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This supplementary document contains additional examples. Matlab code for constructing the

∆S(θ) and ∆NS(θ) matrices proposed in Komunjer and Ng (2011) is also provided to show that

while the expression appears complex, the computation is simple. Once the minimal representation

is obtained, ∆S
Λ(θ) and ∆NS(θ) can be computed using numerical differentiation. The ∆S

T (θ) and

∆NS
T (θ) only require specification of nX , while ∆S

U (θ) only requires nε. Section 1 uses the model

of An and Schorfheide (2007) to study the implications of (1) adding ct to the observables, and

(2) dropping variables to remove singularity. Section 2 analyzes the model in Smets and Wouters

(2007). It is shown that putting the model into minimal state space representation reveals features

about the model that are not otherwise transparent. In particular, the parameters in the policy

rule, output, and potential output equations are not independent. Section 3 analyzes the model of

Christiano, Eichenbaum, and Evans (2005). Section 4 considers the model of Cicco, Pancrazi, and

Uribe (2009) that is identifiable without further restrictions. Matlab code for computing the ∆(θ0)

matrix is given.

1 The An-Schorfheide Model

We first analyze the model with 4 observed variables, Yt = (rt, yt, πt, ct)
′, and the true value of

θ = (τ, β, ν, φ, π, ψ1, ψ2, ρr, ρg, ρz, σ
2
r , σ

2
g , σ

2
z) as in Table 3 of An and Schorfheide (2007), θ0 =

(2, 0.9975, 0.1, 53.6797, 1.008, 1.5, 0.125, 0.75, 0.95, 0.9, 4× 10−6, 36× 10−6, 9× 10−6). Let

εt ≡

εztεgt
εrt

 ∼WN

0
0
0

 ,

9 0 0
0 36 0
0 0 4

× 10−6

 .
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This gives a state space solution of the form:

X̃t+1 =



zt+1

gt+1

rt+1

yt+1

πt+1

ct+1

Et+1(πt+2)
Et+1(yt+2)


=



0.9 0 0 0 0 0 0 0
0 0.95 0 0 0 0 0 0

0.5450 0 0.5143 0 0 0 0 0
1.3377 0.9500 −0.8258 0 0 0 0 0
1.3418 0 −0.5596 0 0 0 0 0
1.3377 0 −0.8258 0 0 0 0 0
0.9026 0 −0.2878 0 0 0 0 0
0.7538 0.9025 −0.4247 0 0 0 0 0


Ã(θ)



zt
gt
rt
yt
πt
ct

Et(πt+1)
Et(yt+1)



+



1 0 0
0 1 0

0.6055 0 0.6858
1.4863 1 −1.1011
1.4909 0 −0.7462
1.4863 0 −1.1011
1.0029 0 −0.3838
0.8376 0.9500 −0.5663


B̃(θ)

εz,t+1

εg,t+1

εr,t+1



Yt =


rt
yt
πt
ct

 =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


C̃(θ)

X̃t

This state space representation is not minimal, as we have that rankC = 3 < nX = 8 and

rankO = 6 < nX = 8. We now show how the order of the above system can be reduced. Note that

the above state space representation has the following structure:

X̃t+1 =

(
X1,t+1

X2,t+1

)
=

(
Ã1(θ) 0

Ã2(θ) 0

)(
X1t

X2t

)
+

(
B̃1(θ)

B̃2(θ)

)
εt+1

Yt+1 =
(
C̃1(θ) C̃2(θ)

)(X1,t+1

X2,t+1

)
In other words, there exists a subvector X2t of the state vector X̃t whose dynamics is entirely driven

by the remaining subvector X1t and εt+1. Then, the above system is equivalent to:

X1,t+1 = Ã1(θ)

A(θ)

X1t + B̃1(θ)

B(θ)

εt+1

Yt+1 =
(
C̃1(θ)Ã1(θ) + C̃2(θ)Ã2(θ)

)
C(θ)

X1t +
(
C̃1(θ)B̃1(θ) + C̃2(θ)B̃2(θ)

)
D(θ)

εt+1.
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In particular, in An and Schorfheide’s (2007) model, consider partitioning the state space vector

X̃t into X1t ≡
(
zt, gt, rt

)′
and X2t ≡

(
yt, πt, ct, Et(πt+1), Et(yt+1)

)′
. Then we have:

X1,t+1 =

zt+1

gt+1

rt+1

 =

 0.9 0 0
0 0.95 0

0.5450 0 0.5143


A(θ)

X1t +

 1 0 0
0 1 0

0.6055 0 0.6858


B(θ)

εt+1

Yt+1 =


rt+1

yt+1

πt+1

ct+1

 =


0.5450 0 0.5143
1.3377 0.95 −0.8258
1.3418 0 −0.5596
1.3377 0 −0.8258


C(θ)

X1t +


0.6055 0 0.6858
1.4863 1 −1.1011
1.4909 0 −0.7462
1.4863 0 −1.1011


D(θ)

εt+1

The new system is minimal state, i.e. it is controllable as rankC = 3 = nX as well as observable

with rankO = 3 = nX .

For completeness, we report results both for the minimal as well as the non-minimal represen-

tations of the model. The results in Tables 1 below are qualitatively the same as those in Tables 1

of the paper; in other words, adding ct to the observables does not affect any conclusions regarding

the identification of the model.

3



Table 1: Full Model: nθ = 13
τ β ν φ π ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz
2 0.9975 0.1 53.6797 1.008 1.5 0.125 0.75 0.95 0.9 .2 .6 .3

Minimal State Space Representation

Xt+1 =

zt+1

gt+1

rt+1

 =

 0.9 0 0
0 0.95 0

0.5450 0 0.5143


A(θ)

X1t +

 1 0 0
0 1 0

0.6055 0 0.6858


B(θ)

εzt+1

εgt+1

εrt+1


εt+1

Yt+1 =


rt+1

yt+1

πt+1

ct+1

 =


.5450 0 0.5143
1.3377 0.95 −0.8258
1.3418 0 −0.5596
1.3377 0 −0.8258


C(θ)

X1t +


0.6055 0 0.6858
1.4863 1 −1.1011
1.4909 0 −0.7462
1.4863 0 −1.1011


D(θ)

εt+1

Non-Minimal Model Minimal Model
Tol ∆S

Λ ∆S
U ∆S

ΛU pass ∆S
Λ ∆S

T ∆S
U ∆S

ΛT ∆S
ΛU ∆S pass

e-02 11 9 19 No 11 9 9 20 19 28 No

e-03 11 9 19 No 11 9 9 20 19 28 No

e-04 11 9 19 No 11 9 9 20 19 28 No

e-05 11 9 19 No 11 9 9 20 19 28 No

e-06 11 9 19 No 11 9 9 20 19 28 No

e-07 12 9 21 No 11 9 9 20 20 29 No

e-08 12 9 21 No 11 9 9 20 20 29 No

e-09 12 9 21 No 11 9 9 20 20 29 No

e-10 12 9 21 No 12 9 9 21 21 29 No

e-11 12 9 21 No 12 9 9 21 21 29 No

default 13 9 22 1 12 9 9 21 21 30 No

Required 13 9 22 13 9 9 22 22 31

Full Minimal Model with Restrictions: Tol=1e-3
Restriction ∆S

Λ ∆S
T ∆S

U ∆S
Λ,T ∆S

Λ,U ∆S pass

ν - - 12 9 9 21 20 29 No

ν φ - 13 9 9 22 21 30 No

φ π - 13 9 9 22 21 30 No

ν π - 13 9 9 22 21 30 No

β φ - 12 9 9 21 20 29 No

φ ρg - 12 9 9 21 20 29 No

β ν φ 13 9 9 22 21 30 No

β ψ1 ψ2 11 9 9 20 20 29 No

ν φ ψ1 13 9 9 22 22 31 Yes

ν φ ψ2 13 9 9 22 22 31 Yes

τ ψ1 ψ2 11 9 9 20 20 29 No

Required 13 9 9 22 22 31
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Dropping variables (which could make a singular system non-singular) can have an impact on

identification. As an example, consider the reparameterized version of An and Schorfheide’s model

with 11 parameters and 3 shocks. Table 2 on page 27 of Komunjer and Ng (2011) shows that

under an additional restriction on ψ1, the (singular) model is identified from the second moments

of Yt = (rt, yt, πt, ct)
′.

Suppose we drop one variable at a time so that nY = 3 = nε. The order condition nθ 6 24 is

clearly satisfied. It remains to check the rank condition on ∆
S
(θ0).

Case 1: rt is dropped so Yt = (yt, πt, ct)
′. The new state space system after deleting the first

row of the measurement equation (see Table 1) is

Xt+1 =

zt+1

gt+1

rt+1

 =

 0.9 0 0
0 0.95 0

0.5450 0 0.5143


A(θ)

Xt +

 1 0 0
0 1 0

0.6055 0 0.6858


B(θ)

εt+1

Yt+1 =

yt+1

πt+1

ct+1

 =

1.3377 0.95 −0.8258
1.3418 0 −0.5596
1.3377 0 −0.8258


C(θ)

Xt +

1.4863 1 −1.1011
1.4909 0 −0.7462
1.4863 0 −1.1011


D(θ)

εt+1

The square system is still minimal state. Yet, using the tolerance 1e-3 as in Table 2,

rank∆S
R(θ0) = 27 < 29 = nθ + n2

X + n2
ε . Thus θ0 cannot be identified from the second

moments of {(yt, πt, ct)′} alone.

Case 2: drop yt from the observables so Yt = (rt, πt, ct)
′. The new square system is no longer

observable as rankO = 2 < nX = 3. Without minimality, the rank of ∆ΛU remains necessary

for identification. As rank∆ΛU is at most 21 and nθ + n2
ε = 22, θ0 is not identified.

Case 3: drop πt from the observables so Yt = (rt, yt, ct)
′. The new square system is both

controllable and observable. But rank∆S
R(θ0) = 27 < nθ + n2

X + n2
ε so θ0 cannot be identified

from the second moments of {(rt, yt, ct)′}.

This example illustrates that dropping some variables from the system can cause identification to

fail. It also shows that certain variables can be dropped without altering the identifiability of the

model; however, it is not clear how such variables can be chosen a priori.

2 The Smets and Wouters Model

The model estimated by Smets and Wouters (2007) (SW) is widely cited. The sticky price model has

real and nominal rigidities. The endogenous variables are output (yt), consumption (ct), investment
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(it), capital services (kst ), installed capital (kt), capacity utilization (zt), rental rate (rkt ), Tobin’s q

(qt), price markup (µpt ), wage markup (µwt ), inflation (πt), real wage (wt), hours worked (lt), and

the nominal interest rate rt). The monetary policy rule is specified as

rt = ρrrt−1 + (1− ρr)
(
rππt + ry(yt − yft )

)
+ r∆y

(
(yt − yft )− (yt−1 − yft−1)

)
+ ert

where yft is output of the flexible price economy. Thus variables for the flexible price economy

(such as consumption) are also relevant, and these have superscript f . The steady state values are

defined for inflation (π), output growth (γ), level of hours worked (l), and the nominal interest rat

r)e. The model has AR(1) shocks: productivity (eat ), investment (eit), government spending (egt ),

risk premium (ebt), monetary policy, (ert ), and two ARMA(1,1) shocks: wage markup (ewt ) and price

markup (ept ). There unknown parameter vector θ is of dimension nθ = 41. The observables used

in estimation are ∆yt,∆it,∆ct,∆wt, rt, πt, lt.

We take the gensys code written by Iskrev (2010) from the JME web site. His implementation

of the model consists of 40 equations. Iskrev’s specification of the ARMA shocks is different after

gensys solves the model. We rewrite these two exogenous processes such that it is not altered by

gensys. Specifically, an arbitrary ARMA(1,1) process yt with AR parameter ρ and MA parameter

θ has state space representation:

yt+1 = at + ηt+1

at+1 = ρat + (ρ+ θ)ηt+1.

If yt were observed, the dimension of the state vector is one, which is smaller than the usual

max(p,q+1) formulation as in Harvey (1989), for example.

The minimal state vector is the smallest number of exogenous and endogenous variables neces-

sary to describe the dynamics of the model. To facilitate isolating this vector, the state variables

are always ordered first in gensys. The Smets-Wouters model has 18 such variables. Thus the

first nine equations are for the five AR(1) shocks and two ARMA(1,1) shocks. These are followed

by ct, it, k
s
t , πt, wt, rt, c

f
t , i

f
t , k

sf
t , yt, y

f
t . The remaining 40-18=22 equations (such as lt) then follow.

This solution is determinate. Letting εt be the 7 innovations, gensys gives

X̃t+1 =

(
X̃1,t+1

X̃2,t+1

)
=

(
A1(θ) 0
A2(θ) 0

)(
X1t

X2t

)
+

(
B1(θ)
B2(θ)

)
εt+1

Yt+1 =
(
C1(θ) C2(θ)

)(X̃1,t+1

X̃2,t+1

)
where X̃1t is 18× 1. When A1 is full rank, the minimal state vector can be usually be obtained by

finding the columns of zeros in the A matrix, and the rows of zeros in the B matrix. (See the CEE

example below).

6



The Smets and Wouters model is somewhat more complicated because the 18 × 18 matrix A1

only has rank 16. An analysis of the null space of A1 reveals that there is a dependence between row

for interest rate rt, output yt, and output of the flexible price economy yft . This is not surprising

in view of the monetary policy rule which can be rewritten as

rt = ρr̃t−1 + (1− ρ)(rππt + ry(yt − yft )) + r∆y(yt − yft ) + ert

r̃t = rt −
r∆y

ρ
(yt − yft )

The rank deficiency arises because the state vector (X̃1,t+1, X̃2,t+1) is really a function of r̃t instead

of (rt, yt, y
f
t ). To resolve this problem, a new 16×1 state vector X1t is defined from X̃1t that removes

this dependency. Let Yt = (yt, it, ct, wt, rt, πt, lt). The state space system defined for Xt = X1t and

Yt is minimal with a state vector that is of dimension 16. The system has 7 equations and 7 shocks

and is hence full rank. Both Propositions 2-S and 2-NS apply.

Our results are still necessary even without minimality. In such a case, ∆S
Λ T (θ0) ≡ (∆S

Λ(θ0) ∆S
T (θ0))

and ∆S
T (θ0) will be rank deficient and not useful to analyze. However, full rank of ∆S

Λ U (θ0) ≡
(∆S

Λ(θ0) ∆S
U (θ0)) is still required for identification. While re-arranging the model to the minimal

representation helps understand the properties of the model, a case can be made that one checks

the necessary condition before spending the effort to assure sufficiency. For this reason, results for

both the minimal and non-minimal models are reported.

We evaluate θ0 at the posterior mean reported in Smets and Wouters. The results are as follows:

Smets and Wouters (2007)
Minimal Model Non-Minimal Model

Tol ∆S
Λ ∆S

T ∆S
U ∆S pass ∆S

Λ ∆S
U ∆S

Λ U pass

1.000000e-03 36 256 49 341 No 36 49 85 No

1.000000e-04 36 256 49 341 No 36 49 85 No

1.000000e-05 36 256 49 341 No 36 49 85 No

1.000000e-06 36 256 49 341 No 36 49 85 No

1.000000e-07 38 256 49 341 No 38 49 87 No

1.000000e-08 39 256 49 343 No 39 49 88 No

1.000000e-09 39 256 49 344 No 39 49 88 No

1.000000e-10 39 256 49 344 No 39 49 88 No

1.000000e-11 39 256 49 344 No 39 49 88 No

1.000000e-12 39 256 49 344 No 39 49 88 No

3.973355e-11 39 256 49 344 No 39 49 88 No

Required 41 256 49 346 41 49 90

Results for the minimal model in the left panel. The model is not identified from the second

moments of yt at any tolerance. At tol=1e-3, ∆S
Λ(θ0) is rank deficient by 5, even though ∆S

T (θ0)

and ∆S
U (θ0) are full rank. The results in the right panel show that ∆S

Λ U (θ0) of the non-minimal
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model is also reduced rank. For a range of values of tol, ∆S(θ0) of the minimal model and ∆NS
Λ U (θ0)

of the non-minimal are both short rank by 5. This suggests five restrictions are necessary.

To isolate the restrictions, we study the null space of ∆S(θ0) of the minimal model. The seven

smallest entries in the null space correspond to steady state hours (l), steady state inflation, (π),

the discount factor (β), elasticity of capital utilization adjustment cost (φ), steady state output

growth (γ), price curvature (εp), and wage curvature (εw). Obviously, some of these parameters

are identifiable from the mean which we can incorporate via ϕ(θ) = 0.

Rank conditions with Restrictions: Tol=1e-3
Restriction ∆

S

Λ ∆S
T ∆

S

U ∆
S

Λ T ∆
S

Λ U ∆
S

pass

δ µw g εp εw 36 256 49 292 85 341 No

l π εp εw 39 256 49 295 88 344 No

l g π β µw 40 256 49 295 88 344 No

l π β εp εw 40 256 49 296 89 345 No

l π µw εp εw 40 256 49 296 89 345 No

l π g εp εw 40 256 49 296 89 345 No

l π β µw εw 40 256 49 296 89 345 No

l π γ εp εw 41 256 49 297 90 346 Yes

l π β εp εw 41 256 49 297 90 346 Yes

l π δ εp εw 41 256 49 297 90 346 Yes

l π φ εp εw 41 256 49 297 90 346 Yes

l π λ εp εw 41 256 49 297 90 346 Yes

Required 41 256 49 297 90 346

Row 1 are results for the five restrictions imposed by Smets and Wouters: depreciation (δ),

steady state markup (µw) in the labor market, exogenous spending (g), price curvature (εp) and

wage curvature and (εw). These restrictions evidently do not yield an identifiable model. While the

mean restrictions l, π help identification, they are not sufficient. Restricting εw without restricting

εp will not enable identification. All identifiable models involve restricting parameters suggested by

the null space of ∆S(θ0).

We also see if the model is identified at the prior means used in Smets and Wouters (2007). The

results are the same as the ones reported above for the posterior mean: restrictions on l, π, εp, εw

and one of β, γ, δ, φ, λ. Non-identification of this model is purely a consequence of parameter

dependency. Similarity transformations leading to identical transfer functions play no role here.

These results thus agree with Iskrev (2010).

Removing labor supply from the observables would result in more shocks than observables.

Hence, only the results for non-singular models apply here. We obtain the following results:
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Rank conditions with Restrictions (without lt): Tol=1e-3

Restriction ∆
NS

Λ ∆
NS

T ∆
NS

pass

- - - - - 36 256 292 No

δ µw g εp εw 39 256 295 No

l π εp εw 40 256 296 No

l π µw εp εw 40 256 296 No

l π g εp εw 40 256 296 No

l π β εp εw 41 256 297 Yes

l π γ εp εw 41 256 297 Yes

l π δ εp εw 41 256 297 Yes

l π φ εp εw 41 256 297 Yes

l π λ εp εw 41 256 297 Yes

Required 41 256 297

The results are exactly the same as when labor supply was used. Further analysis reviews that

the analysis holds up when additional variables are dropped. However, θ0 is not identifiable when

nY ≤ 3.

3 The CEE Model

The model of Christiano, Eichenbaum, and Evans (2005) has many features as the SW model, but

the CEE has only two shocks, technology (zt) and government spending (gt). Schmitt-Grohe and

Uribe (2004) used a version of the CEE model to assess welfare effects using higher order solution

methods. We use their code available at http://www.columbia.edu/~mu2166/cee/cee.html to

symbolically obtain a first order linear approximation. Their function then solves the model by

qz-decomposition and returns H and G, where X̃t+1 = HX̃t and Zt = GX̃t, X̃t is a 11 × 1 state

vector declared by the user, and Zt is also 11×1. One advantage of this rational expectations model

solver (which is a version of Klein’s code) is that the user needs to specify the dimension of the state

vector, and the output matrices are ‘almost’ what is required for our analysis. The missing step is

to find the matrices that characterize the impact response of X̃t and Zt to εt. These matrices were

derived in Klein (2000) and also explained in Anderson (2008). We verify that when applied to

the An-Schorfheide model, the code agrees with the gensys and dynare output provided by the

authors. Given G,H and the two impact matrices, simple rearranging gives A1, B1, C1, D1 which

allows us to proceed to test minimality.

The objective of Schmitt-Grohe and Uribe (2004) was to perform a welfare analysis using a

second order approximation of the CEE model. We only analyze the linear approximation to the

model. A rank test finds that the 11×1 vector X̃t declared by the user is not minimal. These 11 vari-

ables are ct, it, rt, πt, yt, st, s̃t, wt−1, kt, gt, zt. Inspection of A1 reveals that columns 3 and 5 are zeros.

Removing these variables from X̃t leads to a 9 × 1 state vector Xt = (ct, πt, rt, qt, st, s̃t, yt, ht, ut).
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As noted in Schmitt-Grohe and Uribe (2004), the variables st and s̃t have no first order effects

and are thus superfluous, implying that system expressed in terms of Xt is still not minimal. In

particular, the system is not controllable. A minimal system can be obtained by removing st, s̃t

from the analysis altogether. However, our rank conditions are still necessary for identification.

The model has a total of 25 unknown parameters which are calibrated by Schmitt-Grohe and

Uribe (2004). We fix the steady state share of government purchases in value-added, Tobin’s Q,

steady state productivity, steady state capacity utilization, and a parameter that scales the standard

deviation of shocks. We also set the degree of wage indexation is set to the one. (The solution is

not unique otherwise). We then proceed to assess identifiability of remaining 18 dimensional θ. As

there are two shocks and four observables, Proposition 2-S applies.

Model CEE
Tol ∆S

Λ ∆S
T ∆S

U ∆S
Λ T ∆S

Λ U ∆S pass

1.0e-02 14 81 4 94 18 96 No

1.0e-03 14 81 4 95 18 99 No

1.0e-04 14 81 4 95 18 99 No

1.0e-05 14 81 4 95 18 99 No

1.0e-06 14 81 4 95 18 99 No

1.0e-07 14 81 4 95 18 99 No

1.0e-08 15 81 4 96 19 99 No

1.0e-09 15 81 4 96 19 100 No

1.0e-10 15 81 4 96 19 100 No

1.0e-11 15 81 4 96 19 100 No

default 17 81 4 97 21 101 No

Required 18 81 4 99 22 103

The 18 parameters in the model are not identified. The rank of ∆S(θ0) suggests 4 restrictions. The

smallest entries in the null space of ∆S(θ0) are due to: steady state labor demand (h), the cash

in advance constraint parameter (ν), inflation target π, labor elasticity of substitution η, a money

demand parameter σm.

Rank conditions with Restrictions: Tol=1e-3
Restriction ∆

S

Λ ∆
S

T ∆
S

U ∆
S

Λ T ∆
S

Λ U ∆
S

pass

h η σm 17 81 4 98 21 102 No

h ν π σm 17 81 4 98 21 102 No

h ν η σm 18 81 4 99 22 103 Yes

h π η σm 18 81 4 99 22 103 Yes

Required 18 81 4 99 22 103

The conditional rank analysis shows that identification requires two mean restrictions on h, η, σm

and either ν or π. The results hold when more observables are used in the identification analysis.
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4 Cicco-Pancrazi-Uribe

Cicco, Pancrazi, and Uribe (2009) consider two real business models for emerging countries, one

with two shocks, and a more elaborate model with frictions that has five shocks. We focus on the

big model with frictions.

The code available for download at http://www.columbia.edu/~mu2166/rbc_emerging/rbc_

emerging.html produces X̃t = HX̃t−1, Zt = GX̃t where X̃t is 11× 1 vector and Zt is 9× 1. The

first step is again to work out the impact matrices. The H matrix has 3 columns of zeros and the B1

matrix has one row of zeros. Removing the associated variables yield a 7 dimensional state vector

that along with four observables in the Zt vector: consumption growth, output growth, investment

growth, and the ratio of trade-balance to output, yield a minimal system.

The authors estimated 13 parameters, including ten autoregressive parameters and standard

deviations for the five mutually uncorrelated shocks. There are five shocks and four observables.

Hence the model is non-singular and Proposition 2-NS applies.

Model Frictions
Tol ∆NS

Λ ∆NS
T ∆NS pass

1.00e-02 12 48 58 No

1.00e-03 13 48 61 No

1.00e-04 13 49 62 Yes

1.00e-05 13 49 62 Yes

1.00e-06 13 49 62 Yes

1.00e-07 13 49 62 Yes

default 13 49 62 Yes

Required 13 49 62

The model is identified at tol ¡= 1e-4. The fact that ∆NS
T (θ0) and ∆NS(θ0) are short rank when

tol=1e-3 suggests the possibility of similar transfer functions. However, the null space of ∆NS is

empty. Thus, we view the model as identified at θ0.
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% Given solv_sw07 solves the model by gensys and returns ABCD.
% delta_sw07 computes the four Delta matrices

function [Delta,Delta_lambda,Delta_T,Delta_U] = delta_sw07(theta,A,B,C,D,Sigma)

lambda = [vec(A); vec(B); vec(C); vec(D); vec(Sigma)];
n_x = size(A,1);
n_eps = size(B,2);
n_y = size(C,1);

% compute numerical derivatives with respect to theta
Delta_lambda = zeros(size(lambda,1),size(theta,1));
for i=1:1:size(theta)

delta_theta = zeros(size(theta)); delta_theta(i) = theta(i)*1e-3;
if delta_theta(i) ==0; delta_theta(i)=1e-3; end;
theta_p = theta + delta_theta;
[minA,minB,minC,minD,Sigma]=solv_sw07(theta_p,flex);
lambda_p = [vec(minA); vec(minB); vec(minC); vec(minD); vec(Sigma)];

theta_m = theta - delta_theta;
[minA,minB,minC,minD,Sigma]=solv_sw07(theta_m,flex);
lambda_m = [vec(minA); vec(minB); vec(minC); vec(minD); vec(Sigma)];

Delta_lambda(:,i) = (lambda_p - lambda_m)/(2*delta_theta(i));
end;

% computes the permutation matix T
T = [];
for j=1:1:n_eps

ind_j = zeros(n_eps,1); ind_j(j) = 1;
T = [T, kron(eye(n_eps,n_eps),ind_j)];

end

% computes Delta_T
Delta_T = [kron(A’,eye(n_x)) - kron(eye(n_x),A);

kron(B’,eye(n_x));
-1*kron(eye(n_x),C);
zeros(n_y*n_eps,n_x^2);
zeros(n_eps^2,n_x^2)];

%computes Delta_U
Delta_U = [zeros(n_x^2,n_eps^2);

kron(eye(n_eps),B);
zeros(n_y*n_x,n_eps^2);
kron(eye(n_eps),D);
-1*(eye(n_eps^2) + T)*kron(Sigma,eye(n_eps))];

Delta = [Delta_lambda, Delta_T, Delta_U];

Delta_orth=null(Delta,’r’) % computes the null space of Delta
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function [K,S] = dare_kn(A,B,C,D,Sigma,TolCV)

% dare_kn.m
%
% This program solves the Riccati matrix difference equations associated
% with the Kalman filter by iterating until the tolerance TolCV is reached.
%
% Inputs: A is n x n, B is n_y x n_e, C is n_y x n, D is n_y x n_e, TolCV
% is a scalar.
% Outputs: steady state Kalman gain K is n_y x n_y, stationary covariance
% matrix S of the one-step ahead errors a(t+1) in forecasting y(t+1)
% is n_y x n_y.
%
% The program creates the Kalman filter for the following system:
% x(t+1) = A*x(t) + B*e(t+1)
% y(t+1) = C*x(t) + D*e(t+1).
%
% The program creates an innovations representation:
% xx(t+1) = A*xx(t) + K*a(t+1)
% y(t+1) = C*xx(t) + a(t+1),
% where K is the (steady state) Kalman gain, S is the covariance matrix of
% the one-step-ahead forecast error S = E[a(t)*a(t)’], and
% a(t+1) = y(t+1) - E[y(t+1)| y(t), y(t-1), ... ], and xx(t)=E[x(t)|y(t),...].

% Initialization
Q = B*Sigma*B’; % Q is n x n
R = D*Sigma*D’; % R is n_y x n_y
P = B*Sigma*D’;
g0 = Q;
dd = 1;

% Iterating until steady state
while dd > TolCV

b0 = A*g0*C’ + P;
s0 = C*g0*C’ + R;
k0 = b0/s0;
g1 = A*g0*A’ + Q - k0*s0*k0’;
b1 = A*g1*C’ + P;
s1 = C*g1*C’ + R;
k1 = b1/s1;
dd=max(max(abs(k1-k0)));
g0=g1;

end

K=k1;
S=s1;
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