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Abstract
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1 Introduction

Empirical analysis often involves using incorrectly measured data which complicates identification

of the behavioral parameters and testing of economic hypothesis.1 The problem is acute in cross-

section and survey data where errors in data collection and reporting are inevitable, and this is

still an active area of research. The literature on measurement error in time series data is smaller

but the problem is no less important. The real time estimates which underlie economic decisions

can differ from the revised estimates that researchers use for analysis. We do not observe variables

such as the state of economy, potential output, or natural rate of unemployment, and filtered series

are often used as proxies. Except by coincidence, the latent processes will not be the same as the

constructed ones with differences that can be correlated over time. Orphanides and van Norden

(2002) and Orphanides and Williams (2002) find that misperceptions or measurement errors can be

quite persistent. Ermini (1993) shows that allowing for serially uncorrelated measurement errors

changes the measure of persistence in consumption growth. Falk and Lee (1990) suggest that

measurement errors can explain rejections of the permanent income hypothesis. Nalewalk (2010)

shows that the income (GDI) and product (GDP) side of output growth exhibit rather different

fluctuations over the past 25 years and that the GDI series shows a steeper downturn in 2007-2009

than the GDP series. Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2013) find that the

series filtered from GDP and GDI are less volatile but more persistent than the two contaminated

measures. Sargent (1989) allows the data collected to have serially correlated errors and shows that

identification of the parameters of an accelerator model is affected by how the data are reported.

This paper is concerned with estimation of autoregressive distributed lag models (hereafter,

ADL(p,q)) when the regressors are measured with errors that are possibly serially correlated, mak-

ing it difficult to find valid instruments.2 An early account of the problem can be found in Grether

and Maddala (1973); Buonaccorsi (2012) provides a recent survey of the literature. As is well

known, identification in distributed lag models is impossible without further assumptions when

the predictors are serially uncorrelated or normally distributed.3 But as Goldberger (1972, p.996)

pointed out, identification is still possible in the presence of measurement errors. The instrumental

variable (IV) approach uses additional information from two mismeasured indicators of the latent

regressor: one to replace the latent regressor and a second to instrument the first. The case of

many mismeasured indicators is studied in Bai and Ng (2010). A second approach is to drop the

1Wilcox (1992) discusses the issues in consumption measurements, especially at the monthly level.
2The potential of instrumental variable estimators in time series regressions with serially correlated measurement

errors is studied in Biørn (2014).
3See Maravall (1979), Wansbeek and Meijer (2000), and Aigner, Hsiao, Kapteyn, and Wansbeek (1984) for iden-

tification conditions in measurement error models. Gillard (2010) present an overview of approaches to handle the
errors-in-variables (EIV) problem from different fields.
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normality assumption; see, e.g., Reiersøl (1950). Pal (1980), Dagenais and Dagenais (1997), Lewbel

(1997) and Meijer, Spierdijk, and Wansbeek (2012) exploit heteroskedasticity, skewness and excess

kurtosis for identification without relying on instruments. Our approach falls in the third category

along the lines of Grilliches and Hausman (1986) and Biørn (1992) for panel data: we combine the

information from several biased estimators to identify and estimate the parameters of the model.

A novelty of our approach is the use of simulations to map out the possibly non-tractable relation

between the unknown parameters and the biases induced.

We consider the case when no external instruments are available. Our point of departure is

that provided the regressors are serially correlated, the ordinary least squares (OLS) residuals will

be serially correlated. There is in general enough information in the OLS estimator and the least

squares residuals to permit identification of the parameters of interest. In a way, our approach is

to combine information in these sample estimates, or auxiliary statistics, whose bias is magnified

by the persistence of the regressors. Identifying the model parameters is then possible provided the

probability limit of the auxiliary statistics, or binding function, is invertible.

In simple models, where the binding function can be derived analytically, the classical minimum

distance (CMD) estimator has standard properties. This CMD estimator is similar in the spirit to

the ones proposed in Lewbel (2012) and Erickson (2001) who considered identification of parame-

ters in a linear regression model without additional instruments.4 In more complex models where

the binding function is not analytically tractable, we use Monte-Carlo methods to approximate

this mapping. However, our simulated minimum distance (SMD) estimator differs from the ones

considered in Smith (1993), Gourieroux, Monfort, and Renault (1993), and Gallant and Tauchen

(1996). These estimators treat the predictors as exogenous and hold them fixed in the simulations.

The exogeneity assumption is not appropriate in measurement error models because the parameters

in the marginal distribution of the covariates and those of the conditional distribution of the depen-

dent variable given the covariates are not variation free in the sense of Engle, Hendry, and Richard

(1983). Thus, even though the correctly measured predictors can be held fixed, the mismeasured

ones cannot.

The construction of SMD estimators in models with endogenous variables is far from being

trivial. For instance, Gourieroux, Monfort, and Renault (1993) point out that “models in which non-

strongly exogenous variables appear have the serious drawback of not being simulable.” While this

is true in general, we capitalize on the fact that in linear models, processes with identical covariance

4Lewbel (2012) uses the fact that under heteroskedasticity of the errors, the product of the regression and mea-
surement error are uncorrelated with an exogenous variable. Erickson (2001) considered identification using higher
order moments. Schennach and Hu (2013) also considered identification without side information, but their focus
is non- and semi-parametric models. Our emphasis is on combining individually biased estimators without making
assumptions about normality or homoskedasticity in a linear regression setting.
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structures lead to observational equivalence. Thus, to guarantee consistency of the SMD estimator,

it will be sufficient to simulate endogenous regressors with an appropriate autocovariance structure,

even if the exact data generation process of those regressors is unknown. We propose a simulation

algorithm for the endogenous regressor that guarantees consistency of the SMD estimator. While

not specifying the complete measurement error structure may be less efficient, our simulator is less

sensitive to misspecification.

The paper proceeds as follows. Section 2 introduces the time series econometric setup and uses

a simple regression model to explain our identification and estimation strategies. Section 3 formally

discusses identification and estimation in general autoregressive distributed lag models. Section 4

presents Monte Carlo simulation evidence and an application to the long-run risks model. The last

section concludes. Technical proofs are relegated to an Appendix.

As a matter of notation, we use Γz(j) ≡ E(ztz
′
t−j) to denote the autocovariance of order

j of a generic covariance (or weakly) stationary mean-zero vector-valued time series {zt}. We

use Γzw(j, k) ≡ E(zt−jw
′
t−k) to denote the cross-covariance between two mean-zero covariance

stationary processes {zt} and {wt}. If E(zt) = 0, E(ztz
′
t) = Γz(0), and Γz(j) = 0 for j ≥ 1, then

{zt} is a white noise (WN). In this case, we write zt ∼WN(0,Γz(0)).

2 The Econometric Setup

Consider the autoregressive distributed lag ADL(p,q) model with a scalar predictor xt:

α(L)yt = β(L)xt + ut, (1)

where α(L) = 1−
∑p

i=1 αiL
i, β(L) =

∑q
i=0 βiL

i, and L is the lag operator. Instead of xt, we only

observe a contaminated variable Xt:

Xt = xt + εt.

On the other hand, yt is observed without error.5 Additional regressors can be accommodated

provided they are correctly observed. In that case, yt and Xt above can be interpreted as the

residuals from projections of the dependent variable and the mismeasured regressor on all other

regressors. The ADL(p,q) model expressed in terms of the observables is then given by:

α(L)yt = β(L)Xt + Vt, where Vt = ut − β(L)εt. (2)

Assumptions on the latent variables of the model, ut, εt, and xt, are as follows.

Assumption A
5ARMA models when yt is observed with error are studied in Komunjer and Ng (2014).
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(a) ut ∼WN(0, σ2
u). For every (t, τ), E(utxτ ) = 0 and E(utετ ) = 0.

(b) {(xt, εt)′} is covariance stationary with E(xt) = 0, E(εt) = 0, E(xtετ ) = 0 for every (t, τ).

(c) The roots of α(z) = 0, z ∈ C are all strictly outside the unit circle.

(d) The covariance matrix of (yt−1, . . . , yt−p, xt, xt−1, . . . , xt−q)
′ is nonsingular.

We assume in (a) that the model is dynamically correctly specified and that all the relevant

regressors have been included in (1). Hence, ut is serially uncorrelated. The white noise assumption

on ut can accommodate disturbances that are conditionally heteroskedastic.6 Though latent, the

regressor xt is assumed exogenous, and its measurement error εt orthogonal to ut. (a) and (b)

combined ensure that all the latent variables of the model are covariance stationary. This, together

with the stability condition (c) then guarantees covariance stationarity of the observables {(yt, Xt)
′}.

Since xt and εt are mean zero, the intercept is suppressed in (1). The regressor xt is observed with

error εt whenever Γε(0) 6= 0. The measurement error is classical, i.e. orthogonal to xt at all leads

and lags, but is allowed to be serially correlated. We only need εt to be covariance stationary.

Correct specification of its dynamic structure is however not necessary. Moreover, εt like ut is

allowed to be conditionally heteroskedastic. Assumption (d) is standard for least squares analysis,

except for the fact that it involves the latent variables xt, . . . , xt−q.

From (2), we see that Vt is generally serially correlated. As first documented in Grether and

Maddala (1973), measurement errors in the exogenous variables may lead to the appearance of

spurious long lags in adjustments: even if εt is white noise, Vt is a q-order moving average (MA(q))

process. Thus, the order q of the ADL(p,q) model affects the identification of α and β.

The model defined by (2) can be rewritten as:

yt = W ′tγ + Vt

γ ≡ (α1, . . . , αp, β0, . . . , βq)
′ (3)

Wt ≡ (yt−1, . . . , yt−p, Xt, . . . , Xt−q)
′.

As is well known, the OLS estimator for γ is generally biased when E(WtVt) 6= 0. Instrumental

variable estimation requires Xt−j to be correlated with εt−j for j > q, and instruments that are

both strong and valid may not be available. In these cases, identification of γ is not possible

without further information. We propose to use the information contained in the autocovariance

structure of Vt. Because the autocovariances of Vt also depend on the autocovariances of εt which

6Anticipating the estimation results to follow, it is worth pointing out that while the potential presence of condi-
tional heteroskedasticity does not affect the consistency of our estimator, it would affect its efficiency.
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are not of direct interest, the problem is to find a balance between the information that they

bring, and the additional parameters that characterize them. Once identification is established,

we show how consistent estimates can be obtained. The precise implementation again depends on

the complexity of the model as given by p and q. In simple models, classical minimum distance

estimation is possible. In the next subsections, we study the (p, q) = (0, 0) case. The choice of

auxiliary statistics, identification and estimation will be discussed. Section 3 then analyzes the

general ADL(p,q) model where the simulated minimum distance estimation is useful.

2.1 ADL(0,0) Model

Consider the regression model:

yt = xtβ + ut, (4)

with a latent regressor xt, and a mismeasured observed regressor Xt = xt + εt. In terms of the

observables (yt, Xt), the model becomes:

yt = Xtβ + Vt, where Vt = ut − βεt. (5)

Because of the measurement error, the regressor Xt is endogenous, E(XtVt) 6= 0, which causes

problems in estimating β. Several solutions to the problem have been proposed in the literature.

When both the latent regressor xt and measurement error εt are known to be serially uncorrelated,

identification and estimation can proceed by exploiting certain features of the data (heteroskedas-

ticity, skewness and excess kurtosis) or external instruments as discussed in the introduction. In a

time series context when xt is serially correlated, different estimation strategies are possible under

different assumptions regarding the measurement error. In the case where εt is uncorrelated (white

noise) or it has a finite-order MA structure, lags of Xt can be used as instruments (see Biørn

(2014)). The practical interest of our approach is in situations when Xt−k (k ≥ 1) may not be valid

instruments. This occurs when the measurement error follows a process with an autoregressive

(AR) component. Thus, we focus on the case where both xt and εt are serially correlated, with

unknown autocorrelation structures.

Serial correlation in the measurement error has the important implication that Xt−1 is no longer

a valid instrument in (5). Though longer lags could be valid, they may have weak correlation with

Xt. To begin, consider estimating β using OLS. The OLS estimator β̂ has an attenuation bias

given by:

plim T→∞(β̂ − β) = −β Γε(0)

ΓX(0)
≡ [β].

Since the bias [β] is a function of two unknown parameters, β and Γε(0), estimating β using the

OLS estimator alone is impossible.
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Our point of departure is the simple observation that the bias [β] also affects the time series

properties of the least squares residuals V̂t ≡ yt−Xtβ̂ = Vt−Xt(β̂−β). Consider the autocovariances

Γ̂
V̂

(j) ≡ 1
T

∑T
t=j+1 V̂tV̂t−j , and cross-covariances Γ̂

V̂ X
(j, 0) ≡ 1

T

∑T
t=j+1 V̂t−jXt (j ≥ 0). Then, as

T →∞, we have

plim T→∞Γ̂
V̂

(0) = σ2
u + β2Γε(0) + [β]βΓε(0)

plim T→∞Γ̂
V̂

(1) = β2Γε(1) + 2βΓε(1)[β] + [β]2ΓX(1)

plim T→∞Γ̂
V̂ X

(1, 0) = −βΓε(1)− [β]ΓX(1).

Observe that these moments use V̂t instead of Vt. Hence, the autocovariances and cross-covariances

of the least squares residuals are functions of the least squares bias [β], and thus contain useful

information regarding the parameters of the model (4).

2.2 Identification

The parameters of the ADL(0,0) model in the presence of measurement errors are given by:

θ = (β, σ2
u,Γε(0),Γε(1))′. (6)

Note that β is the parameter of direct interest in (4), while σ2
u , Γε(0) and Γε(1) are nuisance

parameters. We propose to identify θ from the auxiliary statistics:

ψ̂ =
(
β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂V X(1, 0)

)′
(7)

whose probability limit as T goes to infinity (or binding function) is given by:

ψ(θ) =


β + [β]

σ2
u + β2Γε(0) + [β]βΓε(0)

β2Γε(1) + 2βΓε(1)[β] + [β]2ΓX(1)
−βΓε(1)− [β]ΓX(1)

 . (8)

To show that θ is (globally) identifiable from ψ(θ), we need to establish that the mapping θ 7→ ψ(θ)

is invertible. The following result summarizes conditions under which identification obtains.

Lemma 1 Consider the ADL(0,0) model (4). Under Assumptions A(a)-(d):

(a) (β = 0, σ2
u)′ is globally identified;

(b) (β 6= 0, σ2
u)′ is globally identified if Γx(1) 6= 0;

(c) θ is globally identified if (i) Γx(1) 6= 0 and (ii) β 6= 0.
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The proof, given in the Appendix, involves inverting the binding function in (8) and showing

that a unique solution to ψ(θ) = ψ exists. Serial correlation in the latent regressor xt is needed.7 It

is worth pointing out that β and σ2
u are identifiable irrespective of whether or not β = 0.8 However,

Γε(0) and Γε(1) can only be identified if β 6= 0. This is because the regression residuals have no

information about β if Xt has no role in the regression model. Thus, if β = 0, the only way we can

learn about the measurement error is by looking at the regressor Xt.

The required condition Γx(1) 6= 0 is not directly testable. However, when β 6= 0, we can use the

fact that ΓX(1) = Γx(1)+Γε(1) in order to learn about the serial correlation of the latent regressor.

When β 6= 0, an IV estimator with Xt−1 as instrument has probability limit

plim T→∞β̂IV = β

(
1− Γε(1)

ΓX(1)

)
= β

Γx(1)

ΓX(1)
,

which is zero if and only if Γx(1) = 0. Indirect evidence of whether the latent regressor is correlated

can be gleaned from the IV estimate, even though the latter is biased for β.

The identification results of Lemma 1 continue to hold when the measurement error is uncor-

related (or white noise). In this case, it may be of interest to determine whether the nuisance

parameter Γε(0) can be identified when β = 0. This is possible with additional restrictions on the

dynamic structure of the latent process xt. For example, suppose that

Γx(j) = φjΓx(0)

for two consecutive values of j ≥ 1, a condition that holds if xt has an autoregressive structure.

Since εt is white noise, it also holds that ΓX(j) = φjΓx(0) for j ≥ 1. From φ = ΓX(2)
ΓX(1) when j = 2

and ΓX(0) = Γx(0) + Γε(0), we have

Γε(0) = ΓX(0)− ΓX(1)2

ΓX(2)
.

We can use this expression for Γε(0) to assess the severity of measurement error prior to any

regression analysis. The result is, however, specific to white noise processes.

2.3 Estimation

We now turn to the problem of estimating the ADL(0,0) model. The CMD estimator is defined as:

θ̂ = argmin θ‖ψ̂ − ψ(θ)‖W ,
7Note that when εt is white noise, then Γx(1) = ΓX(1) and the requirement is that ΓX(1) 6= 0 which is easy to

test.
8This contrasts with Reiersøl (1950), Pal (1980), Erickson, Jiang, and Whited (2014) in which the identification

results exclude the important special case of β = 0. The reason is that they consider identification of the entire
parameter vector θ = (β, σ2

u,Γε(0))′, while parts (a) and (b) of our result apply to (β, σ2
u)′ alone.
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where ‖v‖W ≡ v′Wv and W is a positive definite weighting matrix. For the ADL(0,0) model, θ,

ψ̂ and ψ(θ) are defined in (6), (7) and (8), respectively, and W is the identity matrix. Given the

invertibility of the binding function, the CMD estimator equals θ̂ = ψ−1(ψ̂). While a closed-form

expression of the binding function ψ(θ) is possible to derive for the ADL(0,0) model, this is often

not feasible in more complex models. However, we can use Monte-Carlo methods to compute the

mapping from θ to ψ. We now present such an estimator for the ADL(0,0) model. This is useful

for understanding the estimator in the general case.

Simulating the data according to the model in (4) is not straightforward because the model

contains no information regarding the data generating process for the latent regressor xt nor its

measurement error εt. To deal with this model incompleteness, we exploit the following simple

principle: since the auxiliary statistics only depend on the first and second order moments of the

observed data, it is sufficient that the simulated data have correct first and second order moments.

Put differently, the dynamic specifications used to simulate xt or εt need not be correct, provided

they lead to the correct values of the first and second order moment properties of the observables.

To formalize the argument, say that S sets of simulated data (yS(θ),XS(θ)) have been obtained

given an assumed value for θ, and consider

ψS(θ) ≡ 1

S

S∑
s=1

ψ̂(ys(θ),Xs(θ)).

This allows us to define the SMD estimator θ̂
S

as:

θ̂
S

= argmin θ‖ψ̂ − ψS(θ)‖W . (9)

As in the classical minimum distance estimation, consistency of θ̂
S

requires that the mapping ψ(θ)

be invertible. The new additional requirement is that the simulated mapping ψS(θ) “approximates”

ψ(θ) as the number of simulated samples S gets large, in a sense that

E(yS(θ),XS(θ))[ψ̂(yS(θ),XS(θ))] = ψ(θ). (10)

The above “consistent simulation” property ensures that the auxiliary statistics computed using

the simulated data provide a consistent functional estimator of the binding function.

The consistent simulation condition (10) is automatically satisfied in most of the traditional

work on simulation estimation where it follows directly from the assumed exogeneity and correct

specification of the dynamics of the model variables. It holds, for example, when ψ̂ is a vector

of unconditional moments, and θ̂
S

is the simulated method of moments estimator of Duffie and

Singleton (1993); or else when ψ̂ is the score of the likelihood and θ̂
S

the efficient methods of
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moments estimator of Gallant and Tauchen (1996). Finally, the property also holds in the indirect

inference estimator of Gourieroux, Monfort, and Renault (1993) where ψ̂ are the parameters of an

auxiliary regression (see, for example, p.S89 in Gourieroux, Monfort, and Renault (1993)).

In incomplete models such as (4), the consistent simulation condition (10) is not trivial to

obtain. As far as we are aware, the only reference to simulation estimation of measurement error

models is Jiang and Turnbull (2004). Their method relies on the existence of “validation” data that

can be used to estimate the nuisance parameters of the model. Without validation data, simulation

estimation cannot be implemented in the standard way. This is due to the endogeneity of the

observed regressor Xt. More specifically, there are two issues that need to be dealt with.

First, there is the issue of simulating the measurement error εt. We exploit the fact that the

nuisance parameters in θ are the autocovariances Γε(0) and Γε(1). Hence, simulation of εt can be

based on any dynamic specification that respects those moments. For instance, we can simulate εt

as an AR(1) process, εt = ρεt−1 + ξt with ξt ∼ iidN(0, σ2
ξ) where ρ and σξ are chosen so that

ρ =
Γε(1)

Γε(0)
and σ2

ξ = (1− ρ2)Γε(0).

It is important to emphasize that the true data generating process for εt, which is unknown, need

not be an AR(1). All that is needed is that the parameters ρ and σξ of the AR(1) model used

for simulation be chosen so that the simulated εt’s have correct variance Γε(0) and autocovariance

Γε(1).

Second, there is the issue of how to simulate the latent regressor xt. A naive approach would

be to set the simulated xst so that xst + εst = Xt. This would correspond to the classical indirect

inference approach in which the regressor Xt is held fixed in simulations, and only the disturbance

ut and the measurement error εt are simulated. Though appealing in its simplicity, this naive

approach would lead to incorrect inference. To see why, let ust and εst denote the simulated values

of ut and εt, respectively. Then, for any given value of θ, the simulated value yst of yt is obtained

as:

yst = βXt + V s
t , where V s

t = ust − βεst . (11)

Despite being correctly specified, the simulated regression in (11) has one fundamental difference

with the observed regression in (5): in simulations, E(XtV
s
t ) = 0, while E(XtVt) 6= 0 in the data.

The generic problem is that when Xt is not exogenous, it can not be held fixed in simulations. In

the measurement error model, the parameters in the marginal distribution of Xt and those of the

conditional distribution of yt given Xt are not variation free. For the simulation estimation to work,

it is necessary that the simulated Xs
t preserves the dependence structure found in the data. The

simulated Xs
t will need to be endogenous, i.e. correlated with V s

t , with the dependence structure
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that matches that of the observed regressor Xt.

The question then is how to simulate Xt with the desired properties without fully specifying its

dynamic properties. We make use of the fact that covariance stationary processes with identical

second moments are observationally equivalent. Thus, it is only necessary for the simulated data to

match the first and second moment properties the observed data. When xt is serially uncorrelated,

the mean and variance of the simulated data can be preserved by letting Xs
t = xst + εst with

xst = ϕXt and ϕ = [1− Γε(0)/ΓX(0)]1/2. By construction, the mean and variance of Xs
t are equal

to the mean and variance of Xt. But with serially correlated latent regressors, we will need the

simulated regressors to preserve not only the variance, but also the autocovariance structure in the

data. For this reason, we propose the following simulation method:

Algorithm SMD for the ADL(0,0) model

1. Compute the auxiliary statistics ψ̂ from the observed data.

2. Given θ, for s = 1, . . . S and t = 1, . . . T :

(i) simulate ust ∼ iidN(0, σ2
u);

(ii) simulate εst = ρεst−1 + ξst , ξ
s
t ∼ iidN(0, σ2

ξ), with ρ = Γε(1)/Γε(0), σ2
ξ = (1− ρ2)Γε(0);

(iii) let xst = ϕ1Xt + ϕ2Xt−1;

(iv) let Xs
t = xst + εst ;

(v) let yst = βxst + ust ;

(vi) compute ψ̂ from the simulated data (ys(θ),Xs(θ)).

3. Minimize ‖ψ̂ − 1
S

∑S
s=1 ψ̂(ys(θ),Xs(θ))‖W over θ.

The key to our simulation method is Step 2(iii) in which we postulate that xst is linear in Xt

and Xt−1. The constants ϕ1 and ϕ2 are chosen to satisfy the pair of equations:

ΓX(0)− Γε(0) = (ϕ2
1 + ϕ2

2)ΓX(0) + 2ϕ1ϕ2ΓX(1)

ΓX(1)− Γε(1) = (ϕ2
1 + ϕ2

2)ΓX(1) + ϕ1ϕ2ΓX(0) + ϕ1ϕ2ΓX(2), (12)

where Γε(1) = 0 if the measurement error is white noise. Step 2(iii) thus models xst as a rescaled

but deterministic function of the data Xt. This method does not directly model the dynamics of

xt (or of xst ), but by construction, Γsx(0) = Γx(0) and Γsx(1) = Γx(1). Given the assumed values for

Γε(0) and Γε(1), and given the estimates of ΓX(0) and ΓX(1) obtained from the observed data, (12)
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is a system of two equations in two unknowns. A unique solution for ϕ1 and ϕ2 can be obtained

by noting that the system in (12) is linear in r0 ≡ (ϕ2
1 + ϕ2

2, ϕ1ϕ2)′,(
ΓX(0) 2ΓX(1)
ΓX(1) ΓX(0) + ΓX(2)

)
R0

(
ϕ2

1 + ϕ2
2

ϕ1ϕ2

)
r0

=

(
ΓX(0)− Γε(0)
ΓX(1)− Γε(1)

)
Q0

.

Assuming that R0 is invertible, r0 = R−1
0 Q0 = (r01, r02)′.9 Then, ϕ1 and ϕ2 can be computed as:

ϕ1 =
1

2

[√
r01 + 2r02 +

√
r01 − 2r02

]
, ϕ2 =

1

2

[√
r01 + 2r02 −

√
r01 − 2r02

]
.

Combining Steps 2(ii) and 2(iii), the simulated regressor Xs
t has the same autocovariances as

the observed regressor, i.e.

ΓsX(0) = ΓX(0) and ΓsX(1) = ΓX(1).

Moreover, the simulated regressor is endogenous, and E(Xs
t V

s
t ) = E(XtVt) 6= 0. This comes from

the fact that the simulated Xs
t respects the measurement error equation Xs

t = xst + εst , and that the

simulated latent regressor xst is truly exogenous. Since the simulations respect all the moments that

appear in the binding function ψ(θ), the consistent simulation property (10) is satisfied. Section 3

extends this result to more general ADL models.

3 Identification and Estimation of ADL(p,q) Models

This section considers the general ADL(p,q) model. It will be shown that in the presence of

measurement errors, the model has (p+ 3q + 4) parameters

θ ≡
(
γ′, σ2

u,Γε(0), . . . ,Γε(2q + 1)
)′
. (13)

These parameters are to be identified from the probability limits of (p+ 3q+ 4) auxiliary statistics:

ψ̂ ≡
(
γ̂′, Γ̂

V̂ X
(1, 0), . . . , Γ̂

V̂ X
(q + 1, 0), Γ̂

V̂
(0), . . . , Γ̂

V̂
(q + 1)

)′
. (14)

We then turn to estimation of the parameters θ.

9Note that we have:

r01 = 1− (ΓX(0) + ΓX(2))Γε(0)− 2ΓX(1)Γε(1)

(ΓX(0) + ΓX(2))ΓX(0)− 2ΓX(1)2
,

from which it is straightforward to show that r01 ≥ 0 if and only if

ΓX(0) + ΓX(2)

2ΓX(1)
− ΓX(1)

ΓX(0)
has the same sign as

ΓX(0) + ΓX(2)

2ΓX(1)
− Γx(1)

Γx(0)
.

Intuitively, the persistence of the latent regressor Γx(1)/Γx(0) should not be too different from the persistence of the
observed regressor ΓX(1)/ΓX(0), so that the above signs remain the same. When r01 ≥ 0, the two solutions ϕ1, ϕ2

are guaranteed to be real.

11



3.1 Identification and Choice of Auxiliary Statistics

To understand (13) and (14), note first that the OLS estimator has asymptotic bias:

plim T→∞ (γ̂ − γ) = ΓW (0)−1ΓVW (0, 0) ≡ [γ],

with γ and Wt as defined in (3). The parameters entering [γ] are those appearing in the cross-

covariance ΓVW (0, 0). Since Xt = xt + εt and Vt = ut − β(L)εt, the OLS bias [γ] now also depends

on the measurement error autocovariances Γε(i) with 0 6 i 6 q. This implies that in addition to the

(p+ q + 2) parameters (γ′, σ2
u)′ of the ADL(p,q) model, there are now (q + 1) nuisance parameters

(Γε(0), . . . ,Γε(q))
′. Thus, at least (p+ q+ 2) + (q+ 1) auxiliary statistics are needed to identify all

the parameters.

The OLS estimator provides (p + q + 1) statistics; the variance of the least squares residuals

Γ̂
V̂

(0) provides another. But we still need another (q + 1) auxiliary statistics. By orthogonality

of the least squares residuals, Γ̂
V̂ X

(0, i) = 0, 0 6 i 6 q. We are left to to consider the moments

Γ̂
V̂ X

(k, 0) and Γ̂
V̂

(k) for k ≥ 1 whose probability limits are:10

Γ
V̂

(k) = ΓV (k)−
(

ΓVW (k, 0) + ΓVW (0, k)

)′
[γ] + [γ]′ΓW (k)[γ] (15)

Γ
V̂ X

(k, 0) = ΓV X(k, 0)− ΓWX(k, 0)′[γ]. (16)

It is not hard to see that for any k ≥ 1, Γ
V̂

(1), . . . ,Γ
V̂

(k) and Γ
V̂ X

(1, 0), . . . ,Γ
V̂ X

(k, 0) depend on k

new nuisance parameters Γε(q+1), . . . ,Γε(q+k). Take for example k = 1. Evidently, Γ̂
V̂ X

(1, 0) and

Γ̂
V̂

(1) depend on: (i) the parameters of the ADL(p,q) model, (γ, σ2
u), (ii) the nuisance parameters

(Γε(0), . . . ,Γε(q)) already appearing in the OLS bias [γ], and (iii) a new nuisance parameter Γε(q+1).

Thus, when k = 1, the inclusion of two auxiliary statistics Γ̂
V̂ X

(1, 0) and Γ̂
V̂

(1) increases the number

of nuisance parameters by one.

In general, there are (p+ q + 1) + 1 + 2k auxiliary statistics

ψ̂k =
(
γ̂′, Γ̂

V̂ X
(1, 0), . . . , Γ̂

V̂ X
(k, 0), Γ̂

V̂
(0), Γ̂

V̂
(1), . . . , Γ̂

V̂
(k)
)′

(17)

to determine (p+ q + 1) + 1 + (q + 1 + k) parameters

θk =
(
γ′, σ2

u,Γε(0), . . . ,Γε(q),Γε(q + 1), . . . ,Γε(q + k)
)′
, (18)

with the order condition given by

k ≥ q + 1. (19)

10In principle, we can also consider Γ̂V̂ X(0, q + k) for k ≥ 1, but it is straightforward to see that these cross-
covariances are informative only if Xt is strongly persistent.
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Setting k = q + 1 satisfies the rule which leads to (13) and (14). When q = 0, we have k = 1,

θ = (β, σ2
u,Γε(0),Γε(1))′, and ψ̂ =

(
β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂V X(1, 0)

)′
, which agrees with the earlier

analysis for the ADL(0,0) model. For the ADL(1,1) model, for example, k = 2. We need to

identify 8 parameters θ = (α, β0, β1, σ
2
u,Γε(0),Γε(1),Γε(2),Γε(3))′ from 8 auxiliary statistics ψ̂ =

(α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂
V̂

(1), Γ̂
V̂

(2), Γ̂
V̂ X

(1, 0), Γ̂
V̂ X

(2, 0))′.

We now turn to the question of identifiability of θ. The ADL(1,0) model is simple enough that

this condition can be analytically verified. The model is represented by yt = αyt−1 + βxt + ut,

and we observe Xt = xt + εt. Here, γ = (α, β)′, Wt = (yt−1, Xt)
′, and θ = (α, β, σ2

u,Γε(0),Γε(1))′.

Assuming that ΓW (0) is nonsingular, the least squares bias is given by

plim T→∞ (γ̂ − γ) =

 β
Γε(0)ΓyX(1,0)

Γy(0)ΓX(0)−ΓyX(1,0)2

−β Γε(0)Γy(0)
Γy(0)ΓX(0)−ΓyX(1,0)2

 ≡ [γ].

The auxiliary statistic is ψ̂ =
(
α̂, β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂

V̂ X
(1, 0)

)′
. To (globally) identify θ requires

inverting the binding function ψ(θ) = plim T→∞ψ̂.

Lemma 2 Consider the ADL(1,0) model (2). Under Assumptions A(a)-(d):

(a) (α, β = 0, σ2
u)′ is globally identified;

(b) (α, β 6= 0, σ2
u)′ is globally identified if Γx(1) 6= 0;

(c) θ is globally identified if: (i) Γx(1) 6= 0, and (ii) β 6= 0.

The required restrictions are the same as those of Lemma 1. This is not surprising given that

the only difference between the ADL(0,0) and ADL(1,0) models comes from the presence of an

additional regressor yt−1. With the lagged dependent variable being correctly measured, it is not

surprising that identification requires the same conditions as when this regressor is absent. We

conjecture, however, that higher order ADL(p,q) models with q ≥ 1 require more restrictions on

the serial correlation of the latent regressor.

Checking invertibility of the binding function is difficult for ADL(p,q) models with q ≥ 1. In

the ADL(1,1) model, for example, there are 8 nonlinear equations in 8 unknowns to be solved. As

is often the case in complex non-linear models, global identification is difficult, if not impossible,

to analytically verify. In the next section, we describe how to approximate the ADL(p,q) binding

function using simulations. Once such approximations are available, one can check for invertibility

using numerical methods.
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3.2 Simulated Minimum Distance Estimation

Once the auxiliary statistic is defined, we can use the analytic expression of its probability limit

or binding function to establish identification and construct the CMD estimator. Such an analysis

is possible for small order models such as ADL(0,0) or ADL(1,0). However, this task proves to

be impossible for the ADL(1,1) model despite serious efforts. For this reason, we use the SMD

estimator defined in (9).

The auxiliary statistics for the ADL(p,q) model defined in (14) depends on the first 2q + 2

autocovariances of Xt. Hence, it is necessary to simulate an exogenous process for xt which preserves

those 2q + 2 autocovariances, i.e. a process {xst} such that:

Γsx(k) = ΓX(k)− Γε(k), k = 0, . . . , 2q + 2. (20)

Exogeneity of the simulated latent process {xst} means that it must be independent of {ust}. To

do so, we extend the simulation procedure presented earlier for the ADL(0,0) model to the general

ADL(p,q) model. Let

xst = ϕ0Xt + ϕ1Xt−1 + . . .+ ϕ2q+1Xt−(2q+1), (21)

where the 2q + 2 parameters (ϕ0, . . . , ϕ2q+1)′ are to be determined to satisfy (20). Following a

reasoning similar to that for the ADL(0,0) model analyzed in Section 2.3, the restrictions can be

written in a matrix form: ΓX(0)− Γε(0)
...

ΓX(2q + 1)− Γε(2q + 1)


Qq

=

 ΓX(0) . . . 2ΓX(2q + 1)
...

...
ΓX(2q + 1) . . . ΓX(0) + ΓX(4q + 2)


Rq

ϕ
2
0 + ϕ2

1 + . . .+ ϕ2
2q+1

...
ϕ0ϕ2q+1


rq

.

Assuming Rq is invertible, rq = R−1
q Qq = (rq0, . . . , rq,2q+1)′. The coefficients (ϕ0, . . . , ϕ2q+1) in (21)

are then obtained from the solution (rq0, . . . , rq,2q+1) by solving the nonlinear system of (2q + 2)

equations in (2q + 2) unknowns:

ϕ2
0 + ϕ2

1 + . . .+ ϕ2
2q+1 = rq0

... (22)

ϕ0ϕ2q+1 = rq,2q+1.

The dimension of the system (22) only depends on the lag-length q in the ADL(p,q) model and is

relatively easy to solve. In the q = 0 case, the solution was given in Section 2.3. In the general

case, the solution can be obtained using a numerical solver.

Our general simulation algorithm can now be described as follows:
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Algorithm SMD for ADL(p,q) model with parameters θ = (γ′, σ2
u,Γε(0), . . . ,Γε(2q + 1))′:

1. Compute the auxiliary statistics ψ̂ from the observed data.

2. Given θ, for s = 1, . . . S and t = 1, . . . T :

(i) simulate ust ∼ iidN(0, σ2
u)

(ii) simulate εst = ρ1ε
s
t−1+. . .+ρ2q+1ε

s
t−(2q+1)+ξt, ξt ∼ iidN(0, σ2

ξ), where ρ = (ρ1, . . . , ρ2q+1)′

and σ2
ξ solve the Yule-Walker equations:

Γερ = γ2q+1 and σ2
ξ = Γε(0)− ρ′γ2q+1,

where γ2q+1 = (Γε(1), . . . ,Γε(2q + 1))′ and Γε is the covariance matrix [Γε(i− j)]2q+1
i,j=1;

(iii) let xst = ϕ0Xt + . . .+ ϕ2q+1Xt−(2q+1) where (ϕ0, . . . , ϕ2q+1) solve the system in (22);

(iv) let Xs
t = xst + εst ;

(v) let yst = α1y
s
t−1 + . . .+ αpy

s
t−p + β0x

s
t + . . .+ βqx

s
t−q + ust ;

(vi) compute the auxiliary statistics ψ̂ in (14) from the simulated data (ys(θ),Xs(θ)).

3. Minimize ‖ψ̂ − 1
S

∑S
s=1 ψ̂(ys(θ),Xs(θ))‖W over θ.

As before, the measurement errors are simulated as an AR(2q + 1) process, but this need not

be the true data generating process. The AR model only needs to provide correct first 2q + 2

autocovariances of the measurement error. The parameters of this AR model in step (ii) are

calibrated using the Yule-Walker equations. In step (iii), the simulated latent regressor xst is

postulated to be a linear function of the observed regressors (Xt, . . . , Xt−(2q+1)). The parameters

(ϕ0, . . . , ϕ2q+1)′ are chosen so as to preserve the autocovariances of the observed regressors. Since

these in turn depend on the assumed model parameters (Γε(0), . . . ,Γε(2q+1))′, xst will need to be re-

calculated in each simulation. The simulator produces latent regressors {xst} that are independent

from {ust}. The exogeneity guarantees the validity of all cross-covariances between yst and Xs
t .

To derive the asymptotic properties of our SMD estimator, we impose the following assumptions.

Assumption B

(a) The (2q + 2)× (2q + 2) autocovariance matrix Rq is non-singular.

(b) {(yt, Xt)
′} is α-mixing of size −r/(r − 1), r > 1, and for some δ > 0 and all t: E(|Xt|2r+δ) 6

∆ <∞, E(|yt|2r+δ) 6 ∆ <∞.
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The nonsingularity condition in Assumption B(a) ensures the Rq matrix used to compute the

coefficients ϕ0, . . . , ϕ2q+1 is invertible. This is needed in the simulation of xst in Step 2(iii) of the

SMD algorithm. The mixing and bounded moment conditions in B(b) are used to establish the

almost sure convergence of the auxiliary statistics. The properties of our algorithm are formally

stated below.

Lemma 3 Let Assumptions A and B hold. Assume in addition that the binding function ψ : θ 7→
ψ(θ) is invertible. Then, under the SMD algorithm described above, the SMD estimator θ̂

S
is a

consistent estimator of θ.

Lemma 3 is stated for estimation of θ from ψ̂ as defined in (13) and (14), respectively. Of note is

that there are 2q+2 nuisance parameters in θ. The parameters pertaining to the persistence of εt are

needed for identification of α and β, and hence are regarded as nuisance. However, the magnitude

of Γ̂ε(0) relative to Γ̂X(0) can be used to gauge the severity of measurement error. Furthermore,

the persistence of the latent process can be recovered from the relation Γ̂x(j) = Γ̂X(j)− Γ̂ε(j). This

sheds light on whether the assumptions of our analysis are satisfied.

Nonetheless, for large q, the nuisance parameters can increase the dimension of θ substantially.

To avoid the proliferation of nuisance parameters, we can impose an additional restriction that

would require Γε(1), . . . ,Γε(2q+1) to be well approximated by a parameter vector φ = (φ1, . . . , φm)′

with

m 6 2q + 1. (23)

Since the ADL(p,q) model has p + q + 1 parameters and m + 2 nuisance parameters, (23) is a

necessary order condition for identification under the φ parameterization. Such a parametrization

is not necessary for our estimation method to work. Its role is to help solve numerical optimization

issues if the lag q of the ADL(p,q) model happens to be large. For instance, in the ADL(1,1)

model, the condition would require that Γε(1), Γε(2) and Γε(3) be well approximated by a m 6 3

dimensional parameter vector φ. The parameterization has no effect on estimation. It is only in

larger models that a smaller m may be desirable.

We should reiterate that the order conditions (19) and (23) are not strictly necessary for iden-

tification since additional information relating to heteroskedasticity and skewness of εt can also

be exploited. In the spirit of Pal (1980), Dagenais and Dagenais (1997), Lewbel (1997), Meijer,

Spierdijk, and Wansbeek (2012), and Erickson and Whited (2000, 2002), higher order moments of

εt or of Xt can also be used to achieve identification.
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4 Monte Carlo Simulations and Application

4.1 Simulations

We use 5000 replications to illustrate the properties of the CMD and SMD estimators. For t =

1, . . . , T and T = (200, 500, 1000), the data are generated from the ADL model

yt = αyt−1 + β0xt + β1xt−1 + ut, ut ∼ iidN(0, σ2
u),

xt = ρxxt−1 + uxt, uxt ∼ iidN(0, σ2
ux),

Xt = xt + εt, εt = et + θet−1, et ∼ iidN(0, σ2
e).

The parameters are ρx = (0.2, 0.5, 0.8), θ = 0 (case ‘εt WN’ in the tables) or 0.4 (case ‘εt MA(1)’ in

the tables), α = 0 (ADL(0,0) model) or 0.6 (ADL(1,0) and ADL(1,1) models), β1 = 0 (ADL(0,0)

and ADL(1,0) models) or 0.5 (ADL(1,1) model), and β0 = 1. The measurement error process is

calibrated such that the signal-to-noise ratio is R2 = var (xt)
var (Xt)

= 0.7. This is achieved by solving σ2
e

from

σ2
e(1 + θ2) =

1−R2

R2

σ2
ux

1− ρ2
x

.

In the simulations, we let σ2
u = σ2

ux = 1. In practice, we do not know if εt is serially correlated or

not. Thus, we always estimate a model that allows for serial correlation in εt even when εt is white

noise. The SMD simulates εt as an AR(1) process even though the true process is MA(1).

We begin with the simple regression model when α = β1 = 0. As these parameters are not

estimated, θ = (β0, σ
2
u,Γε(0), φ)′ and ψ̂ = (β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂

V̂ X
(1, 0))′. The results are reported

in Table 1. In the top panel where εt is white noise, Xt−1 is a valid instrument. The estimator

is denoted by IV. For comparison purposes, Table 1 also reports the estimates from the infeasible

estimator (IDEAL) based on the true (latent) regressor xt. As expected, the average of the IDEAL

estimates is well centered around the true value of β. The OLS estimates are significantly downward

biased when Xt is used as regressor instead of xt. The bias is larger the less persistent is xt. The

IV estimator gives highly variable estimates when ρx = 0.2. The CMD is more stable than IV. The

SMD estimator matches up well with the CMD, showing that simulation estimation of the mapping

from θ to ψ did not induce much efficiency loss. The bottom panel shows that when εt is serially

correlated, the IV estimates are highly unreliable. The CMD and SMD estimates are similar to the

case of white noise measurement error.

The parameters of the ADL(1,1) model are θ = (α, β0, β1, σ
2
u, Γε(0), Γε(1), Γε(2), Γε(3))′ with

α = 0.6 and β1 = 0 or 0.5. The auxiliary statistics are ψ̂(θ) = (α̂, β̂0, β̂1, Γ̂
V̂

(0), Γ̂
V̂

(1), Γ̂
V̂

(2),

Γ̂
V̂ X

(1, 0), Γ̂
V̂ X

(2, 0))′. We report the estimated short- and long-run response of yt to xt as given

by β̂0 and β̂(1) = β̂0 + β̂1. Table 2 reports results for ADL(1,0). This is a special ADL(1,1) model
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with β1 = 0, but this constraint is not imposed in the estimation. The estimates are reasonably

precise and exhibit some downward biases that tend to increase with the degree of persistence in

xt. Table 3 shows results for the ADL(1,1) model. While the CMD estimator reduces substantially

the large bias of the OLS estimator, the SMD estimator provides further bias corrections.

4.2 Long-Run Risks Model

The risks that affect consumption and their role in explaining the equity premium puzzle have been

a focus of extensive research effort. Bansal and Yaron (2004) propose a model where consumption

growth contains a small long-run persistent predictive component. Their basic constant-volatility

specification can be cast as an ADL(0,0) model with uncorrelated measurement errors:

yt+1 = µy + βxt + σuut+1

Xt+1 = xt + σεεt+1,

where yt+1 = 4dt+1 is the dividend growth rate, Xt+1 = 4ct+1 is the consumption growth rate,

xt is a latent AR(1) process with autoregressive coefficient ρx, and ut+1 and εt+1 are mutually

independent, iidN(0, σ2
u) and iidN(0, σ2

ε ) errors, respectively.11 In order to calibrate the dividend

growth volatility, the model requires that β, which can be interpreted as the leverage ratio on

expected consumption growth (Bansal and Yaron (2004)), and σu/σε are both greater than one.

Also, high persistence of the latent component xt, measured by a value of ρ near one, is critical for

the potential resolution of the equity premium puzzle. Below, we will evaluate the plausibility of

these parameter values and restrictions using our proposed method. We note that our approach is

similar in spirit to the one used by Contanstinides and Ghosh (2011) but it is based on a different

set of moment conditions.

Before we proceed with the estimation results, we make several remarks. First, the OLS esti-

mator of β from a regression of yt+1 on the observed Xt+1 (instead of the latent xt) is downward

biased. The IV estimator that uses Xt as an instrument is asymptotically valid. But both of these

estimators do not provide information about the multitude of the measurement error, the implied

value of the persistence parameter ρx and the variability of the long-run risks component. Since

the moments employed in estimation can be computed analytically, we use both the classical and

simulated method of moments. The results from the CMD estimation are very similar to those

from the SMD but we report only the SMD estimates due to their bias-correction properties.

We report results for quarterly (1952:Q2–2012:Q4) and annual (1931–2009) data. The consump-

tion growth is the percentage growth rate of real per-capita personal consumption expenditures on

11This specification of the model assumes that E(Xt) = E(xt) = µ. Alternatively, one could assume Xt+1 =
µ+ xt + σεεt+1 and E(xt) = 0 (as in Bansal and Yaron (2004)) and identify µ from the mean of the observed Xt.
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nondurable goods and services from the Bureau of Economic Analysis. The dividend growth is the

percentage growth rate of real dividends on the Center for Research in Security Prices (CRSP)

value-weighted stock market portfolio. For the SMD estimation, N is set equal to 100. The OLS,

IV and SMD estimates of the parameters µy, β, σ2
u and σ2

ε are presented in Table 4.

The first interesting observation from Table 4 is that SMD estimates of β are larger, both

economically and statistically, than the IV and, especially, OLS estimates. This lends support to

the “levered” nature of dividends and the larger values of β used for calibrating the model in Bansal

and Yaron (2004). For annual data, that includes the Great Depression, the ratio σu/σε is 2.64.

This is lower than the value of 4.5 used in Bansal and Yaron (2004). For the post-war quarterly

data, this ratio is even lower. We attribute this to the larger variance of the measurement error (or

transitory component) estimated by SMD. To put this in perspective, note that ΓX(0) for quarterly

data is 0.547 and for annual data is 7.899 so that the variance of the measurement error is 69%

and 61% of the variance of the observed consumption growth, respectively. Recall from Section

2.2 that a quick estimate of the measurement error variance can be backed out directly from the

data, i.e. σ2
ε = ΓX(0)− ΓX(1)2/ΓX(2). Using the sample values of ΓX(0), ΓX(1) and ΓX(2) these

back-of-the-envelope calculations yield an estimate of 0.369 for σ2
ε for quarterly data. Furthermore,

using our SMD estimate of σ2
ε , we can compute the implied estimate of ρx as ρx = ΓX(1)/Γx(0),

where Γx(0) = ΓX(0) − σ2
ε . This gives estimates for ρx of 0.630 for quarterly data and 0.480 for

annual data. Although these values are far from unity, they do seem to suggest a presence of a

persistent, long-run component in consumption growth.

5 Conclusion

This paper makes two contributions. First, we show that several biased estimates can jointly

identify a model with mismeasured regressors without the need for external instruments. The key

is to exploit persistence in the data. Second, we develop a simulation algorithm for situations where

the regressors are not exogenous and thus cannot be held fixed in simulations. The algorithm

can be extended to dynamic panels and can accommodate additional regressors. The proposed

methodology can be useful when external instruments are either unavailable or are weak.
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A Appendix: Proofs

Proof of Lemma 1 Write the binding function as:

ψ(θ) =



β
(

1− Γε(0)
ΓX(0)

)
β2Γε(0)

(
1− Γε(0)

ΓX(0)

)
+ σ2

u

β2

[
Γε(1)− 2Γε(1) Γε(0)

ΓX(0) +
(

Γε(0)
ΓX(0)

)2
ΓX(1)

]
−β
(

Γε(1)− Γε(0)ΓX(1)
ΓX(0)

)


.

First, consider the case β = 0. Note that ψ1 = β Γx(0)
ΓX(0) = 0. But ΓX(0)−Γε(0) = Γx(0) 6= 0. Hence,

β = 0 if and only if ψ1 = 0, and β = 0 is directly identifiable from ψ1. For σ2
u, we have σ2

u = ψ2,

so (β = 0, σ2
u)′ is identified from ψ. Next, we consider the case β 6= 0. In this case, ψ1 6= 0 and we

can solve for β by considering

A ≡ ΓX(1)ψ2
1 + 2ψ4ψ1 + ψ3.

Using the definition of ψ, this quantity can be computed in two ways: A = β2(ΓX(1) − Γε(1)) =

β2Γx(1) and A = β(ψ4 + ΓX(1)ψ1). So if Γx(1) 6= 0, then A 6= 0 and we use the two expressions

for A to obtain:

β =
A

ψ4 + ΓX(1)ψ1

.

For σ2
u, consider

D ≡ ψ2ψ4 − ΓX(0)ψ1ψ3 + ΓX(1)ψ1ψ2 − ΓX(0)ψ2
1ψ4.

Then, D = σ2
u(ψ4 + ΓX(1)ψ1). Dividing both sides by ψ4 + ΓX(1)ψ1 6= 0 gives

σ2
u =

D

ψ4 + ΓX(1)ψ1

.

Thus Γx(1) 6= 0 is sufficient to globally identify (β 6= 0, σ2
u)′. Finally, to identify Γε(0), assume

Γx(1) 6= 0, and β 6= 0. Consider

B ≡ ΓX(0) (ψ3 + ψ1ψ4) ,

and note that B = AΓε(0). Since A 6= 0 under our assumptions,

Γε(0) =
B

A
= ΓX(0)

ψ3 + ψ1ψ4

ΓX(1)ψ2
1 + 2ψ4ψ1 + ψ3

.

Finally, for Γε(1), let C ≡ −ψ2
4 + ΓX(1)ψ3, and note that C = Γε(1)A. Under our assumptions,

A 6= 0 and Γε(1) is identified as

Γε(1) =
C

A
=

−ψ2
4 + ΓX(1)ψ3

ΓX(1)ψ2
1 + 2ψ4ψ1 + ψ3

.
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Proof of Lemma 2 The analysis can be simplified by noting that σ2
u will identified from Γ

V̂
(0).

Thus, we only need to consider identification of

θ = (α, β,Γε(0),Γε(1))′

from

ψ̂ = (α̂, β̂, Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′.

As before, θ is globally identified from ψ = (ψ1, ψ2, ψ3, ψ4)′ if the binding function ψ(θ) is

invertible. Consider then the system of equations ψ(θ) = ψ to solve: by plugging the first two

equations into the last two, and pre-multiplying the first two equations by the nonsingular matrix

ΓW (0), this system is equivalent to:

ΓWy(0, 0) = ΓW (0)

(
ψ1

ψ2

)
ΓWy(0, 0)ΓW (0)−1ΓWy(1, 0) =

(
ψ1 ψ2

)
ΓW (1)

(
ψ1

ψ2

)
− ψ3 (24)

ΓyX(1, 0) = ψ4 +
(
ψ1 ψ2

)
ΓWX(1, 0).

The system of 4 equations in 4 unknowns in (24) has the important feature that only the left-

hand side of (24) depends on θ. The right hand side consists either of (ψ1, . . . , ψ4) or the elements

in ΓW (0), ΓW (1) and ΓWX(1, 0) for which sample estimates are available. Global identifiability of

θ from ψ holds if it can be established that the system (24) has a unique solution in θ.

First, we consider the case when β = 0. Note that

1− Γε(0)Γy(0)

Γy(0)ΓX(0)− ΓyX(1, 0)2
=

Γy(0)Γx(0)− ΓyX(1, 0)2

Γy(0)ΓX(0)− ΓyX(1, 0)2

and since ΓyX(1, 0) = Γyx(1, 0) both the numerator and the denominator are determinants of

positive definite covariance matrices, and the above quantity is strictly positive. Thus, ψ2 = 0 if

and only if β = 0. In this case, α = ψ1 and (α, β = 0) is identified.

Next, consider the case when β 6= 0. There are again two cases to consider: ΓyX(1, 0) = 0 and

ΓyX(1, 0) 6= 0. Consider ΓyX(1, 0) = 0 first. Since Xt = xt + εt and yt =
∑∞

i=0 α
i(βxt−i + ut−i), we

have E(Xtyt−j) =
∑∞

i=0 α
i(βΓx(j + i)) and

ΓyX(1, 0) = β

[
Γx(1) +

∞∑
i=1

αiΓx(1 + i)

]
, (25)

so ΓyX(1, 0) = 0 occurs, for example, whenever x is white noise. In this case, α can be directly

identified from ψ1, α = ψ1. As for β, notice that the components ψ2(θ), ψ3(θ), ψ4(θ) are as in the

ADL(0,0) case and identification can proceed as in Lemma 1 provided Γx(1) 6= 0.
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It remains to consider the case β 6= 0, ΓyX(1, 0) 6= 0. For this, we further write the elements on

the left-hand side of (24) in terms of (α, β,Γε(0),Γε(1)).

α = ψ1 +
ΓyX(1, 0)(ψ3 + ψ2ψ4)

(Γy(0)ΓyX(2, 0)− Γy(1)ΓyX(1, 0))ψ1 − ΓyX(1, 0)(ΓyX(0, 0)− ΓyX(2, 0))ψ2

.

Of course, for the solution to be valid we need to check that the denominator is not zero. For this,

write the equality above as:

α− ψ1 =
N

D
,

with

N = ΓyX(1, 0)(ψ3 + ψ2ψ4)

D = (Γy(0)ΓyX(2, 0)− Γy(1)ΓyX(1, 0))ψ1 − ΓyX(1, 0)(ΓyX(0, 0)− ΓyX(2, 0))ψ2.

Note that

α− ψ1 = −βΓε(0)
ΓyX(1, 0)

Γy(0)ΓX(0)− ΓyX(1, 0)2
6= 0.

Thus, D = 0 if and only if ψ3 + ψ2ψ4 = 0. Moreover, it also holds that:

Γε(0)β =
(ψ3 + ψ2ψ4)(ΓyX(1, 0)2 − ΓX(0)Γy(0))

D
,

so ψ3 + ψ2ψ4 = 0 if and only if Γε(0)β = 0 which we excluded. Thus, both N 6= 0 and D 6= 0.

For β, the solution is:

β = ψ2 −
Γy(0)(ψ3 + ψ2ψ4)

(Γy(0)ΓyX(2, 0)− Γy(1)ΓyX(1, 0))ψ1 − ΓyX(1, 0)(ΓyX(0, 0)− ΓyX(2, 0))ψ2

= ψ2 −
Γy(0)

ΓyX(1, 0)
(α− ψ1).

Thus (α, β 6= 0)′ are identified from ψ. Finally, for Γε(0) we have:

Γε(0)β =
(ψ3 + ψ2ψ4)(ΓyX(1, 0)2 − ΓX(0)Γy(0))

D
,

so if in addition β 6= 0, Γε(0) is identified. Similarly, Γε(1) is then also identified from ψ4.

Proof of Lemma 3 To establish the consistency of θ̂
S

, we need to check the following high-level

conditions:

1. ψ̂
a.s.−→ ψ as T →∞;

2. 1
S

∑S
s=1 ψ̂(ys(θ),Xs(θ))

a.s.−→ ψ(θ) as S →∞;
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3. ψ : θ 7→ ψ(θ) is invertible.

Using the same reasoning as in Gourieroux, Monfort, and Renault (1993) (see their proof of

Proposition 1), under 1 and 2, the limit of the optimization problem:

min
θ

∥∥∥∥∥ψ̂ − 1

S

S∑
s=1

ψ̂(ys(θ),Xs(θ))

∥∥∥∥∥
Ŵ

with Ŵ
a.s.−→W , is

min
θ
‖ψ − ψ(θ)‖W = θ.

Then, the consistency of the SMD estimator θ̂
S

follows. We now check the high-level conditions 1

and 2. Condition 3 is assumed.

Condition 1. The auxiliary statistics ψ̂ in (14) is a continuous function of Γ̂y(j), 0 6 j 6

p + q + 1, Γ̂X(k), 0 6 k 6 2q + 1, and Γ̂yX(l,m), 0 6 l 6 p + q + 1, 0 6 m 6 2q + 1. Moreover,

by Assumption B(b) and Cauchy-Schwartz inequality, there exists δ1 = δ/2 > 0 such that for all t:

E(|ytyt−j |r+δ1) 6
[
E(|yt|2r+δ)E(|yt−j |2r+δ)

]1/2
6 ∆ < ∞ for all 0 6 j 6 p + q + 1, with a similar

result for all the other covariances and cross-covariances. Then, by Theorem 3.47 in White (1984),

Γ̂y(j), Γ̂X(k), and Γ̂yX(l,m) converge almost surely to Γy(j), ΓX(k), and ΓyX(l,m), respectively.

Thus, by the continuous mapping theorem, ψ̂
a.s.−→ ψ.

Condition 2. First, note that under the full rank assumption B(a), the SMD algorithm is

implementable. We next discuss the mixing properties of the simulated variables. If {Xt} is α-

mixing of size −a, then by Theorem 3.49 in White (1984), {xst} is α-mixing of size −a. Being a

Gaussian AR(2q+1) process, {εst} is α-mixing of size −a for any a ∈ R since the mixing coefficients

α(m) decay exponentially with m (see, e.g., Example 3.46 in White (1984)). In addition, {xst},
{ust} and {εst} are independent. Thus, {(yst , Xs

t )′} is α-mixing of size −a. Under Assumption B(b),

a = r/(r − 1) with r > 1. We now check that the simulated data satisfies the required moment

conditions. For this, note that for some constant 1 < C < +∞ (that depends on r and δ), we have:

Es(|Xs
t |2r+δ) = Es(|xst + εst |2r+δ) 6 C

[
Es(|xst |2r+δ) + Es(|εst |2r+δ)

]
.

Now, there exists ∆1 such that Es(|xst |2r+δ) 6 ∆1 < ∞ because under Step 2(iii) of the SMD

algorithm, xst is a linear function of (Xt, . . . , X2q+1), which all satisfy E(|Xt|2r+δ) 6 ∆ <∞. Next,

under Step 2(ii), εst is an AR(2q+1) Gaussian process so there exists ∆2 such that: Es(|εst |2r+δ) 6
∆2 < ∞. Thus, there exists ∆̄ such that for all t: Es(|Xs

t |2r+δ) 6 ∆̄ < ∞. Using a similar

reasoning, under Step 2(v), since Es(|xst |2r+δ) 6 ∆1 < ∞, Es(|ust |2r+δ) 6 ∆3 < ∞ (since ut is

Gaussian), there exists ∆̃ such that: E(|yt|2r+δ) 6 ∆̃ < ∞. This means that the simulated data
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satisfy the same mixing and bounded moment conditions B(b) as the true data. Using the same

reasoning as in the proof of Condition 1, it follows that the auxiliary statistics computed over

simulated data converge almost surely to their limit Es[ψ̂(yS(θ),XS(θ))]. It remains to show that

this limit equals ψ(θ). For this, recall that the auxiliary statistics ψ̂ in (14) computed over the

simulated data depends on Γ̂sy(j), 0 6 j 6 p + q + 1, Γ̂sX(k), 0 6 k 6 2q + 1, and Γ̂syX(l,m),

0 6 l 6 p+ q + 1, 0 6 m 6 2q + 1. The proposed SMD algorithm ensures that:

Γsy(j) = Γy(j), 0 6 j 6 p+ q + 1

ΓsX(k) = ΓX(k), 0 6 k 6 2q + 1

ΓsyX(l,m) = ΓyX(l,m), 0 6 l 6 p+ q + 1, 0 6 m 6 2q + 1.

Thus,

Es[ψ̂(yS(θ),XS(θ))] = E[ψ̂(y,X)] = ψ(θ),

which establishes Condition 2.
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Table 1: ADL(0,0): (α, β0, β1) = (0, 1, 0)

θ = (β0, σ
2
u,Γε(0), φ)′

ψ̂ = (β̂, Γ̂
V̂

(0), Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′.

Estimates of β0 = 1 Standard Deviations

T ρx OLS IDEAL IV CMD SMD OLS IDEAL IV CMD SMD

εt WN

200 0.200 0.702 1.006 1.078 1.058 1.089 0.068 0.086 1.151 0.401 0.375
200 0.500 0.699 1.006 1.030 0.960 0.982 0.064 0.079 0.215 0.223 0.220
200 0.800 0.690 1.004 1.013 0.972 0.983 0.062 0.066 0.108 0.129 0.132
500 0.200 0.700 1.000 1.054 1.010 1.037 0.043 0.053 0.451 0.302 0.293
500 0.500 0.699 1.000 1.008 0.967 0.978 0.041 0.049 0.122 0.167 0.166
500 0.800 0.695 1.000 1.004 0.988 0.992 0.040 0.041 0.063 0.075 0.079
1000 0.200 0.699 1.000 1.016 0.975 0.993 0.030 0.037 0.259 0.242 0.238
1000 0.500 0.699 1.000 1.002 0.973 0.978 0.028 0.034 0.083 0.128 0.129
1000 0.800 0.698 1.000 1.001 0.993 0.994 0.028 0.028 0.043 0.050 0.052

εt MA(1)

200 0.200 0.702 1.006 -3.044 1.122 1.123 0.069 0.087 246.882 0.416 0.397
200 0.500 0.700 1.007 1.093 1.004 1.003 0.065 0.083 9.395 0.187 0.189
200 0.800 0.690 1.006 1.031 1.002 1.001 0.064 0.075 0.171 0.100 0.102
500 0.200 0.700 1.000 0.815 1.048 1.042 0.043 0.054 49.865 0.292 0.282
500 0.500 0.699 1.001 1.062 0.998 0.994 0.042 0.052 1.902 0.119 0.120
500 0.800 0.695 1.001 1.009 1.000 0.997 0.042 0.046 0.093 0.061 0.061
1000 0.200 0.700 1.000 -1.57 1.008 0.997 0.030 0.038 154.439 0.206 0.206
1000 0.500 0.699 1.000 1.018 0.996 0.990 0.029 0.036 0.199 0.083 0.085
1000 0.800 0.698 1.000 1.004 0.999 0.996 0.028 0.032 0.061 0.042 0.043
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Table 2: ADL(1,0):

θ = (α, β0, β1, σ
2
u,Γε(0),Γε(1),Γε(2),Γε(3))′

ψ̂(θ) = (α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂
V̂

(1), Γ̂
V̂

(2), Γ̂
V̂ X

(1, 0), Γ̂
V̂ X

(2, 0))′.

Estimates of β0 = 1 and β(1) = β0 + β1 = 1 Standard Deviations

T ρx OLS CMD SMD OLS CMD SMD

εt WN β0 β(1) β0 β(1) β0 β(1) β0 β(1) β0 β(1) β0 β(1)

200 0.2 0.711 0.657 1.051 1.030 1.078 1.067 0.070 0.095 0.229 0.242 0.130 0.211
200 0.5 0.679 0.669 0.946 0.907 1.035 1.031 0.069 0.087 0.209 0.189 0.143 0.192
200 0.8 0.545 0.578 0.896 0.814 0.925 0.948 0.063 0.076 0.172 0.167 0.160 0.188
500 0.2 0.709 0.648 1.000 0.973 1.073 1.073 0.044 0.060 0.180 0.176 0.085 0.136
500 0.5 0.677 0.660 0.913 0.872 1.035 1.036 0.044 0.055 0.142 0.121 0.094 0.120
500 0.8 0.543 0.569 0.894 0.800 0.934 0.937 0.041 0.049 0.116 0.105 0.114 0.132
1000 0.2 0.709 0.646 0.961 0.931 1.071 1.068 0.031 0.042 0.132 0.126 0.056 0.092
1000 0.5 0.677 0.658 0.901 0.858 1.033 1.033 0.030 0.038 0.098 0.085 0.061 0.081
1000 0.8 0.543 0.567 0.897 0.797 0.937 0.928 0.028 0.033 0.082 0.073 0.096 0.108

εt MA(1)

200 0.2 0.696 0.741 1.061 1.060 1.080 1.076 0.068 0.099 0.254 0.254 0.137 0.223
200 0.5 0.656 0.758 0.990 0.971 1.033 1.047 0.066 0.090 0.211 0.186 0.142 0.199
200 0.8 0.522 0.675 0.923 0.865 0.898 1.003 0.058 0.079 0.158 0.168 0.154 0.206
500 0.2 0.693 0.733 1.030 1.026 1.077 1.076 0.043 0.062 0.217 0.197 0.092 0.148
500 0.5 0.653 0.750 0.968 0.949 1.039 1.044 0.042 0.057 0.147 0.120 0.098 0.132
500 0.8 0.520 0.668 0.925 0.857 0.941 1.004 0.037 0.050 0.113 0.111 0.108 0.146
1000 0.2 0.693 0.731 1.009 1.001 1.075 1.072 0.030 0.043 0.174 0.153 0.062 0.100
1000 0.5 0.653 0.748 0.960 0.938 1.035 1.038 0.029 0.039 0.103 0.086 0.067 0.091
1000 0.8 0.520 0.667 0.930 0.852 0.968 1.001 0.026 0.034 0.081 0.081 0.078 0.106
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Table 3: ADL(1,1):

θ = (α, β0, β1, σ
2
u,Γε(0),Γε(1),Γε(2),Γε(3))′

ψ̂(θ) = (α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂
V̂

(1), Γ̂
V̂

(2), Γ̂
V̂ X

(1, 0), Γ̂
V̂ X

(2, 0))′.

Estimates of β0 = 1 and β(1) = β0 + β1 = 1.5 Standard Deviations

T ρx OLS CMD SMD OLS CMD SMD

εt WN β0 β(1) β0 β(1) β0 β(1) β0 β(1) β0 β(1) β0 β(1)

200 0.2 0.697 0.966 0.958 1.378 1.041 1.518 0.074 0.104 0.187 0.240 0.151 0.227
200 0.5 0.697 0.973 0.965 1.358 0.999 1.441 0.074 0.097 0.167 0.196 0.158 0.219
200 0.8 0.601 0.826 0.994 1.316 0.957 1.348 0.071 0.091 0.182 0.198 0.166 0.214
500 0.2 0.695 0.958 0.929 1.344 1.032 1.526 0.046 0.066 0.119 0.155 0.097 0.150
500 0.5 0.695 0.965 0.952 1.348 1.002 1.462 0.047 0.062 0.107 0.124 0.106 0.156
500 0.8 0.600 0.818 0.990 1.314 0.972 1.382 0.046 0.059 0.119 0.120 0.112 0.143
1000 0.2 0.694 0.956 0.919 1.331 1.026 1.520 0.032 0.046 0.082 0.108 0.066 0.104
1000 0.5 0.695 0.962 0.949 1.344 1.006 1.473 0.033 0.043 0.074 0.086 0.076 0.117
1000 0.8 0.600 0.816 0.993 1.313 0.985 1.403 0.032 0.040 0.083 0.082 0.076 0.090

εt MA(1)

200 0.2 0.715 1.070 0.970 1.414 1.036 1.523 0.071 0.104 0.181 0.228 0.155 0.226
200 0.5 0.706 1.080 0.974 1.394 0.987 1.457 0.069 0.096 0.154 0.183 0.153 0.203
200 0.8 0.605 0.947 0.988 1.353 0.929 1.400 0.063 0.090 0.161 0.185 0.154 0.213
500 0.2 0.713 1.063 0.945 1.391 1.031 1.523 0.045 0.065 0.119 0.149 0.101 0.150
500 0.5 0.703 1.074 0.962 1.392 0.994 1.462 0.044 0.061 0.100 0.116 0.101 0.138
500 0.8 0.603 0.941 0.985 1.357 0.949 1.420 0.041 0.058 0.109 0.113 0.108 0.157
1000 0.2 0.713 1.061 0.939 1.385 1.026 1.517 0.031 0.046 0.082 0.105 0.067 0.101
1000 0.5 0.703 1.072 0.960 1.390 0.996 1.458 0.030 0.042 0.069 0.081 0.073 0.103
1000 0.8 0.603 0.939 0.988 1.357 0.962 1.437 0.028 0.040 0.076 0.078 0.080 0.123
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Table 4: Estimation results for the long-run risks model.

OLS IV SMD

quarterly data

µy 0.258 -0.298 -0.822

β 0.339 2.025 4.736
σ2
u 2.760 4.326 0.148
σ2
ε - - 0.379

annual data

µy -3.335 -3.955 -9.938

β 2.089 2.365 5.015
σ2
u 83.28 83.90 33.56
σ2
ε - - 4.818
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