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Abstract

This paper studies two refinements to the method of factor forecasting. First, we
consider the method of quadratic principal components that allows the link function
between the predictors and the factors to be non-linear. Second, the factors used in
the forecasting equation are estimated in a way to take into account that the goal is
to forecast a specific series. This is accomplished by applying the method of principal
components to ‘targeted predictors’ selected using hard and soft thresholding rules.
Our three main findings can be summarized as follows. First, we find improvements
at all forecast horizons over the current diffusion index forecasts by estimating the
factors using fewer but informative predictors. Allowing for non-linearity often leads
to additional gains. Second, forecasting the volatile one month ahead inflation warrants
a high degree of targeting to screen out the noisy predictors. A handful of variables,
notably relating to housing starts and interest rates, are found to have systematic
predictive power for inflation at all horizons. Third, the targeted predictors selected
by both soft and hard thresholding changes with the forecast horizon and the sample
period. Holding the set of predictors fixed as is the current practice of factor forecasting
is unnecessarily restrictive.
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1 Introduction

In recent years, the method of “diffusion index forecasts”, also known as factor augmented

forecasts, has received the attention of both econometricians and practitioners. In the dif-

fusion index forecasting methodology, the factors are first estimated from a large number

of predictors, (X1t, . . . XNt), by the method of principal components, and then augmented

to a linear forecasting equation for yt+h that consists of lags of y and other predictors.

What makes the diffusion index (DI) methodology appealing is its capacity to incorporate

information in a large number of predictors into the forecast in a simple and parsimonious

way. However, this does not preclude refinements to the DI methodology. In particular, the

methodology as it stands does not take into account the predictive ability of Xit for yt+h

when the factors are estimated. Furthermore, the framework is now confined to a linear

relation between the predictors and the series to be forecasted.

Our goal is first to go beyond the linear principal components framework to permit a

more flexible factor structure, and more importantly, to use only those predictors informa-

tive for y in estimating the factors. To this end, we consider two possible improvements to

the DI framework. First, we allow the factors to be non-linearly related to the predictors

by expanding the set of predictors to include non-linear functions of the observed variables.

Second, and independently of whether non-linearity is being considered, we take explicit

account that the object of interest is ultimately the forecast of y. Accordingly, we form

principal components using a subset of those predictors that are tested to have predictive

power for y. As this set of predictors change with y, we refer to these as ‘targeted predic-

tors’. Our approach therefore entertains more predictors than the current implementation

of DI, but we will, in general, use fewer predictors to estimate the factors than the existing

implementation of factor forecasting.

The primary focus of our analysis is how to reduce the influence of uninformative pre-

dictors for y within the confines of DI framework. We use ‘hard’ and ‘soft’ thresholding to

determine which variables the factors are to be extracted from. The factors are the diffu-

sion indices of the forecasting equation. Under hard thresholding, subset variable selection

based on some pretest procedure is used to decide whether a predictor is ‘in’ or ‘out’. Under

soft thresholding, the top ranked predictors are kept, where the ordering of the predictors

depends on the particular soft-thresholding rule used.

We consider the LASSO and the Elastic Net soft-thresholding rules, which are special

cases of the ‘Least Angle Regression’ (LARS) algorithm developed in Efron et al. (2004).
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These soft thresholding methods have been used in biostatistics to study whether groups of

genes in a DNA microarray can be used to predict if a certain outcome (such as prostate

cancer) occurs. Donoho and Johnstone (1994) provided many optimality results for soft-

thresholding and showed that LASSO asymptotically comes close to being an ideal subset

selector in terms of its function as an oracle. However, most of the theoretical and empirical

analysis we are aware of assume iid data design. We are interested in the usefulness of soft-

thresholding from the point of view of factor forecasting, which raises two specific issues.

First, economic data are generally weakly dependent data and not iid, and it is not known

how these methods perform. Furthermore, subset variable selection is only our intermediate

object of interest, as ultimately, it is how the ordered predictors affect the factor estimates

that determine forecast efficiency. To our knowledge, this is a new use of the soft-thresholding

methodology. As we will see below, the results are encouraging.

Our primary evaluation of the different methods will be based on forecasts of inflation

at different horizons and over different samples. The decision to focus on inflation is due in

part to the fact that inflation forecasts are important to decision making for both private

agents and government agencies. Inflation is chosen for this study also because inflation is

well documented to be a challenging series to forecast, see, for example, Stock and Watson

(1999). In particular, the reduction in mean-squared inflation forecast error from using the

DI methodology has been found to be much smaller than forecasting real variables such as

industrial production, see Boivin and Ng (2005). Testing the methodologies on inflation thus

puts these methods considered to a non-trivial challenge. Additional results for other series

support the main finding from analyzing inflation data that we can push the efficiency of DI

forecasting one step further simply by forming the diffusion indices from targeted predictors.

2 Preliminaries

Suppose we are given data on a large number of predictors Xt = (X1t, . . . XNt)
′, i = 1, . . . N

and t = 1, . . . T . We are interested in forecasting yh
T+h, the annualized value of the variable

yt in period T +h. The precise definition of yh
t+h depends on whether yt is stationary or not.

We will consider both possibilities and make precise the definition of yh
T+h in the empirical

section. Note that y can even be one of the predictors. If N < T , a forecast that makes use

of all available predictors is ŷh
T+h|T = α̂′WT + Γ̂′XT , where Wt is a vector of predetermined

variables such as a constant and lags of yt+h, α̂ and Γ̂ are obtained from least squares

estimation of

yh
t+h = α′Wt + Γ′Xt + εt+h. (1)
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Although α̂ and Γ̂ are
√
T consistent, the mean-squared forecast error is increasing in N .

Let σ̂2
n = ε̂n′ε̂n/T be the sum of squared residuals from estimating a model with n predictors,

divided by T . In principle, we can use information criteria of the form

N∗ = min
n

[
log(σ̂2

n) + n
CT

T

]
,

to select the optimal number of predictors. The FPE with CT = 2 is designed specifically for

forecasting, but the BIC with CT = log T is also widely used. However, when the predictors

have no natural ordering, in theory, there are 2N sets of predictors to consider, rendering the

procedure impractical.

The factor approach to an h period-ahead forecast is to estimate the forecasting equation

using data for t = 1, . . . T − h:

yh
t+h = α′Wt + β(L)′f̂t + εt+h (2)

where f̂t ⊂ F̂t, β(L) are coefficients pertaining to ft and p of its lags, F̂t are the principal

component estimates of the r × 1 vector Ft in the factor model

Xit = λ′iFt + eit (3)

or in matrix form

Xt = ΛFt + et.

Equations (2) and (3) constitute the ‘diffusion index’ (DI) forecasting framework of Stock

and Watson (2002). The DI forecast is ŷh
T+h|T = α̂′WT + β̂′(L)f̂T .

It is now understood that consistent estimation of the space spanned by Ft makes it

possible to obtain
√
T consistent estimates of α and β and min[

√
N,
√
T ] consistent forecasts

of the conditional mean, yh
T+h|T , if

√
T/N → 0 as N, T →∞. As shown in Bai and Ng (2006),

we can treat f̂t in the forecasting equation as though it is a vector of observed regressors.

The forecasts generated by this methodology seem promising. Evaluations based on key

macroeconomic variables find that the DI forecasts tend to do at least as well and often beat

alternative methods such as forecast combination, empirical bayes procedures, etc. See, for

example, Stock and Watson (2004b) and the references therein. An alternative method of

factor forecasting, developed by Forni et al. (2005), also yield promising results. See Forni

et al. (2001b) and Boivin and Ng (2005).

One way of thinking about the DI methodology is that the factors provide a natural

ranking for N mutually orthogonal linear combinations of Xt. If the bulk of the variation in
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Xt can be explained by a small number of these combinations, say, Nmax << N , the BIC or

the FPE need only be evaluated O(Nmax) times (much smaller than 2N) to arrive at ft, the

subset of Ft that best predicts y. As the principal component estimates of Ft are just linear

combinations of Xt, the DI forecast can be written as

yh
t+h = α′Wt + Γ̄′Xt + εt+h

where Γ̄ is a restricted version of Γ in (1). Viewed this way, the DI forecasts uses all N of

the predictors in forecasting to the extent that Γ̄ has no element that equals zero exactly.

In this paper, we consider refinements to the DI methodology using what we refer to

as ‘targeted diffusion index forecasts’. The thrust of the refinement is to target the factor

estimates to the objective of forecasting yt. More precisely, we seek a model

yh
t+h = α′Wt + γ′xt + εt+h

where the k∗ × 1 vector xt is a subvector of Xt. Written differently,

yh
t+h = α′Wt + Γ∗Xt + εt+h (4)

where the vector Γ∗ effectively puts a zero weight on those predictors that are not useful in

forecasting y. We will propose two ways of defining Γ∗. Before turning to such an analysis,

we introduce a generalization of the method of principal components which can be used

whether or not the predictors are targeted.

2.1 Quadratic Principal Components

By the method of principal component, the estimates of Ft are linear combinations of Xit

that minimize the sum of squared residuals of the linear model, Xit = λ′iFt + eit. This

presupposes a linear link function between the data and the latent factors. A more flexible

approach is to consider a non-linear link function, g(·), such that

g(Xit) = φ′iJt + eit,

where Jt are the common factors, and φi is the vector of factor loadings. Define X∗
t to be

Xt augmented by some or all of the unique cross-products of the elements of Xit, and let

X∗ = (X∗
1 , . . . X

∗
T ) be an N∗ × T matrix. The second-order factor model is

X∗
t = ΦJt + et
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where X∗
t is an N∗ × 1 vector. Estimation of Jt then proceeds by the usual method of

principal components. If X∗
t = {Xit, X

2
it}, then N∗ = 2N ; we will henceforth refer to the

procedure as SPC (squared principal components). In a previous version of this paper, the

cross-product terms XitXjt, i 6= j were also included, a method we referred to as QPC

(quadratic principal components). The QPC is computationally demanding and was not

noticeably better than the SPC. Results are therefore not included.

It is noteworthy that Ĵt estimated from X∗
t is different from K̂t, where K̂t are estimates

of the factors in the model X2
it = ψ′

iKt +ηit. Whereas Ĵt is a linear combination of the linear

AND the quadratic terms of Xit, K̂t is a linear combination of X2
it. The latter is of interest

when one is concerned with factors in the second moments ofXit. As our application concerns

forecasting inflation, not its volatility, estimation of Kt will not be further considered.

Once the estimates of Jt are obtained using SPC, they are augmented to the forecasting

equation in the same way as the standard DI. That is to say, Ĵ is the matrix of eigenvectors

corresponding to the r largest eigenvalues of the T × T matrix X∗′X∗.1 Note also that the

forecasting equation remains linear whatever is g.

An alternative way of capturing non-linearity is to augment the forecasting equation to

include functions of the factors. The simplest case, and one which we will refer to as PC2

(squared factors), uses the following forecasting equation

yh
t+h = α′Wt + β′1F̂t + β′2F̂

2
t + εt+h.

The PC2 is conceptually distinct from SPC. While the PC2 forecasting model allows the

volatility of factors estimated by linear principal components to have predictive power for y,

the SPC model allows the factors to be possibly non-linear functions of the predictors while

maintaining a linear relation between the factors and y. Ludvigson and Ng (2007) found that

the square of the first factor estimated from a set of financial factors (ie. volatility of the

first factor) is significant in the regression model for the mean excess returns. In contrast,

factors estimated from the second moment of data (ie. volatility factors) are much weaker

predictors of excess returns.

Clearly, the expanded matrix X∗ can be much higher dimension than X because of the

quadratic terms. But inclusion of noisy predictors can potentially lead to inferior factor

estimates. Consideration of quadratic principal components leads naturally to the issue of

what predictors should be used to form the diffusion indices.

1In practice, the data are always demeaned and standardized before forming principal components.
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3 Targeted Predictors

A practical question in DI forecasting is how much data are really needed? In Boivin and Ng

(2006), it was found that expanding the sample size simply by adding data that bear little

information about the factor components does not necessarily improve forecasts. We need

to take into account the properties of the idiosyncratic errors when constructing principal

components. When the data are too noisy, we can be better off throwing away some data

even though they are available. Results in Stock and Watson (2004a) suggest that the

weighted principal components, in the spirit of GLS, indeed provide better forecasts than

the OLS based principal component estimates.

As currently implemented, the factors are extracted from the same large data set, re-

gardless of the series to be forecasted. It is conceivable that the series to be forecasted, y,

is highly predictable by a subset of the N series, and this subset is different for different y.

We now discuss two classes of procedures to isolate this subset of variables, which we call

‘targeted predictors’.

3.1 Hard Thresholding

The method of hard thresholding simply uses a statistical test to determine if the i-th

predictor is significant without regard for the other predictors being considered. Boivin

and Ng (2006) used the correlation coefficients of the errors to pick out the variables to be

dropped. It thus exploits a particular hard-thresholding rule to decide which variables are to

be used in factor analysis. However, the series to be forecasted was not taken into account.

Our implementation of hard thresholding is closest to Bair et al. (2006), who, like Boivin

and Ng (2006), also suggested that the principal components estimated from a large group

of variables (which in their analysis are genes) can be dominated by principal components

estimated from a smaller set of predictors. They used the bivariate relation between yt+h and

Xit to screen the variables and referred to the resulting procedure as ‘supervised principal

components’.2 ‘Supervised learning’ has been used to isolate out subsets of genes associated

with certain disease when often, the number of genes (our N) is much larger than the cases

(our T ) under investigation. However, given the dependent nature of our data, our targeting

(or supervising) cannot be based just on the bivariate relation between yt+h and Xit. Instead,

we need to consider this relation after controlling for other predictors Wt (such as lags of

2Another use of hard thresholding is ‘bagging’. Inoue and Kilian (2005) orthogonalized the data on about
30 variables and used hard thresholding at each bootstrap sample to reduce forecasting variance.
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yt) since a simple autoregressive forecast is always available as an alternative forecasting

procedure. The details are:

a. For each i = 1, . . . N , perform a regression of yh
t on Wt−h and Xit−h. In application,

Wt−h includes a constant and four lags of yt. Let ti denote the t statistic associated

with Xit−h.

b. obtain a ranking of the marginal predictive power of Xit by sorting |t1|, |t2|, . . . , |tN | in
descending order.

c. let k∗α be the number of series whose |ti| exceeds a threshold significance level, α;

d. let xt(α) = (x[1t], . . . x
′
[k∗αt]) be the corresponding set of k∗α targeted predictors. Estimate

Ft from xt(α) by the method of principal components to yield F̂t.

e. estimate (2) using the BIC to select p and f̂t ⊂ F̂t.

f. the h period ahead forecast is ŷh
T+h|T = α̂′WT + β̂′(L)f̂T .

Instead of including Wt−h as regressors in step 1, an equivalent method is to perform regres-

sions on Mwy and MwXi, where Mw is the matrix that projects onto the space orthogonal to

W , making Mwy and MwXi the residuals associated with these projections. An alternative

to step (c) is to let k∗α be N minus the smallest j such that p[j] ≥ α
N−j+1

, where p[j] is the

j-th ordered p-value of the test. This Bonferroni-type procedure, due to Holm (1979), is

more powerful and generally selects fewer variables than step [c] discussed above, but the

top variables selected are quite similar and results will not be reported.

The above algorithm essentially uses only those variables whose marginal predictive power

for y is significant at some prescribed level, α, in the factor analysis. After the targeted

principal components are estimated, steps (d) to (f) are standard in the DI framework.

4 Soft Thresholding

Hard thresholding can be sensitive to small changes in the data because of the discreteness

of the decision rule. Another drawback of selecting predictors one at a time is that it does

not take into account the information in other predictors. We may end up selecting variables

that are too ‘similar’. It is well known that model averaging is effective only if we pool over

variables that bear distinct information from each other.

We now consider ‘soft thresholding’ methods that perform subset selection and shrinkage

simultaneously. In the context of (4), it estimates Γ∗ and sets those elements corresponding to

weak predictors to zero. It is in this sense that shrinkage and model selection are performed

simultaneously. We now describe three procedures in this class.
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4.1 LASSO

One way of dropping uninformative regressors is to use penalized regressions. Let RSS

(α, β) be sum of squared residuals from a regression of yh
t+h on all available regressors, Wt

and Xit, i = 1, . . . N . The solution to

min
β,α

RSS + λ

N∑
j=1

β2
j

for 0 ≤ λ < ∞ is the well-known ridge estimator that shrinks the least squares estimates

of βj towards zero. Note that
∑n

j=1 β
2
j = ‖β‖2

2, the length of β given by the L2 norm.

By the nature of the L2 penalty, the ridge estimates will almost never be zero exactly. In

consequence, uninformative predictors can still inflate forecast error variance.

Consider replacing the L2 penalty by an L1 penalty ‖β‖1 =
∑N

j=1 |βj|. The solution to

min
β,α

RSS + λ

N∑
j=1

|βj|

is the LASSO estimator (‘least absolute shrinkage selection operator’) of Tibshirani (1996).

The dual to this problem is

min
β,α

RSS subject to
N∑

j=1

|βj| ≤ c

where the parameter c ≥ 0 controls the amount of shrinkage. An important feature of

the L1 penalty is that some coefficient estimates can be exactly zero. The shrinkage under

LASSO depends only on λ (or c) and the value of the unrestricted estimates, but not on

the correlation of the predictors as is the case under ridge estimation. As shown in Fan

and Li (2001), LASSO enjoys a ‘sparsity property’; it estimates zero components of the

true parameter vector exactly as zero with probability approaching one as the sample size

increases. The asymptotic distribution of the estimator is the same whether or not the zero

restrictions are imposed. LASSO thus possesses the ‘oracle property’ in the sense of Fan and

Li (2001). That is, the asymptotic distribution of the estimator based on the overall model

and the one based on the more parsimonious model coincide.

The LASSO estimator and the ridge estimator are special cases of bridge estimators

which are solutions to

min
β

RSS + λ
∑

j

|βj|γ.
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As discussed in Fu (1998), ‘bridge’ estimators have a Bayesian interpretation. The bridge

penalty function
∑

j |βj|γ can be thought of as the log prior distribution of the parameter

vector, β. The prior distribution with γ = 2 is Gaussian, and the prior distribution with

γ = 1 is a Laplace (or double exponential). A small γ favors models either with many

parameters set to zero, or parameters with large absolute values from long tailed density.

Large values of γ favor models with regression parameters of small but non-zero values from a

normal like, or short tailed density. Mol et al. (2006) considered penalized regression models

as an alternative to DI forecast and analyzed the problem from a Bayesian perspective. We

stay within the DI framework and are interested in which regressors to use in the estimation

of the factors.

If the regressors are orthogonal, the LASSO estimates, denoted β̃, are

β̃i = sign{β̂i}(|β̂i| − λ/2)+

where β̂i is the unrestricted OLS estimate of βi, z+ = z if z > 0 and 0 otherwise. Therefore,

when the least squares coefficients are too small in absolute value, LASSO sets them to zero.

Clearly, the LASSO estimate is a non-linear and non-differentiable function of the data.

Fu (1998) proposed a shooting algorithm that iteratively solves for the LASSO estimates

without using quadratic programming, but the method is unstable when N > T . Using

convex theory, Osborne et al. (2000) showed that the solution path for β̃ is piecewise linear

in c. More efficient algorithms are available by exploiting this feature. Our implementation

of LASSO will be discussed below.

4.2 The Elastic Net

The LASSO estimator is an improvement over the ridge estimator when there are many zero

coefficients in the true model, since the ridge estimator will never set the coefficients to zero

exactly. However, LASSO is not without its drawback. Empirically, it seems that when

there is high correlation in the predictors, LASSO is dominated by the ridge. Conceptually

there are two problems as highlighted by Zou and Hastie (2005). First, if N > T , LASSO

can select at most T variables. Second, if there is a group of variables with high pairwise

coefficients, LASSO tends to select only one variable from the group and does not care which

one. These concerns suggest that a convex combination of ridge and LASSO estimation might

be desirable. The result is the ‘elastic net’ (EN) estimator of Zou and Hastie (2005).

The idea of the elastic net is to stretch the fishing net that retains all the ‘big fish’. Like

LASSO, the EN simultaneously shrinks the estimates and performs model selection. The
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LASSO penalty is convex, but not strictly convex. Strict convexity enforces the grouping ef-

fect so that predictors with similar properties will have similar coefficients. The EN objective

function is

min
β

RSS + λ1

N∑
j=1

|βj|+ λ2

N∑
j=1

β2
j .

The EN penalty is thus a convex combination of the LASSO and the ridge penalty and is

strictly convex when λ2

λ1+λ2
> 0. A computationally appealing property of the EN is that it

can be reformulated as a LASSO problem and hence solved using algorithms for LASSO. To

see this, define new variables (when the W variables are absent) as follows:

X+ = (1 + λ2)
−1/2

 X

√
λ2IN

 y+ =

 y

0N

 .

Let γ = λ1√
1+λ2

. Then the EN estimator can be reformulated as

β++ = argmin
β

RSS+ + γ

N∑
j=1

|βj|

with RSS+ is the sum of squared residuals from a regression of y+ on X+. To remove a

double shrinkage effect (which is in both LASSO and ridge), the EN estimator that proposed

by Zou and Hastie (2005) is β+ = (1+λ2)β
++. As will be discussed below, our main interest

is not so much in the point estimates, but the ordering of variables provided by the EN.

With this in mind, we now turn to the implementation of LASSO and EN.

4.3 Least Angle Regressions

A widely-used variable selection method is the forward selection regression whereby the

(k+1)-th predictor is added to the ‘in’ set if it has the maximum correlation with the resid-

ual vector from the k-step. The residual vector is then projected on the remaining predictors

and a new predictor is found. Forward selection regressions tend to be too aggressive in the

sense of eliminating too many predictors correlated with the ones included. Another pop-

ular method is forward stagewise regression, which is more cautious than forward selection

regressions as it takes smaller steps towards the final model. Briefly, if µ̂k is the current

estimate of y with k predictors and ĉ = X ′(y − µ̂k) is the ‘current correlation’ (assuming

each column of X is standardized), there exists a j such that |ĉj| is maximized. Consider

the updating rule µ̂k+1 = µ̂k + γ̂sign(ĉj)Xj. Forward selection sets γ̂ = |ĉj| whereas forward
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stagewise regression sets γ̂ to a small constant. As we will see below LASSO uses yet another

γ̂ and replaces Xj by some other quantity.

Efron et al. (2004) showed that LASSO and forward stagewise regressions are in fact

special cases of what is known as LARS, or least angle regressions. At each step, the γ̂

in LARS is endogenously chosen so that the algorithm proceeds equiangularly between the

variables in the most correlated set (hence the ‘least angle direction’) until the next variable

is found. After k steps, there are k variables in the active set. If we end after k steps, we

will have an active set of k predictors, or in other words, the coefficients corresponding to

the remaining N − k predictors will be set to zero. If we continue until k = N , we will have

a set K of indices of predictors ordered according to when they join the active set. How

many coefficients to set to zero is thus re-cast into a stopping rule for k.

Formally, the LARS algorithm begins at µ̂0 = 0. Suppose µ̂ is the current estimate and

let ĉ = X ′(y− µ̂). Define K as the set of indices corresponding to variables with the largest

absolute correlations,

Ĉ = max
j
|ĉj| K = {j : |ĉj| = |Ĉ|}.

Let sj = sign(ĉj) and define the active matrix corresponding to K as

XK = (sjxj)j∈K .

Let GK = X ′
KXK and AK = (1′KG

−1
K 1K)−1/2, where 1K is a vector of ones equaling the size

of K. A unit equiangular vector with columns of the active set matrix XK can be defined as

uK = XKwK , wK = AKG
−1
K 1K , aK = X ′uK ,

so that X ′
KuK = AK1K . LARS then updates µ̂ as

µ̂new = µ̂+ γ̂uK

where

γ̂ = min
j∈Kc

+

(
Ĉ − ĉj
AK − aj

,
Ĉ + ĉj
AK + aj

)
where the minimum is taken over only the positive components.

LARS has several advantages. First, it gives us a ranking of the predictors when the

presence of other predictors are taken into account, which is unlike the case of hard thresh-

olding. Second, the algorithm implicitly avoids strongly correlated predictors, since if one

of the correlated predictors is already included, the new residual will have a low correlation
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with variables strongly correlated with the variable just included. Third, LARS is not as

‘greedy’ as forward regressions which, when a good direction is found, it exploits the direc-

tion to a maximum. Fourth, LARS is fast; the computation cost is of the same order as the

usual OLS. Indeed, starting from zero, the LARS solution paths grow piecewise linearly in

a predictable way.

Superficially, LASSO and LARS seem quite different. However, as also shown in Efron

et al. (2004), LASSO is in fact a special case of LARS that imposes the sign restriction that,

if β̂k is the vector of estimates at the k-th step, the sign of β̂k
j must agree with the sign ĉj

for those j in the active set. Variables in the active set that fail the sign restriction can be

‘kicked out’ of the active set under LASSO . Therefore unlike LARS, the size of the active set

under LASSO need not be monotonically increasing. Under LASSO, the tuning parameter,

λ, determines the severity of the penalty and thus how many parameters are set to zero. The

LARS implementation of LASSO turns the choice of this tuning parameter into the choice of

k, or in other words, the size of the active set. To determine k∗, one can use an information

criterion such as the BIC. That is, have

k∗ = argmin
k

BIC(k) = log(σ̂2
k) + k

log T

T
.

By choosing k∗, the BIC also sets coefficients on the k∗ + 1 to N predictors as ordered by

LARS/LASSO/EN to zero. The BIC can be replaced by the AIC, which is very similar to

generalized cross-validation (GCV), and which Efron et al. (2004) considered.3

Our interests in soft thresholding was initiated by the sparsity property arising from

the L1 penalty of LASSO. If the number of non-zero coefficients is indeed very small, then

one can simply use this sparse set of predictors for forecasting. However, when the model

structure is not sufficiently sparse, i.e. when k∗ is not sufficiently small, one is again faced

with the problem that including too many predictors will inject excess sampling variability

to the forecasts. In this situation, it seems reasonable to resort to dimension reduction by

constructing diffusion indices from a selected subset of significant predictors. This being

the case, the particular aspect of soft thresholding that turns out to be more useful for us

is the ordering of the predictors provided by the LARS, and/or LARS implementation of

LASSO. Specifically, the ordered set of variables will be used to construct diffusion indices.

Of course, if k∗ is too small, the principal component estimates will be imprecise. As we

3Comments on the LARS article reflect concerns by many that the GCV will overfit. The BIC evaluates
models using in-sample errors, but an out-of-sample variant can also be considered. As discussed below, k∗

is not of primary importance given that we have to estimate the factors. For this reason, alternative methods
for determining k∗ was not pursued.
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cannot know a priori how big is k∗, we always estimate the factors using a fixed number

of series but these series will be ordered according to LARS/LASSO. On the other hand,

if k∗ is in fact small, we also entertain a forecasting model that uses k∗ non-standardized

predictors directly without forming factors. But it should be kept in mind that this is not a

DI forecast.

In the empirical analysis to follow, we consider three methods of using LARS-ordered vari-

ables: (i) estimate principal components F̂t from the first 30 series that LARS/LASSO/EN

select; (ii) enter the first five (k = 5) predictors to the forecasting equation directly; (iii)

enter k = k∗ predictors to the forecasting equation directly. Put differently, (ii) and (iii) use

a small number of selected variables as predictors (i.e., as our F̂t without principal compo-

nents analysis), while the F̂t in (i) are principal components estimated from the first 30 series

selected by LARS. Then the BIC is used to determine p and the corresponding f̂t (a subset of

F̂t) that enters the forecasting equation (2). For (i), we use 30 series because our experience

has been that for well-behaved data, the principal component estimates have reasonably

good properties when the number of cross-section units exceed 30. As well, even the tightest

hard-thresholding criterion tends to pick out over 30 series. We therefore want to see if the

DI methodology works well with as few as 30 predictors. It is important to emphasize that

(i) is a DI forecast and as such, neither the LARS/LASSO parameter estimates, nor k∗ per

se, will be used directly because the variables selected by LARS/LASSO enter the forecast

only via the factors.

As we will see, some of our subsamples considered has N > T and some has N in the

same order as T , even though for the whole sample T > N . In practice, we always use the

X+ and Y + data matrices so that we effectively implement what amounts to LARS-EN and

LASSO-EN, with the difference between LARS-EN and LASSO-EN being whether or not

to impose a sign restriction. As a matter of notation, we simply refer to the three methods

as LA(5), LA(PC), and LA(k∗) and the use of EN is implicit. The LASSO results can be

similarly defined. We also use the LARS algorithm to produce an ordering of the variables

when xit and x2
it are included. A complete list of the methods considered is given below:
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PC ft estimated from all 132 of the Xit available;
SPC ft estimated from all 132 of Xit and X2

it available;
TPC ft are the targeted principal components estimated from

a subset of available Xit where the subset is selected by hard thresholding;
TSPC ft are the targeted principal components estimated from Xit and X2

it;
TSTPC ft are targeted principal components estimated from a subset of Xit and X2

it;
PC2 ft estimated from all 132 of the Xit available,

[ft, f
2
t ] used in the forecasting equation;

TPC2 ft estimated from a subset of Xit and X2
it,

[ft, f
2
t ] used in the forecasting equation;

LA(5) ft is the vector of 5 best predictors selected by LARS;

LA(PC) ft are the factors estimated from the 30 best predictors in {xit} as selected by LARS;

LA(k∗) ft is the vector of k∗ best predictors selected by LARS;

LA(SPC) ft are the factors estimated from the 30 best predictors in {xit, x
2
it} as selected by LARS.

5 Results

The variable we are interested in forecasting, yt+h, is the logarithm of PUNEW, or CPI all

items, using factors estimated from some or all of the 132 predictors and or their cross-

products.4 These are monthly time series available from 1960:1 to 2003:12 for a total of

T = 528 observations. As argued by Nelson and Plosser (1982) and Beveridge and Nelson

(1981), many of those series are I(1) nonstationary or contain an I(1) components, the data

are therefore transformed by taking logs, first or second differences when necessary, as in

Stock and Watson (2004b). In particular, the logarithm of CPI is assumed to be integrated

of order two. Following Stock and Watson (2002), define

yh
t+h =

1200

h
· (yt+h − yt)− 1200 · (yt − yt−1)

and let

zt = 1200 · (yt − yt−1)− 1200 · (yt−1 − yt−2).

For h = 1, 6, 12, and 24, the factor augmented forecast given information in time t is

ŷh
t+h|t = α̂0 + α̂′1(L)zt + β̂′1(L)f̂t

4The data are taken from Mark Watson’s web site http://www.princeton.edu/ mwatson.
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where the number of lags of zt and f̂t are determined by the BIC with the maximum number

of lags set to six when the sample size permits, and is reduced to four otherwise. In the

notation of the preceding discussion, Wt consists of a constant and lags of zt. To simplify

notation, f̂t generically denotes estimated factors used for forecasting, where f̂t ⊂ F̂t. In

all cases, F̂t is a 10 × 1 vector. That is, we select the factors used for forecasting from the

first ten estimated factors. It is understood that F̂t are estimated using different number of

series. Although we are forecasting the change in inflation, we will continue to refer to the

forecasts as inflation forecasts.

Our main interest is in figuring out n, the number of variables used to estimate Ft.

Given that Wt are lags of inflation, the question more precisely phrased is what variables

have predictive power for inflation after controlling for lags of inflation themselves. We do not

restrict the optimal predictors to be the same for every time period. Instead, the predictors

are selected at each t, and the forecasting equation is re-estimated after new factors are

estimated. Our first estimation consists of ten years of data (120 data points) starting in

1960:3; the sample is extended one month at a time. There is one forecasting equation for

each h. The last observation used in estimation when h = 12 is 2002:12. For each h, we have

about 400 out-of-sample forecasts. We use the average of the forecast errors to evaluate the

different procedures. We will refer to the ratio of the MSE for a given method to the MSE

of an AR(4) as RMSE (relative mean-squared error). That is,

RMSE(method) =
MSE(method)

MSE(AR(4))

An entry less than one indicates that the specified method is superior to the simple AR(4)

forecast.

Because parameter instability is prevalent in economic time series, a method that fore-

casts well in one sample is not guaranteed to forecast well in another sample period. There-

fore, in addition to the full sample analysis, we also consider seven forecast subsamples:

70:3-80:12, 80:3-90:12, 90:3-00:12, 70:3-90:12, 70:3-00:12, 80:3-00:12, and 70:3-03:12. For

example, in the case of 70:3-00:12, the first forecast of 70:3 is based on estimation up to

60:3-70:3-h. The last forecast is for 00:12, and it uses parameters estimated for the sample

60:3-00:12-h. Table A.1 provides summary statistics for both yh and the level of inflation

over these samples. Notably, the mean of inflation over the estimation sample can be higher

or lower than the forecast sample. Table A.2 then shows that five of the seven forecast

samples considered had decelerating inflation. Note that inflation is the most volatile when

h = 1. This feature will help understand the results to follow.
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5.1 Number of Variables Chosen

We use the t statistic and three cutoff points for hard thresholding:

1. hard thresholding, |t| > 1.28;

2. hard thresholding, |t| > 1.65;

3. hard thresholding, |t| > 2.58;

The three threshold values are critical values of the t test at the two-tailed 10, 5, and 1

percent levels. For soft thresholding, Efron et al. (2004) found that LARS and LASSO tend

to give extremely similar results, and this is also our experience with LARS-EN and LASSO-

EN. The EN entails a choice λ2 but the results are not very sensitive to λ2. This is because

we always form principal components from the first 30 series ordered by LARS. Thus, the

DI forecasts do not strongly depend on k∗. To conserve space, we only report results for

λ2 = (1.5, .5, .25).

For each t in 1970:1-2003:12-h, we keep track of whether each of the Xit is being selected

as predictor. Under hard thresholding, variable i is ‘in’ if the t statistic associated with Xi in

a regression of yh
t on Wt−h and Xit−h exceeds a threshold. For LARS, we report the frequency

that a variable is one of the first k∗ variables in the ordered set. Naturally, the chosen set of

predictors depends on the forecast horizon. Averaging over t gives us the average frequency

that a predictor is ‘in’. Table 1 reports this average frequency evaluated at five equally

spaced bins. In other words, Table 1 tabulates how many of the 132 potential predictors is

selected with frequency between 0 and .2, .2 and .4, and so forth.

Several features in Table 1 are noteworthy. First, the number of variables that exceeds

the threshold increases with the forecast horizon, h. With the most liberal threshold of 1.28,

.508 of the variables exceed the threshold in over 80% of the sample periods considered when

h=12. But this frequency falls to only .174 when h=1. Inevitably, the higher the threshold,

the less often the variables fall into the .8-1 frequency range. When h = 1 and under the

tightest threshold of 2.58, only .023 of the variables are significant with a frequency above .8.

As h increases, more variables are significant more often. The results thus imply that there

are fewer variables with good predictive power for short than for long horizon forecasts. The

LARS is expected to select sparse models, which is evident from Table 1. In fact, LARS

selects more parsimonious models than when the tightest of our hard threshold is used. The

right panel of Table 1 shows the frequency that X2
it passes the threshold. Not surprisingly,

fewer X2
it are systematically significant than Xit.
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Table 2 lists the ten most frequently selected variables in all samples considered. The left

panel are the top predictors used in linear principal components. The top squared-predictors

are listed in the right panel. Since LARS orders the variables taking other predictors into

account, the right panel reports the top predictors in {xit, x
2
it}. Squared terms have a prefix

‘2’.

Variables that systematically predict short horizon forecasts are different from those for

long horizon forecasts. For hard thresholding, the interest rate variables (FYGT*) dominate

the top ten list, while real variables such as purchasing manager’s index (PMI), vendor’s

deliveries (PMDEL), new orders (PMNO), employment (LHU*) and housing (HS*) data

follow. For h = 12, real M2 (FM2DQ) is the dominant variable irrespective of the threshold.

However, the remaining variables in the top ten list are real variables like housing starts

(HS*), employment/help wanted (CES* and LH*). Interest rate variables, which have high

predictive power when h = 1, now ranked below 50 in terms of marginal predictive power.

The usual suspects also show up in list of systematic predictors selected by LARS, and

these variables also differ by forecast horizon. The Fed Funds rate (FYFF), bond rates

(FYGT*) the NAPM employment index (PMEMP), the purchasing manger index (PMI)

along with the housing market variables have individual predictive power for inflation. The

list is not markedly different from the one given by hard thresholding. Perhaps one difference

is that LARS select variables from more diverse categories. As well, LARS favors related

measures of inflation (which are in the top 20 and hence used in the factor analysis even

though they are not the top 10 list), such as GMDC* (consumption deflators) and PU*

(components of the CPI), while hard thresholding does not.

The right panel of Table 2 gives the top 10 series amongst the X2
it in terms of predictive

power for inflation. The square of many variables found to be the top ten predictors by hard

thresholding continues to be important. Of note is that financial variables, such as FSPXE

(price earnings ratio), FSPCOM (composite stock market index) are also important. Under

LARS, all variables are considered jointly. Thus, the squared variables compete with the first

order variables for a good ranking. Surprisingly, the square of some interest rate variables

are very highly ranked and even dominate variables that were highly ranked when the first

order term was considered only, an example being the square of FYBAAC (2FYBAAC).

Taken together, the results suggest that there is some additional information in quadratic

variables that has not been exploited by the linear PC.

Table 3 gives information similar to Table 1, but highlight the dependence of the number

of ‘in’ variables to the sample period. Table 3 reports the average n (for the intermediate
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hard thresholding of 1.65) and k∗ (for EN-LARS with λ2 = .5) noting that for PC, SPC,

LA(PC), LA(SPC), n is fixed. Notably, n and k∗ increases with h. Furthermore, k∗ is always

much smaller than n. For a given estimation sample, k∗ ranges from 1 to 22 depending on

the sample and the forecast horizon. At h = 12, k∗ is below 10 on average. Only in rare

occasions do k∗ exceeds 15. In contrast, even under the tightest hard thresholding (not

reported), it is not uncommon for n to be above 45 on average.

5.2 Forecast Errors

The RMSE for three thresholds and three values of λ2 are reported in Tables 3-6 for h =

1, 6, 12 and 24 respectively. A quick glance at the results reveal that most of the entries

are below 1, showing that there are generally efficiency gains in doing factor forecasts. The

RMSE falls with h irrespective of how targeting is done. This indicates that there is more

to be gained from factor forecasting when the objective is annual rather than short horizon

forecasts of inflation. Indeed, when h = 1, the RMSEs rarely fall below .9. Forecasting

monthly inflation during 1970 and 1980 has been especially difficult for all methods. In fact,

most of the methods do worse than the simple AR(4) forecast. Notably, supply shocks in this

period are thought to be responsible for the high level and volatility of inflation and there

were important changes in monetary policy. These uncertainties could be responsible for the

failure of any state variable to have systematic predictive power for short-run inflation.

A tight (large value) threshold is desirable to eliminate the influence of noisy predictors.

The gain from TPC over PC is expected to be smallest when the data are noisy and the

threshold is loose. When h = 1, the RMSE is indeed largest with 1.28 as threshold. For

h = 6, 12, 24, more predictors have genuine predictive power for inflation, and a threshold of

1.28 is adequate. Setting too high a threshold for annual inflation bears the cost of throwing

away informative predictors. Setting the threshold to 1.65 seems to strike a pretty good

balance.

For each h and each forecast sub-sample, the method that produces the smallest RMSE is

highlighted. Notably, regardless of h and forecast horizon, the best forecast always involves

some non-linear component, and most often obtained by using some form of SPC. The PC is

dominated by some other method in every single case. For h = 6, 12, and 24, the LA(SPC)

is systematically the best procedure, especially when λ2 = .25 is used. The typical reduction

in RMSE is around 10 basis points. Even though the best method is sample dependent for

h = 1, the LA(PC)/LA(SPC) is never far behind the best procedure.

Recall that LA(PC) is a diffusion index forecast with factors estimated from the 30 best
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predictors as determined by LARS. In contrast, LA(5) and LA(k∗) use the selected variables

directly into (3), the forecasting equation. The finding that LA(PC) works better underscores

the point that selecting the ‘best’ variables for forecasting is not enough. Information beyond

the ‘best’ variables can improve prediction, and in our analysis anywhere between 5 to 29

additional variables can be useful (i.e 30−k∗). But use of 30 predictors will introduce excess

sampling variability, and the DI deals with this by using the factors to perform dimension

reduction. The results here show that forming diffusion indices from targeted predictors is

a refinement to the DI methodology that is worthy of undertaking.

Our results thus far have been based on inflation. One may wonder if the approach of

targeted principal components is always useful for forecasting series other than inflation, and

if there might be cases when using targeted predictors without forming principal components

might do just as well. To this end, we present the RMSE for the growth rate of four other

series: personal income, retail sales, industrial production, and total employment. The

log level of all four series are assumed to be differenced stationary. Accordingly, yh
t+h =

1200
h

(yt+h − yt) and zt = 1200(yt − yt−1). The hard threshold is set at 1.65, while λ2 is set

to .25. These parameters have not been tuned to the data under investigation. Our main

purpose is just to illustrate that the effectiveness of targeted predictors extends beyond

forecasting inflation.

Table 8 report results for h = 12. Notably, for each of the series and for each of the

samples, there is always a targeted DI forecast that outperforms the standard DI forecast

(labeled PC). For personal income and retail sales, LA(5) and LA(k∗) often perform well,

and in these two cases, targeted predictors directly is effective; there is no need to estimate

targeted principal components because k∗ is small enough (often between 5 and 10). How-

ever, for industrial production and employment, using targeted predictors directly would

be undesirable. Targeted DI forecasts, especially hard thresholding, tend to perform better

than PC. The results for these two series support the main finding observed for inflation

that estimating the factors from targeted predictors can yield more precise DI forecasts.

Why does targeting predictors produce better forecasts? As is evident from Tables 1

to 3, n and/or the composition of the n series vary with both the estimation sample and

forecasting horizon h. In contrast, n is always 132 in the standard DI methodology regardless

of h and the sample period. Allowing the number of series to change with the sample thus

provides the targeted DI with additional flexibility to adapt to parameter instability in the

data. As well, the role of non-linearity in DI forecasts is also sample and series specific. The

refinements to the DI forecasts we consider have greater flexibility to adapt to features in
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the data than the DI.

6 Concluding Comments

The present analysis suggests that a useful way to improve forecasts is to use targeted predic-

tors. The targeted-DI forecasts show non-trivial reduction in inflation forecast errors, while

using targeted predictors alone is adequate in reducing the RMSE of some macroeconomic

series. Allowing for non-linearity can also yield additional gains. How to use the targeted

predictors is specific to the series to be forecasted, and it is this tailoring of the series to be

forecasted that generates the reduction in forecast errors. While both hard and soft thresh-

olding tend to perform better than no targeting at all, the improvements are larger and more

systematic with soft thresholding. Ordering the variables using the LARS-LASSO EN algo-

rithm seems effective in selecting horizon and sample dependent predictors for forecasting

economic time series.
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Table A1: Summary statistics
Mean πh = 1200

h (yt+h − yt) Over Estimation and Forecast Samples
Est. Sample h = 1 h = 6 h = 12 h = 24 Fcst Sample h = 1 h = 6 h = 12 h = 24

1: 60:3-80:12-h 4.867 4.808 4.748 4.690 70:3-80:12 7.218 7.393 7.515 7.803
2: 60:3-90:12-h 4.899 4.923 4.959 5.036 80:3-90:12 4.914 4.708 4.615 4.328
3: 60:3-00:12-h 4.396 4.416 4.444 4.520 90:3-00:12 2.836 2.831 2.761 2.694
4: 60:3-90:12-h 4.899 4.923 4.959 5.036 70:3-90:12 6.066 6.050 6.065 6.065
5: 60:3-00:12-h 4.396 4.416 4.444 4.520 70:3-00:12 4.989 4.977 4.964 4.941
6: 60:3-00:12-h 4.396 4.416 4.444 4.520 80:3-00:12 3.875 3.769 3.688 3.511
7: 60:3-03:12-h 4.220 4.281 4.376 4.520 70:3-03:12 4.680 4.739 4.790 4.941

Table A2: Summary statistics: yh Over Forecast Samples
Forecast Sample Mean Std Mean Std Mean Std Mean Std

h = 1 h = 6 h = 12 h = 24
1: 70:3-80:12 0.089 3.683 0.264 2.916 0.387 3.020 0.674 3.555
2: 80:3-90:12 -0.047 3.063 -0.254 3.265 -0.346 3.086 -0.634 3.307
3: 90:3-00:12 -0.065 2.092 -0.070 1.846 -0.139 1.749 -0.207 1.834
4: 70:3-90:12 0.021 3.381 0.005 3.100 0.020 3.069 0.020 3.488
5: 70:3-00:12 -0.008 3.010 -0.020 2.744 -0.033 2.700 -0.055 3.037
6: 80:3-00:12 -0.056 2.618 -0.162 2.648 -0.243 2.505 -0.420 2.677
7: 70:3-03:12 -0.022 3.069 -0.025 2.747 -0.048 2.727 -0.055 3.037
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Table 1: Fraction of Variables Selected with Frequency freq
h 1 6 12 24 1 6 12 24

t=1.28 freq xit x2
it

[0, .2] 0.311 0.311 0.205 0.258 0.515 0.295 0.265 0.242
[.2, .4] 0.083 0.045 0.061 0.030 0.038 0.068 0.076 0.053
[.4, .6] 0.114 0.023 0.053 0.038 0.098 0.061 0.068 0.091
[.6, .8] 0.318 0.182 0.174 0.197 0.235 0.303 0.174 0.280
[.8, 1.0] 0.174 0.439 0.508 0.477 0.114 0.273 0.417 0.333

t=1.65 freq xit x2
it

[0, .2] 0.455 0.379 0.318 0.303 0.652 0.402 0.348 0.348
[.2, .4] 0.091 0.008 0.023 0.030 0.045 0.038 0.045 0.023
[.4, .6] 0.114 0.053 0.068 0.030 0.076 0.083 0.053 0.068
[.6, .8] 0.242 0.167 0.182 0.242 0.189 0.258 0.250 0.326
[.8, 1.0] 0.098 0.394 0.409 0.394 0.038 0.220 0.303 0.235

t=2.58 freq xit x2
it

[0, .2] 0.742 0.447 0.439 0.386 0.886 0.568 0.530 0.477
[.2, .4] 0.038 0.015 0.015 0.023 0.015 0.045 0.030 0.053
[.4, .6] 0.114 0.053 0.068 0.023 0.068 0.098 0.068 0.061
[.6, .8] 0.083 0.280 0.311 0.364 0.030 0.174 0.288 0.288
[.8, 1.0] 0.023 0.205 0.167 0.205 0.000 0.114 0.083 0.121

λ2 = .5 freq xit x2
it

[0, .2] 0.992 0.947 0.932 0.879 0.992 0.958 0.943 0.928
[.2, .4] 0.000 0.023 0.023 0.045 0.004 0.027 0.011 0.030
[.4, .6] 0.000 0.015 0.023 0.045 0.000 0.004 0.015 0.023
[.6, .8] 0.008 0.015 0.023 0.023 0.004 0.008 0.023 0.011
[.8, 1.0] 0.000 0.000 0.000 0.008 0.000 0.004 0.008 0.008
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Table 2: Most Frequently Selected Predictors

Rank h = 1 h = 6 h = 12 h = 24 h = 1 h = 6 h = 12 h = 24

xit x2
it

t=1.28 1 FYGT10 FYGT10 FM2DQ FSPIN HSMW FSPXE FSPXE FSPXE
2 FYGT5 FYGT5 HSBNE FSPCOM HSBNE FSPCOM FSDXP FSDXP
3 FYGT1 FM2DQ HSMW FM2DQ PMEMP FM2DQ FSPIN FSPIN
4 FYGM6 A0M008 CES088 HSBMW PMP PMNO FSPCOM FSPCOM
5 FMFBA PMNO CES053 HSBNE PUXM HSBNE HSBNE FM2DQ
6 HSMW HSBNE CES048 HSMW PMI HSMW HSMW HSBMW
7 LHU27 HSMW CES046 aom001 PMNO LHU15 CES088 HSBNE
8 HSBNE CES155 CES002 CES048 HSBMW LHUR CES048 HSMW
9 PMEMP A0M048 LHU15 CES046 HSBR FSDXP CES003 aom001
10 PMP CES053 LHUR CES002 LHU26 FSPIN LHUR CES053

t=1.96 1 FYGT10 FYGT5 FM2DQ FM2DQ PMEMP PMNO HSMW FM2DQ
2 FYGT5 HSBNE HSMW HSMW PMP HSBNE FSPCOM HSMW
3 FYGT1 HSMW CES048 aom001 HSMW HSMW LHUR CES053
4 FYGM6 A0M005 LHELX CES046 HSBNE LHUR FSDXP aom001
5 LHU27 LHU27 LHEL A0M051 PMI FSPXE HSBNE FSPCOM
6 FMFBA LHU15 A0M051 FSPIN PMDEL FSDXP FSPXE LHUR
7 HSMW LHELX HSBNE LHU15 PMNV FSPCOM HSBMW FSDXP
8 PMEMP LHEL A0M224R HSBWST HSBMW LHU15 CES088 HSBWST
9 FYGM3 A0M051 CES046 HSBMW HSBR HSBMW FSPIN HSBMW
10 HSBNE FYGT10 FYGT5 HSWST PMNO PMP PMNO HSWST

t=2.32 1 FYGT5 HSMW FM2DQ FM2DQ PMEMP HSMW HSMW HSWST
2 FYGT10 LHELX HSMW HSWST PMI PMNO HSBNE HSBWST
3 FYGT1 LHEL HSBNE HSBNE CES015 HSBNE PMNO HSBNE
4 FYGM6 LHU15 LHELX LHELX PMP PMP PMP sfygm3
5 FYFF PMNO LHEL LHEL PMNO PMEMP HSBMW HSMW
6 FYGM3 LHU27 LHU27 HSMW CES017 LHU15 PMEMP sFYGM6
7 PMEMP HSBNE LHU15 LHU15 FSDXP PMI PMI PMNO
8 PMI A0M051 LHUR A0M051 FYAAAC HSBMW aom001 HSBMW
9 PMDEL FYGT5 A0M051 A1M092 HSBMW HSBR FYAAAC PMP
10 LHU27 CES002 PMNO PMNO HSBR HSBSOU FYBAAC FYBAAC

λ2 = .5 1 FYFF LHEL LHEL FYBAAC FYFF LHEL LHEL LHEL
2 FSPXE FYFF FYBAAC LHEL FSPXE FYFF FYBAAC FYBAAC
3 A0M027 FYBAAC PMNO HSBMW 2FYFF FYBAAC FYFF 2sFYGM6
4 FSDXP HSBR HSBMW HSBR FSDXP 2HSBR FSDXP FYFF
5 FYGT5 PMNO HSBR FYFF 2FYBAAC PMNO PMNO 2HSBMW
6 IPS307 HSBMW HSFR HSFR LHEL 2HSFR 2sFYGM6 2HSFR
7 HHSNTN HSFR FSDXP sFYGM6 FYGT5 2FYBAAC 2sfygm3 2HSBR
8 PMP FSDXP FYFF HSBNE A0M027 HSBR 2PMI 2PMNO
9 FYGT10 CP90 PMI LHU27 LHU27 2sfygm3 2HSBR 2sFYGT5
10 LHUR LHU27 PMEMP PMNO IPS307 2A0m082 2HSBMW 2HSBNE
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Table 3: Average Number of Variables Selected, threshold = 1.65, λ2 = .5
h = 1

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
70.1- 80.1 132 264 32.174 60.264 47.736 132 32.174 30 5 2.719 30
80.1- 90.1 132 264 62.421 108.124 95.066 132 62.421 30 5 2.074 30
90.1- 00.1 132 264 73.884 114.215 107.975 132 73.884 30 5 2.000 30
70.1- 90.1 132 264 47.299 84.195 71.407 132 47.299 30 5 2.390 30
70.1- 00.1 132 264 56.152 94.177 83.576 132 56.152 30 5 2.260 30
80.1- 00.1 132 264 68.154 111.162 101.515 132 68.154 30 5 2.037 30
70.1- 03.9 132 264 57.757 96.641 86.354 132 57.757 30 5 2.231 30

h=6
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 132 264 43.562 74.959 69.058 132 43.562 30 5 7.694 30
80.1- 90.1 132 264 70.868 124.802 115.248 132 70.868 30 5 5.661 30
90.1- 00.1 132 264 72.132 126.446 118.149 132 72.132 30 5 7.273 30
70.1- 90.1 132 264 57.195 99.842 92.120 132 57.195 30 5 6.689 30
70.1- 00.1 132 264 62.158 108.690 100.776 132 62.158 30 5 6.886 30
80.1- 00.1 132 264 71.494 125.627 116.697 132 71.494 30 5 6.469 30
70.1- 03.9 132 264 63.003 110.355 102.433 132 63.003 30 5 7.038 30

h = 12
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 132 264 64.223 122.752 108.645 132 64.223 30 5 14.992 30
80.1- 90.1 132 264 87.264 169.711 154.190 132 87.264 30 5 10.727 30
90.1- 00.1 132 264 89.000 171.405 157.818 132 89.000 30 5 11.769 30
70.1- 90.1 132 264 75.714 146.158 131.344 132 75.714 30 5 12.867 30
70.1- 00.1 132 264 80.127 154.548 140.141 132 80.127 30 5 12.504 30
80.1- 00.1 132 264 88.124 170.552 155.992 132 88.124 30 5 11.249 30
70.1- 03.9 132 264 80.634 155.553 141.130 132 80.634 30 5 12.769 30

h = 24
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 132 264 73.132 144.347 127.008 132 73.132 30 5 15.355 30
80.1- 90.1 132 264 92.769 185.901 165.091 132 92.769 30 5 14.917 30
90.1- 00.1 132 264 96.430 188.463 169.388 132 96.430 30 5 15.025 30
70.1- 90.1 132 264 82.917 165.058 145.963 132 82.917 30 5 15.158 30
70.1- 00.1 132 264 87.418 172.853 153.767 132 87.418 30 5 15.119 30
80.1- 00.1 132 264 94.606 187.199 167.257 132 94.606 30 5 14.979 30
70.1- 03.9 132 264 87.418 172.853 153.767 132 87.418 30 5 15.119 30
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Table 4: RMSE, h = 1

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.28 λ2 = .25

70.1- 80.1 1.015 1.007 0.968 0.927 1.023 1.016 1.002 1.009 1.014 1.015 1.114
80.1- 90.1 0.982 0.925 0.960 0.955 0.914 0.988 0.969 0.877 0.971 0.958 0.931
90.1- 00.1 0.963 0.959 0.938 0.968 0.953 0.945 0.923 0.990 0.959 0.961 1.052
70.1- 90.1 0.998 0.964 0.964 0.942 0.965 1.001 0.985 0.938 0.992 0.985 1.013
70.1- 00.1 0.990 0.963 0.960 0.947 0.963 0.993 0.976 0.947 0.988 0.982 1.019
80.1- 00.1 0.972 0.934 0.955 0.959 0.924 0.978 0.958 0.906 0.969 0.960 0.960
70.1- 03.9 0.979 0.961 0.951 0.937 0.952 0.982 0.961 0.937 0.977 0.971 1.006

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.65 λ2 = .5

70.1- 80.1 1.015 1.007 0.944 0.974 1.001 1.016 0.970 1.036 1.014 1.015 1.001
80.1- 90.1 0.982 0.925 0.960 0.934 0.930 0.988 0.891 0.875 0.971 0.958 0.874
90.1- 00.1 0.963 0.959 0.990 0.983 0.984 0.945 0.961 1.003 0.959 0.959 0.981
70.1- 90.1 0.998 0.964 0.953 0.948 0.963 1.001 0.927 0.949 0.992 0.985 0.932
70.1- 00.1 0.990 0.963 0.960 0.951 0.964 0.993 0.929 0.959 0.988 0.982 0.938
80.1- 00.1 0.972 0.934 0.969 0.943 0.939 0.978 0.902 0.908 0.969 0.959 0.897
70.1- 03.9 0.979 0.961 0.960 0.938 0.950 0.982 0.928 0.950 0.977 0.970 0.936

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=2.58 λ2 = 1.5

70.1- 80.1 1.015 1.007 1.043 1.072 1.065 1.016 1.050 1.035 0.977 1.015 0.951
80.1- 90.1 0.982 0.925 0.874 0.922 0.900 0.988 0.874 0.873 0.968 0.963 0.900
90.1- 00.1 0.963 0.959 0.991 0.989 0.988 0.945 0.991 1.000 0.959 0.974 1.068
70.1- 90.1 0.998 0.964 0.952 0.988 0.977 1.001 0.956 0.948 0.973 0.988 0.924
70.1- 00.1 0.990 0.963 0.954 0.985 0.975 0.993 0.956 0.957 0.971 0.984 0.945
80.1- 00.1 0.972 0.934 0.895 0.933 0.916 0.978 0.895 0.906 0.967 0.963 0.941
70.1- 03.9 0.979 0.961 0.945 0.969 0.961 0.982 0.948 0.945 0.963 0.972 0.941
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Table 5: RMSE, h = 6

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.28 λ2 = .25

70.1- 80.1 0.712 0.661 0.715 0.705 0.707 0.765 0.718 0.665 0.763 0.812 0.653
80.1- 90.1 0.654 0.601 0.647 0.588 0.586 0.673 0.678 0.571 0.582 0.686 0.543
90.1- 00.1 0.660 0.632 0.750 0.645 0.648 0.660 0.750 0.651 0.787 0.796 0.609
70.1- 90.1 0.675 0.623 0.672 0.635 0.633 0.709 0.692 0.608 0.651 0.734 0.585
70.1- 00.1 0.671 0.622 0.680 0.634 0.633 0.701 0.697 0.610 0.667 0.741 0.587
80.1- 00.1 0.652 0.604 0.663 0.595 0.594 0.667 0.688 0.582 0.618 0.706 0.554
70.1- 03.9 0.670 0.623 0.680 0.634 0.631 0.697 0.696 0.609 0.660 0.712 0.587

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.65 λ2 = .5

70.1- 80.1 0.712 0.661 0.721 0.744 0.707 0.765 0.711 0.688 0.739 0.797 0.676
80.1- 90.1 0.654 0.601 0.660 0.579 0.590 0.673 0.675 0.590 0.604 0.699 0.547
90.1- 00.1 0.660 0.632 0.656 0.647 0.652 0.660 0.656 0.666 0.757 0.872 0.606
70.1- 90.1 0.675 0.623 0.682 0.644 0.637 0.709 0.689 0.629 0.655 0.736 0.597
70.1- 00.1 0.671 0.622 0.677 0.642 0.636 0.701 0.683 0.631 0.667 0.752 0.597
80.1- 00.1 0.652 0.604 0.656 0.588 0.598 0.667 0.668 0.600 0.631 0.731 0.556
70.1- 03.9 0.670 0.623 0.678 0.641 0.635 0.697 0.681 0.626 0.664 0.722 0.597

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=2.58 λ2 = 1.5

70.1- 80.1 0.712 0.661 0.713 0.769 0.784 0.765 0.699 0.684 0.730 0.748 0.659
80.1- 90.1 0.654 0.601 0.682 0.580 0.591 0.673 0.682 0.604 0.606 0.683 0.552
90.1- 00.1 0.660 0.632 0.639 0.635 0.639 0.660 0.639 0.667 0.757 0.872 0.626
70.1- 90.1 0.675 0.623 0.693 0.653 0.666 0.709 0.688 0.632 0.653 0.707 0.594
70.1- 00.1 0.671 0.622 0.685 0.649 0.661 0.701 0.680 0.634 0.664 0.726 0.597
80.1- 00.1 0.652 0.604 0.671 0.587 0.596 0.667 0.671 0.611 0.632 0.717 0.564
70.1- 03.9 0.670 0.623 0.682 0.646 0.656 0.697 0.677 0.629 0.664 0.710 0.598
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Table 6: RMSE, h = 12

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.28 λ2 = .25

70.1- 80.1 0.631 0.595 0.652 0.608 0.622 0.644 0.645 0.580 0.614 0.683 0.523
80.1- 90.1 0.575 0.582 0.565 0.585 0.586 0.633 0.518 0.566 0.560 0.680 0.482
90.1- 00.1 0.723 0.699 0.686 0.699 0.703 0.703 0.693 0.623 0.658 1.194 0.679
70.1- 90.1 0.603 0.589 0.608 0.597 0.604 0.639 0.580 0.573 0.587 0.682 0.502
70.1- 00.1 0.611 0.597 0.613 0.604 0.611 0.642 0.588 0.573 0.590 0.730 0.516
80.1- 00.1 0.594 0.597 0.581 0.600 0.601 0.639 0.542 0.568 0.570 0.766 0.510
70.1- 03.9 0.609 0.597 0.616 0.603 0.609 0.639 0.593 0.570 0.592 0.754 0.517

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.65 λ2 = .5

70.1- 80.1 0.631 0.595 0.659 0.654 0.636 0.644 0.612 0.599 0.623 0.691 0.562
80.1- 90.1 0.575 0.582 0.689 0.573 0.591 0.633 0.661 0.569 0.566 0.702 0.477
90.1- 00.1 0.723 0.699 0.616 0.698 0.703 0.703 0.613 0.681 0.665 1.088 0.675
70.1- 90.1 0.603 0.589 0.675 0.613 0.613 0.639 0.638 0.584 0.594 0.698 0.519
70.1- 00.1 0.611 0.597 0.665 0.618 0.619 0.642 0.631 0.590 0.597 0.733 0.531
80.1- 00.1 0.594 0.597 0.669 0.589 0.605 0.639 0.644 0.583 0.576 0.764 0.506
70.1- 03.9 0.609 0.597 0.665 0.615 0.616 0.639 0.632 0.587 0.597 0.751 0.531

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=2.58 λ2 = 1.5

70.1- 80.1 0.631 0.595 0.686 0.651 0.647 0.644 0.663 0.633 0.627 0.685 0.591
80.1- 90.1 0.575 0.582 0.663 0.576 0.594 0.633 0.663 0.573 0.564 0.664 0.514
90.1- 00.1 0.723 0.699 0.707 0.686 0.690 0.703 0.707 0.810 0.643 1.033 0.702
70.1- 90.1 0.603 0.589 0.675 0.612 0.620 0.639 0.664 0.603 0.595 0.675 0.552
70.1- 00.1 0.611 0.597 0.675 0.617 0.624 0.642 0.665 0.620 0.596 0.707 0.564
80.1- 00.1 0.594 0.597 0.665 0.589 0.605 0.639 0.665 0.608 0.571 0.723 0.542
70.1- 03.9 0.609 0.597 0.669 0.614 0.620 0.639 0.660 0.615 0.596 0.722 0.564

29



Table 7: RMSE, h = 24

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.28 λ2 = .25

70.1- 80.1 0.532 0.554 0.606 0.558 0.474 0.620 0.573 0.486 0.588 0.586 0.542
80.1- 90.1 0.506 0.520 0.564 0.580 0.555 0.601 0.560 0.442 0.676 0.762 0.555
90.1- 00.1 0.546 0.550 0.626 0.637 0.600 0.551 0.630 0.447 0.811 0.836 0.706
70.1- 90.1 0.522 0.540 0.588 0.571 0.515 0.613 0.569 0.467 0.633 0.670 0.550
70.1- 00.1 0.523 0.540 0.590 0.575 0.520 0.608 0.572 0.464 0.646 0.683 0.562
80.1- 00.1 0.512 0.523 0.571 0.586 0.560 0.592 0.568 0.441 0.695 0.773 0.577
70.1- 03.9 0.523 0.540 0.590 0.575 0.520 0.608 0.572 0.464 0.646 0.683 0.562

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=1.65 λ2 = .5

70.1- 80.1 0.532 0.554 0.501 0.542 0.545 0.620 0.553 0.497 0.607 0.593 0.609
80.1- 90.1 0.506 0.520 0.561 0.528 0.497 0.601 0.561 0.431 0.696 0.715 0.564
90.1- 00.1 0.546 0.550 0.630 0.529 0.552 0.551 0.630 0.500 0.832 0.954 0.756
70.1- 90.1 0.522 0.540 0.531 0.538 0.525 0.613 0.559 0.468 0.652 0.652 0.590
70.1- 00.1 0.523 0.540 0.538 0.537 0.525 0.608 0.563 0.470 0.666 0.675 0.602
80.1- 00.1 0.512 0.523 0.569 0.527 0.502 0.592 0.569 0.440 0.716 0.751 0.592
70.1- 03.9 0.523 0.540 0.538 0.537 0.525 0.608 0.563 0.470 0.666 0.675 0.602

Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)
threshold=2.58 λ2 = 1.5

70.1- 80.1 0.532 0.554 0.519 0.555 0.550 0.620 0.544 0.544 0.613 0.563 0.600
80.1- 90.1 0.506 0.520 0.545 0.494 0.422 0.601 0.533 0.460 0.744 0.678 0.573
90.1- 00.1 0.546 0.550 0.651 0.525 0.528 0.551 0.651 0.521 0.922 1.153 0.780
70.1- 90.1 0.522 0.540 0.534 0.528 0.491 0.613 0.541 0.507 0.678 0.618 0.589
70.1- 00.1 0.523 0.540 0.541 0.527 0.493 0.608 0.548 0.507 0.696 0.660 0.604
80.1- 00.1 0.512 0.523 0.558 0.497 0.436 0.592 0.548 0.468 0.770 0.751 0.604
70.1- 03.9 0.523 0.540 0.541 0.527 0.493 0.608 0.548 0.507 0.696 0.660 0.604
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Table 8: RMSE, h = 12, Other Variables
Threshold = 1.65, λ2 = .25

Personal Income a0m051
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 0.545 0.422 0.465 0.461 0.439 0.563 0.447 0.461 0.343 0.401 0.372
80.1- 90.1 0.902 0.986 0.944 0.973 1.103 0.846 0.933 0.753 0.966 1.054 1.073
90.1- 00.1 1.106 0.984 1.096 1.242 1.226 1.122 1.172 1.171 1.019 0.951 1.175
70.1- 90.1 0.673 0.623 0.635 0.645 0.676 0.666 0.620 0.566 0.565 0.632 0.621
70.1- 00.1 0.796 0.722 0.766 0.813 0.831 0.796 0.777 0.738 0.695 0.724 0.777
80.1- 00.1 1.012 0.982 1.027 1.114 1.167 0.994 1.062 0.975 0.999 1.003 1.127
70.1- 03.9 0.817 0.716 0.782 0.791 0.839 0.803 0.783 0.743 0.719 0.749 0.776

Retail Sales: a0m05
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 0.620 0.676 0.633 0.687 0.682 0.615 0.637 0.674 0.485 0.502 0.637
80.1- 90.1 0.559 0.582 0.514 0.564 0.569 0.590 0.520 0.594 0.713 0.675 0.586
90.1- 00.1 1.158 1.032 1.142 0.994 1.197 1.164 1.144 1.154 1.163 1.043 1.332
70.1- 90.1 0.601 0.650 0.601 0.654 0.651 0.606 0.606 0.654 0.555 0.556 0.623
70.1- 00.1 0.716 0.725 0.713 0.722 0.762 0.722 0.717 0.757 0.678 0.655 0.770
80.1- 00.1 0.840 0.785 0.808 0.762 0.860 0.860 0.812 0.857 0.916 0.843 0.936
70.1- 03.9 0.726 0.729 0.723 0.725 0.771 0.732 0.727 0.765 0.685 0.668 0.780

Industrial Production: ips10
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 0.247 0.275 0.197 0.219 0.190 0.223 0.192 0.201 0.300 0.224 0.144
80.1- 90.1 0.846 0.862 0.820 0.946 1.001 0.846 0.813 0.692 0.788 0.834 0.821
90.1- 00.1 1.055 0.974 1.327 1.040 1.707 1.168 1.277 1.423 1.802 1.451 1.340
70.1- 90.1 0.442 0.462 0.399 0.455 0.452 0.426 0.393 0.359 0.459 0.420 0.363
70.1- 00.1 0.497 0.508 0.483 0.508 0.566 0.493 0.474 0.456 0.581 0.513 0 .452
80.1- 00.1 0.898 0.890 0.944 0.972 1.171 0.925 0.928 0.866 1.029 0.980 0.946
70.1- 03.9 0.551 0.536 0.526 0.548 0.589 0.530 0.519 0.513 0.648 0.604 0.498

Total Employment: ces002
Sample PC SPC TPC TSPC TSTPC PC2 TPC2 LA(PC) LA(10) LA(k∗) LA(SPC)

70.1- 80.1 0.524 0.603 0.487 0.514 0.470 0.508 0.484 0.383 0.394 0.428 0.427
80.1- 90.1 0.644 0.738 0.656 0.650 0.654 0.644 0.619 0.591 0.791 0.772 0.760
90.1- 00.1 0.947 1.075 0.965 1.010 1.048 0.930 0.965 1.149 1.207 1.063 1.273
70.1- 90.1 0.569 0.655 0.549 0.566 0.539 0.558 0.534 0.459 0.539 0.552 0.548
70.1- 00.1 0.616 0.705 0.601 0.619 0.604 0.605 0.588 0.545 0.624 0.617 0.639
80.1- 00.1 0.730 0.829 0.744 0.748 0.769 0.725 0.717 0.749 0.914 0.859 0.906
70.1- 03.9 0.696 0.734 0.689 0.652 0.670 0.667 0.672 0.609 0.759 0.680 0.677
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"#! $%&%'(!! )! !*+!!!! ",-./+$*!#+0/&,!1234!56*7!89$6+!(%%%!:;!1<85;!
"#!*,..!=-$+.>,-.! $%&%'?!! )! !*+!!!! ",-./+$*!#+0/&,!@,..!<-$+.>,-!"$A&,+=.!1234!56*7!89$6+!(%%%!:;!1<85;!
8/+.B&C=6/+! $%&((DE-!! )! !*+!!!! 3,$*!8/+.B&C=6/+!128;!$%&((DFG&H0!1$%&((D!6.!>-/&!<85;!
IJ<!.$*,.! $%&%'K!! )! !*+!!!! I$+B>$0=B-6+G!2+H!<-$H,!)$*,.!1I6*7!89$6+!?LLM!:;!!1<85;!
3,=$6*!.$*,.! $%&%'L!! )! !*+!!!! )$*,.!N>!3,=$6*!)=/-,.!1I6*7!89$6+!(%%%!:;!1<85;!
#"O!=/=$*! 6C.?%!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!</=$*!#+H,P!
#"O!C-/HB0=.! 6C.??!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!"-/HB0=.4!</=$*!
#"O!>6+$*!C-/H! 6C.(LL!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!!#+H,P!Q!!R6+$*!"-/HB0=.!
#"O!0/+.!GH.! 6C.?(!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!8/+.B&,-!S//H.!
#"O!0/+.!HT*,! 6C.?U!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!VB-$T*,!8/+.B&,-!S//H.!
#"O!0/+.!+/+HT*,! 6C.?W!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!X/+HB-$T*,!8/+.B&,-!S//H.!
#"O!TB.!,YC=! 6C.('!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!5B.6+,..!ZYB6C&,+=!
#"O!&$=*.! 6C.U(!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!I$=,-6$*.!
#"O!HT*,!&$=*.! 6C.UD!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!VB-$T*,!S//H.!I$=,-6$*.!
#"O!+/+HT*,!&$=*.! 6C.UW!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!X/+HB-$T*,!S//H.!I$=,-6$*.!
#"O!&>G! 6C.DU!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!#+H,P!Q!!I$+B>$0=B-6+G!1)60;!
#"O!-,.!B=6*! 6C.U%K!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!!#+H,P!Q!!3,.6H,+=6$*![=6*6=6,.!
#"O!>B,*.! 6C.U%M!! )! !*+!!!! #+HB.=-6$*!"-/HB0=6/+!!#+H,P!Q!!RB,*.!
X2"I!C-/H+!! C&C!! )! *\!!!!!! X$C&!"-/HB0=6/+!#+H,P!1",-0,+=;!
8$C!B=6*! $%&%W(!! )! !*\!!! 8$C$06=A![=6*6]$=6/+!1I>G;!1<85;!
^,*C!_$+=,H!6+HP! *9,*!! )! !*\!!! #+H,P!N>!^,*CQ`$+=,H!2H\,-=6.6+G!#+!X,_.C$C,-.!1?LMKa?%%b)$;!
^,*C!_$+=,HF,&C! *9,*P!! )! !*\!!! Z&C*/A&,+=O!3$=6/b!^,*CQ`$+=,H!2H.OX/7![+,&C*/A,H!8*>!
Z&C!8")!=/=$*! *9,&!! )! !*+!!!! 86\6*6$+!@$T/-!R/-0,O!Z&C*/A,H4!</=$*!1<9/B.74)$;!
Z&C!8")!+/+$G! *9+$G!! )! !*+!!!! 86\6*6$+!@$T/-!R/-0,O!Z&C*/A,H4!X/+$G-607#+HB.=-6,.!1<9/B.74)$;!
[O!$**! *9B-!! )! !*\!!! [+,&C*/A&,+=!3$=,O!2**!`/-c,-.4!?M!d,$-.!J!N\,-!1e4)$;!
[O!&,$+!HB-$=6/+! *9BMW%!! )! !*\!!! [+,&C*/A75A!VB-$=6/+O!2\,-$G,1I,$+;VB-$=6/+!#+!`,,c.!1)$;!
[!f!'!_c.! *9B'!! )! !*+!!!! [+,&C*/A75A!VB-$=6/+O!",-./+.![+,&C*7@,..!<9$+!'!`c.!1<9/B.74)$;!
[!'Q?D!_c.! *9B?D!! )! !*+!!!! [+,&C*/A75A!VB-$=6/+O!",-./+.![+,&C*7'!</!?D!`c.!1<9/B.74)$;!
[!?'g!_c.!! *9B?'!! )! !*+!!!! [+,&C*/A75A!VB-$=6/+O!",-./+.![+,&C*7?'!`c.!g!1<9/B.74)$;!
[!?'Q(M!_c.! *9B(M!! )! !*+!!!! [+,&C*/A75A!VB-$=6/+O!",-./+.![+,&C*7?'!</!(M!`c.!1<9/B.74)$;!
[!(Kg!_c.! *9B(K!! )! !*+!!!! [+,&C*/A75A!VB-$=6/+O!",-./+.![+,&C*7(K!`c.!g!1<9/B.4)$;!
[#!0*$6&.! $%&%%'!! )! !*+!!!! 2\,-$G,!`,,c*A!#+6=6$*!8*$6&.4![+,&C*/A7!#+.B-$+0,!1<9/B.7;!1<85;!
Z&CO!=/=$*! 0,.%%(!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.O!</=$*!"-6\$=,!
Z&CO!GH.!C-/H! 0,.%%U!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!S//H.Q"-/HB06+G!
Z&CO!&6+6+G! 0,.%%M!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!I6+6+G!
Z&CO!0/+.=! 0,.%??!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!8/+.=-B0=6/+!
Z&CO!&>G! 0,.%?'!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!I$+B>$0=B-6+G!
Z&CO!HT*,!GH.! 0,.%?K!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!VB-$T*,!S//H.!
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!

Z&CO!+/+HT*,.! 0,.%UU!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!X/+HB-$T*,!S//H.!
Z&CO!.,-\60,.! 0,.%DM!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!),-\60,Q"-/\6H6+G!
Z&CO!<<[! 0,.%DW!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!<-$H,4!<-$+.C/-=$=6/+4!2+H![=6*6=6,.!
Z&CO!_9/*,.$*,! 0,.%DL!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!`9/*,.$*,!<-$H,!
Z&CO!-,=$6*! 0,.%'U!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!3,=$6*!<-$H,!
Z&CO!R#3Z! 0,.%WW!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!R6+$+06$*!20=6\6=6,.!
Z&CO!S/\=! 0,.?D%!! )! !*+!!!! Z&C*/A,,.!N+!X/+>$-&!"$A-/**.!Q!S/\,-+&,+=!
Z&CQ9-.!+/+$G! $%&%DW!! )! !*+!!!! Z&C*/A,,!^/B-.!#+!X/+$G7!Z.=$T*6.9&,+=.!1234!56*7!^/B-.;!1<85;!
2\G!9-.!! 0,.?'?!! )! *\!!!!!! 2\G!`,,c*A!^-.!/>!"-/H!/-!X/+.BC!`/-c,-.!N+!"-6\$=,!X/+>$-&!"$A-/**.!Q!!

S//H.Q"-/HB06+G!
N\,-=6&,O!&>G! 0,.?''!! )! !*\!!! 2\G!`,,c*A!^-.!/>!"-/H!/-!X/+.BC!`/-c,-.!N+!"-6\$=,!X/+>$-&!"$A-/**.!Q!!!!

I>G!N\,-=6&,!^/B-.!
2\G!9-.O!&>G! $/&%%?!! )! *\!!!!!! 2\,-$G,!`,,c*A!^/B-.4!I>G7!1^/B-.;!1<85;!
X2"I!,&C*! C&,&C!! )! *\!!!!!! X$C&!Z&C*/A&,+=!#+H,P!1",-0,+=;!
)=$-=.O!+/+>$-&! 9.>-!! )! *+! ^/B.6+G!)=$-=.OX/+>$-&1?LDKQ'W;b</=$*!R$-&JX/+>$-&1?L'LQ;1<9/B.74)$$-;!
)=$-=.O!XZ! 9.+,!! R! *+! ^/B.6+G!)=$-=.OX/-=9,$.=!1<9/B.7[7;)727!
)=$-=.O!I`! 9.&_!! R! *+! ^/B.6+G!)=$-=.OI6H_,.=1<9/B.7[7;)727!
)=$-=.O!)/B=9! 9../B!! R! *+! ^/B.6+G!)=$-=.O)/B=9!1<9/B.7[7;)727!
)=$-=.O!`,.=! 9._.=!! R! *+! ^/B.6+G!)=$-=.O`,.=!1<9/B.7[7;)727!
5"O!=/=$*! 9.T-!! R! *+! ^/B.6+G!2B=9/-6],HO!</=$*!X,_!"-6\!^/B.6+G![+6=.!1<9/B.74)$$-;!
5"O!XZ! 9.T+,h!! R! *+! ^/B.,.!2B=9/-6],H!5A!5B6*H7!",-&6=.OX/-=9,$.=1<9/B7[7;)72!
5"O!I`! 9.T&_h!! R! *+! ^/B.,.!2B=9/-6],H!5A!5B6*H7!",-&6=.OI6H_,.=1<9/B7[7;)727!
5"O!)/B=9! 9.T./Bh! R! *+! ^/B.,.!2B=9/-6],H!5A!5B6*H7!",-&6=.O)/B=91<9/B7[7;)727!
5"O!`,.=! 9.T_.=h!! R! *+! ^/B.,.!2B=9/-6],H!5A!5B6*H7!",-&6=.O`,.=1<9/B7[7;)727!
"I#! C&6!! R! *\!!!!!! "B-09$.6+G!I$+$G,-.i!#+H,P!1)$;!
X2"I!+,_!/-H-.! C&+/!! R! *\!!!!!! X$C&!X,_!N-H,-.!#+H,P!1",-0,+=;!
X2"I!\,+H/-!H,*! C&H,*!! R! *\!!!!!! X$C&!j,+H/-!V,*6\,-6,.!#+H,P!1",-0,+=;!
X2"I!#+\,+=! C&+\!! R! *\!!!!!! X$C&!#+\,+=/-6,.!#+H,P!1",-0,+=;!
N-H,-.O!0/+.!GH.! $%&%%W!! R! !*+!!!! I>-.i!X,_!N-H,-.4!8/+.B&,-!S//H.!2+H!I$=,-6$*.!156*7!89$6+!?LW(!:;!1<85;!
N-H,-.O!HT*,!GH.! $%&%%K!! R! !*+!!!! I>-.i!X,_!N-H,-.4!VB-$T*,!S//H.!#+HB.=-6,.!156*7!89$6+!(%%%!:;!1<85;!
N-H,-.O!0$C!GH.! $%&%(K!! R! !*+!!!! I>-.i!X,_!N-H,-.4!X/+H,>,+.,!8$C6=$*!S//H.!1I6*7!89$6+!?LW(!:;!1<85;!
[+>!/-H,-.O!HT*,! $?&%L(!! R! !*+!!!! I>-.i![+>6**,H!N-H,-.4!VB-$T*,!S//H.!#+HB.7!156*7!89$6+!(%%%!:;!1<85;!
IJ<!6+\,+=! $%&%K%!! R! !*+!!!! I$+B>$0=B-6+G!2+H!<-$H,!#+\,+=/-6,.!156*7!89$6+!(%%%!:;!1<85;!
IJ<!6+\,+=F.$*,.! $%&%KK!! R! !*\!!! 3$=6/4!I>G7!2+H!<-$H,!#+\,+=/-6,.!</!)$*,.!15$.,H!N+!89$6+!(%%%!:;!1<85;!
I?! >&?!! R! !

(
*+! I/+,A!)=/0cO!I?18B--4<-$\78c.4V,&!V,C4N=9,-!8ci$T*,!V,C;156*:4)$;!

I(! >&(!! R! !
(
*+! I/+,A!)=/0cOI(1I?gNi+6=,!3C.4ZB-/:4SF"J5FV!I&&>.J)$\J)&!<6&,!

V,C156*:4)$;!
IU! >&U!! R! !

(
*+! I/+,A!)=/0cO!IU1I(g@G!<6&,!V,C4<,-&!3Ci.J#+.=!N+*A!I&&>.;156*:4)$;!

I(!1-,$*;! >&(HY!! R! !*+!!!! I/+,A!)BCC*A!Q!I(!#+!?LLM!V/**$-.!1506;!
I5! >&>T$!! R! !

(
*+! I/+,=$-A!5$.,4!2Hk!R/-!3,.,-\,!3,YB6-,&,+=!89$+G,.1I6*:4)$;!

3,.,-\,.!=/=! >&--$!! R! !
(
*+! V,C/.6=/-A!#+.=!3,.,-\,.O</=$*4!2Hk!R/-!3,.,-\,!3,Y!89G.1I6*:4)$;!

3,.,-\,.!+/+T/-! >&-+T$!! R! !
(
*+! V,C/.6=/-A!#+.=!3,.,-\,.OX/+T/--/_,H42Hk!3,.!3,Y!89G.1I6*:4)$;!

8J#!*/$+.! >0*+Y!! R! !
(
*+! 8/&&,-06$*!J!#+HB.=-6$*!@/$+.!NB.=$+H6+G!#+!?LLM!V/**$-.!1506;!

!8J#!*/$+.! >0*T&0!! R! *\!!!!!! `c*A!3C!@G!8/&i*!5$+c.OX,=!89$+G,!8/&i*!J!#+HB.!@/$+.156*:4)$$-;!

8/+.!0-,H6=! 006+-\!! R! !
(
*+! 8/+.B&,-!8-,H6=!NB=.=$+H6+G!Q!X/+-,\/*\6+G1S?L;!

#+.=!0-,HF"#! $%&%L'!! R! !*\!!! 3$=6/4!8/+.B&,-!#+.=$**&,+=!8-,H6=!</!",-./+$*!#+0/&,!1"0=7;!1<85;!
)J"!'%%! >.C0/&!! R! !*+!!!! )J"i.!8/&&/+!)=/0c!"-60,!#+H,PO!8/&C/.6=,!1?LD?QDUa?%;!
)J"O!6+HB.=! >.C6+!! R! !*+!!!! )J"i.!8/&&/+!)=/0c!"-60,!#+H,PO!#+HB.=-6$*.!1?LD?QDUa?%;!
)J"!H6\!A6,*H! >.HPC!! R! !*\!!! )J"i.!8/&C/.6=,!8/&&/+!)=/0cO!V6\6H,+H!d6,*H!1e!",-!2++B&;!
)J"!"Z!-$=6/! >.CP,!! R! !*+!!!! )J"i.!8/&C/.6=,!8/&&/+!)=/0cO!"-60,QZ$-+6+G.!3$=6/!1e4X.$;!
R,H!RB+H.! >A>>!! R! !*\!!! #+=,-,.=!3$=,O!R,H,-$*!RB+H.!1Z>>,0=6\,;!1e!",-!2++B&4X.$;!
8/&&!C$C,-! 0CL%!! R! !*\!!! 8&&,-06$*!"$C,-!3$=,!128;!
U!&/!<QT6**! >AG&U!! R! !*\!!! #+=,-,.=!3$=,O![7)7<-,$.B-A!56**.4),0!Ic=4UQI/71e!",-!2++4X.$;!
M!&/!<QT6**! >AG&M!! R! !*\!!! #+=,-,.=!3$=,O![7)7<-,$.B-A!56**.4),0!Ic=4MQI/71e!",-!2++4X.$;!
?!A-!<QT/+H! >AG=?!! R! !*\!!! #+=,-,.=!3$=,O![7)7<-,$.B-A!8/+.=!I$=B-6=6,.4?Qd-71e!",-!2++4X.$;!
'!A-!<QT/+H! >AG='!! R! !*\!!! #+=,-,.=!3$=,O![7)7<-,$.B-A!8/+.=!I$=B-6=6,.4'Qd-71e!",-!2++4X.$;!
?%!A-!<QT/+H! >AG=?%!! R! !*\!!! #+=,-,.=!3$=,O![7)7<-,$.B-A!8/+.=!I$=B-6=6,.4?%Qd-71e!",-!2++4X.$;!
2$$!T/+H! >A$$$0!! R! !*\!!! 5/+H!d6,*HO!I//HAi.!2$$!8/-C/-$=,!1e!",-!2++B&;!
5$$!T/+H! >AT$$0!! R! !*\!!! 5/+H!d6,*HO!I//HAi.!5$$!8/-C/-$=,!1e!",-!2++B&;!
8"QRR!.C-,$H! .0CL%!! R! *\!!!!!! 0CL%Q>A>>!128;!
U!&/QRR!.C-,$H! .>AG&U!! R! *\!!!!!! >AG&UQ>A>>!128;!
M!&/QRR!.C-,$H! .>AG&M!! R! *\!!!!!! >AG&MQ>A>>!128;!
?!A-QRR!.C-,$H! .>AG=?!! R! *\!!!!!! >AG=?Q>A>>!128;!
'!A-QRR!.C-,$H! .>AG='!! R! *\!!!!!! >AG='Q>A>>!128;!
?%!A-QRR!.C-,$H! .>AG=?%!! R! *\!!!!!! >AG=?%Q>A>>!128;!
2$$QRR!.C-,$H! .>A$$$0!! R! *\!!!!!! >A$$$0Q>A>>!128;!


