional

variable at a time. Top down (bottom up) sequential testing is a form of backward (forward)

stepwise regression. Stepwise methods share two common features. First, the coefficients of the

variables already included in the regression are adjusted when a new variable is added or deleted.

Stepwise algorithms are ‘greedy’ because the locally optimal choices made at each stage may not be

globally optimal. Second, they perform what is known as ‘hard thresholding’: a variable is either

in or out of the predictor set. An undesirable feature of this is that a regressor set selected from N

available predictors may disagree with the one chosen when N is increased or decreased slightly. In

other words, hard thresholding is sensitive to small changes in the data because of discreteness of

the decision rule (also known as the bouncing beta problem). Furthermore, as discussed in Fan and

Li (2001), a good understanding of stepwise methods requires an analysis of the stochastic errors

in the various stages of the selection problem, which is not a trivial task.

The crucial parameter in a sequential testing procedure is the size of the test. If the size is too

small, the critical value will be large and few variables will be selected. But information criteria

can also be seen from a stepwise testing perspective. The AIC and BIC choose a test size that

corresponds to critical values of
√

2 and
√

log T , respectively. Now seen from the perspective of

information criteria, a two tailed five percent t test corresponds to a CT of 1.96. The variable

selection problem boils down to the choice of CT with large values favoring parsimonious models.
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Different values for CT have been proposed but the most widely used ones are probably log T and

2. The BIC (Bayesian Information Criterion) of Schwarz (1978) assigns a non-zero prior probability

to a model of small dimension. Maximizing an approximation to the posterior probability of the

model is equivalent to minimizing the IC with CT = log T . In addition to the FPE, a CT of two can

also be motivated from perspective of the Kullback-Leibler (KL) distance. Following Cavanaugh

(1997),the KL distance between the candidate model parameterized by δp and the true model with

density g is

D(δp) = Eg(−2 logL(y|δp))

where Eg denotes expectation taken with respect to the true density, L(δp|y) is the likelihood of

the candidate model. While δp can be estimated from the data, the KL still cannot be used to

evaluate models without knowledge of g. Akaike (1974) considers the expectation of KL when the

candidate models nest the true model parameterized by δ0.

E0[D(δ̂p)] = E0(−2 logL(δ̂p|y))

+

[
E0(−2 logL(δ0|y))− E0(−2 logL(δ̂p|y))

]
+

[
(E0(D(δ̂p))− E0(−2 logL(δ0|y))

]
. (3)

The second order expansion of each of the last two terms is the likelihood ratio statistic which can

be approximated by p since the expected value of a χ2 random variable with p degrees of freedom

is p. The expected KL suggests to select the best model minimizing

−2 logLT (δ̂p|y) + 2p.

In the least squares case this further simplifies to

T log(
SSRp
T

) + 2p

Minimizing this criterion function is equivalent to minimizing the IC with CT = 2. As noted

earlier, the FPE and CP select the same model as the AIC. Hurvich and Tsai (1989) propose a

small sample correction that replaces 2k by 1+p/T
1−(p+2)/T which amounts to adding a non-stochastic

term of 2(p+1)(p+2)
T (T−p−2) to the AIC.

When the true model is not in the set of candidate models considered and possibly infinite

dimensional, Takeuchi (1976) suggests to approximate each of the last two terms of (3) by

tr(J(δ0)I(θ0)
−1) (4)

where J(δ0) = Eg[(
∂
∂δ logL(δ|y))( ∂∂δ logL(δ|y)′)]δ=δ0 and I(δ0) = Eg[−∂2 logL(δ|y)

∂δi∂δj
]δ=δ0 . The TAIC

penalty is twice the quantity in (4). If δ is close to δ0, J(δ0) will be close to I(δ0). The trace term
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is approximately p and the TIC reduces to the AIC. The TIC has the flavor of determining the

best model taking into account the sampling error of the quasi-maximum likelihood estimates.

To make the TIC operational without knowing g, observed Fisher information and the outer

product of the scores evaluated at δ̂p are used in place of J(δ0) and I(δ0), respectively. The TIC is

computationally more demanding but it could be useful when the ARMA parameters are not well

identified in general, in view of the MAIC proposed in Ng and Perron (2001). The criterion adjusts

the AIC by a data dependent term so that it is robust to near cancellation of the unit roots in both

the autoregressive and moving average polynomials. This is precisely the situation when I(θ0) is

far from J(θ0).

Other selection procedures have been proposed. The PIC of Phillips and Ploberger (1996) can

be seen as a generalization of the BIC. Like the TIC, it also uses a data dependent term in place

of k as a measure of model complexity. But most have been shown to be related to the AIC or

the BIC. For example, Rissanen (1986b) suggests using a predictive principle that minimizes the

accumulative squares of prediction errors. Wei (1992) shows that the resulting model selection rule

is asymptotically equivalent to the BIC for ergodic models. Rissanen (1986a) uses coding theory

to choose a model with the minimum description length (MDL). The MDL of a fitted model has

a component that depends on complexity, and another that depends on the fit. As discussed in

Stine (2004), the MDL behaves like the AIC for some choice of coding parameters and the BIC for

special choice of the prior.

Let m0 be the true model, m̂T be the model selected using a procedure, and mopt
T be the model

that minimizes the squared loss, LT (m). A model selection procedure is said to be consistent

if the probability of selecting the true model approaches one as the sample size increases, ie.

P (m̂T = m0) → 1. A concept related to consistency is asymptotic loss efficiency, defined in Shao

(1997) as LT (m̂T )/LT (mopt
T )

p−→1. Both notions are to be distinguished from consistent estimation

of the regression function or of prediction. Consistent model selection can, however, conflict with

the objective of mean-squared prediction accuracy because while the parameter estimates may be

biased when the selected model is too small, the parameter estimates will not be efficient if the

model is too large.

Establishing optimal values of CT has generated much research interest, but the assumptions

vary across studies. Shibata (1980) considers selecting the lag order of infinite order Gaussian

autoregressions. He assumes that the data used for estimation are independent of those used in

forecasting. Using the criterion Ey(ŷt+h − yt+h)2 = ‖α̂ − α‖2 + σ̂2p, he shows that the (finite) p

selected by the AIC is efficient in the sense that no other selection criterion achieves a smaller

conditional mean squared prediction error asymptotically. Lee and Karagrigoriou (2001) obtain

similar results for non-Gaussian autoregressions. However, Ing and Wei (2003) extend the analysis
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to allow the sample used for prediction to overlap with that used in estimation. The issue is that

while CT = 2 will find the best model amongst the incorrect ones, the dimension of the selected

model tends to be unnecessarily large. Kunitomo and Yamamoto (1985) show that under-specifying

the order of the finite autoregression may actually be beneficial for prediction.

More generally, AIC is understood to fall short when it comes to consistent model selection.

Shibata (1976) shows that the AIC (and thus the FPE and CP) has a non-zero probability of over-

parameterizing finite order autoregressions. Shibata (1984) considers a generalized final prediction

error that replaces CT = 2 in the FPE with some other value, say, κ. His theoretical analysis sug-

gests that κ needs to exceed one for prediction efficiency, and simulations suggest that approximate

efficiency is still low when κ is set to two. Atkinson (1980) points out that a CT of two might still

be too small if the prediction problem is ill-conditioned. The observation that CT = 2 will not lead

to consistent selection of finite dimensional models is subsequently proved using various arguments.

When it comes to consistent model selection, results tend to favor a CT that increases with

T . Geweke and Meese (1981) show in a stochastic regressors setup that this condition is necessary

for consistent model selection. Speed and Yu (1993) also show that the BIC with CT = log T is

desirable for prediction. Asymptotic efficiency of the BIC is also shown in Shao (1997). While

it appears that CT = log T is both consistent and optimal for prediction of finite dimensional

(parametric) models with observed regressors. However, a finite dimensional model is not always

the accepted framework for analysis. The apparent lack of a rule that delivers both consistent

model selection and optimal prediction will be discussed again in Section 6.

3 Regularization Methods

One problem with information criteria when there is a large set of predictors with no natural

ordering is that enumeration of 2N predictive regressions is necessary. If N = 10, the number

of candidate models is 1024, and when N = 20, the number increases to 1048576. Even with

very fast computers, evaluating 2N models and interpreting all the results would be impractical.

Furthermore, a prediction rule that works well in the estimation sample need not perform well in

the prediction sample. This problem is more serious when there are many predictors since the large

number predictors span a high dimensional space that is likely to capture most of the variation

in the dependent variable. In the extreme case when N = T , a perfect fit can be found but only

because the model is explaining random noise. Regularization goes some ways in resolving these

two problems.

In statistics and machine learning, overfitting occurs when making a model fit better in-sample

has the consequence of poor out-of-sample fit. It usually occurs when a model has too many
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variables relative to the number of observations. Any method that prevents overfitting the data

is a form of regularization. Information criterion and sequential testing perform L0 regularization

and can be written as

pIC = argmin p=1,...,pmax log σ̂2p +
CT ‖β‖0

T
.

since ‖β‖0 is the number of non-zero components of β. But information criteria were developed

under the assumption that the regressor matrix Z has full column rank. The parameter estimates

will be sensitive to small changes in the data when the eigenvalues of Z are nearly zero, which is a

source of the bouncing beta problem. One way to alleviate the problem is to down-weigh the less

important predictors, a method known as shrinkage. Stock and Watson (2009) use shrinkage as the

unifying framework to discuss various forecast methods. For variable selection, a general shrinkage

framework is bridge regressions:

δ̂B = argminβ‖Y − Zδ‖22 + γ
M+N∑
j=1

|δj |η, η > 0.

The ridge estimator (also known as Tikhonov regularization) due to Hoerl and Kennard (1970) is

a special case with η = 2. It is also a Bayesian estimator with Gaussian prior. The ridge estimates

are defined as

δ̂R = (Z ′Z + γIM+N )−1Z ′Y

=

M+N∑
i=1

aZ,i
U′Z,iY

d̂Z,i
VZ,i (5)

where for i = 1, . . . ,M + N , aZ,i =
d2Z,i

d̂2Z,i+γ
≤ 1. The ridge estimator thus shrinks the i-th least

squares estimate by an amount that depends on the i-th eigenvalue of Z ′Z. If all M +N predictors

are identical, each coefficient is 1/(M +N) of the size of the coefficient in a single regression. The

ridge estimator can be cast as a least squares problem using the augmented data

Zγ =

(
Z√
γIN

)
, Yγ =

(
Y
0

)
.

As written, the L2 penalty treats all predictors equally and cannot distinguish must have predictors

from discretionary ones though this can be easily modified to penalize only the N parameters β and

not the M parameters α. While the ridge estimator will alleviate the problem of highly collinear

regressors, most coefficient estimates will remain non-zero. The reason is that a convex penalty

with η > 1 will not yield a sparse model and efficiency of the estimator decreases with p. The more

serious limitation of the L2 penalty is that least squares estimation is infeasible when p > T even

when Z has full column rank.
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3.1 LASSO

A method that has received a great deal of attention in the statistics literature is the least absolute

shrinkage selection operator (LASSO) of Tibshirani (1996). In the simple case without the must

have regressors W (ie. Z = X and δ = β), LASSO solves the quadratic programming problem:

β̂LASSO = argminβ
1

2
‖Y −Xβ‖22 subject to

N∑
j=1

|βj | < s

for some s > 0. The Lagrange formulation is

β̂LASSO = argminδ
1

2
‖Y −Xβ‖22 + γ‖β‖1.

Obviously, LASSO is a bridge estimator with η = 1. It is also a Bayesian estimator with a Laplace

(or double exponential) prior.

The main difference between a LASSO and a ridge regression is the use of a L1 instead of an

L2 penalty. This difference turns out to important because an L2 penalty only shrinks coefficients

to zero but never sets them to zero exactly. In contrast, an L1 penalty can set an estimate to

zero, thereby excluding the corresponding variable from the active set. LASSO thus performs

shrinkage and variable selection simultaneously, a property known as soft-thresholding. Because of

the sparseness of the final active set, the LASSO estimates tend to be much less variable than the

ridge estimates.

A second difference is that the ridge coefficients of correlated predictors are shrunk towards

each other, while LASSO tends to pick one and ignore the rest of the correlated predictors. This

latter property is a consequence of the fact that the LASSO penalty is convex but not strictly

convex. In regularization problems, a strictly convex penalty has the effect that predictors with

similar properties will have similar coefficients. A strictly convex penalty can be obtained by taking

a convex combination of a L1 and a L2 penalty. The result is the ‘elastic net’ (EN) estimator

β̂EN = argminδ
1

2
‖Y −Xβ‖22 + γ1

N∑
j=1

|βj |+ γ2

N∑
j=1

β2j .

The penalty function is strictly convex when γ2
γ1+γ2

> 0. An appeal of the EN estimator is that

strongly correlated variables are chosen as a group. By defining the augmented data

X+ = (1 + γ2)
−1/2

(
X√
γ2IN

)
, Y + =

(
Y

0N ,

)
,

the elastic net estimator can be formulated as a LASSO problem with regularization parameter

γEN = γ1√
1+γ2

. The EN problem can be treated as though it is LASSO problem.1

1A review of LASSO and related methods is provided by Belloni and Chernozhukov (2011). Technical details can
be found in Hesterberg, Choi, Meier, and Fraley (2008); Fan and Lv (2010); Belloni and Chernozhukov (2011).
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There are many ways to write the LASSO problem and each yields different insight. For

example, using

‖β‖1 =

N∑
j=1

|βj | = sgn (β)′β,

the LASSO penalty can be written as sgn (β)′β, while the ridge penalty β′β. Must have predictors

W can be incorporated by considering the problem

min
α,β

1

2
‖Y −Wα−Xβ‖22 + γ sgn (β)′β.

Note that the L1 penalty is only applied to β. Let MW be the idempotent matrix that projects

onto the space orthogonal to W . The first order conditions hold that for any j ∈ A,

X′jMW (Y −Xβ) = γsgn (βj), (6)

implying that |X′kMW (Y −Xβ)| ≤ γ for k /∈ A. This makes clear that LASSO regressions with W

can be analyzed as if data X̃ = MWX and Ỹ = MWY were given. To simplify the discussion, the

rest of this section assumes Z = X and without considering the must have predictors W .

An implication of the L1 penalty is that the LASSO objective function is not differentiable.

Indeed, the first order conditions involve 2N inequality constraints to reflect the 2N possibilities for

the sign of β. As a consequence, the estimator has no closed form solution except when N = 1. In

that case, the estimator can be expressed as:

β̂LASSO = (β̂LS,1 − γ)+sgn (β̂LS,1). (7)

However, Fu (1998) shows that this result for N = 1 can be exploited even when N > 1. The idea

is to find the solution to

1

2
‖Y −

∑
k 6=j

X′kβk −X′jβj‖22 + γ

N∑
k 6=j

sgn (βk)βk + γsgn (βj)βj

for each j = 1, . . . N while holding k 6= j fixed and iterative until the estimates converge. In this

coordinate-wise descent algorithm, the partial residual Y −
∑

k 6=j X
′
kβk is treated as the dependent

variable, and Xj is the single regressor whose coefficient estimate β̃LS,j is defined by (7). The

LASSO path traces out β(γ) as the regularization parameter γ changes. Rosset and Zhu (2007)

show that the optimal path β̂(γ) is piecewise linear in γ. This is an attractive property because

the solution path can be computed at the same cost as a least squares calculation. A more efficient

solution can be obtained by using the homotopy algorithm of Osborne, Presnell, and Turlach (2000),

which is related to forward stagewise regressions.
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3.2 Forward Stagewise and Least Angle Regression

To motivate LASSO as a forward stagaewise regression, consider the effect of increasing β̂LS,j by

∆ > 0 for some j ∈ [1, n] with X′jXj = 1. Let β̃LS = β̂LS + ∆ · 1j where 1j is zero except in the

j-position. By direct calculations,

L(β̃LS ; j)− L(β̂LS) ≡
T∑
t=1

(yt −X ′t(β̂LS + ∆1j))
2 −

T∑
t=1

(yt −X ′tβ̂)2

=
T∑
t=1

(ε̂t −Xtj∆)2 −
T∑
t=1

ε̂2t

=
T∑
t=1

−2∆ε̂tXtj + ∆2X2
tj .

The above implies that the change in sum of squared residuals as a result of perturbing the j-

th potential regressor is determined by its correlation with the least squares residuals. For given

∆, the predictor that generates the largest decrease in sum of squared residuals is the one most

correlated with the fitted residuals at each step. This idea of ‘gradient descent’ has long been used

in optimization problems. What is new is that gradient descent can be adapted to model fitting

if it is considered in function space where in regression analysis, the function of interest is the

conditional mean. This insight, due to Friedman (2001), is the principle behind forward stagewise

regressions which can generically be described as follows:

Forward Stagewise Regression initialize r = Y and β = 0N . Let ν be some small number.

Repeat (1) and (2) until r is uncorrelated with all predictors:

1. find j such that Xj is most correlated with the current residuals, r.

2. update βj = βj + ν · sgn (corr (Xj , r)) and r = r − ν · sgn (corr (Xj , r))Xj .

A forward stagewise regression creates a coefficient path that includes one variable at a time and

sequentially updates the fit. At each stage, the variable most correlated with the current residuals

is chosen, and each predictor is always moved in the direction of corr (Xj , r). The active set XA is

then determined by a stopping rule that would terminate the algorithm. In principle, the variables

can move as a group. As discussed in Hastie, Tibshirani, and Friedman (2001), an incremental

forward stagewise regression that moves one variable at a time can be easily devised.

An important development in regularized regressions is the least angle regression (LAR) due

to Efron, Hastie, Johnstone, and Tibshirani (2004). LAR sequentially builds up the regression

fit by increasing the coefficient of the predictor until it is no longer the one most correlated with
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the residual, at which point, the competing predictor joins the active set. In other words, the

predictors in the active set are pushed in the joint least squares direction until some other regressor

matches their correlation with the current residuals. Under LAR, all predictors in the active set

have common correlation c with the current residual r:

X′jr = c · sgn (X′jr) (8)

while X′kr ≤ c for k /∈ A. Theorem 3 of Efron, Hastie, Johnstone, and Tibshirani (2004) indicates

that the degree of freedom after m steps of LAR is approximately m. This suggests to stop after m

steps by minimizing the statistic CP = (1/σ̂2)SSRm−T + 2m, where SSRm is the sum of squared

residuals at the m-th step.

LAR is important because it provides a unifying view of LASSO and seemingly related statistical

procedures. The LAR moment condition defined by (8) is evidently similar to that of LASSO given

in (6) because both update the fit based on the relation between the predictors and current residuals.

While LAR puts no sign restrictions, β̂j,LASSO agrees in sign with sgn (corr(Xj , r)). Hence as shown

in Efron, Hastie, Johnstone, and Tibshirani (2004), the LAR-LASSO algorithm requires that the

coefficient be removed from the active set and joint least squares recomputed when a non-zero

coefficient hits zero.

While it is clear that LASSO performs shrinkage via the L1 penalty, less obvious is that methods

that do not directly impose an L1 penalty implicitly mimic features of the L1 loss and hence can

be implemented using LAR. For example, the L2 boosting of Buhlmann and Yu (2003) restricts

successive revisions in β̂j to agree in sign with sgn (corr(Xj , r)). Also related is forward stagewise

regression which computes the best direction at each stage. If the direction of predictor j does not

agree with the sign of corr (r,Xj), the direction is projected onto the positive cone spanned by the

signed predictors. Thus a forward stagewise regression uses only the non-negative least squares

directions while LAR use also the negative directions in the active set of variables. In this sense,

LAR is a democratic forward stagewise regression.

As seen earlier, information criteria is a form of L0 regularization. Statistical theory does

not favor L1 penalty over L0 per se. Heavy shrinkage approximates L1 regularization which may

improve mean-squared prediction accuracy if the bias-variance trade-off is favorable. Ideally, one

would like a procedure to have the oracle property of selecting the correct subset model and has

an estimation/prediction error rate that is as good as if the true underlying model were known.

However, LASSO is not an oracle procedure because any regularization yields biased estimates that

may lead to suboptimal estimation risk.

The crucial parameter in L1 regularization problems is obviously γ. Donoho, Johnstone, Kerky-

acharian, and Picard (1995) show that with suitable choice of γ, the LASSO estimates can be
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near-minimax optimal with the sparsity property that the zero components of the true parameter

vector will be estimated to be zero with probability approaching one as the sample size increases.

But how should γ be chosen? As shown in Buena (2008), consistent subset variable selection using

LASSO when N > T requires a carefully chosen penalty parameter. Fan and Li (2001) recommend

to use penalties such that the resulting estimators have three properties: (i) sparsity, such that

small estimated coefficients are automatically set to zero; (ii) near unbiasedness especially when the

true coefficients are large; and (iii) continuity in the data to reduce instability in model prediction.

They find that if data-driven rules are used to select γ, LASSO tends to have many false positive

variables in the selected model. Fan and Lv (2010) note that stringent conditions must hold for

LASSO to consistently select the true model. Zou (2006) suggests to re-weight the penalty function

in order for LASSO to have the oracle property. This leads to the adaptive LASSO estimator

β̂LASSO = argmin β
1

2
‖Y −Xβ‖22 + γ

N∑
j=1

ψj |βj |,

where ψj are weights that can be set to some initial estimator of βj such as β̂LS,j . Belloni and

Chernozhukov (2012) propose a data dependent rule for γ and analyze the two roles (shrink-

age/estimation and model selection) played by LASSO. They show that applying least squares to

a model selected by LASSO (known as OLS post LASSO) performs at least as well as LASSO in

terms of the rate of convergence and has smaller bias. The reason is that LASSO only omits com-

ponents with relative small coefficients relative to the oracle, and the OLS post LASSO estimator

removes some of the shrinkage bias from LASSO. The estimator can be superior to LASSO and

has a better convergence rate than LASSO if the selected model includes all components of the

pseudo-true model.

Meinshausen and Buhlmann (2006) consider graphical models for estimating entries of the

inverse covariance matrix of N Gaussian series observed over T periods. They fit a LASSO model

to each variable using all other variables as predictors. They show that LASSO will consistently

estimate the non-zero entries of the inverse covariance matrix when N increases faster than T ,

but only if a neighborhood stability condition is satisfied. This is related to the ‘irrepresentable’

condition, which is shown in Zang and Yu (2006) to be almost necessary and sufficient for ‘sign’

consistency of LASSO under more general conditions. That is to say, the probability that the

sign of β̂LASSO agrees with that of β tends to one as the sample size increases. This ensures

that β̂ has the same support as the true regression coefficients with probability one asymptotically.

Loosely speaking, the condition requires that the correlation between the relevant and the irrelevant

predictors not to be too large. This condition is, however, quite restrictive when N is large.
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Meinshausen and Buhlmann (2006) find that the regularization parameter γ in LASSO that is

optimal for prediction is not always optimal for variable selection. More precisely, the γ that yields

the smallest mean-squared prediction error tends to suggest more predictors than are present in the

true model, even though the true model is contained in the selected model with high probability.

Using an orthogonal design, Leng, Lin, and Wahba (2006) show that if the criterion of prediction

accuracy is used to choose γ, the set of variables selected by LASSO are not consistent for the true

set of important predictions.

While L1 type regularization solves many problems inherent in ridge regressions, it apparently

does not eliminate the conflict between consistent model selection and prediction. Fan and Lv

(2010) noted that the problem of collinearity amongst predictors is especially challenging in high

dimensional model selection because spurious collinearity can give rise to overfitting. An alterna-

tive that has received increased attention when the regressors are highly correlated is to combine

information from the observables.

4 Dimension Reduction Methods

While regularization picks out the empirical relevant variables from amongst the potentially relevant

ones, a different approach is to use all data available intelligently. For example, one can use a

subset of the regressors at a time and then combine the forecasts produced by the different subset

of regressors. This is the method of model averaging pioneered by Bates and Granger (1969),

reviewed in Timmermann (2006), and further developed in Hansen (2008); Hansen and Racine

(2012). Here, I focus on methods that simultaneously consider all predictors.

4.1 Principal Components and Factor Augmented Regressions

A popular technique that combines the potentially relevant predictors Xt into new predictors is

principal components. By definition, the T ×N principal components of X are defined as

XPC = XVX = UXDX .

The j-th principal component XPC,j is the linear combination of X that captures the j-th largest

variation in X. The left singular vectors of X multiplied by the eigenvalues are also known as the

factor scores. A principal component regression replaces the T × N predictor matrix X with a

T × rX sub-matrix of principal components. Let XPC,1:rX be the first rX columns of XPC that

corresponds to the rX largest eigenvalues of X. To fix ideas, suppose that there are no must have
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predictors W . The estimator using the first r principal components as regressors is

β̂PC = (X ′PC,1:rXXPC,1:rX )−1X ′PC,1:rXY

= VX,1:rXD
−1
X,1:rX

U ′X,1:rXY

=

rX∑
i=1

1

dX,i
U′X,iYVX,i. (9)

The in-sample fit is

ŶPC = XPC,1:rX β̂PC = UX,1:rXU
′
X,1:rX

Y.

Notice that compared to the least squares estimator, the sum only involves rX ≤ N components.

In other words, β̂PC puts a unit weight on the first rX components and ignores the remaining ones.

Thus rX controls the degree of shrinkage from β̂LS towards zero. This contrasts with the ridge

estimator in which all singular values d̂X,i are shrunk towards zero.

Principal component analysis is often seen as a numerical tool that reduces the dimension of

the data but has weak statistical foundations because no probability model is specified. It is thus

an unsupervised dimension reduction technique. In contrast, factor analysis assumes that the data

have a specific structure. However, Tipping and Bishop (1999) show using a small T large N setup

that a principal components regression model can be seen as a Gaussian latent variable model

that is closely related to factor analysis. The distinction between principal components and factor

analysis may not be as sharp as once thought.

While a factor interpretation is not necessary to motivate the use of principal components as

regressors, more analytical results are available when a factor structure is imposed. Suppose that

yt can be well approximated by the infeasible regression

yt = W ′tα+ F ′tβF (L) + εt (10)

where Ft is a rY ×1 vector of unobserved common factors, βF (L) is a polynomial in the lag operator

of order pF . A factor augmented regression is obtained when F̂t is used in place of Ft in (10), as

though Ft were observed. Stone and Brooks (1990) calls F̂t the constructed predictors while Stock

and Watson (2002a,b) refer to F̂t as diffusion indices. A h period ahead diffusion index forecast is

ŷT+h|T = W ′T |h|T α̂+ F̂ ′T+h|T β̂F (L).

The key to factor augmented regressions is that the latent factors can be estimated precisely

from a large number of the observed predictors xit that can be represented by the factor model

xit = λ′iFt + eit (11)
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where Ft is a rX×1 vector of latent common factors, λi are the loadings, and eit are the idiosyncratic

errors. As the factors relevant for forecasting need not be the same as the set of pervasive factors

in Xt, Ft (of dimension rY ) is kept distinct from Ft( of dimension rX).

Factor analysis is attributed to Spearman (1904) who suggests that intelligence is composed of

a factor common to all attributes such as mathematics, language, music, etc., as well as factors

that are specific to each attribute. Associated with a factor model is the population covariance

structure ΣX = ΛΣFΛ′+ Σε. In classical factor analysis, Σε is typically a diagonal matrix, meaning

that the errors eit are uncorrelated over i and t. Chamberlain and Rothschild (1983) allow eit to be

weakly correlated both serially and cross-sectionally and call factor models with these properties

‘approximate factor models’. For Xt = (x1t, . . . , xNT )′ to have rX strong pervasive factors in an

approximate factor model, the rX largest eigenvalues of the N ×N population covariance matrix

of Xt must diverge to infinity as N increases. There are thus rX ‘factor eigenvalues’ and N − rX
‘idiosyncratic eigenvalues’. A factor structure is said to be strong if the factor eigenvalues and

well separated largest idiosyncratic eigenvalue and Λ′Λ/N → Φ for some Φ that is non-degenerate.

Connor and Korajczyk (1993) were the first to use the method of principal components to estimate

approximate factor models. The idea is that when N is large, the variation of εit will then be

dominated by that of the common component λ′iFt. The eigenvalue decomposition of ΣX will be

asymptotically equivalent to that of ΣX − Σε when N tends to infinity.

When yt also belongs to Xt, rY can be set to rX , making F̂t the rX static principal components

of X.2 Thus one may write F̂ = F̂1:rX =
√
TUX,1:rX =

√
TD−1X XPC . The relation between principal

components regression and factor augmented regression is easy to see when pF = 0 and Wt is empty.

Then β̂F (L) = β̂F ,

β̂F =
1

T
F̂′Y =

1√
T
U ′X,1:rXY =

1√
T
D−1X β̂PC,i. (12)

The diffusion index forecast is

ŶF =

rX∑
j=1

UX,jU
′
X,jY = ŶPC .. (13)

A review of factor based forecasts is given in Stock and Watson (2006). Of note from (13) is that ŶPC

and ŶF are numerically equivalent. This suggests to use the principal components as regressors in

factor augmented regression. This is useful because compared to maximum likelihood estimation,

principal components are easy to construct. Furthermore, using the probability structure of a

2Static principal components are distinguished by dynamic principal components, developed in Brillinger (1981)
for large T fixed N , and extended in Forni, Hallin, Lippi, and Reichlin (2000) to large panels. Boivin and Ng
(2005) finds that with appropriate choice of the tuning parameters, dynamic and static factors yield similar forecasts.
However, estimation of static factors is computationally simpler. The relation between static and dynamic factors
can be found in Forni, Hallin, Lippi, and Reichlin (2005), Bai and Ng (2008b), Stock and Watson (2005).
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model with strong factors, statistical statements about principal component estimates can be made.

Connor and Korajczyk (1993) show that F̂1:rX consistently estimates the space spanned by the

common factors as N → ∞ with T fixed. Assuming N and T are both large, Stock and Watson

(2002a) show uniform convergence of F̂t to the space spanned by Ft. But to validate use of F̂t as

regressors, weaker results suffice. Bai and Ng (2002) show that if F̂t is a k > 1 vector of factor

estimates, there is a matrix H of rank min(k, rX) such that C2
NT

(
1
T

∑T
t=1 ‖F̂t(k)−HFt‖2

)
= Op(1),

where CNT = min[
√
N,
√
T ].

In practice, pY lags of yt are usually included in the regression, thereby defining the must

have predictors Wt = (1, yt, yt−1, . . . , yt−pY )′. To accommodate Wt, consider the generalized factor

representation of X:

X = WXΨ + FΛ + e

where WX could overlap with W in the prediction equation. The presence of WX necessitates a

different way to estimate the principal components. To proceed, note that if Ψ were observed, then

X̃ = X −WXΨ = FΛ + e has a factor structure. Furthermore, if F were observed, then Ψ can be

estimated by a least squares regression of XMF on WXMF where MF = I −F(F′F)−1F′. Stock and

Watson (2005) suggest an iterative principal components estimator whose properties are formally

analyzed in Bai (2009):

Algorithm: Iterative Principal Components:

1 Estimation of F: Initialize X̃W = X.

i Let F̂ be
√
T times the eigenvectors corresponding to the rX largest eigenvalues of X̃X̃ ′.

Let Λ̃ be obtained by least squares regression of X on F̃.

ii Estimate Ψ by regressing XMF̂ on WXMF̂ where MF̂ = I − F̂(F̂′F̂)−1F̂′. Let X̃W =

X −WXΨ̂. Return to step (i) until Ψ̂ converges.

2 Regress Y on W and F̂ to obtain (α̂, β̂F ), where F̂ ⊂ F̂.

The principal components estimates can always be obtained by iterative estimation whether or

not Wt is present. In psychometrics, there is a long tradition in estimating factor models by the

method of alternating least squares (also referred to as PRINCIPALS). These matrix decomposition

methods do not require specification of a probability model, see, eg, Young, Takane, and de Leeuw

(1978). The econometrics literature specifies a probability model and shows that iterative principal

components can consistently estimate the space spanned by the factors even in the presence of W .

A criticism of factor augmented regressions is that the factors are estimated without taking into

account that the objective is to forecast Y . Factors that have good explanatory power for X may

20



not be good predictors for Y even if yt ⊂ Xt. More precisely, a factor augmented regression first

estimates F by maximizing R2
X = 1−‖X−FΛ‖2/‖X‖2 where Λ = (F′F)−1F′X. Given F̂ = XVX,1:rX ,

estimates of α and β are then obtained by maximizing R2
Y = 1−‖Y −Wα−F̂β(L)‖2/‖Y ‖2. While we

can select F̂t from F̂t, a problem that will be discussed in the next section, the F̂ are constructed the

same way irrespective of Y . The next section discuss selected methods that address this problem.

4.2 Reduced Rank and Partial Least Squares Regressions

Rao (1964) suggests reduced rank regressions that find F with the fit of Y taken into account. The

objective is to maximize R2
Y = 1−‖Y −FβF ‖2/‖Y ‖2 with respect to β and F = XVR. Taking β̂F

to be (F ′F )−1F ′Y , the concentrated objective function

‖Y − F (F ′F )−1F ′Y ‖2

is minimized subject to the constraint that F ′F = I and F = XVR. Since the problem reduces to

maimizing tr(Y ′FF ′Y ), the solution is to take F̂ to be the first rR unit eigenvectors of PXY Y
′PX .

Since PX = X(X ′X)−1X ′ is the projector on the subspace spanned by the columns of X, F̂ is in

the subspace of X. From VR = (X ′X)−1X ′F̂ , the implicit estimates from a reduced rank regression

of Y on X is β̂X = VRβ̂F̂ .

Two other methods that target the components to Y are canonical correlation analysis (CCA)

and partial least squares (PLS). Both allow Y to be multivariate. CCA is due to Hotelling (1936).

For one component, CCA maximizes the correlation coefficient

ρ =
w′xXY

′wy√
(w′xXX

′wx)(w′yY Y
′wy)

by solving for projection vectors wx and wy. For multiple components, CCA maximizes tr(W ′xXY
′Wy)

subject to W ′XXX
′Wx = I and W ′yY Y

′Wy = I. The projection matrix Wx is given by the rC

eigenvectors of the generalized eigenvalue problem XY ′(Y Y ′)−1Y X ′wx = µXX ′wx where µ is the

eigenvalue.

The method of partial least squares, developed in Wold (1969), is especially popular with

chemical engineers. Sun, Ji, Yu, and Ye (2009) show that CCA differs from PLS in that the

latter maximizes covariance instead of correlation between Y and X. Statistical aspects of PLS are

discussed in Dijkstra (1983). Wold’s NIPALS algorithm when Y is a column vector is as follows

(Kramer (2007)):

Algorithm PLS: Demean Y and also standardize X. Let X1 = X. For m = 1, . . . rP :

i Set wm = Xm′Y ;
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ii Define F̂m = Xmwm;

iii updateXm+1 = MmXm and Y m+1 = MmY m whereMm = I−Pm and Pm = F̂m(F̂m′F̂m)−F̂m′.

The PLS prediction is ŶPLS =
∑rP

j=1 P
mY. It can be shown that F̂m = XmV m where V m is the

eigenvector corresponding to the m-th eigenvalue of Xm′Y mY m′Xm. The algorithm can also be

understood as first regressing Y on X1 to get least squares coefficients β̂1PLS that is, up to a factor,

the weight vector w1. Since F̂ 1 is a weighted average of Y using the covariance between X1 and Y as

weights, PLS forms the F̂ 1 with information about Y taken into account. Subsequent components

are formed by choosing wm+1 to maximize cov (Xm+1wm+1, Y ) subject to the constraint that

‖wm+1‖ = 1 and orthogonal to F̂1, . . . F̂
m, noting that Xm has the effect of F̂m partialled out from

X. The acronym PLS has also been taken to mean ’projection to latent structure’ since it chooses

the subspaces of the column space of X sequentially and project Y onto these subspaces. Notably,

PLS also indirectly optimizes on the explained variance of X.

The least squares estimator obtains when N = rP , making rP the regularization parameter of

a PLS regression. Lingjaerde and Christophersen (2000) show that

β̂PLS =

rP∑
i=1

bX,i
dX,i

U′iYVX,i (14)

bX,i = 1−
rP∏
j=1

(
1−

d2X,j
θj

)
where θj are the eigenvalues of a matrix with columns that form the orthogonal basis of K =

{X ′Y, (X ′X)−1X ′Y, . . . (X ′X)rP−1X ′Y }, the Krylov space of X ′X and X ′Y . Obviously, θj depends

on Y and β̂PLS is non-linear function of Y . The PLS shrinkage factor is stochastic because of the

dependence on Y and has the peculiar feature that it can exceed one. An alternative to PLS is

latent root regressions of Webster, Grant, and Mason (1974) which forms the principal components

of the augmented data [Y |X].

Stone and Brooks (1990) show that PCA, PLS and OLS can all be analyzed from the perspective

of generalized canonical correlations. Reduced rank regressions and PLS can be in principle be

generalized to include must have predictors by working with the residuals from projecting Y and

X on W . There is on-going work that constructs components adapted to Y . See, for example, Li

(1991) for sliced inverse regressions and the model based approach of Cook and Forzani (2008).

5 Three Practical Problems

The methods discussed in the previous two sections are all biased regression techniques. They

seek to shrink the OLS coefficient vector away from directions in the predictor space that have
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low variance. Ridge regressions reweigh β̂LS using the eigenvalues of X. LASSO uses rectangular

weights to truncate the small coefficients to zero. Principal component regressions use rectangular

weights to truncate small eigenvalues to zero. Partial least squares re-weighs the least squares

estimates according to the eigenvalues of X and X ′Y and additionally truncates small eigenvalues

of X to zero. Note that the active regressor set XA associated with all these methods usually

coincides with X, in contrast to LASSO and information criteria type procedures. Even though

all methods perform some form of shrinkage, they produce different models. Which one is best

depends on the objective of the exercise and the data structure on hand.

This section discusses three problems that are still being debated or warrant further work.

The first is whether or not to construct components with the variable of interest in mind. The

second concerns variable selection when the predictors are themselves estimated. The third is the

robustness of model selection rules over the parameter space.

5.1 To Target or Not to Target

As the principal components of X do not depend on Y , linearity of ŶPC in Y ensures that the

shrinkage produced by principal components decrease as rX increases. While PLS is designed to

shrink away from the predictor space in the low variance directions, Frank and Friedman (1993)

find that PLS routinely inflates the high variance directions. The consequence in finite samples is

to increase both the bias and the variance of the coefficient estimates. This suggests that the PLS

shrinkage may not decrease with rP . There is an apparent trade-off between the information content

of the components, and ease in controlling the degree of shrinkage. At least for PLS, targeting the

components to Y does not necessarily give better finite sample properties. It is however unclear

whether this non-monotonicity of the shrinkage factor documented for PLS is generic of methods

that target the components to Y .

Helland and Almoy (1994) assume normality and derive asymptotic criteria for comparing

principal component regressions and PLS. Simulations in Almoy (1996) suggest that these methods

generally have similar properties for the data generating processes considered. Kiers and Smilde

(2007) find that PLS work well when the coefficients of the population regression lie in the subspace

spanning the first few principle components of the predictor variables.

There has always been a disagreement as to whether one should reduce the dimension of X on

the basis of the marginal distribution of X, or the conditional distribution of Y given X. As Cook

(2007) points out, Fisher (1924) recognizes the need for dimension reduction in regression analysis

but cautions that predictors might be spuriously chosen if reference is made to the dependent

variable. On the other hand, Cox (1968, p.272) among others see no strong reason why Y should

not be closely related to the least important principal component. Kiers and Smilde (2007) take
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the view that aiming to explain both the predictors and the endogenous variable will be better

able to yield models that predict well both in and out of samples. Li (2007) conjectures that the

first principal component of an arbitrary covariance matrix of X will have a tendency to be more

correlated with Y than other principal components of X. Nonetheless, he concludes in favor of

dimension reduction of X with reference to Y especially when N is large. However, the T and

N considered in these simulations are much smaller than typical configurations of macroeconomic

data.

Bai and Ng (2006b) call variables selected for the purpose of predicting Y the ‘targeted pre-

dictors’. They evaluate the usefulness of forming targeted predictors from 132 potentially relevant

predictors by soft and hard thresholding for the purpose of forecasting inflation. They find that

targeted predictors generally yield better forecasts but the composition of the predictors changes

with the forecast horizon. This leads to the point raised by Hansen (2010) that in multi-period

forecast, the final prediction error is approximately the expected sample sum of squared residuals

plus a penalty term that is a function of the long-run variance rather than the short-run vari-

ance appropriate for one-step ahead forecasts. This imples that criteria developed for one-period

ahead prediction are biased for the final prediction error of multi-step forecasts. This suggests that

targeting is necessary at least with respect to the forecast horizon.

5.2 Determining the Number of Generated Predictors

It may sometimes be necessary to replace latent predictors by estimated ones. As is known from

Pagan (1984), the variance of the second-step estimates are inflated by the sampling error in the

first stage estimation. This has implications for variable selection. Consider first the small N setup.

Suppose that one of the potential predictors Ft is latent but that a small number of observables

Xt are available to form an estimate F̂t using a first step regression. The feasible prediction model

is yt+h = W ′tα + F̂ ′tγF + εt+h. To see which of the available predictors (W ′t , F̂
′
t)
′ are relevant for

predicting Y , Bai and Ng (2008a) suggest a modified FPE:

F̂PEp = log σ̂2p +
2p

T − p
+

ĉn
T − p

where ĉn = γ̂F
′Âvar(F̂T )γ̂F /σ̂

2
p, and Âvar(F̂T ) is the asymptotic variance that arises from having

to estimate FT . The additional penalty ĉn
T−p accounts for the sampling variability due to regressors

generated by coefficients that are
√
T consistent. Notably, the adjustment factor is asymptotically

negligible as T →∞ for fixed p. Adjustment terms of this nature can be expected for other model

selection procedures.

When there are N possibly larger than T predictors that contain information about Ft (possibly

a vector), the columns of F̂t are no longer estimated from first step regressions but are now the
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principal components of Xt. The feasible factor augmented regression is

yt+h = W ′tα+ F̂ ′tβF (L) + εt+h

where Wt = (1, yt, yt−1, . . . , yt−pY )′ and F̂t ⊂ Ft is of dimension rY , while F̂t is of dimension rX .

As noted in Eickmeier and Ziegler (2008), there is much heterogeneity in empirical work about

the choice of both parameters. Some simply fix rX and rY a priori. Others use data dependent

methods such as the PCP and ICP criteria of Bai and Ng (2002) to optimally determine rX . These

are generalizations of the CP and IC to a panel context. Instead of a penalty of CT as discussed in

Section 2, the penalty term of min(N,T ) is now a function of both N and T .

The PCP and ICP take as given that the objective is consistent estimation of rX . As pointed out

earlier, consistent selection of the model size does not usually lead to a model that yields minimum

forecast errors. Onatski (2011) studies the problem of factor selection from the point of view of

optimal prediction of all series in the panel so that rX = rY . He extends Mallows’s CP criterion

to a factor augmented regression without W . Aassuming that N/T → c ∈ (0,+∞) as N,T →∞,

he suggests a new penalty term to reflect the bias in the forecasts when rX is incorrectly specified.

The results are, however, specific to the unusual objective of forecasting all series in a panel.

In the more usual case when interest is in forecasting only one series that happens to be one

of the series in X, then rY can arguably be taken to be rX in the factor augmented regression.

Assuming that rX does not increase with N or T , Bai and Ng (2006a) show under strong factor

asymptotics that F̂ = F̂1:rX can be treated in factor augmented regressions as though they were

the latent Ft provided
√
T/N → 0. In other words, there is no need to adjust the standard errors

for the fact that F̂t are estimated from a preliminary step. This is unlike the generated regressors

problem considered in Pagan (1984). In those problems, there is an Op(1) term that reflects

sampling variability in the
√
T consistent estimates of a first step regression. This term is of order

Op(
√
T

min[N,T ]) when the first step estimates are the principal components of a large panel. However,

while this term tends to zero if
√
T/N → 0, Ludvigson and Ng (2011) show that when

√
T/N is

not negligible, generated regressors in the form of estimated factors will induce an asymptotic bias

in β̂F . This effect on bias contrasts with the effect of inflated variance in the small N setup. The

nature of this asymptotic bias is further analyzed in Goncalves and Perron (2011) in the context

of bootstrapping. The implications for the determination of rY remain to be studied.

The assumption that rY = rX is somewhat strong as the factors that are pervasive in x1t, . . . xNT

need not be the most important predictors for the series yt. If F̂t was not estimated, we would

simply determine rY by the methods discussed in information criteria or regularization. But in

factor augmented regressions, F̂t are the principal component estimates Bai and Ng (2008a) suggest

a modified stopping rule for boosting to account for the fact that F̂t are the principal components
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estimates. They suggest to add another penalty term to information criteria:

ICP = log(σ̂2p) +
pCT
T

+
rY CN
N

where rY is the number of estimated predictors in the regression and p = M + rY is the total

number of predictors in the model being considered. An estimated predictor is penalized more

heavily than an observed one. The overall penalty of an additional predictor would then vanish at

rate rate of min(N,T ). Stock and Watson (2002a) suggest to use a modified information criteria

to select rY for forecasting yt+h:

ICP = log(σ̂2p) + p · g(T )

where σ̂2p is SSRp/T , SSRp is the sum of squared residuals from estimating the diffusion index

equation with p factors. Under the assumption that logN
log T → ρ > 2, they show that prob (r̂Y =

rY )→ 1 if (i) g(T )→ 0 and (ii) T bg(T )→∞ where b < min(.5ρ− 1, 1). Stock and Watson (1998)

suggest to use g(T ) = ω log(T )/δNT where δNT = min(N1/2/T 1+ε, T 1−ε), ε is a small and positive

number, and ω is a positive constant. Notably, both modifications require consideration of both N

and T even though the prediction equation is estimated from a sample of size T .

5.3 Consistent Model Selection or Efficient Prediction?

This chapter is about methods that determine the composition of the best predictor set. Whether

the predictors are observed or constructed from a preliminary step, the problem in practice comes

down to the choosing a parameter that will determine how parsimonious a regression model one

desires. The vast literature seems to converge towards two types of regularization parameters. One

increases with the sample size (such as the BIC), and one is a constant (such as the AIC).

At least in the classical T > N , it is generally thought that the BIC is good if the true model

is finite dimensional; otherwise the AIC finds the smallest possible model for prediction, cf. Yang

(2007). Nonetheless, this view of the relative merits of AIC and BIC has not gone unchallenged.

Kabaila (2002) cautions that result in Shibata (1981) that favors the AIC over the BIC is based on

first fixing the data generating process, and then providing a pointwise analysis of β as T increases.

This efficiency result apparently breaks down when the comparison is based on varying the data

generating mechanism with T fixed to possibly some large value. Stone (1979) also notes that the

comparison between the AIC and BIC is sensitive to the type of asymptotic analysis used, and

there can be situations when the AIC is consistent but the BIC is not.

In the statistics literature, the tension between model consistency and optimal prediction is

referred to as the AIC-BIC dilemma. The question of whether the strengths of the AIC and BIC

can be combined to yield a better procedure is analyzed in Yang (2005, 2007). The main finding is
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that model selection procedures cannot be both consistent and minimax rate optimal and in this

sense, the strengths of the AIC and BIC cannot be shared.3 Yang (2007) simulates iid data using

the model yt = f(xt) + εt; under Model (0), f0(x) = α, and under Model 1, f1(x) = α + βxt.

He shows that while the BIC is pointwise risk adaptive,4 the AIC is minimax-rate adaptive. Yang

(2007) favors combining models when different selection methods do not come to a consensus.

LASSO was not in Yang’s analytical or numerical analysis.

To see if the findings of Yang (2007) prevail in more general settings, I conduct a monte carlo

exercise with data generated from the following models.

DGP β Predictors

1: yt = .5yt−1 + βyt−2 + et [-.5,.5] (b) 1, yt−1
(c) 1, yt−1, yt−2
(d) 1, yt−1, yt−2, yt−3

2: yt = .8xt + βxt−1 + et + .5et−1 [-.5,.5] (b) 1, yt−1
(c) 1, yt−1, xt
(d) 1, yt−1, xt, yt−2
(e) 1, yt−1, xt, yt−2, xt−1
(f) 1, yt−1, xt, yt−2, xt−1, yt−2
(g) 1, yt−1, xt, yt−2, xt−1, yt−3, xt−2

3: yt = .8xt + .5xt−1 + et + βet−1 [-.5,.5] (b) 1, yt−1
(c) 1, yt−1, xt
(d) 1, yt−1, xt, yt−2
(e) 1, yt−1, xt, yt−2, xt−1
(f) 1, yt−1, xt, yt−2, xt−1, yt−3
(g) 1, yt−1, xt, yt−2, xt−1, yt−3, xt−2

4: y1t = .4yt−1 + λ1F̂t + e1t + βet−1 [-.5,.5] (b) 1, yt−1
(c) 1, yt−1, F̂t = F̂1t

(d) 1, yt−1, F̂t = (F̂1tF̂2t)
′

(e) 1, yt−1, F̂t = (F̂1tF̂2t, yt−2)
′

(f) 1, yt−1, F̂t = (F̂1tF̂2t, yt−2, F̂1t−1)
′

(g) 1, yt−1, F̂t = (F̂1tF̂2t, yt−2, F̂1t−1F̂2t−1)
′

where xt = .5xt−1 + ut, ut ∼ N(0, 1) and et ∼ N(0, .5), et and ut are mutually uncorrelated. For

each DGP, prediction model (a) has an intercept but no covariate. Results are based on S = 2, 000

replications for T = 100, 200 and 500.5 MATLAB 2012a is used to conduct the simulations. The

LASSO results are based on cross-validation as implemented in MATLAB.

Let ŷmT+1|T be the prediction when the estimates are based on model m as determined by the

either AIC, BIC or LASSO. Relative risk is computed as the ratio of the risk associated ŷmT+1|T

3For data generated by yt = f(xt)+et and risk RT (f̂ , f) = E‖f̂−f‖22, minimax prediction risk is inf f̂ supf RT (f̂ , f).
4A selection procedure is said to be pointwise risk adaptive if the estimator of f(x0) based on the selection

procedure is as good as the better of f̂0(x0) and f̂1(x0).
5Results for the AIC and BIC using 20,000 replications are available.
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relative to the lowest risk amongst models considered:

RRm =

1
S

∑S
s=1(ys,T+1|T − ŷms,T+1|T )2

minm
1
S

∑S
s=1(ys,T+1|T − ŷms,T+1|T )2

, m = AIC,BIC,LASSO.

A relative risk above one indicates that the procedure does not produce the best possible prediction.

While AIC and BIC only consider predictors ordered as listed above, the predictors selected by

LASSO can be unordered. For example, in model 3, LASSO could select xt and yt−3, a configuration

that would not be considered by AIC or BIC. Thus RRBIC may not equal RRLASSO even if both

procedures select two predictors. For each of the four models, relative risk and the average model

size (including the intercept) are graphed. In all the figures, the dark solid line is BIC, the broken

line with a dot is AIC, and the dash line is LASSO.

In Model 1, the data are generated from an AR(2) model in which the true β is varied between

-.5 and .4. The sum of the autoregressive parameters is thus between 0 and 0.9. The left panel of

Figure 1 shows that the relative risk function for all three procedures are non-linear in β. The three

methods have similar risk when |β| = .1. The AIC and LASSO have higher relative risks than the

BIC when |β| < .1. However, the BIC pays a high price for parsimony in this parameter range.

When .1 ≤ |β| ≤ .25, the BIC can have a higher risk than both LASSO and the AIC. The right

panel shows that BIC chooses smaller models than AIC as expected. However, LASSO chooses

a model that is even more parsimonious than the BIC when β > .1 and yet has lower relative

risks. One explanation is that LASSO has the added flexibility to choose the lagged regressors in

an unordered manner while the AIC/BIC only consider ordered sets of lags. For T = 500, the AIC

has the highest risk when |β| > .25 because it selects the largest model. For this parameter space,

the results accord with the folk wisdom that the AIC is not desirable when the true model is finite

dimensional. The results (not reported) are fairly similar when the DGP includes an exogenous

regressor ( yt = .8xt + .5yt−1 + βyt−2 + et) or if yt is generated by a distributed lag of xt so that

the regressors are lags of xt instead of yt.

While the correct model size in the first example is finite, the next two examples consider infinite

dimensional models. In Example 2, yt is a distributed lag of xt with a moving average error. Least

squares regression of yt on xt is not efficient in this case. An equivalent representation of yt is an

autoregressive distributed lag model of infinite order. This is approximated by a finite number of

lags of yt and xt in the regression. Figure 2 shows that the risk functions are not symmetric around

β = 0. Risk is much higher when β is positive than when it is negative. The BIC has the highest

relative risk especially when β is large and positive. The right panel shows that this corresponds

to situations when the BIC selects model sizes that are smallest. Interesting, larger models do not

necessary translate into lower relative risks. The AIC tends to select noticeably larger models than

LASSO, but LASSO tends to have slightly lower risks.
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The third model considered is similar to Example 2, except that the free parameter is now the

moving-average coefficient which is varied from -.5 to .5. When β = 0, the true model size is two.

For all other values of β, the true model size is infinite though the empirically relevant predictor

set is expected to be small. The size of the largest approximate model considered is seven. Figure

3 shows that the relative risk functions become more symmetric around zero as T increases. The

BIC risks tend to increase with β. Of note is that the lack of a systematic relation between risk

and model size. LASSO tends to have the lowest risk even though it does not always select the

smallest model.

For example four, N = 100 potentially relevant predictors are generated as xit = ρixit−1 + εit +

λiFt. Each xit is a stable AR(1) process with a factor structure in the errors and where ρi ∼ U [0, .8].

The single factor is an AR(1) process with unit innovation variance while the idiosyncratic error εit

is N(0,1). The variable of interest, yt, is taken to be x1t and thus β = λ1. The true predictor set is

the one-dimensional Ft but the empirically relevant predictor set is large. Two factors are formed

from the principal components of one lag of Xt, ie. Xt−1 = (x1t−1, . . . , xNt−1)
′. When β = 0, both

F̂1t and F̂2t are irrelevant; when β 6= 0, F̂1t is relevant but F̂2t is not. Figure 4 shows that while

diffusion index forecasts are effective when β 6= 0, relative risk can be high when β = 0 and F̂t are

used as predictors. The BIC selects the most parsimonious models especially when β is small or

zero, yet its risk properties are indistinguishable from LASSO.

The examples show that in finite samples, neither the BIC nor AIC dominate one another.

Forecasts based on small models need not have lower risks even if the true number of predictors

is finite. Pointwise arguments that favor a selection procedure may not be useful guides in prac-

tice. Large and small values of regularization parameters can both be justified depending on the

optimality principle. The BIC has the lowest risk in example 4 but has the highest risk in example

2. The relative risk of the BIC is most sensitive to the true parameter value, a feature that is

especially clear in model 1. In our simulations, LASSO has rather stable risk functions; it system-

atically dominates the AIC and often has lower relative risks than the BIC. This is true whether

the variables to be selected are observed or being constructed. It could be specific to the design of

the predictor sets since AIC and BIC only consider the ordered subsets but not all possible com-

binations of variables available as in LASSO. But this then underscores an advantage of LASSO,

namely, that the predictors do not need to be ordered. Clearly, there is ample room for further

investigation into these issues.
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6 Conclusion

This paper has considered variable selection using information criteria, regularization, and dimen-

sion reduction from the perspective of prediction. But a predictive regression serves many purposes

and its usefulness goes beyond prediction. For example, Ng and Perron (2001) show that the cor-

rect lag length need not yield a unit root test with the best size and/or power. Potscher (1991)

is concerned with the adverse effects of pretesting for inference. Leeb and Potscher (2005, 2008)

show that the distributions of estimators depend on the outcome of model-selection and cannot be

uniformly estimated. As discussed in Hansen (2005) in the context of selecting observed predictors,

what is best depends on the objective on hand. Still, practitioners need to be wary of these caveats,

and this paper attemps to highlight some of these issues.

A message that is emphasized in this paper is the tension between the objective of consistent

model selection and accurate prediction. This is true for large or small available predictor sets,

and whether or not predictors need to be constructed. This point is transpired in the simulations

presented here. The discussion has placed emphasis on the large N case (possibly larger than T )

because the situation is only recently empirically relevant and problem is not as well understood.

The variable selection problem is by no means solved. While the problem is being actively

studied by statisticians, there are also issues specific to economic data that need to be better

understood. Case in point is generated predictors. Intuition suggests that model selection rules

should be more conservative when the predictors are themselves estimated. As well, economic

data are often not iid but are weakly dependent and often cross-sectionally correlated. More work

is needed to understand the theory and practice of selecting constructed predictors in data rich

environments.
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