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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have now reached the level of sophistication

to permit analysis of important macroeconomic issues. Whereas the model parameters (θ) used

to be calibrated, numerical advances have made it possible to estimate models with as many

as a hundred parameters. Researchers are, however, aware that not all the parameters can be

consistently estimated because of identification failure: that is, changes in some of the parameters

may lead to indistinguishable outcomes. This paper studies local identification of a DSGE model

from its linearized solution. We use the restrictions implied by equivalent spectral densities to obtain

rank and order conditions for identification. Mean and long-run restrictions can be incorporated

in the form of a priori restrictions. The error terms can be the primitive shocks in the model but

can also be stationary specification or measurement errors.

The literature on identification of DSGE models is relatively small. Canova and Sala (2009)

drew attention to the identification problem and suggest to plot some statistics of the estimated

model evaluated at different parameter values. Consolo, Favero, and Paccagnini (2009) compare

the properties of the DSGE model with those of a factor augmented VAR. Both approaches, while

useful, do not provide formal conditions for identification. Rubio-Ramı́rez, Waggoner, and Zha

(2007) study identification of structural VARs but not DSGE models per se. The most complete

analysis to date is due to Iskrev (2010) who proposes to evaluate the derivatives with respect to θ

of some J < T model-implied autocovariances, where T is the sample size. His results depend on

J and the autocovariance matrices need to be solved numerically.

Our analysis has three distinctive features. First, we do not compute any autocovariances.

Instead, we study the implications of observational equivalence for the canonical model that gener-

ates the autocovariances. This leads to a finite system of nonlinear equations that admits a unique

solution if and only if θ is identified. The rank and the order of the system provide the necessary

and sufficient conditions for identification of θ. Our approach has roots in control theory which

typically assumes that both the outputs (endogenous variables) and the inputs (innovations) are

observed. In that literature, the restrictions implied by minimal systems are enough to completely

characterize observational equivalence. However, this is not enough for DSGE models because the

latent shocks have unknown variances, and not all output variables are observed. For this reason,

we derive new results that characterize observational equivalence by further restricting attention to

transfer functions that are left-invertible. Minimality and left-invertibility, which will be explained

below, are what allows us to establish the necessary and sufficient conditions for identification

without computing any autocovariance or the spectral density.

Second, the identification conditions for singular and non-singular systems are studied sepa-
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rately. Classical identification results are typically derived under the assumption that the number

of endogenous variables equals the number of shocks, and that the innovations are ‘fundamental’.

However, DSGE models can have fewer shocks than observables, a condition known as ‘stochastic

singularity’. Once measurement errors are allowed, DSGE models may also have fewer observables

than shocks, and in such cases, the innovations are usually non-fundamental. As the singular and

non-singular case each has specific implications about what can be uncovered from the observables,

the identification restrictions are also different. Nonetheless, in the important special case when

the system is ‘square’, the two sets of conditions coincide.

Third, our conditions for identification are stated in terms of a matrix ∆(θ). The dimension

of ∆(θ) determines the order condition for identification and is a simple function of the number of

variables appearing in the DSGE model. The rank of ∆(θ) is a function of the parameters in the

linearized solution to the DSGE model only and can be evaluated prior to estimation. Collinearity

among the columns of ∆(θ) sheds light on whether non-identification is due to parameter depen-

dency, or delicate interactions between the impulse and the propagating mechanism of the model.

The null space of ∆(θ) helps isolate which parameters are responsible for non-identification.

Before turning to the main analysis under more general conditions, it is useful to better under-

stand what is unusual about DSGE models. To begin with, the observables of the model are usually

VARMA processes. As discussed in Ravenna (2007), DSGE models have finite VAR representations

only under specific conditions. Identification of θ would thus be futile unless the VARMA parame-

ters were identifiable even though we are not interested in these parameters per se. This, however,

is not a trivial problem because VARMA models are potentially ‘exchangeable’ and common factors

can exist unless a so-called left-coprime condition is satisfied1 to rule out redundant polynomials

that lead to an overparameteried model (see, e.g., Hannan, 1971). The canonical VARMA model

and its order, also known as McMillan degree, can be solved only when the system is small.2 A

problem that further complicates identification is that the VARMA representations of stochastically

singular models involve matrices that are generally not square. This violates the assumptions used

in Deistler (1976), for example. Thus, no attempt has been made to identify DSGE models directly

from the VARMA representations.

Second, the solution of a DSGE model is not in the form of a simultaneous equations system

for which classical results due to Koopmans (1950), Fisher (1966), Rothenberg (1971), Hausman

and Taylor (1983) apply. First, these results are derived for static models in which the errors
1Exchangeable means that two processes can have identical moving average representations if there is a uni-

modular factor U(L) in the autoregressive or moving-average matrix polynomial. For example, the VMA model
yt = U(L)Θ(L)εt is equivalent to the VARMA model U(L)−1yt = Θ(L)εt (see, e.g., Section 2.3 in Reinsel, 2003).

2See, e.g., Solo (1986), Reinsel (2003), and Lutkepohl (2005).
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of the reduced form are orthogonal to the predetermined regressors. Obviously, DSGE models

are dynamic, and any serial correlation in the shocks will violate the orthogonality conditions.

Furthermore, traditional analysis assumes iid innovations which rules out important features in

time series data such as conditional heteroskedasticity. While results for full rank dynamic models

are given in Hatanaka (1975), Hannan (1971), Sargan (1977), they all assume the presence of

exogenous variables. However, there are no exogenous variables in DSGE models other than the

latent shocks. Furthermore, results for full rank systems do not easily extend to singular systems.

Though we can drop some variables so that the system is full rank, the results will not be robust

unless we know which variables are ancillary for the parameters of interest.

Finally, and perhaps the most important reason why classical identification results are invalid

is that the rank conditions of Rothenberg (1971) rest on the assumption that the reduced form

parameters are identifiable. However, as Wallis (1977) and others have pointed out, there may be

common factors in the rational polynomial matrices that relate the exogenous to the endogenous

variables, rendering the parameters of the ‘reduced form’ model not identifiable. One of our main

results is to show that this problem is a distinct possibility in DSGE models. This non-identifiability

of the parameters in the linearized (canonical) solution of DSGE models should not come as a

surprise because as already pointed out, the parameters of the VARMA representation for the

same DSGE model may have common factors that prohibit identification.

The rest of the paper is organized as follows. Section 2 sets up the econometric framework.

Sections 3 and 4 present rank and order conditions derived for singular and non-singular models,

respectively. Section 5 studies partial and conditional 1identification under a priori restrictions.

Section 6 gives two different perspectives on our results and relates them to the information matrix.

An application to An and Schorfheide’s (2007) model is given in Section 7. Additional examples

are studied in a web-appendix. The key steps of the proofs are given in the Appendix. A detailed

long proof is available on request.

2 Setup

Consider a DSGE model with (deep) parameters of interest θ belonging to a set Θ ⊆ Rnθ . The

variables of the model, denoted by Xa
t , are driven by structural shocks with innovations εzt. The

model is characterized by a set of equations that define the steady state values Xa
ss(θ) and Euler

equations that describe the transition dynamics. Linearizing around the steady state gives a system

of expectational difference equations EtΓ0(θ)Xa
t+1 = Γ1(θ)Xa

t + εzt that can be solved to yield a so-

lution in the form of difference equations. Solution algorithms include Anderson and Moore (1985),

Uhlig (1999), Klein (2000), King and Watson (2002), and Sims (2002) among others. Numerical

3



accuracy of these algorithm is taken as given in the identification analysis to follow.

Let Xt be a nX × 1 state vector that is a subvector of Xa
t , and let Yt be a nY × 1 vector of

observables. We allow for measurement and specification errors whose innovations are εvt. Collect

all the innovations into a nε× 1 vector εt = (ε′zt, ε
′
vt)
′. The state space solution of Yt is given by the

transition and measurement equations:

Xt+1

nX×1

= A(θ)
nX×nX

Xt

nX×1

+ B(θ)
nX×nε

εt+1

nε×1

(1a)

Yt+1

nY ×1

= C(θ)
nY ×nX

Xt

nX×1

+ D(θ)
nY ×nε

εt+1

nε×1

. (1b)

Assumption 1 For every θ ∈ Θ and every (t, s), E(εt) = 0 and E(εtε′s) = δt−sΣε(θ), where Σε(θ)

is positive definite with Cholesky decomposition Lε(θ).

Assumption 2 For every θ ∈ Θ and for any z ∈ C, det(zInX −A(θ)) = 0 implies |z| < 1.

Assumption 1 only requires the innovations εt to be white noise which is weaker than iid. Since

Σε(θ) is allowed to be non-diagonal, the innovations can be mutually correlated as in Curdia and

Reis (2009). The conditional variance of εt can change over time to accommodate GARCH or

stochastic volatility effects, provided the process remains covariance stationary. In these cases,

Σε(θ) is the unconditional variance of εt which may be a complicated function of the underlying

GARCH or stochastic volatility parameters. The first order effects of heteroskedasticity would

be captured in a partially non-linear approximation as in Justiniano and Primiceri (2008), or a

conditionally linear approximation as in Benigno, Benigno, and Nistico (2011). Non-linearities

that can only be captured by higher order approximations are outside the scope of our analysis.

Assumption 2 is a stability condition. In cases when there are permanent shocks, the variables of

the model are assumed to be appropriately normalized so that the eigenvalues of A(θ) remain inside

the unit circle. Under Assumptions 1 and 2, {Yt} is weakly stationary and its time series properties

are completely characterized by its time invariant unconditional mean and autocovariances. The

same result can also be motivated by assuming εt is iid Gaussian. The casual, vector moving-average

VMA(∞) representation for Yt is:

Yt =
∞∑
j=0

hε(j, θ)εt−j = Hε(L−1; θ)εt, (2)

where L is the lag operator. The nY × nε matrices hε(j, θ) are the Markov parameters defined by

hε(0, θ) = D(θ), and hε(j, θ) = C(θ)A(θ)j−1B(θ), for all j > 1. For z ∈ C, the transfer function
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(the z-transform of the impulse response function) is:

Hε(z; θ) = D(θ) + C(θ)[zInX −A(θ)]−1B(θ) =
∞∑
j=0

hε(j, θ)z−j .

Let ΓY (j; θ) = E(YtY ′t−j) = ΓY (−j; θ)′ be the autocovariance matrix at lag j. Then for all z ∈ C,

the nY × nY spectral density matrix of {Yt} is:

ΩY (z; θ) ≡ ΓY (0; θ) +
∞∑
j=1

ΓY (j; θ)z−j +
∞∑
j=1

ΓY (−j; θ)z−j

= Hε(z; θ)Σε(θ)Hε(z−1; θ)′.

In addition to stability, it is quite frequent in econometric analysis to assume left-invertibility

(also known as miniphase). Left-invertibility fails if, for example, the shocks are anticipated. The

issue is considered in Lippi and Reichlin (1994), and Leeper, Walker, and Yang (2008), among oth-

ers. Under left-invertibility, (2) is the Wold representation and the innovations εt are fundamental,

meaning that εt is spanned by Y t ≡ {Yt−k}∞k=0, the current and past history of Yt. For square

models with nε = nY , left-invertibility holds when detHε(z; θ) 6= 0 in |z| > 1.3 In models that are

not square, left-invertibility requires that Hε(z; θ) is full column rank in |z| > 1, (see, e.g., Rozanov,

1967). In general, the properties of Hε(z; θ) are related to those of the (Rosenbrock) system matrix:

P(z; θ) =
(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)
, z ∈ C. (3)

Lemma 1 Suppose Assumptions 1 and 2 hold. Then rank P(z; θ) = nX + rank Hε(z; θ) for any

θ ∈ Θ and for every z ∈ C\A(θ), where A(θ) is the set of eigenvalues of A(θ).

Lemma 1 will be used subsequently.

The identification problem can now be stated as follows. Suppose we are given a sample of

length T generated by (1a) and (1b) with θ = θ0. With T infinitely large, under what conditions

would it be possible to uncover the value θ0 and the model that generated {Yt}? We start by

discussing the identifiability from the autocovariances of Yt. Mean, long-run and other (nonlinear)

restrictions are exploited in Section 5.

Definition 1 θ0 and θ1 are observationally equivalent if ΩY (z; θ0) = ΩY (z; θ1) for all z ∈ C, or

equivalently, ΓY (j, θ0) = ΓY (j, θ1) at all j > 0.

Definition 2 The DSGE model is locally identifiable from the autocovariances of Yt at a point

θ0 ∈ Θ if there exists an open neighborhood of θ0 such that for every θ1 in this neighborhood, θ0

and θ1 are observationally equivalent if and only if θ1 = θ0.
3In the borderline case detHε(z; θ) = 0 at |z| = 1, the transfer function is left-invertible and yet not invertible.
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In theory, a sufficient condition for uniqueness is that the matrix of derivatives with respect

to θ of ΓY,∞(θ) ≡ limT→∞ ΓY,T (θ), where ΓY,T (θ) ≡
(
ΓY (0; θ) ΓY (1; θ) . . . ΓY (T ; θ)

)
, has full

column rank when evaluated at θ = θ0. The autocovariance matrix at each j is

ΓY (j; θ) =
∞∑
k=0

hε(k + j; θ)Σε(θ)hε(k; θ)′ = C(θ)A(θ)jΓX(0; θ)C(θ)′ + 1Ij=0D(θ)Σε(θ)D(θ)′,

where ΓX(0; θ) = E(XtX
′
t) solves ΓX(0; θ) = A(θ)ΓX(0; θ)A(θ)′ + B(θ)Σε(θ)B(θ)′. Clearly, each

ΓY (j; θ) can only be approximated as a truncated sum of the Markov parameters, or ΓX(0; θ) has

to be solved from a system of nonlinear equations. Furthermore, we can only compute ΓY,T (θ) for

some finite T . The rank of ΓY,T (θ) can be sensitive to approximation and numerical errors.

Observe, however that ΓY (j; θ) and ΩY (z; θ) are defined from the parameters of the canonical

(ABCD) model. Rather than establishing identification from the partial derivatives of ΓY,T (θ)

with respect to θ, we use features of the canonical model to characterize observational equivalence

through a finite system of equations directly involving the ABCD matrices. This sheds light on the

identification problem without evaluating ΓY,T (θ). We begin with the singular case.

3 Singular Case nε 6 nY

Stochastic singularity pertains to the situation when there are fewer stochastic disturbances than

observables. For example, stochastic growth models are singular because output, consumption, and

investment are all driven by a single shock. While cointegrated systems have been widely analyzed,

evidence for stochastic singularity at business cycle frequencies is unusual. In practice, measurement

and specification errors are added to DSGE models prior to estimation, or endogenous variables

are dropped from the analysis to restore non-singularity. Nonetheless, if a singular system is not

identifiable, it is not clear that a non-singular system with measurement errors or few observables

can be identified. It is thus of interest to begin by studying singular systems even if one is eventually

interested in estimating a non-singular one.

Let ΛS(θ) be the hyperparameters in the state space solution:

ΛS(θ) ≡
(
(vec A(θ))′, (vec B(θ))′, (vec C(θ))′, (vec D(θ))′, (vech Σε(θ))′

)′
.

The dimension of ΛS(θ) is nS
Λ = n2

X + nXnε + nY nX + nY nε + nε(nε + 1)/2.

Assumption 3-S The mapping ΛS : θ 7→ ΛS(θ) is continuously differentiable on Θ.

Our point of departure is that associated with each θ ∈ Θ is the transfer function Hε(z; ΛS(θ))

and the covariance matrix Σε(θ). The spectral density ΩY (z; θ) depends on θ only through ΛS(θ).
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By definition, ΩY (z; θ0) = ΩY (z; θ1) when

Hε(z; ΛS(θ0))Σε(θ0)Hε(z−1; ΛS(θ0))′ = Hε(z; ΛS(θ1))Σε(θ1)Hε(z−1; ΛS(θ1))′. (4)

Equivalent spectral densities can arise because: (i) for given Σε(θ), each transfer functionHε(z; ΛS(θ))

can potentially be obtained from a multitude of quadruples (A(θ), B(θ), C(θ), D(θ)), or (ii) there

can be many pairs (Hε(z; ΛS(θ)),Σε(θ)) that jointly generate the same spectral density. In eco-

nomic terms, the first problem can arise when two structures induce identical impulse responses to

an innovation of a given size, and the second problem can arise when an innovation of arbitrary size

can combine with the propagating mechanism to yield the same autocovariances. To make precise

their implications on the canonical model, the following assumptions are required.

Assumption 4-S For every θ ∈ Θ, rank P(z; θ) = nX + nε in |z| > 1.

Assumption 5-S For every θ ∈ Θ, (i) the matrix
(
B(θ) A(θ)B(θ) . . . AnX−1(θ)B(θ)

)
has full

row rank; and (ii) the matrix
(
C(θ)′ A(θ)′C(θ)′ . . . AnX−1(θ)′C(θ)′

)′ has full column rank.

The transfer functions of singular systems are left-invertible if and only if rank Hε(z; θ) = nε in

|z| > 1. Lemma 1 implies that Hε(z; θ) is left-invertible if and only if

rank P(z; θ) = nX + nε, for all |z| > 1.

Thus, Assumption 4-S ensures left-invertibility in systems with nε 6 nY . It generalizes the condi-

tions of Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007) who propose an eigen-

value test for left-invertibility when the system is square (nε = nY ) and D(θ) invertible. When

combined with Assumption 1, Assumption 4-S also ensures that the rank of the spectral density is

nε almost everywhere (a.e.) in C. That the ranks of ΩY (z; θ) and Hε(z; θ) coincide is instrumental

in the analysis that will follow.

Assumption 5-S ensures that (A(θ), B(θ)) is controllable and (A(θ), C(θ)) is observable and

hence that the system is minimal. Controllability means that for any initial state, it is always

possible to design an input sequence that puts the system to a desired final state. Observability

means that we can always reconstruct the initial state from observing the evolution of the output,

given the evolution of the input.4 Minimality is similar to relative co-primeness, and in VARMA

terminology, nX is the McMillan degree. Hannan (1971) imposed co-primeness in his seminal work

on identification of dynamic simultaneous equations. A ‘minimal’ system has the property that

the state vector Xt is of the smallest dimension possible. In DSGE models, this is the smallest
4See, e.g. Anderson and Moore (1979). The matrices A(θ) and C(θ) in a minimal system need not be full rank,

meaning that some components of Xt can be white noise, and that identities are allowed in Yt.
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vector of exogenous and endogenous state variables that are rid of common factors and redundant

dynamics, and yet able to fully characterize the properties of the model. Minimality thus simplifies

the identification analysis. As a DSGE model is based on microfoundations, nX is not hard to

determine. This will be illustrated in the example considered in Section 7.

Assumptions 4-S and 5-S are key to obtaining a complete characterization of observational

equivalence in singular models. This is achieved as follows. We first use the fact that Hε(z; θ0) =

Hε(z; θ1) if and only if there exists a full rank nX × nX matrix T such that

(A(θ1), B(θ1), C(θ1), D(θ1)) = (TA(θ0)T−1, TB(θ0), C(θ0)T−1, D(θ0)). (5)

The quadruples (A(θ0), B(θ0), C(θ0), D(θ0)) and (A(θ1), B(θ1), C(θ1), D(θ1)) are said to be related

by a similarity transformation. That this transformation is sufficient for transfer functions to be

equivalent is obvious. That it is also necessary follows from an algebraically involved but well-

known result in control theory (see, e.g., Theorem 3.10 in Antsaklis and Michel, 1997). In that

literature when the shocks are observed, using minimality to identify θ from the systems matrices

ABCD is referred to as structural identification; see, e.g., Hannan and Diestler (1988, Chapter 2.7).

However, in DSGE models εt are latent with unobserved variances. Thus, minimality is necessary

but not sufficient to tie down the class of equivalent systems. To do so, we also need to take into

account that Hε(z; θ) can interact with Σε(θ) to give equivalent spectral densities.

To characterize such interactions, letHε(z; θ) ≡ Hε(z; θ)Lε(θ). Since ΩY (z; θ) = Hε(z; θ)Hε(z−1; θ)′,

it is not hard to see that H̃ε(z; θ) = Hε(z; θ)V (z) will yield the same spectral density for any

V (z) satisfying V (z)V (z−1)′ = Inε , even if Σε(θ) is an identity matrix. Thus, equivalent pairs

(Hε(z; θ),Σε(θ)) are related through a polynomial matrix V (z) of unknown degree. This is unlike

in static models in which V (z) = V is a constant matrix. Hence, the number of static models in

the equivalent class is substantially smaller than in the dynamic case.

Assumption 4-S now comes into play as it will be used to narrow down the equivalent pairs

(Hε(z; θ),Σε(θ)). Suppose for the moment that the system is square. It is well known that

the spectral density of a full rank covariance stationary process can be factorized as ΩY (z; θ) =

Wε(z; θ)Wε(z−1; θ)′, where Wε(z; θ) is known as the spectral factor. Much less known is that

if Wε(z; θ) and W̃ε(z; θ) are both spectral factors that are also left-invertible, then necessarily

W̃ε(z; θ) = Wε(z; θ)V with V V ′ = Inε (see, e.g., Youla, 1961; Anderson, 1969; Kailath, Sayed, and

Hassibi, 2000). Note that V is a constant matrix and is no longer a polynomial matrix in z. This

means that no dynamic transformations of left-invertible factors are allowed. Importantly, this

result holds even in singular models. Our spectral factor is Wε(z; θ) = Hε(z; θ)Lε(θ). It is left-

invertible if and only if Hε(z; θ) is left-invertible which holds by Assumption 4-S. In such a case,

two equivalent pairs (Hε(z; θ),Σε(θ)) must be related by a full rank matrix U = Lε(θ0)V Lε(θ1)−1
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such that

Hε(z; θ1) = Hε(z; θ0)U, and UΣε(θ1)U ′ = Σε(θ0), for every z ∈ C. (6)

Combining the transformations in (5) and (6) leads to our first main result.

Proposition 1-S (Observational Equivalence nε 6 nY ) Suppose Assumptions 1, 2, 4-S, and

5-S hold. Then θ0 and θ1 are observationally equivalent if and only if there exists a full rank nX×nX
matrix T and a full rank nε × nε matrix U such that:

A(θ1) = TA(θ0)T−1, B(θ1) = TB(θ0)U, C(θ1) = C(θ0)T−1, D(θ1) = D(θ0)U,

Σε(θ1) = U−1Σε(θ0)U−1′. (7)

Proposition 1-S, proved in the Appendix, says that in singular systems with nε 6 nY , there can

exist no other transformation of the hyperparameters ΛS(θ) other than those defined in (7) that

can give rise to equivalent spectral densities. In other words, these transformations are necessary

and sufficient for observational equivalence. The crux of the proposition is to use minimality and

left-invertibility to narrow down the set of observationally equivalent hyperparameters. The result

also holds in the important special case of a square system.

An immediate implication of Proposition 1-S is that ΛS(θ) may not be identifiable. In other

words, the ABCD representation is not a reduced form in the sense of classical simultaneous equa-

tions analysis. The problem can arise even if the population autocovariances are available. Propo-

sition 1-S can now be used to derive formal identification conditions. Define the continuously

differentiable mapping δS : Θ× Rn2
X × Rn2

ε → RnS
Λ as

δS(θ, T, U) ≡


vec (TA(θ)T−1)
vec (TB(θ)U)
vec (C(θ)T−1)
vec (D(θ)U)

vech (U−1Σε(θ)U−1′)

 . (8)

The mapping defines nS
Λ equations in nθ + n2

X + n2
ε unknowns.

Lemma 2-S Under the assumptions of Proposition 1-S, θ is locally identifiable from the autoco-

variances of Yt at a point θ0 ∈ Θ if and only if the system of equations δS(θ0, InX , Inε) = δS(θ1, T, U)

has a locally unique solution (θ1, T, U) = (θ0, InX , Inε).

Lemma 2-S, proved in the Appendix, says that a singular DSGE model is locally identifiable at

θ0 ∈ Θ if and only if δS(θ, T, U) is locally injective at (θ0, InX , Inε). The matrix of partial derivatives
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of δS(θ, T, U) evaluated at (θ0, InX , Inε) is given by:5

∆S(θ0) ≡
(
∂δS(θ,InX ,Inε )

∂θ

∂δS(θ,InX ,Inε )

∂vec T

∂δS(θ,InX ,Inε )

∂vec U

)∣∣∣
θ=θ0

=



∂vec A(θ)
∂θ A(θ)′ ⊗ InX − InX ⊗A(θ) 0n2

X×n2
ε

∂vec B(θ)
∂θ B(θ)′ ⊗ InX Inε ⊗B(θ)

∂vec C(θ)
∂θ −InX ⊗ C(θ) 0nY nX×n2

ε
∂vec D(θ)

∂θ 0nY nX×n2
X

Inε ⊗D(θ)
∂vech Σε(θ)

∂θ 0nε(nε+1)
2

×n2
X

−2Enε
[
Σε(θ)⊗ Inε

]


θ=θ0

≡
(
∆S

Λ(θ0) ∆S
T (θ0) ∆S

U (θ0)
)
.

As δS is continuously differentiable, a sufficient condition for δS to be locally injective is that

the matrix of partial derivatives of δS(θ, T, U) has full column rank at (θ0, InX , Inε). The nS
Λ × nθ

block defined by ∆S
Λ(θ0) describes the local properties of the mapping from θ to ΛS(θ). When the

rank of ∆S
Λ(θ0) equals nθ, the mapping is locally invertible at θ0. The middle nS

Λ × n2
X matrix

∆S
T (θ0) corresponds to the partial derivatives with respect to T evaluated at (T,U) = (InX , Inε).

When rank ∆S
T (θ0) = n2

X , then the only (local) similarity transformation is provided by the identity

matrix. The final nS
Λ × n2

ε matrix ∆S
U (θ0) corresponds to the partial derivatives with respect to U ,

evaluated at (T,U) = (InX , Inε). When rank ∆S
U (θ0) = n2

ε then the spectral factorization (locally)

uniquely determines the pair (Hε(z; θ),Σε(θ)). Note that since ΛS(θ0) may not be identifiable, full

column rank of ∆S
Λ(θ0) alone is necessary but not sufficient for identification.

Proposition 2-S (Rank and Order Conditions nε 6 nY ) Suppose Assumptions 1, 2, 3-S, 4-S

and 5-S hold. If the rank of ∆S(θ) remains constant in a neighborhood of θ0, then a necessary and

sufficient rank condition for θ to be locally identified from the autocovariances of Yt at a point θ0

in Θ is:

rank ∆S(θ0) = rank
(
∆S

Λ(θ0) ∆S
T (θ0) ∆S

U (θ0)
)

= nθ + n2
X + n2

ε .

A necessary order condition is: nθ +n2
X +n2

ε 6 n
S
Λ, where nS

Λ = (nX +nY )(nX +nε)+nε(nε+1)/2.

Proposition 2-S is new to both the econometrics and control theory literature. It extends the

results of Hannan (1971), Deistler (1976), and Glover and Willems (1974) to stochastically singular

systems in which εt is unobserved with unknown covariance Σε(θ). The results allow researchers

to establish identifiability of DSGE models prior to estimation, and independently of the estimator

used. Numerical evaluations of the population autocovariances or of the spectral density are not

necessary because we study their determinants ΛS(θ) directly.
5For an arbitrary matrix X, we let vec(X) be formed by stacking the columns of X into a single column vector.

Also for any symmetric n × n matrix A, En is the left inverse of the n × n(n+1)
2

duplication matrix Gn, where
vec (A) = Gnvech (A).
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The order condition requires the number of equations defined by δS to be at least as large as

the number of unknowns in those equations. It can be rewritten as

nθ 6 nY nX + nε(nX + nY − nε) +
nε(nε + 1)

2
.

The condition depends on nY , nX , and nε representing the structure of the economic model. They

play the role of the number of endogenous and predetermined variables in classical simultaneous

equations analysis; the sample size T is not involved. The term nY − nε > 0 reflects stochastic

singularity and is, however, specific to DSGE models.

An important implication of the proposition is that identifiability of θ can be studied from the

second moments of the data, even though the hyperparameters ΛS(θ) may not be identifiable. The

constant rank requirement in Proposition 2-S ensures that (θ0, InX , Inε) is a regular point. Our rank

condition is still sufficient for identification, even if θ0 fails to be a regular point.6 Both rank and

order conditions have a classical flavor even though we work with assumptions that would not be

valid in a classical setup.

The sub-matrices ∆S
ΛT (θ0) =

(
∆S

Λ(θ0) ∆S
T (θ0)

)
and ∆S

ΛU (θ0) =
(
∆Λ(θ0) ∆U (θ0)

)
reveal del-

icate types of non-identification due to the features of the impulse and propagating mechanism of

the model. It is possible that ∆S
Λ(θ0) is full rank and yet ∆S(θ0) is rank deficient. As will be shown

in Section 6, the null space of ∆S(θ0) can be used to isolate the parameters that are not identifiable.

Such information about the model is useful even if estimation is not of interest.

Minimality and left-invertibility are maintained assumptions of Proposition 2-S. However, the

rank conditions on the sub-matrices of ∆S(θ0) remain necessary for identification even if one of

these assumptions fail. In particular, (i) rank ∆S
ΛU (θ0) = nθ + n2

ε is necessary for θ0 to be iden-

tifiable when the system fails to be minimal but the transfer function is left-invertible, while (ii)

rank ∆S
ΛT (θ0) = nθ + n2

X is necessary for identification of minimal systems with transfer functions

that are not left-invertible. To see why, consider case (i). Since the transformation A(θ1) = A(θ0),

B(θ1) = B(θ0)U , C(θ1) = C(θ0), D(θ1) = D(θ0), and Σε(θ1) = U−1Σε(θ0)U−1′ always leads to ob-

servational equivalence whether or not the system is not minimal, local injectivity of δS(θ, InX , U)

at (θ, U) = (θ0, Inε) is still necessary for local identification of θ0. Even if both minimality and

left-invertibility fail to hold, rank ∆S
Λ(θ0) = nθ is still a useful diagnostic it is still a necessary

condition for identification.
6When the elements of ∆S(θ) are analytic functions, then almost every point θ in Θ is regular (see, e.g., Corollary

5.A.1. in Fisher, 1966).
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4 Non-Singular Case nε > nY

A non-singular system occurs when there are at least as many shocks as variables. When nε > nY ,

(2) is no longer the Wold representation for Yt and εt is no longer fundamental. More precisely, the

transfer function of a non-singular system with more shocks than observables is not left-invertible.

As the foregoing results for singular systems are now invalid, a different framework is necessary.

We re-parameterize the state space solution in (1b)-(1a) to obtain its innovations representation,

details of which can be found in Anderson and Moore (1979), Hansen and Sargent (2005).

The innovations representation consists of a system of measurement and transition equations:

X̂t+1|t+1 = A(θ)X̂t|t +K(θ)at+1 (9a)

Yt+1 = C(θ)X̂t|t + at+1 (9b)

where K(θ) is the steady state Kalman gain. The state vector, denoted by X̂t|t, is now the optimal

linear predictor of Xt based on the history Y t, and the error of the system at+1 = Yt+1 −C(θ)X̂t|t

is the one-step ahead forecast error of Yt+1. Notably, the nε > nY shocks are now consolidated into

a vector of nY white noise forecast errors at whose variance is Σa(θ). Let La(θ) be the Cholesky

decomposition of Σa(θ). Collect the system parameters of the innovations model into

ΛNS(θ) ≡
(
(vec A(θ))′, (vec K(θ))′, (vec C(θ))′, (vech Σa(θ))′

)′
,

in which the number of components equals nNS
Λ = n2

X + 2nXnY + nY (nY + 1)/2.

Assumption 3-NS The mapping ΛNS : θ 7→ ΛNS(θ) is continuously differentiable on Θ.

Assumption 4-NS For every θ ∈ Θ, D(θ)Σε(θ)D(θ)′ is non-singular.

Assumption 5-NS For every θ ∈ Θ, (i) the matrix
(
K(θ) A(θ)K(θ) . . . AnX−1(θ)K(θ)

)
has full

row rank; and (ii) the matrix
(
C(θ)′ A(θ)′C(θ)′ . . . AnX−1(θ)′C(θ)′

)′ has full column rank.

The validity of the innovations representation hinges on the existence of a positive semi-definite

solution to the so-called discrete algebraic Ricatti equation (DARE). In the literature, the existence

of this solution is often assumed. To proceed with identification analysis, we need to be make precise

the primitive conditions for this result. Specifically, D(θ) must be full row rank (Assumption 4-NS)

so that each of the innovations affects at least one series. This rules out observables that are defined

by identities and are not affected by any shock or measurement error. Under Assumption 4-NS,

K(θ) and Σa(θ) are well defined functions of the hyperparameter ΛS(θ) and their expressions are

given in Equations (19) and (18) of Appendix. Importantly, Yt now has Wold representation

Yt =
∞∑
j=0

ha(j; θ)at = Ha(L−1; θ)at,
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in which the innovations at are fundamental, and whose covariance matrix Σa(θ) is nonsingular for

every θ ∈ Θ. Furthermore, the corresponding transfer function

Ha(z; θ) = InY + C(θ)[zInX −A(θ)]−1K(θ)

is such that Ha(z; θ) is square and invertible in |z| > 1 by construction. In other words, the

innovations representation delivers left-invertibility automatically. This is unlike in singular systems

when left-invertibility needs to be assumed. Assumption 5-NS ensures that the system (9a)-(9b) is

minimal. Written in terms of Ha(z; θ) and Σa(θ), the spectral density matrix of Yt is:

ΩY (z; θ) = Ha(z; θ)Σa(θ)Ha(z−1; θ)′.

The following result characterizes observational equivalence in non-singular models.

Proposition 1-NS (Observational Equivalence nε > nY ) Suppose Assumptions 1, 2, 4-NS,

and 5-NS hold. Then θ0 and θ1 are observationally equivalent if and only if there exists a full rank

nX × nX matrix T such that:

A(θ1) = TA(θ0)T−1, K(θ1) = TK(θ0), C(θ1) = C(θ0)T−1, Σa(θ1) = Σa(θ0). (10)

Proposition 1-NS takes as a starting point that transfer functions related by similarity trans-

forms must also have equivalent Kalman filters. Furthermore, Ha(z; θ) is nonsingular in |z| > 1 so

that the spectral factor Wa(θ) = Ha(z; θ)La(θ) is left-invertible. Combining the minimality and

left-invertibility restrictions yield (10). The restrictions no longer involve U because the innovations

representation imposes the normalization ha(0; θ) = InX . Instead, the restrictions are subsumed in

K(θ) which needs to be solved numerically. because the forecast errors at are derived from Kalman

filtering. No filtering is necessary to study identification of left-invertible singular models.

For any θ ∈ Θ and any full rank nX × nX matrix T , let

δNS(θ, T ) ≡


vec (TA(θ)T−1)

vec (TK(θ))
vec (C(θ)T−1)
vech (Σa(θ))

 . (11)

The mapping δNS : Θ × Rn2
X → RnNS

Λ defines nNS
Λ equations in nθ + n2

X unknowns. Under the

assumptions of Proposition 1-NS, θ is locally identifiable from the autocovariances of Yt at a point

θ0 ∈ Θ if and only if the system of equations δNS(θ0, InX ) = δNS(θ1, T ) has a locally unique solution

(θ1, T ) = (θ0, InX ). The proof uses arguments analogous to those for Lemma 2-S. The matrix of

13



partial derivatives of δNS(θ, T ) evaluated at (θ0, InX ) is:

∆NS(θ0) ≡
(
∂δ(θ,InX )

∂θ

∂δ(θ,InX )

∂vec T

)∣∣∣
θ=θ0

=


∂vec A(θ)

∂θ A(θ)′ ⊗ InX − InX ⊗A(θ)
∂vec K(θ)

∂θ K(θ)′ ⊗ InX
∂vec C(θ)

∂θ −InX ⊗ C(θ)
∂vech Σa(θ)

∂θ 0nY (nY +1)

2
×n2

X


θ=θ0

≡
(
∆NS

Λ (θ0) ∆NS
T (θ0)

)
.

Proposition 2-NS (Rank and Order Conditions nε > nY ) Suppose Assumptions 1, 2, 3-NS,

4-NS, and 5-NS hold. If the rank of ∆NS(θ) remains constant in a neighborhood of θ0, then a

necessary and sufficient rank condition for θ to be locally identified from the autocovariances of Yt
at a point θ0 in Θ is:

rank ∆NS(θ0) = rank
(
∆NS

Λ (θ0) ∆NS
T (θ0)

)
= nθ + n2

X .

A necessary order condition is nθ + n2
X 6 n

NS
Λ , where nNS

Λ = n2
X + 2nXnY + nY (nY + 1)/2.

The order condition simplifies to nθ 6 2nXnY + nY (nY +1)
2 . Unlike in the singular case, the condition

does not depend on nε because the errors at in the innovations representation is always of dimension

nY . As in the singular case, rank ∆NS
Λ (θ0) = nθ remains necessary for identification when the

minimality fails. While the rank requirement in Proposition 2-NS appears weaker than in the

singular case, the assumptions are stronger since Assumption 4-NS must also hold. Furthermore,

both K(θ) and Σa(θ) are highly nonlinear functions of (A(θ), B(θ), C(θ), D(θ)). If one starts with

a singular system and the mapping from θ to ΛS(θ) is invertible, adding measurement errors does

not guarantee that the mapping from θ to ΛNS(θ) will remain invertible because filtering entails

information loss. The addition of measurement errors might help restore non-singularity but could

complicate identification.

When the system is square, the rank and order conditions derived in Proposition 2-NS coincide

with those in Proposition 2-S. The reason is that the state covariance matrix of the innovations

model becomes degenerate when nY = nε. This allows K(θ) to be expressed in terms of B(θ)

and D(θ). Specifically, K(θ) = (B(θ)Σε(θ)D(θ)′(D(θ)Σε(θ)D(θ)′)−1. Simplifying shows that the

transformation (10) holds if and only if there exists a full rank nY ×nY matrix U such that (7) holds.

Thus, in the square case the condition rank ∆NS(θ0) = nθ + n2
X of Proposition 2-NS is equivalent

to the condition rank ∆S(θ0) = nθ + n2
X + n2

Y of Proposition 2-S, as should be the case.

While left-invertible square systems can be analyzed by either Proposition 2-S or 2-NS, square

systems that are not invertible (and hence fail to satisfy Assumption 4-S) can only be analyzed using
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the innovations representation. This is possible because the transfer function of the innovations

model is always left-invertible. For example, the model considered Leeper, Walker, and Yang (2008)

is square, but the presence of anticipated shocks violates invertibility. In such a case, identification

can only be analyzed by Proposition 2-NS.

Our main identification results can be summarized as follows.

Singular systems Square systems Non-singular systems
nε < nY nε = nY nε > nY

left-invertible non-invertible
Representation ABCD ABCD AKC AKC

Obs. Equivalnce 1-S 1-S 1-NS 1-NS
Rank and Order 2-S 2-S 2-NS 2-NS

5 Conditional and Partial Identification

Restrictions on some components of θ are often imposed for a number of reasons. They may enable

identification of the remaining parameters when the rank conditions in Proposition 2-S or 2-NS

fail. A researcher may have detailed information about a parameter so that consideration of other

values is unnecessary. The unconditional moments implied by second order approximations to the

model may contain information about θ. More generally, consider a set of nR a priori restrictions

that, when evaluated at θ0 satisfy:

ϕ(θ0) = 0.

For example, steady state restrictions EY a
t = EY a

ss(θ) can be written as ϕ(θ0) = 0. Long run

restrictions can be imposed on Hε(1; θ).

In the singular case, let δS(θ, T, U) ≡
(

ϕ(θ)
δS(θ, T, U)

)
be the augmented vector of restrictions

where δS is given in (8). Define its derivative matrix by

∆S(θ0) ≡
(
∂δ

S
(θ,InX ,Inε )

∂θ

∂δ(θ,InX ,Inε )

∂vec T

∂δ
S
(θ,InX ,Inε )

∂vec U

)∣∣∣
θ=θ0

=

 ∂ϕ(θ0)
∂θ 0nR×n2

X
0nR×n2

ε

∆S
Λ(θ0) ∆S

T (θ0) ∆S
U (θ0)

 .

In the non-singular case, let δNS(θ, T ) ≡
(

ϕ(θ)
δNS(θ, T )

)
with δNS as given in (11) and

∆NS(θ0) ≡
(
∂δ

NS
(θ,InX )

∂θ

∂δ
NS

(θ,InX )

∂vec T

)∣∣∣
θ=θ0

=

(
∂ϕ(θ0)
∂θ 0nR×n2

X

∆NS
Λ (θ0) ∆NS

T (θ0)

)
.

Local injectivity of δS at (θ0, InX , Inε) or that of δNS at (θ0, InX ) is necessary and sufficient for θ0 to

be locally identifiable from the autocovariances of Yt under the restrictions ϕ(θ0) = 0. We refer to

such an analysis as conditional identification.
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Proposition 3 (Conditional Identification) Suppose the conditions of Proposition 2-S or Propo-

sition 2-NS hold and let ∆(θ) denote either ∆S(θ) or ∆NS(θ). Assume that the nR restrictions

defined by ϕ(θ) are continuously differentiable on Θ and that the rank of ∆(θ) remains constant

in a neighborhood of θ0. A necessary and sufficient rank condition for θ to be locally conditionally

identified at point θ = θ0 is:

rank ∆(θ0) = nθ + n2
X + 1IS · n2

ε ,

where 1IS = 1 if the model is singular and zero otherwise. When ϕ(θ) involves the mean, the

above restrictions are necessary and sufficient for local identification of θ0 from the mean and

autocovariances of Yt.

Our a priori restrictions are incorporated in the form of additional equations for solving the same

number of unknowns. Thus, the required rank is always the same; it is the number of rows of the

∆S(θ) or ∆NS(θ) matrix that increases with the number of restrictions. In singular models, the order

condition requires nθ +n2
X +n2

ε 6 n
S
Λ +nR; in the non-singular case, we need nθ +n2

X 6 n
NS
Λ +nR.

Proposition 3 provides formal ways to check how many restrictions are mathematically necessary

for identification, which is very useful in empirical work. For instance, univariate AR(i) shocks are

often specified, but this entails many restrictions on the contemporaneous and past correlations

amongst shocks. Proposition 3 provides a means to check their identification implications.

Situations may arise when only a subset of θ is of interest. As well, some components of θ may

still be identifiable even when Proposition 2-S or 2-NS fails. To analyze partial identification of a

particular subvector θi, partition the nθ vector θ into two components θi and θ−i of respective sizes

nθ,i and nθ,−i (with nθ,i +nθ,−i = nθ). Without loss of generality, we order the components so that

θ = (θ−i′, θi′)′.

Proposition 4 (Partial Identification) Suppose the conditions of Proposition 2-S or Proposi-

tion 2-NS hold. Assume that the ranks of ∆(θ) and ∂δ(θ)
∂θ−i

remain constant in a neighborhood of θ0.

A necessary and sufficient rank condition for θi to be locally partially identified at point θ = θ0 is:

rank ∆(θ0) = rank
(
∂δ(θ0)
∂θ−i

)
+
(
nθ,i + n2

X + 1IS · n2
ε

)
,

where
(
∆(θ), ∂δ(θ)∂θ−i

)
=
(
∆S(θ), ∂δ

S(θ,InX ,Inε )

∂θ−i

)
with 1IS = 1 if the model is singular, and

(
∆(θ), ∂δ(θ)∂θ−i

)
=(

∆NS(θ), ∂δ
NS(θ,InX )

∂θ−i

)
with 1IS = 0 in the non-singular case.

The results generalize Propositions 2-S and 2-NS to allow θ−i to be non-empty. It is important

to note that even though one might be interested in a subset of parameters, its identifiability will,

in general, depend on the parameters that are not of interest. Straightforward modifications of the
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rank conditions in Propositions 3 and 4 remain necessary when minimality and/or left-invertibility

fails. In such cases, appropriate columns should be removed from ∆(θ) and ∆(θ), and the rank

requirements adjusted accordingly.

6 Relation to the Information Matrix

All identification methods must exploit the canonical solution of the DSGE model in one way or

another. Iskrev (2010) uses it to numerically evaluate the T analytical autocovariances, while Qu

and Tkachenko (2010) use it to evaluate the discretized spectral density. Our approach is unique in

that we do not numerical calculations of any second moments and yet obtain necessary and sufficient

conditions for identification. This section provides two different perspectives on our results. The

first studies the null space of ∆(θ) and relates the proposed rank conditions to those on the Markov

parameters of Yt. The second relates our rank condition to the information matrix. Since the

information matrix is defined only when nY 6 nε the focus of this section is on the non-singular

case only. It is understood that Λ(θ) and ∆(θ) refer to ΛNS(θ) and ∆NS(θ), respectively.

Let ∆hJ
(θ) ≡ ∂vec hJ (θ)

∂θ = ∂vec hJ (θ)
∂Λ · ∂Λ

∂θ , where for any J > 0,

hJ(θ) ≡
(
ha(0; θ)La(θ) ha(1; θ)La(θ) . . . ha(J ; θ)La(θ)

)
,

are the Markov parameters in the impulse response to mutually uncorrelated unit shocks.

Lemma 3 Suppose the conditions of Proposition 2-NS hold. Then for every θ ∈ Θ:

(i) for every J > 0, ∂vec hJ (θ)
∂Λ ·∆T (θ) = 0(J+1)n2

Y ×n
2
X

;

(ii) if J > 2nX − 2, then rank hJ(θ) = rank h2nX−2(θ);

(iii) rank ∆(θ0) = nθ + n2
X if and only if rank ∆h2nX−2

(θ0) = nθ.

Result (i), which follows directly from Proposition 1-NS, can be used to determine the source

of non-identification. Since ∆(θ) =
(
∆Λ(θ) ∆T (θ)

)
, a direct consequence of (i) is

∂vec hJ(θ0)
∂Λ

·∆(θ0) =
(

∆hJ
(θ0) 0(J+1)n2

Y ×n
2
X

)
.

To use this property in a constructive way, let v be an nθ + n2
X vector that is in the null space of

∆(θ0). The above equality then implies(
∆hJ

(θ0) 0(J+1)n2
Y ×n

2
X

)
v = 0(J+1)n2

Y ×1.

In particular, the first nθ components of v form a sub-vector in the null space of ∆hJ
(θ0). Its entries

are the combinations of components of θ that leave hJ(θ0) unchanged. In other words, these are
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the elements of θ that are responsible for identification failure. This suggests a simple procedure

for determining the source of non-identification: (1) if the rank test on ∆(θ0) fails, compute its null

space; (2) for each v in the null space, find the position of its non-zero entries in the first nθ rows.

These positions correspond to the components of θ that are not identifiable without restrictions.

A similar procedure based on the null space of ∆S(θ0) can be used in the singular case.

Result (ii) says that all the information about the system is contained in the first 2nX − 1

Markov parameters. This follows from the fact that in a minimal system of order nX , the first

2nX − 1 Markov parameters uniquely determine all the remaining Markov parameters of order

j > 2nX − 2. As rank ∆hJ
(θ) = rank ∆h2nX−2

(θ) for any J > 2nX − 2, increasing the number of

Markov parameters does not increase the rank of the derivative matrix. Minimality thus allows us to

use a finite number of Markov parameters containing non-redundant information for identification.

This avoids direct computation of the autocovariances ΓY (j; θ) which would have involved infinite

Markov parameters.

Result (iii) says that our rank condition holds if and only if θ0 can be locally identified from

the first 2nX − 1 Markov parameters h2nX−2(θ). This result allows us to link the rank condition

in Proposition 2-NS to I(θ), the information matrix of the model. To make this link, let ξ be the

identifiable parameters of the model and denote by I(ξ) the corresponding information matrix. It

is always possible to decompose I(θ) into

I(θ) =
(
∂ξ

∂θ

)′
I(ξ)

(
∂ξ

∂θ

)
.

Since ξ is identifiable, I(ξ) is nonsingular. The rank of the information matrix is given by

rank I(θ) = rank
(
∂ξ
∂θ

)
. Obviously, I(θ0) is full rank nθ if and only if rank ∂ξ

∂θ |θ=θ0 = nθ.7

For the above information matrix decomposition to be useful, we need to find an identifiable pa-

rameter ξ. By Proposition 1-NS, all observationally equivalent combinations of (A(θ), B(θ),K(θ),Σa(θ))

give equivalent Markov parameters hJ(θ) for J > 0. Thus, hJ(θ) are identified from the autoco-

variances of Yt. Hence, if we define ξJ to be vec hJ(θ), then I(ξJ) is full rank. It follows that I(θ0)

is nonsingular if and only if there exists a J > 0 such that rank ∂ξJ
∂θ |θ=θ0 = nθ. Using result (ii), a

necessary and sufficient condition for I(θ0) to be nonsingular is that rank ∂ξ2nX−2

∂θ |θ=θ0 = nθ. Com-

bining this with result (iii) then shows that I(θ0) is nonsingular if and only if rank ∆(θ0) = nθ+n2
X .

Thus, the information matrix is full rank if and only if our rank condition is satisfied. While the

likelihood analysis typically assumes εt to be iid Gaussian, we only require εt to be white noise and

that the other assumptions in Proposition 2-NS hold.
7In Iskrev (2007) and Bonaldi (2010), ξ = vec (A,B,C,D). The (time domain) information matrix of the reduced

form (ABCD) model I(ξ) is not necessarily full rank. Hence, the decomposition is not useful for identification analysis.
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Lemma 3 also enables a comparison of the order conditions. The dimension of ξ2nX−2 =

vec h2nX−2(θ) is nξ = (2nX − 1)n2
Y and the order condition based on the information matrix is

nθ 6 (2nX − 1)n2
Y . Our order condition stated in Proposition 2-NS only requires nθ 6 2nXnY +

nY (nY + 1)/2. Since 2nXnY + nY (nY + 1)/2 < (2nX − 1)n2
Y whenever nX > 1 and nY > 1, our

order condition based on ∆(θ) is generally tighter than the one based on the information matrix.

7 Example

These results are now used to analyze the model in An and Schorfheide (2007). The log-linearized

model is given by:

yt = Etyt+1 + gt − Etgt+1 −
1
τ

(
rt − Etπt+1 − Etzt+1

)
πt = βEtπt+1 +

τ(1− ν)
νπ2φ

(yt − gt)

ct = yt − gt

rt = ρrrt−1 + (1− ρr)ψ1πt + (1− ρr)ψ2(yt − gt) + εrt

gt = ρggt−1 + εgt

zt = ρzzt−1 + εzt

with εrt ∼WN(0, σ2
r ), εgt ∼WN(0, σ2

g), and εzt ∼WN(0, σ2
z) mutually uncorrelated. In the above

model π is steady state inflation rate. The parameter vector of interest is of dimension nθ = 13. We

consider two sets of θ0: the first is taken from the DGP column in Table 3 of An and Schorfheide

(2007); the second only modifies the values of ρg and ρz so that the corresponding processes are

considerably less persistent.

Let X̃t ≡
(
zt, gt, rt, yt, πt, ct, Et(πt+1), Et(yt+1)

)′ and εt ≡ (εzt, εgt, εrt)′. We report results for

Yt = (rt, yt, πt)′. Additional results with ct included in Yt are reported in the online appendix.

Notably, adding the consumption ct to the observables does not change the results below. This is

not surprising because ct is defined by an identity and adds no information to identification.

We use the gensys algorithm of Sims (2002) to solve the model. The solution evaluated

at both parameter sets is determinate. However, the solution is not minimal because the state

vector X̃t consists of the expectational variables Etπt+1, Etyt+1, and identities. In consequence,

rank C = 3 < nX = 8 and rank O = 3 < nX = 8 where C and O are the controllability and

observability matrices in Assumption 5-S.

To be able to apply Proposition 2-S, the state vector will need to be of the smallest dimension

possible. Minimality is not a restrictive assumption as Kalman’s decomposition theorem assures

that a minimal state system can always be constructed by eliminating the uncontrollable and
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unobservable states. For example, the minreal function in Matlab produces the minimal state

vectors from an eigenvector analysis of the non-minimal state variables. However, the eigenvectors

depend on the parameters to be identified, and for our purpose, minreal cannot be used to find

the minimal state.

Nonetheless, the problem of finding the minimal state vector is made simple by the fact that

DSGE models are based on microfoundations. As such, we know which are the exogenous and

endogenous state variables, and these constitute the minimal state vector. In practice, the problem

reduces to arranging the solution produced by numerical algorithms to be of the particular form

X̃t+1 =
(
X1,t+1

X2,t+1

)
=

(
Ã1(θ) 0
Ã2(θ) 0

)(
X1t

X2t

)
+

(
B̃1(θ)
B̃2(θ)

)
εt+1

Yt+1 =
(
C̃1(θ) C̃2(θ)

)(X1,t+1

X2,t+1

)
.

In other words, the key to finding a minimal representation is to rearrange the solution such that

the Ã matrix has columns of zeros. This may require ordering the variables prior to solving the

model, or simply re-ordering the solution itself. Once this is accomplished, X1t is immediately the

minimal state vector.8 The required ABCD matrices are then defined upon simple substitutions:

X1,t+1 = Ã1(θ)
A(θ)

X1t + B̃1(θ)
B(θ)

εt+1

Yt+1 =
(
C̃1(θ)Ã1(θ) + C̃2(θ)Ã2(θ)

)
C(θ)

X1t +
(
C̃1(θ)B̃1(θ) + C̃2(θ)B̃2(θ)

)
D(θ)

εt+1.

In the An-Schorfheide example, X1t ≡
(
zt, gt, rt

)′ and the new system has nX = 3. The minimal

state space form with Yt+1 = (rt+1, yt+1, πt+1) is presented in Table 1. As nε = 3 = nY , the model

is square and both Propositions 2-S and 2-NS can be used to study identification. Table 1 shows

that some of the nθ = 13 parameters of this model are not identified. An analysis of the null space

of ∆S(θ0) quickly reveals that the columns corresponding to ν, φ, π are not linearly independent.

As already pointed out in An and Schorfheide (2007), these three parameters are not separately

identified and rank ∆S
Λ(θ0) should indeed be less than nθ = 13. While non-identifiability at this 13

dimensional θ0 is a foregone conclusion, it provides a useful case study to examine some numerical

issues involved.

The rank of any matrix M is determined by the number of its non-zero eigenvalues. Since the

magnitude of the eigenvalues may depend on the units of measurement, Anderson (1984) suggests

to consider the ratio of the sum of the smallest k eigenvalues to the average of all eigenvalues;
8For the model of Smets and Wouters (2007), one more step is necessary because of the co-existence of a flexible

and a fixed price equilibrium. This is shown in the on-line Appendix.
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see also Canova and Sala (2009). However, the choice of k remains arbitrary. Rank routines in

numerical packages use a cut-off to determine if the eigenvalues are sufficiently small. Matlab uses

tol=max(size(M))eps(‖M‖), where eps is the float point precision of M . This default tolerance

does not take into account that the ∆S(θ0) matrix is often sparse and can lead to misleading results.

The present example bears this out. We consider 11 values of tol ranging from 1e-2 to 1e-11, along

with the Matlab’s default (last row). Clearly, the rank of ∆S
Λ(θ0) varies with tol. If tol is set

to default, the rank is 13, suggesting identification may be possible even though we know that the

model is not identifiable! An overly tight tolerance here clearly gives the wrong result.

How should we set tol? We use tol=1e-3 in the baseline analysis on the ground that the

numerical derivatives are computed using a step size of 1e-3. Furthermore, the rank of ∆S
Λ(θ0) is

unchanged for a range of smaller and larger values of tol. Since tol=1e-3 is by no means the

magic number, we also use the change in rank as tol tightens to isolate the parameters that are

at not well identified even with infinite data. This flags the parameters that will likely be difficult

to identify when only a finite number of observations are available.

The rank of ∆S(θ0) suggests that three restrictions may be necessary to identify the model.

To find out which parameters fail to be identified, the rank of ∆S(θ0) is evaluated for 11 sets of

restrictions. Recall that in our analysis, a restriction adds to the rows of ∆S(θ0) but leaves the

number of columns unchanged. Thus, the rank required for identification is always nθ+n2
X+n2

ε = 31.

It is quickly found that ν, φ and one of ψ1 or ψ2 needs to be restricted. Fixing ν and φ always

leads to full rank of ∆S

Λ(θ0), as we would expect. What is more surprising is that not every choice

of third restriction leads to identification. For example, fixing ν, φ and β leads to a rank deficient

∆S

Λ U (θ0). The example illustrates that full column rank of the matrices ∆S

Λ(θ0),∆S

T (θ0),∆S

U (θ0)

are individually necessary but not sufficient for identification.

Now consider a reparameterized model with κ = τ(1−ν)
νπφ and nθ = 11. Table 2 shows that

∆S
Λ(θ0),∆S

T (θ0),∆S
U (θ0) of the reparameterized model are individually full rank but ∆S(θ0) is short

rank by one. This is in agreement with Table 1 which shows that fixing two of ν, φ, and π is

not enough for identification. One of the three parameters in the Taylor rule (ψ1, ψ2, ρr) needs to

be further restricted. This result, which was overlooked in An and Schorfheide (2007), supports

the argument of Cochrane (2011) that parameters of the Taylor rule are not identified without

restrictions.

Instead of a model with highly persistent shocks in which (ρg, ρz) = (0.95, 0.9), Table 3 takes

these parameters to be equal to (0.15, 0.1) while keeping the remaining components of θ0 same as

before. At tol=1e-3, the three sub-matrices of ∆S(θ0) are all full rank. However, ∆S(θ0) always

fails to be so. Thus, general statements about non-identifiability of the Phillips curve cannot be
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made on the basis of rank test evaluated at a particular θ0. Each parameter point has to be assessed

on an individual basis. Adding measurement errors to each of the three observed variables leads to

the same findings.

It should be emphasized that our identification analysis does not require solving for the au-

tocovariances whose numerical errors could affect the rank conditions. In the singular case, the

only component of the ∆S(θ0) matrix that is subject to numerical errors is ∆S
Λ(θ0). The remaining

submatrices can be computed exactly in a few lines of code. In the non-singular case, the Kalman

gain matrix needs to be solved numerically. This too is a simple iterative procedure. The code,

along with results for larger and more complex models solved using other solution algorithms, are

available in a supplementary file.

8 Concluding Remarks

Almost every empirical DSGE exercise estimates a subset of the parameters and fixes many others.

At issue is how many restrictions are truly necessary. This paper uses the structural properties of

the canonical solution to DSGE models to obtain identification results that do not require knowledge

of infinite autocovariances or Markov parameters. These conditions are easy to compute; they do

not depend on the data or the choice of the estimator. Because the identification conditions are

based on structure of the model, the results also help us uncover features of the model that are not

immediately transparent.

The results of this paper are local which leaves open the question of global parameter identifi-

cation. Given that DSGE models are highly non-linear in θ, establishing primitive conditions for

global identification is not trivial. The model may well be locally identified at every point of the

parameter space and yet fail to be globally identified. However, as discussed in Komunjer (2011),

there are special cases when adding the condition of “properness” could ensure that everywhere

local identification results become global. Whether such conditions are useful in context of DSGE

models and whether higher order approximations can facilitate identification of θ remain to be

examined.
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Table 1: Full Model: nθ = 13
τ β ν φ π ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz
2 0.9975 0.1 53.6797 1.008 1.5 0.125 0.75 0.95 0.9 .2 .6 .3

Minimal State Space Representation

Xt+1 =

zt+1

gt+1

rt+1

 =

 0.9 0 0
0 0.95 0

0.5450 0 0.5143


A(θ)

X1t +

 1 0 0
0 1 0

0.6055 0 0.6858


B(θ)

εzt+1

εgt+1

εrt+1


εt+1

Yt+1 =

rt+1

yt+1

πt+1

 =

 .5450 0 0.5143
1.3377 0.95 −0.8258
1.3418 0 −0.5596


C(θ)

X1t +

0.6055 0 0.6858
1.4863 1 −1.1011
1.4909 0 −0.7462


D(θ)

εt+1

Unrestricted Model Model with Restrictions: Tol=1e-3
Tol ∆S

Λ ∆S
T ∆S

U ∆S pass Restriction ∆S
Λ ∆S

T ∆S
U ∆S

Λ,T ∆S
Λ,U ∆S pass

e-02 11 9 9 28 No ν - - 12 9 9 21 20 29 No

e-03 11 9 9 28 No ν φ - 13 9 9 22 21 30 No

e-04 11 9 9 28 No φ π - 13 9 9 22 21 30 No

e-05 11 9 9 28 No ν π - 13 9 9 22 21 29 No

e-06 11 9 9 28 No β φ - 12 9 9 21 20 29 No

e-07 11 9 9 29 No φ ρg - 12 9 9 21 20 29 No

e-08 11 9 9 29 No β ν φ 13 9 9 22 21 30 No

e-09 11 9 9 29 No β ψ1 ψ2 11 9 9 20 20 29 No

e-10 12 9 9 29 No ν φ ψ1 13 9 9 22 22 31 Yes

e-11 12 9 9 29 No ν φ ψ2 13 9 9 22 22 31 Yes

default 12 9 9 30 No τ ψ1 ψ2 11 9 9 20 20 29 No

Required 13 9 9 31 Required 13 9 9 22 22 31
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Table 2: Reparameterized Model with κ = τ(1−ν)
νπ2φ

τ β κ ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz 100σvr 100σvy 100σvπ
2 .9975 .33 1.5 .125 .75 .95 .9 .2 .6 .3 .2 .2 .2

Tol = 1e-3 No Measurement Errors, nθ = 11 With Errors, nθ = 14
Restriction ∆S

Λ ∆S
T ∆S

U ∆S
Λ,T ∆S

Λ,U ∆S pass ∆NS
Λ ∆NS

T ∆NS pass

τ 11 9 9 20 19 28 No 13 9 22 No

β 11 9 9 20 19 28 No 13 9 22 No

κ 11 9 9 20 19 28 No 13 9 22 No

ψ1 11 9 9 20 20 29 Yes 14 9 23 Yes

ψ2 11 9 9 20 20 29 Yes 14 9 23 Yes

ρr 11 9 9 20 20 29 Yes 14 9 23 Yes

ρg 11 9 9 20 19 28 No 13 9 22 No

ρz 11 9 9 20 19 28 No 13 9 22 No

σ2
r 11 9 9 20 19 28 No 13 9 22 No

σ2
g 11 9 9 20 19 28 No 13 9 22 No

σ2
z 11 9 9 20 19 28 No 13 9 22 No

Required 11 9 9 20 20 29 14 9 23

Table 3: Reparameterized Model with κ = τ(1−ν)
νπ2φ

τ β κ ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz 100σvr 100σvy 100σvπ
2 .9975 .33 1.5 .125 .75 .15 .1 .2 .6 .3 .2 .2 .2

Tol = 1e-3 No Measurement Errors, nθ = 11 With Errors, nθ = 14
Restriction ∆S

Λ ∆S
T ∆S

U ∆S
Λ,T ∆S

Λ,U ∆S pass ∆NS
Λ ∆NS

T ∆NS pass

τ 11 9 9 20 19 27 No 13 9 21 No

β 11 9 9 20 19 27 No 13 9 22 No

κ 11 9 9 20 19 27 No 13 9 22 No

ψ1 11 9 9 20 20 28 No 14 9 22 No

ψ2 11 9 9 20 19 28 No 13 9 21 No

ρr 11 9 9 20 19 28 No 14 9 22 No

ρg 11 9 9 20 19 27 No 13 9 21 No

ρz 11 9 9 20 19 27 No 13 9 21 No

σ2
r 11 9 9 20 19 27 No 13 9 21 No

σ2
g 11 9 9 20 19 27 No 13 9 21 No

σ2
z 11 9 9 20 19 27 No 13 9 21 No

Required 11 9 9 20 20 29 14 9 23
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Appendix

Proof of Lemma 1

For any θ ∈ Θ, let A(θ) ⊂ C be the set of eigenvalues of A(θ). Note that the set A(θ) contains at
most nX distinct points in C and det

(
zInX − A(θ)

)
6= 0 for any z /∈ A(θ). There are two cases to

consider.

Case nY > nε. For any θ ∈ Θ and any z ∈ C\A(θ), consider the identity:(
InX 0nX×nY

C(θ)[zInX −A(θ)]−1 InY

)(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)
P(z;θ)

=
(
zInX −A(θ) B(θ)

0nY ×nX Hε(z; θ)

)
.

Thus, for any z ∈ C\A(θ),

rank
(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)
= rank

(
zInX −A(θ) B(θ)

0nY ×nX Hε(z; θ)

)
= rank (zInX −A(θ)) + rank Hε(z; θ) = nX + rank Hε(z; θ).

Case nY < nε. For any θ ∈ Θ and any z ∈ C\A(θ), consider the identity:(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)(
−[zInX −A(θ)]−1B(θ) [zInX −A(θ)]−1

Inε 0nε×nX

)
R(z;θ)

=
(

0nX×nε InX
Hε(z; θ) −C(θ)[zInX −A(θ)]−1

)
Q(z;θ)

with rank R(z; θ) = nX + nε. Hence, rank P(z; θ) = rank Q(z; θ) = rank Hε(z; θ) + nX . �
When D(θ) is invertible and P(z; θ) is square (nY = nε),

P(z; θ)
(

InX 0nX×nε
D−1(θ)C(θ) Inε

)
=
(
zInX − (A(θ)−B(θ)D−1(θ)C(θ)) B(θ)

0nY ×nX D(θ)

)
, ∀z ∈ C.

Since det(P(z; θ)) = det(D(θ)) det(zInX − (A(θ)−B(θ)D−1(θ)C(θ)), the zeros of det(P(z; θ)) are
the eigenvalues of A(θ) − B(θ)D−1(θ)C(θ), which is the test proposed in Fernández-Villaverde,
Rubio-Ramı́rez, Sargent, and Watson (2007). In general, finding the values of z where a matrix of
the form zM−P (θ) drops rank and M is possibly singular or non-square is a generalized eigenvalue
problem, with z being the generalized eigenvalues (see, e.g., Laub and Moore, 1978). In our case,

M =
[

InX 0nX×nε
0nY ×nX 0nY ×nε

]
, P (θ) =

[
A(θ) −B(θ)
C(θ) −D(θ)

]
, and P(z; θ) = zM − P (θ). Thus, the rank test

can also be formulated as a generalized eigenvalue test.

Proof of Proposition 1-S

The proof combines two results: the spectral factorization result and the similarity transformation.

Step 1. Spectral Factorization. The key argument is the following (e.g., Youla, 1961; Ander-
son, 1969; Kailath, Sayed, and Hassibi, 2000, p.205). Let r be the rank a.e. of the spectral density
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ΩY (z; θ). If W (z; θ) is an nY × r matrix such that for all z ∈ C, ΩY (z; θ) = W (z; θ)W (z−1; θ)′,
and rank W (z; θ) = r for all |z| > 1, then W (z; θ) is a left-invertible (or minimum phase)
spectral factor that is unique up to a right multiplication by a constant orthogonal r × r ma-
trix V . That is to say, if W (z; θ0) and W (z; θ1) are two left-invertible spectral factors that
satisfy W (z; θ0)W (z−1; θ0)′ = W (z; θ1)W (z−1; θ1)′, then necessarily W (z; θ1) = W (z; θ0)V with
V ′V = V V ′ = Ir.

Under Assumptions 2 and 4-S, the transfer function Hε(z; θ) is left-invertible in |z| > 1. Comb-
ing this with Assumption 1 gives rank W (z; θ) = rank (Hε(z; θ)Lε(θ)) = nε, for all |z| > 1. By
Lemma 1 and Assumption 1, ΩY (z; θ) = Hε(z; θ)Σε(θ)Hε(z−1; θ)′ is of rank nε a.e. in C. Hence,
W (z; θ) a left-invertible spectral factor. Using the above spectral factorization result it then follows
that ΩY (z; θ1) = ΩY (z; θ0) for all z ∈ C if and only if there is an orthogonal nε×nε matrix V , such
that

Hε(z; θ1)Lε(θ1) = Hε(z; θ0)Lε(θ0)V, for every z ∈ C. (12)

Step 2. Necessity and sufficiency of the similarity transforms follow from Theorem 3.10 Antsaklis
and Michel (1997). It remains to combine the result of (12) with the similarity transform. From
(12)

D(θ1)Lε(θ1)
D(θ1)

+C(θ1)[zInX −A(θ1)]−1B(θ1)Lε(θ1)
B(θ1)

= D(θ0)Lε(θ0)V
D(θ0)

+C(θ0)[zInX −A(θ0)]−1B(θ0)Lε(θ0)V
B(θ0)

.

The system (A(θ),B(θ), C(θ),D(θ)) is minimal whenever (A(θ), B(θ), C(θ), D(θ)) is minimal, which
holds under Assumption 5-S. Thus the above equality can only hold if there exists a full rank nX ×
nX matrix T such that D(θ1) = D(θ0), A(θ1) = TA(θ0)T−1, B(θ1) = TB(θ0), C(θ1) = C(θ0)T−1,
that is D(θ1)Lε(θ1) = D(θ0)Lε(θ0)V , A(θ1) = TA(θ0)T−1, B(θ1)Lε(θ1) = TB(θ0)Lε(θ0)V , C(θ1) =
C(θ0)T−1. Letting U ≡ Lε(θ0)V Lε(θ1)−1, be a full rank nε×nε matrix so that UΣε(θ1)U ′ = Σε(θ0)
gives the desired result. �

Proof of Lemma 2-S

The proof is in two steps.

Sufficiency: Consider the contrapositive. Suppose that θ0 is not locally identifiable. Then
there exists an infinite sequence of parameter vectors {θ1, . . . , θk, . . .} (of dimension nθ) approach-
ing θ0 such that ΩY (z; θk) = ΩY (z; θ0) for all z ∈ C. By Proposition 1-S, this implies that there
exist infinite sequences of full rank nX × nX matrices {T1, . . . , Tk, . . .} and full rank nε × nε ma-
trices {U1, . . . , Uk, . . .} such that: TkA(θk)T−1

k = A(θ0), TkB(θk)Uk = B(θ0), C(θk)T−1
k = C(θ0),

D(θk)Uk = D(θ0), U−1
k Σ(θk)U−1

k

′ = Σ(θ0), i.e. δS(θk, Tk, Uk) = δS(θ0, InX , Inε). In order to show
that the mapping δS is not locally injective, it suffices to show that the sequences {T1, . . . , Tk, . . .}
and {U1, . . . , Uk, . . .} approach InX and Inε , respectively. For this, note that:

O(θk) ≡


C(θk)

C(θk)A(θk)
...

C(θk)AnX−1(θk)

 =


C(θ0)Tk

C(θ0)TkT−1
k A(θ0)Tk
...

C(θ0)TkT−1
k AnX−1(θ0)Tk

 = O(θ0)Tk,
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where O(θ) is the observability matrix of (A(θ), C(θ)). Since for all θ, the system is observable,
rank O(θ0) = nX and a left inverse exists which gives Tk =

[
O(θ0)′O(θ0)

]−1O(θ0)′O(θk). By
continuity of O(θ), O(θk) approaches O(θ0) as θk approaches θ0, so Tk approaches InX . To show
that Uk approaches Inε , take any |z| > 1 and note that

P(z; θ0) =
(
zInX −A(θ0) B(θ0)
−C(θ0) D(θ0)

)
=
(
zInX −A(θk) B(θk)Uk
−C(θk) D(θk)Uk

)
= P(z; θk)

(
InX 0
0 Uk

)
.

Since rank P(z; θk) = nx + nε a left inverse exists and:(
InX 0
0 Uk

)
=
[
P(z; θk)′P(z; θk)

]−1[P(z; θk)′P(z; θ0)
]
.

It follows from continuity that Uk approaches Inε as θk approaches θ0. This shows that δS is not
injective in the neighborhood of (θ0, InX , Inε).

Necessity: To show that θ0 locally identifiable implies local injectivity of δS, consider (θ1, T, U)
with θ1 ∈ Θ, T and U full rank nX×nX and nε×nε matrices, respectively, such that δS(θ1, T, U) =
δS(θ0, InX , Inε). That is, TA(θ1)T−1 = A(θ0), TB(θ1)U = B(θ0), C(θ1)T−1 = C(θ0), D(θ1)U =
D(θ0), and U−1Σ(θ1)U−1′ = Σ(θ0). This implies that ΩY (z; θ1) = ΩY (z; θ0) for all z ∈ C. Since θ0 is
locally identifiable, there exists a neighborhood in which θ1 = θ0. To show that δS is locally injective
it suffices to show that θ1 = θ0 implies T = InX and U = Inε . For this, consider again the observabil-
ity matrices and note thatO(θ1)T−1 = O(θ0). Under observability, rank O(θ1) = rank O(θ0) = nX
so θ1 = θ0 implies T = InX . We can then use left-invertibility of P(z; θ1) and P(z; θ0) in |z| > 1 to
show that U = Inε . Hence, δS is locally injective. �

Proof of Proposition 2-S

The proof consists of two parts: the first establishes the rank condition; the second derives the
order condition. Let vech be the operator for the column-wise vectorization with the upper
portion excluded. In order to ‘invert’ the vech operator, we use an n2 × n(n + 1)/2 duplication
matrix Gn which is a matrix of 0s and 1s, with a single 1 in each row. Thus for any n×n symmetric
matrix S, vec (S) = Gnvech (S). The matrix Gn is full column rank and we let En = (G′nGn)−1G′n
be its left-inverse. Then EnGn = In(n+1)/2 and GnEn = (1/2)[In2 + Pn,n], where Pn,n is the n2 × n2

permutation matrix that transforms vec X into vec X ′, i.e. Pn,nvec X = vec X ′. Note that
Pn,n = P−1

n,n and Pn,n = P ′n,n. In addition, rank(In2 + Pn,n) = n(n+1)
2 .

Rank condition Direct computations of the partial derivatives of δS(θ, T, U) give:

∂δS(θ, T, U)
∂θ

=


(T−1′ ⊗ T )∂vec A(θ)

∂θ

(U ′ ⊗ T )∂vec B(θ)
∂θ

(T−1′ ⊗ InY )∂vec C(θ)
∂θ

(U ′ ⊗ InY )∂vec D(θ)
∂θ

Enε(U−1 ⊗ U−1)Gnε
∂vech Σ(θ)

∂θ

 , (13)
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∂δS(θ, T, U)
∂vec T

=



(
T−1′ ⊗ T

)[(
A(θ)′ ⊗ InX )− (InX ⊗A(θ))

](
InX ⊗ T−1

)(
U ′ ⊗ T

)[
B(θ)′ ⊗ InX

](
InX ⊗ T−1

)
−
(
T−1′ ⊗ InY

)[
InX ⊗ C(θ)

](
InX ⊗ T−1

)
0nY nε×n2

X

0nε(nε+1)
2

×n2
X

 , (14)

and

∂δ(θ, T, U)
∂vec U

=


0n2

X×n2
ε(

U ′ ⊗ T
)[

Inε ⊗B(θ)
](
U−1′ ⊗ Inε

)
0nY nX×n2

ε(
U ′ ⊗ InY

)[
Inε ⊗D(θ)

](
U−1′ ⊗ Inε

)
−Enε

(
U−1 ⊗ U−1

)
Gnε
[
2Enε(Σ(θ)⊗ Inε)

](
U−1′ ⊗ Inε

)

 . (15)

Now let ∆(θ) ≡
(
∂δ(θ,InX ,Inε )

∂θ

∂δ(θ,InX ,Inε )

∂vec T

∂δ(θ,InX ,Inε )

∂vec U

)
, that is,

∆(θ) =



∂vec A(θ)
∂θ

[(
A(θ)′ ⊗ InX )− (InX ⊗A(θ))

]
0n2

X×n2
ε

∂vec B(θ)
∂θ

[
B(θ)′ ⊗ InX

] [
Inε ⊗B(θ)

]
∂vec C(θ)

∂θ −
[
InX ⊗ C(θ)

]
0nY nX×n2

ε
∂vec D(θ)

∂θ 0nY nε×n2
X

[
Inε ⊗D(θ)

]
∂vech Σ(θ)

∂θ 0nε(nε+1)
2

×n2
X

−2Enε
[
Σ(θ)⊗ Inε .

]


. (16)

We can write
(
∂δ(θ,T,U)

∂θ
∂δ(θ,T,U)
∂vec T

∂δ(θ,T,U)
∂vec U

)
= M(T,U)∆(θ)N(T,U), whereM(T,U) andN(T,U)

are, respectively, an nS
Λ × nS

Λ diagonal matrix and an (nθ + n2
X + n2

ε ) × (nθ + n2
X + n2

ε ) diagonal
matrix defined as:

M(T,U) ≡


T−1′ ⊗ T

U ′ ⊗ T
T−1′ ⊗ InY

U ′ ⊗ InY
Enε(U−1 ⊗ U−1)Gnε


N(T,U) ≡

Idnθ
IdnX ⊗ T−1

U−1′ ⊗ Inε

 .

The nε(nε+1)
2 × nε(nε+1)

2 matrix Enε(U−1 ⊗ U−1)Gnε is nonsingular if and only if U is nonsingular.
Since T and U are full rank, both M(T,U) and N(T,U) are full rank,

rank
(
∂δ(θ,T,U)

∂θ
∂δ(θ,T,U)
∂vec T

∂δ(θ,T,U)
∂vec U

)
= rank ∆(θ).

If the rank of ∆(θ) remains constant in a neighborhood of θ0, then the rank of the partial derivatives
of δ remains constant in a neighborhood of (θ0, InX , Inε).

Order Condition The necessary (order) condition is established by counting the number of rows
in the matrix ∆(θ) in (16). This yields rank ∆(θ) 6 nS

Λ = n2
X + nXnε + nY nX + nY nε + nε(nε+1)

2 ,
hence a necessary order condition is that nθ 6 nY nX + nε(nX + nY − nε) + nε(nε+1)

2 . �
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Proof of Proposition 1-NS

Unlike in the singular case, the spectral factor W (z; θ) is now a square matrix of size nY ×nY . We
can no longer directly consider Hε(z; θ)Lε(θ). Instead, we work with the innovations representation
for Yt. We proceed in three steps.

Step 1. The existence of the innovations representation depends on the existence of the positive
semi-definite solutions to the discrete algebraic Ricatti equation (DARE):

Σ(θ) = A(θ)Σ(θ)A(θ)′ +B(θ)Σε(θ)B(θ)′ (17)

−
[
A(θ)Σ(θ)C(θ)′ +B(θ)Σε(θ)D(θ)′

] [
C(θ)Σ(θ)C(θ)′ +D(θ)Σε(θ)D(θ)′

]−1 [
C(θ)Σ(θ)A(θ)′ +D(θ)Σε(θ)B(θ)′

]
Under Assumptions 2 (stability) and 4-NS (positive definiteness), Lemma E.3.2 of Kailath, Sayed,

and Hassibi (2000) shows that there always exists a maximal positive semi-definite solution Σ(θ)
to the DARE (17). Moreover, if

Σa(θ) ≡ C(θ)Σ(θ)C(θ)′ +D(θ)Σε(θ)D(θ)′ (18)

K(θ) ≡
[
A(θ)Σ(θ)C(θ)′ +B(θ)Σε(θ)D(θ)′

]
Σ−1
a (θ) (19)

then all the eigenvalues of A(θ)−K(θ)C(θ) lie inside the closed unit disc (Lemma E.4.1 in Kailath,
Sayed, and Hassibi, 2000). Thus Yt has the following innovations representation:

X̂t+1|t+1 = A(θ)X̂t|t +K(θ)at+1 (20a)

Yt+1 = C(θ)X̂t|t + at+1 (20b)

where X̂t|t be the optimal linear predictor of Xt based on the history Y t, and at+1 = Yt+1−C(θ)X̂t|t
is the one-step ahead forecast error of Yt+1, at ∼ WN(0,Σa(θ)). Hence, for all z ∈ C, ΩY (z; θ) =
Ha(z; θ)Σa(θ)Ha(z−1; θ)′, with the transfer function Ha(z; θ) = InY + C(θ)

(
zInX −A(θ)

)−1
K(θ)

Step 2. Spectral Factorization It must first be shown that rank Ha(z; θ) = nY for all
|z| > 1. As in Hansen and Sargent (2005), the proof is based on the property that for any
conformable matrices a, b, c, d with a, d invertible, det(a) det(d + ca−1b) = det(d) det(a + bd−1c).
Now, let a ≡ zInX −A(θ), b ≡ K(θ), c ≡ C(θ), and d ≡ InX . Since A(θ) is stable, a is invertible (so
is d) and det(zInX − A(θ)) det

(
InX + C(θ)[zInX − A(θ)]−1K(θ)

)
= det(zInX − A(θ) + K(θ)C(θ)).

Equivalently,

detHa(z; θ) = det
(
InX + C(θ)[zInX −A(θ)]−1K(θ)

)
=

det
(
zInX − [A(θ)−K(θ)C(θ)]

)
det(zInX −A(θ))

. (21)

Since det
(
zInX − [A(θ)−K(θ)C(θ)]

)
6= 0 for all |z| > 1, it follows that rank Ha(z; θ) = nY for all

|z| > 1. Now, under Assumption 4-NS, Σa(θ) in (18) is positive definite with La(θ) as its Cholesky
decomposition. Then rank W (z; θ) = rank (Ha(z; θ)La(θ)) = nY , for all |z| > 1. In addition, it
follows from (21) and ΩY (z; θ) = Ha(z; θ)Σa(θ)Ha(z−1; θ)′ that the rank of ΩY (z; θ) equals nY
a.e. in C. Hence, W (z; θ) = Ha(z; θ)La(θ) is a left-invertible spectral factor. By the spectral
factorization result of Youla (1961) and Anderson (1969), ΩY (z; θ1) = ΩY (z; θ0) for all z ∈ C if and
only if there is an orthogonal nY × nY matrix V such that

Ha(z; θ1)La(θ1) = Ha(z; θ0)La(θ0)V, for every z ∈ C. (22)
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Step 3. From (22),

La(θ1)
D(θ1)

+C(θ1)[zInX −A(θ1)]−1K(θ1)La(θ1)
B(θ1)

= La(θ0)V
D(θ0)

+C(θ0)[zInX −A(θ0)]−1K(θ0)La(θ0)V
B(θ0)

.

Minimality of (A(θ),K(θ), C(θ), InY ) which is ensured by Assumption 5-NS, implies minimality of
(A(θ),B(θ), C(θ),D(θ)). Using the argument as in the singular case, the above equality holds only
if there exists a full rank nX ×nX matrix T such that D(θ1) = D(θ0), A(θ1) = TA(θ0)T−1, B(θ1) =
TB(θ0), C(θ1) = C(θ0)T−1. Equivalently, La(θ1) = La(θ0)V , A(θ1) = TA(θ0)T−1, K(θ1)La(θ1) =
TK(θ0)La(θ0)V , C(θ1) = C(θ0)T−1. Now uniqueness of Cholesky decomposition implies V = InY .
Thus La(θ1) = La(θ0), and the result follows. �

Proof of Proposition 2-NS

The proof follows directly from the proof of Proposition 2-S and is hence omitted.

Proofs of Propositions 3 and 4

The proofs are analogous to those of Propositions 2-S and 2-NS.

Proof of Lemma 3

Recall that Λ ≡ ΛNS = ((vec A)′, (vec K)′, (vec C)′, (vech Σa)′)′. For any j > 0 and J > 0, let

h(j; θ) ≡ ha(j; θ)La(θ)

hJ(θ) ≡
(
ha(0; θ)La(θ) ha(1; θ)La(θ) . . . ha(J ; θ)La(θ)

)
∆h(j; θ) ≡ ∂vec h(j;θ)

∂θ

,
∂vec hJ(θ)

∂Λ
=


∂vec h(0;θ)

∂Λ
...

∂vec h(J ;θ)
∂Λ

 .

Direct computations show that for any j > 0,

∂vec h(j; θ)
∂Λ

=
(

(La(θ)′ ⊗ InY )Ha(j; θ) (InY ⊗ ha(j; θ))
∂vec La(θ)
∂vech Σa(θ)

)
,

where Ha(j; θ) is the j-th row of Ha(θ) defined by

Hε(θ) =



0n2
Y ×n

2
X

0n2
Y ×nXnY

0n2
Y ×nY nX

0n2
Y ×n

2
X

InY ⊗ C(θ) K(θ)′ ⊗ InY
...

...
...∑j

k=1K(θ)′Aj−k(θ)′ ⊗ C(θ)A(θ)k−1 InY ⊗ C(θ)A(θ)j K(θ)′Aj(θ)′ ⊗ InY
...

...
...

 .
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Proof of (i) To show that for any j > 0, ∂vec h(j;θ)
∂Λ ·∆T (θ) = 0n2

Y ×n
2
X

(where ∆T (θ) = ∆NS
T (θ)),

write:

∂vec h(j; θ)
∂Λ

·∆T (θ) =
[
(La(θ)′ ⊗ InY )Ha(j; θ)

]
·

[(A(θ)′ ⊗ InX )− (InX ⊗A(θ))
][

K(θ)′ ⊗ InX
]

−
[
InX ⊗ C(θ)

]


+
[
(InY ⊗ ha(j; θ))

∂vec La(θ)
∂vech Σa(θ)

]
· 0nY (nY +1)

2
×n2

X

= 0n2
Y ×n

2
X
,

where the second equality follows by direct computations. This establishes result (i) of the lemma.
The result is quite intuitive: By Proposition 1-NS, for any observationally equivalent values θ0

and θ1, ha(j; θ1)La(θ1) = ha(j; θ0)La(θ0) for all j > 0. This implies that the columns of ∆T (θ)
belong to the null space of ∂vec hJ (θ)

∂Λ because ∆T (θ) is the Jacobian matrix of the similarity transfor-
mation (A(θ1),K(θ1), C(θ1),Σa(θ1)) = (TA(θ0)T−1, TK(θ0), C(θ0)T−1,Σa(θ0)) that leaves hJ(θ)
unchanged.

Proof of (ii) To show that rank hJ(θ) = rank h2nX−2(θ) for all J > 2nX − 2 we use the
Cayley-Hamilton theorem which ensures that for any minimal system (A(θ),K(θ), C(θ), InY ),

rank (CN (θ)′ON (θ)′) = rank (CnX (θ)′OnX (θ)′), for all N > nX ,

where CN (θ) and ON (θ) are the controllability and the observability matrices of order N , i.e.

CN (θ) ≡
(
K(θ) . . . A(θ)N−1K(θ)

)
and ON (θ) ≡

 C(θ)
...

C(θ)A(θ)N−1

 .

Take N = nX + 1. Then K(θ)′A2nX−1(θ)C(θ)′ is a linear combination of (K(θ)′AnX−1(θ)′C(θ)′,
. . . ,K(θ)′A2nX−2(θ)′C(θ)′). Therefore, La(θ)′K(θ)′A2nX−1(θ)′C(θ)′ is a linear combination of
(La(θ)′K(θ)′AnX−1(θ)′C(θ)′, . . . , La(θ)′K(θ)′A2nX−2(θ)′C(θ)′), and rank h2nX−1(θ) = rank h2nX−2(θ).
The result holds recursively for any J > 2nX − 2.

Proof of (iii) Combining ∆(θ) =
(
∆Λ(θ) ∆T (θ)

)
and result (i) gives:

∂h2nX−2(θ)
∂Λ

·∆(θ) =
(

∆h2nX−2
(θ) 0(2nX−1)n2

Y ×n
2
X

)
. (23)

Necessity: We need to show that rank ∆h2nX−2
(θ0) = nθ implies rank ∆(θ0) = nθ + n2

X . Now,
rank ∆h2nX−2

(θ0) = nθ implies that rank ∆Λ(θ0) = nθ because from (23), rank ∆h2nX−2
(θ0) 6

rank ∆Λ(θ0) 6 nθ. Then proceed by contradiction: assume that rank ∆h2nX−2
(θ0) = nθ and that

rank ∆(θ0) < nθ + n2
X . Then, rank ∆Λ(θ0) = nθ and rank ∆(θ0) < nθ + n2

X . This means that at
least one column of ∆Λ(θ0), say CΛ(θ0), can be written as a linear combination of the columns of

∆T (θ0). Using (23), it follows that ∂h2nX−2(θ0)

∂Λ CΛ(θ0) = 0(2nX−1)n2
Y ×1. This implies ∆h2nX−2

(θ0)
has one zero column, which is a contradiction.
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Sufficiency: We need to show that rank ∆(θ0) = nθ + n2
X implies rank ∆h2nX−2

(θ0) = nθ. Now,

rank ∆(θ0) = nθ + n2
X implies rank ∆Λ(θ0) = nθ, and rank ∆T (θ0) = n2

X . First, we show that
when the system is minimal state and left-invertible,

N
(
∂h2nX−2(θ0)

∂Λ

)
= span

(
∆T (θ0)

)
, (24)

where N
(∂h2nX−2(θ0)

∂Λ

)
is the null space of ∂h2nX−2(θ0)

∂Λ and span
(
∆T (θ0)

)
denotes the subspace

spanned by the columns of ∆T (θ0). For this, consider a Taylor expansion of vec h2nX−2(θ) around

θ = θ0: vec h2nX−2(θ0 + δ) = vec h2nX−2(θ0) + ∂h2nX−2(θ0)

∂Λ ∆Λ(θ0)δ∗, where δ∗ ∈ (0, δ). Under
minimality and left-invertibility, (10) are the only transformations leading to the same h2nX−2.
That is, vec h2nX−2(θ0 + δ) = vec h2nX−2(θ0) if and only if ∆Λ(θ0)δ∗ ∈ span

(
∆T (θ0)

)
. Combining

this with the Taylor expansion gives:

∂h2nX−2(θ0)
∂Λ

∆Λ(θ0)δ∗ = 0(2nX−1)n2
Y
⇐⇒ ∆Λ(θ0)δ∗ ∈ span

(
∆T (θ0)

)
,

so (24) holds. To show that this implies that rank ∆h2nX−2
(θ0) = rank

(∂h2nX−2(θ0)

∂Λ ·∆Λ(θ0)
)

= nθ,

we proceed by contradiction. Suppose that rank
(∂h2nX−2(θ0)

∂Λ ·∆Λ(θ0)
)
< nθ. Then there ex-

ists a nonzero linear combination of the columns of ∆Λ(θ0) which belongs to the null space

N
(∂h2nX−2(θ0)

∂Λ

)
. Using (24) then there exists a nonzero linear combination of the columns of

∆Λ(θ0) which can be written as a linear combination of the columns of ∆T (θ0). This violates the
assumption that rank ∆(θ0) = nθ + n2

X and thus leads to a contradiction. �
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