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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and

business cycle fluctuations. Interest in this topic has been spurred by a growing body of

evidence that uncertainty rises sharply in recessions. This evidence is robust to the use of

specific proxy variables such as stock market volatility and forecast dispersion as in Bloom

(2009), or a broad-based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and

Ng (2015) (JLN hereafter). But while this evidence substantiates a role for uncertainty in

deep recessions, the question of whether uncertainty is an exogenous source of business cycle

fluctuations or an endogenous response to economic fundamentals is not fully understood.

Existing results are based on convenient but restrictive identifying assumptions and have no

explicit role for financial markets, even though uncertainty measures are strongly correlated with

financial market variables. This paper considers a novel identification strategy to disentangle

the causes and consequences of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is a

long-standing challenge of the uncertainty literature. The challenge arises in part because there

is no single uncertainty model, hence no theoretical consensus on whether the uncertainty that

accompanies deep recessions is primarily a cause or effect (or both) of declines in economic

activity. In fact, theory is even ambiguous about the sign of the effect, as we discuss below.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-

sic theories assert that uncertainty originates from economic fundamentals such as productivity,

and that such real economic uncertainty, when interacted with market frictions, discourages real

activity. But some researchers have argued that uncertainty dampens the economy through its

influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)) or through sources

of uncertainty specific to financial markets (e.g., Bollerslev, Tauchen, and Zhou (2009)). More-

over, as surveyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial

markets, and these recessions have markedly different features from recessions where financial

markets play a passive role. From this perspective, if financial shocks are subject to time-varying

volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a

key player in recessions, both as a cause and as a propagating mechanism. Yet so far the lit-

erature has not disentangled the contributions of real versus financial uncertainty to business

cycle fluctuations.

Econometric analyses aimed at understanding the role of uncertainty for business cycle

fluctuations face their own challenges. Attempts to identify the “effects”of uncertainty shocks

in existing empirical work are primarily based on recursive schemes within the framework of

vector-autoregressions (VAR).1 While a recursive structure is a convenient starting point, it is

1See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
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ultimately unsatisfactory as an identification strategy for a study on uncertainty and business

cycles. Not only do the existing studies differ according to whether uncertainty is ordered ahead

of or after real activity variables in the VAR, there is no compelling theoretical reason to restrict

the timing of the relationship between uncertainty (a second moment variable) and real activity

(a first moment variable). Uncertainty could covary contemporaneously with real activity both

because it is an exogenous impulse driving business cycles and because it responds endogenously

to first moment shocks. Recursive structures explicitly rule this out, since they presume that

some variables respond only with a lag to others. Other commonly used VAR identification

strategies, such as sign restrictions, long-run restrictions, and instrumental variables estimation,

are likewise problematic, as we discuss further below.

It is with these challenges in mind that we return to the questions posed above: is uncertainty

primarily a source of business cycle fluctuations or a consequence of them? And what is the

relation of real versus financial uncertainty to business cycle fluctuations? The objective of this

paper is to establish a set of stylized facts that addresses these questions econometrically. To

do so, we take a two-pronged approach. First, we explicitly distinguish macro uncertainty UMt,

from financial uncertainty UFt and force their effects to be orthogonal. These data are included

together in a structural vector autoregression (SVAR) along with a measure of real activity Yt
to evaluate their possibly distinct roles in business cycle fluctuations. Second, we propose a

novel identification strategy that allows for simultaneous feedback between uncertainty and real

activity using what we shall refer to as shock-based restrictions. Whereas SVARs are typically

identified using a priori restrictions on the structural parameters, we achieve identification by

using inequality constraints on the structural shocks to reinforce and interpret what the data

already suggest.

More precisely, we impose two sets of shock-based restrictions. The first is a set of “event

constraints” that require the identified shocks to have defensible properties during special

episodes of history for which a broad historical understanding of the events of the time would

suggest a certain behavior of the structural shocks.2 We augment this understanding by using

the data itself, i.e., the set of solutions consistent only with the standard reduced-form covari-

ance restrictions, to locate distinguishing characteristics of the two different types of uncertainty

shocks. The second is a set of “external variable constraints”that require the identified uncer-

tainty shocks to exhibit a non-zero absolute correlation with certain variables external to the

VAR that should be informative about uncertainty shocks. While our shock-based restrictions

do not in general permit point identification, the moment inequalities generated by these con-

straints, along with the reduced-form covariance restrictions, yield identified sets that paint a

Gilchrist, Sim, and Zakrajsek (2010), and JLN.
2After earlier versions of this paper were circulated, we became aware of work by Antolín-Díaz and Rubio-

Ramírez (2018) who, like us, suggest using restrictions on the shocks during certain episodes of history to help
identification. We discuss the differences between our approaches below.
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fairly clear picture regarding the role of financial and macro uncertainty during recessions.

The empirical exercise additionally requires that appropriate measures of macro and finan-

cial uncertainty be available. Our measures of uncertainty quantify the magnitude of unpre-

dictability about the future. As in JLN, the macro uncertainty index UMt measures a common

component in the time-varying volatilities of h-step ahead forecast errors across a large number

of macroeconomic series that include variables from three categories: real activity (the most

numerous), price, and financial. The same approach is used here to construct a broad-based

index of financial uncertainty UFt that is based solely on financial market data and has never

been used in the literature. We also study the Baker, Bloom, and Davis (2016) economic policy

uncertainty (EPU) index, an alternative to the JLN macro uncertainty measure that is arguably

relevant for real activity based macro uncertainty.

Our main results may be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp and persistent decline in real activity, lending support to the hypothesis

that heightened uncertainty is an exogenous impulse that causes recessions. In contrast to

preexisting empirical work that uses recursive identification schemes (e.g., Bloom (2009), JLN),

we trace the source of this result specifically to financial market uncertainty. However there is

little evidence that negative shocks to real activity have adverse effects on financial uncertainty.

Second, the results suggest that sharply higher macro and policy uncertainty in recessions is

best characterized as an endogenous response to business cycle fluctuations. That is, negative

shocks to economic activity are found to cause increases in both macro and policy uncertainty,

but there is little evidence that positive shocks to macro or policy uncertainty play a large role

in causing lower economic activity as hypothesized by many theoretical models. Indeed, in most

estimations the opposite is true: positive shocks to macro and policy uncertainty are found to

increase real activity initially, consistent with “growth options”theories discussed below.

Third, an inspection of our identified solution sets shows that the admissible SVARs reflect

a non-zero contemporaneous correlation between UFt and Yt, as well as between UMt and Yt,

something that is inconsistent with any recursive ordering. Tests of the validity of a recursive

structure are easily rejected by the data.

Fourth, all three estimated shocks systematically exhibit strong non-Gaussian features such

as skewness and excess kurtosis. This is of interest because structural economic modeling and

most Bayesian estimation techniques typically assume Gaussianity.

Looking across configuration of variables and restrictions considered, the findings that most

stand out are the strong repercussions for real activity of financial uncertainty shocks, and the

endogenous response of macro uncertainty to other adverse shocks associated with recessions.

In other words, uncertainty shocks are not all alike. Distinguishing between the two types

of uncertainty thus appears necessary for understanding the roles that uncertainty plays in

economic fluctuations.
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The rest of this paper is organized as follows. Section 2 reviews related literature. Section 3

discusses the econometric framework and identifying assumptions, and compares our approach

to other methodologies. Section 4 discusses the data and implementation. Section 5 presents

the main results for systems that use macro uncertainty as measured by UMt. Section 6 reports

results using other types of uncertainty. A number of additional results and information are

reported in the Online Appendix. Shock-based restrictions are likely to have promise in other

applications. A paper with greater detail on the methodology proposed here with additional

applications can be found in Ludvigson, Ma, and Ng (2019).

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activ-

ity.3 Besides the evidence cited above for the U.S., Nakamura, Sergeyev, and Steinsson (2017)

estimate growth rate and volatility shocks for 16 developed countries and find that they are

substantially negatively correlated. Theories for which uncertainty plays a key role differ widely

on the question of whether this correlation implies that uncertainty is primarily a cause or a

consequence of declines in economic activity.

One strand of the literature proposes uncertainty as a cause of lower economic growth. This

includes models of the real options effects of uncertainty (Bernanke (1983), McDonald and

Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist, Sim,

and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu and

Bundick (2017), Leduc and Liu (2016), Fernández-Villaverde, Pablo Guerrón-Quintana, and

Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock

to the volatility of some economic fundamental. Some theories presume that higher uncertainty

originates directly in the process governing technological innovation, which subsequently causes

a decline in real activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2018)). According to these theories, positive macro uncertainty shocks should cause

declines in real economic activity. But while this theoretical literature has focused on uncer-

tainty originating in economic fundamentals, the empirical literature has typically evaluated

those theories using uncertainty proxies that are strongly correlated with financial market vari-

ables. This practice raises the question of whether it is real economic uncertainty or financial

market uncertainty (or both) that is the driver of recessions, a question of interest to our

investigation.

A second strand of the literature postulates that higher macro uncertainty arises solely

as a response to lower economic growth. In these theories there is no exogenous uncertainty

shock at all and all uncertainty variation is endogenous. Some theories presume that bad times

3This literature has become voluminous. See Bloom (2014) for a recent review of the literature.
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incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and Geanakoplos (2012)),

or reduce information and with it the forecastability of future outcomes (Van Nieuwerburgh

and Veldkamp (2006), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), Ilut and Saijo

(2016)), or provoke new and unfamiliar economic policies with uncertain effects (Pástor and

Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li, and Yang

(2015)), or generate endogenous countercyclical uncertainty in consumption growth because

investment is costly to reverse (Gomes and Schmid (2016)).

And yet a third literature has raised the possibility that some forms of uncertainty can

actually increase economic activity. “Growth options” theories of uncertainty postulate that

a mean-preserving spread in risk generated from an unbounded upside coupled with a limited

downside can cause firms to invest and hire, since the increase in mean-preserving risk increases

expected profits. Such theories were often used to explain the dot-com boom. Examples

originate in early work by Oi (1961), Hartman (1972), and Abel (1983), and more recently

Bar-Ilan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2018),

Segal, Shaliastovich, and Yaron (2015).

As this brief literature review makes plain, there is no single uncertainty theory or all-

encompassing structural model that we can use to link with data. Put simply, the body of

theoretical work does not provide precise identifying restrictions for empirical work. Instead,

what the literature presents is a wide range of theoretical predictions about the relationship

between uncertainty and real economic activity that are also ambiguous about the sign of the

relationship. The absence of a theoretical consensus on this relationship, along with the sheer

number of theories and limited body of evidence on the structural elements of specific models,

underscores the extent to which the question of cause and effect is fundamentally an empirical

one.

Of course, all empirical studies of this nature require identifying assumptions. But commonly

used SVAR identification schemes appear ill equipped to address the empirical questions at

hand. Recursive identification schemes are inappropriate because, by construction, they rule

out the possibility that uncertainty and real activity could influence one another within the

period. Sign restrictions on impulse responses are inappropriate, since theory is ambiguous

about the sign of the relationship. Zero-frequency restrictions are diffi cult to motivate as the

long-run effects of uncertainty shocks have not been theorized. Instrumental variable analysis

is challenging, since instruments that are credibly exogenous are diffi cult if not impossible to

find for this application. All of these considerations motivate the novel identification strategy

proposed in this paper.
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3 Econometric Framework

We consider a system with n = 3 variables: Xt = (UMt, Yt, UFt)
′, where UMt denotes the JLN

index of macro uncertainty, Yt denotes a measure of real activity, and UFt denotes the index

of financial uncertainty. We suppose that Xt has a reduced-form finite-order autoregressive

representation Xt =
∑p

j=1 AjXt−j + ηt, ηt ∼ (0,Ω), Ω = PP′ where P is the unique lower-

triangular Cholesky factor with non-negative diagonal elements. The reduced form parameters

are collected into φ =
(
vec(A1)′ . . . vec(Ap)

′, vech(Ω)′
)′
. The reduced form innovations

ηt = (ηMt, ηY t, ηFt)
′ are related to the structural shocks et = (eMt, eY t, eFt)

′ by an invertible

matrix H:

ηt = HΣet ≡ Bet, et ∼ (0, IK), diag (H) = 1,

where B ≡ HΣ, and Σ is a diagonal matrix with variance of the shocks in the diagonal entries.

The structural shocks et are mean zero with unit variance, serially and mutually uncorrelated.

We adopt the unit effect normalization that Hjj = 1 for all j.

The goal of the exercise is analyze the dynamic effects of et on Xt. Let “hats” denote

estimated variables. Since the autoregressive parameters Aj can be consistently estimated

under regularity conditions, the sample residuals η̂t(φ̂) are consistent estimates of ηt. The

empirical SVAR problem reduces to finding B from φ̂. But there are 9 parameters in B and

the reduced-form covariance structure of η̂t only provides n(n+ 1)/2 = 6 restrictions ḡZ(B) in

the form

ḡZ(B) ≡ vech(Ω̂)− vech(BB′) = 0.

The model is under-identified as there can be infinitely many solutions satisfying the covariance

restrictions ḡZ(B) = 0. Let these uncountably many solutions be collected into the set B̂ =

{B = P̂Q : Q ∈ On, diag(B) ≥ 0, ḡZ(B) = 0}, where On is the set of n × n orthonormal

matrices. We shall refer to B̂ as the unconstrained set for short, with the understanding that it
is not completely unconstrained given the imposition of the reduced-form covariance restrictions.

To simplify notation, the dependence of B̂ on Q and φ̂ is suppressed.

Point identification requires restrictions beyond the ones implied by the covariance structure

to reduce B̂ to a singleton. As discussed above, the theories reviewed in previous section do not
lend support to identification schemes commonly used in the literature. One possibility is to turn

to external variables. An example relevant to our work is Stock and Watson (2012), in which

either stock market volatility or the EPU index of Baker, Bloom, and Davis (2016) are used as

external instrumental variables to identify the effects of uncertainty shocks. Our analysis differs

not only because we have two types of uncertainty and are interested in the dynamic effects of

all shocks in the model. The main difference is that our procedure explicitly recognizes that

macro uncertainty, policy uncertainty, and financial uncertainty are all endogenous variables.

As such, valid instruments, which must be exogenous, are hard to find.
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We address these challenges by putting restrictions on the behavior of the structural shocks.

Although the unconstrained set can be uncountably large, our proposed identifying restrictions

explicitly recognize that not every solution in B̂ is equally credible. We refer to these as shock-
based restrictions since we use features of the shocks to decide if a solution in the unconstrained

set should be kept. Even though the stated goal of any SVAR exercise is to identify et, it is

somewhat surprising that little attention is paid to the shocks themselves. Before turning to

the restrictions, we first discuss some facts that motivate them.

3.1 Motivating Facts

Since we are interested in understanding the possible role of different types of uncertainty in

economic fluctuations, it is useful to isolate episodes of heightened financial and macro uncer-

tainty, what we shall call “big shock”uncertainty events . Consider first financial uncertainty.

In the sample we study, the two largest financial uncertainty episodes are the 1987 stock market

crash, and the Great Financial Crisis/Great Recession of 2008-2009.

On Monday October 19, 1987, the Dow Jones Industrial Average dropped 22.6 percent, the

largest one-day stock market decline in history. Popular explanations include the rapidly rising

globalization of financial markets and financial innovations associated with index futures and

portfolio insurance. A belief that such financial innovations played a predominant role in the

crash was suffi ciently widespread that new regulations for exchange trading, such as “circuit

breakers,”and an overhaul of trade clearing protocols were developed in the aftermath.4

In October of 2008, the Dow Jones Industrial average began a pronounced decline and

subsequently fell more than 50% over a period of 17 months. The collapse in the market over

this period has been associated with a broad-based Great Financial Crisis (GFC) that is often

cited as a “trigger”of the Great Recession (GR).5 Many possible contributors to the crisis have

been noted, including problems with subprime lending and a preceding housing boom. But

at least some of the variation in financial uncertainty appears to have its origins in securities

markets. Financial intermediaries played a large role in the crisis, primarily because they hold

vast portfolios of financial securities. Speculative trading activities by large financial institutions

such as AIG, Lehman Brothers, and Bear Stearns, possibly spurred by a mistaken pricing of

risk, have been placed at the center of the crisis by some analyses (e.g., Glaeser, Santos, and

Weyl (2017)). Several highly leveraged financial institutions (BNP Paribas, Northern Rock)

experienced a total collapse in liquidity that began August of 2007, preceding the recession. And

uncertainty about the value of new products of financial innovation have been cited as pertinent

to the financial crisis, including the securitization of mortgages and other debt obligations, and

4See for example, https://www.federalreservehistory.org/essays/stock_market_crash_of_1987
5https://en.wikipedia.org/wiki/Financial_crisis_of_2007-2008
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the rapid growth in credit default swaps.6 In short, a defining feature of both the 1987 crash

and the GFC is that factors originating specifically in financial markets appeared to play an

important role in heightened financial uncertainty.

With this in mind, we ask what can be said about the uncertainty shocks themselves before

imposing any identifying restrictions. To address this question, we construct the unconstrained

set B̂, which is based on the reduced-form covariance restrictions alone, and then study when big
shocks in this set have occurred over the course of fifty years in our sample, by searching across

the unconstrained set B̂ for the month in which the uncertainty shocks eFt(B) and eMt(B) are

largest.

To construct the unconstrained solution set B̂, we initialize B to be the unique lower-

triangular Cholesky factor of Ω̂ with non-negative diagonal elements, P̂, and then rotate it by

K = 1.5 million random orthogonal matrices Q. Each rotation begins by drawing an n × n

matrix M of NID(0,1) random variables. Then Q is taken to be the orthonormal matrix in the

QR decomposition of M. Since B = P̂Q, the procedure imposes the covariance restrictions

vech(Ω) =vech(BB′) by construction. Let et(B) = B−1η̂t be the shocks implied by a B ∈ B̂
for given η̂t. The moments implied by the covariance structure alone give us 1.5 million values

of B, and thus 1.5 million unconstrained values of et(B) for t = 1, ...T .

Searching over the 1.5 million rotations, we find that the date in our sample with the most

maxima in eFt(B) (31% of them) is 2008:09, which happens to be the month when Lehman filed

for bankruptcy and when the stock market fell nearly 800 points. The date with the second

most maxima in eFt(B) (25% of them) is 1987:10, the month of the stock market crash. Looking

at the 1.5 million values of eFt(B) obtained for 2008:09, we find that its distribution is right

skewed with few negative values: 30% of the eFt(B) in 2008:09 have a value of 4 (standard

deviations) or larger, 20% have a value of 5 or larger, while 5% of them take on a value of

6 or larger. For the 1.5 million values of eFt(B) obtained in 1987:10, we find similarly that

25% of the eFt(B) in 1987:10 have a value of four (standard deviations) or larger, while 5% of

them take on a value of 5 or larger. Thus, the covariance structure of the data alone provides

overwhelming evidence of a large positive financial uncertainty shock in the months of the 1987

crash and the 2008 Lehman collapse.

We repeat this exercise for the macro uncertainty shocks. The date with the most maxima

in eMt(B) across all 1.5 million rotations in B̂ (32% of them) is again 2008:09, the month of

the Lehman collapse, while the date with the second most maxima is 1970:12. Looking at the

1.5 million values of eMt(B) obtained for 2008:09, we find a distribution that is very close to

that of eFt(B): 33% have a value of 4 or larger, 20% have a value of 5 or larger, and 5% have

a value of 6 or larger. For the 1970:12 date, we find that 25% of the 1.5 million values of

eMt(B) have a value of 4 or larger, while 10% of them take on a value of 5 or larger. Thus,

6"FT Martin Wolf —Reform of Regulation and Incentives". Financial Times. June 23, 2009.
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the covariance structure of the data alone provides overwhelming evidence of a large positive

macro uncertainty shock in the month of the 2008 Lehman collapse and in December of 1970.

What might be the significance of the last month in 1970 for macro uncertainty? Unlike

2008:09, this date is not associated with a single salient event such as the Lehman collapse.

But further inspection shows that the big macro uncertainty shocks found in 1970:12 have their

origins in uncertainty about real economic activity.7 The late 1960s and early 1970s were a

time of rising anxieties on a number of fronts given the twin wars in Vietnam and Cambodia

and accelerating inflation. But, arguably, the single most relevant source of real economic

uncertainty at the end of 1970 involved the likelihood and consequences of a collapse of the

Bretton Woods system. By December of 1970, it was evident that the large U.S. balance of

payments deficit of the time was incompatible with the gold standard, an acknowledgement that

prompted periodic runs on the dollar and growing unease over the possible policy response. By

the time of the so-called Nixon “shock” in August of 1971, a little over six months after our

identified big real uncertainty shock, it was widely recognized that the $35-per-ounce of gold

conversation rate was unsustainable, and that the collapse of Bretton Woods was inevitable.

Thus a historical reading of the times would place the period of genuine uncertainty surrounding

the collapse of Bretton Woods sometime earlier than August 1971, when there was still room for

reasoned speculation. From an inspection of the unconstrained set, it is apparent that the date

with the biggest shock in the twelve month run-up to the abandonment of the gold standard is

1970:12.

Evidently, this date represents a big shock episode for the real activity component of UMt,

one that appears to be relatively unimportant for financial uncertainty. Conversely, the month

of the 1987 stock market crash represents a big shock episode for UFt, one that is relatively

unimportant for macro/real uncertainty. We use these facts below to help discern the possibly

distinct roles of macro and financial uncertainty for real activity.

We argue that other major economic events in our sample, even if they are not big shock

events in B̂, still justify weaker restrictions on the signs of the uncertainty shocks during specific
months. On October 6, 1979, Paul Volcker announced the results of an unscheduled FOMC

meeting in which it was decided that a new nonborrowed reserves instrument approach to the

implementation of monetary policy would supersede the federal funds rate instrument approach

used for years prior, in an effort to bring down accelerating inflation. (We refer to this as the

“Volcker experiment”below.) In July/August of 2011, the U.S. House of Representatives broke

with long-standing precedent to demand that the U.S. President negotiate over deficit reduction

in exchange for an increase in the debt ceiling. We argue that a credible identification scheme

7When we replace UMt with a sub-index based only on the real activity variables in the macro index, we
find that 1970:12 is the date with the greatest number of maxima in the shocks to real activity uncertainty. We
investigate this sub-index further below.
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would not identify October 1979 or the months associated with the 2011 debt ceiling crisis as

periods of below average uncertainty shocks. Similarly, a credible identification scheme would

not identify the GR—the most protracted economic downturn of the post-war period—as an

episode in which real activity shocks were above average. We refer to these event constraints

as “non-negative event”restrictions.

Our restrictions also employ variables external to the SVAR to help identify uncertainty

shocks. What type of external variables are likely to encode information about uncertainty

shocks? We argue that both the stock market and price of safe-haven assets such as gold are

two such variables. Empirically, it has long been understood that periods of high stock market

volatility coincide with movements downward in the aggregate stock market.8 The correlation

between the CBOE Volatility Index (VIX) and the log excess stock market return on the CRSP

value-weighted stock market index is -0.40 from January 1990 (when the standard VIX series

begins) to the end of our sample. This correlation is also relevant for UFt, since its behavior is

dominated by the volatility of equity returns.9 Such a negative correlation between uncertainty

shocks and the ex-post stock return is implied by a large body of extant macro and finance

theories. For example, the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner

(1965) implies a perfect negative correlation since the stock market risk premium (which moves

inversely to the ex-post return) is perfectly correlated with shocks to financial uncertainty. More

recent asset pricing theories that emphasize the importance of uncertainty shocks, such as those

in Bollerslev, Tauchen, and Zhou (2009) and Campbell, Giglio, Polk, and Turley (2018), argue

that the volatility of volatility in financial markets creates an additional source of negative

correlation between uncertainty shocks and ex-post stock market returns. Likewise, the value

of gold is likely to contain information about uncertainty shocks, including macroeconomic

uncertainty with origins outside of equity markets. Examples of these forms of uncertainty are

natural disasters, terrorist attacks, political coups and revolutions, as considered in Baker and

Bloom (2013), but also unpredictable inflation, interest rates, or energy prices. Our premise is

that plausibly exogenous increases in uncertainty of this nature have typically been associated

with increases in returns on quintessential safe-haven assets, the archetypal example being

gold.10

8See, for example, French, Schwert, and Stambaugh (1987); Schwert (1989); Nelson (1991); Campbell and
Hentschel (1992); Engle and Ng (1993), and Whaley (2000).

9The correlation between the VIX and UFt is 0.85 in the sample that starts in 1990. The correlation between
the VXO volatility index (which goes back to the beginning of our sample) and UFt is 0.75.
10Piffer and Podstawski (2017) suggest using variation in the real price of gold around specific events as an

instrumental variable to identify uncertainty shocks. We instead use it as an informative external variable for
macro uncertainty shocks, without requiring it to be a valid instrument.
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3.2 Shock-Based Constraints

Motivated by the historical facts just discussed, we now consider two types of shock-based

restrictions to help with identification: event constraints, and external variables constraints.

A. Event Constraints Event constraints are unusual episodes of history in which a broad-

based (historical and statistical) reading of the times would suggest a specific feature of the

structural shocks. The idea is that a credible identification scheme should produce shocks that

are not grossly at variance with our ex-post understanding of events, at least during periods of

special interest. Specifically, we require that any et(B) formed from B ∈B̂ satisfy the following
event constraints:

i ḡE1: eFτ1 ≥ k̄1 at τ 1=1987:10.

ii ḡE2:
(
eFτ2 ≥ k̄2

)
∨
(
eMτ2 ≥ k̄3

)
at τ 2=2008:09.

iii ḡE3: eMτ3 ≥ k̄4 at τ 3=1970:12.

iv ḡE4: 0 ≥
∑

t=τ̄3
eY t for τ 4 ∈ [2007:12, 2009:06].

v ḡE5: eMτ4 ≥ 0 and eFτ5 ≥ 0 at τ 5=1979:10

vi ḡE6: eMτ5 ≥ 0 and eFτ6 ≥ 0 at τ 6 ∈ [2011:07, 2011:08]

The first three constraints pertain to the big shock events discussed above. Condition (i)

requires that the financial uncertainty shock found in period τ 1 of October 1987 (black Monday)

be large and exceed k̄1 standard deviations above the mean. Condition (ii) requires that either

the financial uncertainty shock or the macro uncertainty shock (or both) found in period τ 2 of

September 2008 (the month of the Lehman collapse) be large and exceed k̄2 and k̄3 standard

deviations above the mean, respectively. Condition (iii) requires that the macro uncertainty

shock found in period τ 3 of December 1970 be large and exceed k̄4 standard deviations above the

mean. The last three constraints pertain to the non-negative events discussed above. Condition

(iv) requires that the cumulation of real activity shocks in τ 4 ∈ [2007:12,2009:06], corresponding
to the GR, be non-negative, which is to say that their sum may not be above average.11

Conditions (v) and (vi) are restrictions on both types of uncertainty shocks that require they

be non-negative during the month τ 5 of October 1979 (Volcker experiment), and during the

two months τ 6 ∈ [2011:07, 2011:08], corresponding to the 2011 debt-ceiling crisis. This latter

episode spills over into two months because the House of Representatives of the U.S. congress

11The dates 2007:12-2009:06 are NBER recession dates, which are taken to be coincident with Great Financial
Crisis.
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did not agree to raise the debt ceiling until July 31 of 2011, two days prior to when the Treasury

estimated the borrowing authority of the United States would be exhausted.

The six event constraints ḡE1, ..., ḡE6 can be represented by a system of inequality constraints

on B:

ḡE(et(B); τ , k̄) ≥ 0

where k =
(
k1, k2, k3, k4

)′
> 0 are parameters and τ = (τ 1, τ 2, τ 3, τ 4, τ 5)′ are event dates. The

choice of the k parameters will be discussed below.

It is important to be clear about what the big shock constraints ḡE1, ḡE2, and ḡE3 do and

do not assume. The restriction ḡE1 stipulates that at least some of the forecast error variance

in Xt in 1987:10 must be attributable to a large eFt, while ḡE3 stipulates that at least some

of the forecast error variance in 1970:12 must be attributable to a large eMt. Restriction ḡE2

likewise assumes that at least one of eMt or eFt needs to have been large in the month of the

Lehman collapse. What the restrictions do not require is that all or even most of the variation

in these episodes be attributable to the specific shocks named in the restriction. In particular,

they do not rule out large adverse roles for the other shocks, which are left unrestricted by the

constraint. As we shall see below, the GFC/GR was characterized by large adverse shocks in

all three variables, even though the second constraint only requires a large role for at least one

uncertainty shock in a single month of this episode.

Event constraints put restrictions on the sign and the magnitude of et(B) rather than on

the signs of impulse responses (IRFs), as is common in some SVAR approaches. Restrictions on

the shocks turn out to be valuable for identification because, although two feasible structural

modelsB and B̃ will generate shocks {et(B)}Tt=1 and {ẽt(B̃)}Tt=1 with equivalent first and second

moments, et(B) and ẽt(B̃) are not necessarily the same at any given t. It is not hard to see

that if et = Q′P−1η̂t and ẽt = Q̃′P−1η̂t = Q̃et, then ẽt 6= et at any given t when Q̃ 6= Q.12

Put differently, two series with equivalent properties “on average”can still have distinguishable

features in certain subperiods.

B. External Variable Constraints Variables external to the VAR can also facilitate identi-

fication when theory or economic reasoning imply they should be informative about the shocks

of interest. We use correlations between the external variables and uncertainty shocks to gener-

ate additional inequality constraints.13 Let St = (S1t, S2t)
′ denote a vector of external variables,

12Consider the n = 2 case:
(
η1t
η2t

)
=

(
B11 B12
B21 B22

)(
e1t
e2t

)
. Solving for e1t gives e1t = |B|−1(B22η1t −B12η2t),

where |B| = B11B22−B12B21 is the determinant of B. The values of η1t and η2t are given by the data. Hence,
a restriction on the behavior of e1t1 at specific time t1 is a non-linear restriction on B, or equivalently, on Q.
13Other researchers have used information in special variables to identify certain effects of uncertainty. Berger,

Dew-Becker, and Giglio (2016), while not providing an explicit identification of uncertainty shocks, use options
data and find that bad times are associated with higher realized volatility but not higher expected volatility,
a result that they interpret as consistent with the hypothesis that higher uncertainty is a consequence rather
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where here S1t denotes a measure of the aggregate stock market return and S2t denotes the log

difference in the real price of gold. The external variable constraints require that any et(B)

formed from B ∈B̂ satisfy the following restrictions:

i ḡC1: 0 ≥ corr(ejt(B), S1t), j = M,F

ii ḡC2: corr(ejt(B), S2t) ≥ 0, j = M,F ;

The first constraint requires that uncertainty shocks be negatively correlated with stock

market returns, and the second requires that they be positively correlated with the log change

in the real price of gold. Taken together, the two constraints ḡC1 and ḡC2 can be formulated as

a system of inequality constraints:

ḡC(e(B); S) ≥ 0.

The external variable constraints provide cross-equation restrictions on the parameters inB.

An important aspect of these constraints is that correlations are not invariant to orthonormal

rotations. That is to say, correlations generated by B will in general be different from those

generated by B̃ = BQ′.

Two points are worthy of emphasis. First, although the external variables are used to help

with identification, they are not required to be valid exogenous instruments, as in the proxy-

VAR or external IV literature. We discuss this further below. Second, neither gold nor stock

market returns are themselves real activity or uncertainty indicators and we are not interested

in their behavior per se. This makes them well suited for using as external variables to help

with identification.

3.3 Comparison With Other Methodologies

The idea of using specific events and/or external variables to identify shocks is not new. Many

important studies have used a narrative approach to construct shock series from historical read-

ings of political and economic events to be used as an external IV. The resulting oil price shocks

based on timing of wars, tax shocks from fiscal policy announcements, and monetary policy

shocks from a reading of FOMC meetings are typically used as though they were exogenous

and accurately measured. But as noted in Ramey (2016), both assumptions are question-

able. To deal with possible measurement errors, Mertens and Ravn (2014) uses the narrative

tax changes as an external instrument. Similarly, Baker and Bloom (2013) use disaster-like

events as instruments for stock market volatility with the aim of isolating exogenous variation

in uncertainty. More generally, a prominent proxy-VAR/external IV literature, pioneered by

Mertens and Ravn (2013) and Stock and Watson (2008), proposes using variables external to

than a cause of negative economic shocks.
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the VAR as instrumental variables to identify SVARs. In all of these papers, point identifi-

cation is achieved by assuming that the instruments have a zero correlation with some shocks

(an exogeneity assumption) and a non-zero correlation with others (a relevance assumption).

Like this literature, a maintained assumption of our external variables constraints is that the

random processes behind the external variables are determined outside of the VAR system. But

unlike this literature, neither our external variables nor our event episodes are presumed to be

valid exogenous instruments that have zero correlations with certain shocks. Instead, we only

require the weaker assumption that the events and external variables be driven at least in part

by one or more of the shocks, thereby allowing us to narrow the set of solutions but not achieve

point identification.

Our event constraints differ from the narrative approach in other ways. First, they are data

driven rather than being solely based on a narrative reading of history. We use features of the

shocks during selected episodes to determine whether a possible solution is admissible. This is

tantamount to creating dummy variables from the timing of specific events, and then putting

restrictions on their correlation with the identified shocks. Second, the same SVAR is used to

identify all shocks simultaneously; it is not a two-step procedure that identifies some shocks

ahead of others.

It is worth contrasting the frequentist approach taken here with recent work on sign-

restricted SVARs in Bayesian contexts. Rubio Ramírez, Waggoner, and Zha (2010) point out

that choosing Q according to the QR decomposition amounts to drawing Q from a uniform

distribution over the space of orthogonal matrices. Baumeister and Hamilton (2015) note that

an uninformative prior over Q can be informative for the posterior over the structural impact

matrix and impulse responses in sign-restricted SVARs. We differ from these papers in two im-

portant ways. First, these papers focus specifically on restrictions placed on the sign of impulse

response functions, whereas our restrictions are on timing, magnitude, and correlation, of the

shocks. Second, our approach is frequentist in the spirit of the moment inequality framework of

Andrews and Soares (2010), with moment conditions given by the inequalities from the event

and external variable constraints, and equalities provided by the covariance structure. We use

the QR decomposition merely to generate candidate values of B, and check if the resulting

et(B) satisfies the constraints. Importantly, the shocks that result from our moment inequality

restrictions exhibit significant departures from Gaussianity (see discussion below), an outcome

that would greatly complicate any Bayesian estimation, but that is straightforward to handle

using the frequentist approach of this paper.

After earlier versions of this paper were circulated, we became aware of work by Antolín-Díaz

and Rubio-Ramírez (2018) who, like us, suggest using restrictions on the shocks during certain

episodes of history to help identification. They propose several different types of restrictions,

including sign restrictions on the shocks at certain dates, as in some of our event constraints

14



above. But there are also several substantive differences. They entertain restrictions that play

up the role of some shocks while simultaneously playing down the role of others. (See, for

example, their “Type B”restrictions, in which for a particular period or periods the absolute

value of one shock’s contribution to the unexpected change in a variable is assumed to be larger

than the sum of the absolute value of the contributions of all other structural shocks.) This

type of restriction differs from the event constraints proposed above because some shocks are

presumed to play large roles while others must play smaller or negligible roles, more in the spirit

of the traditional narrative-IV approach. By contrast, the event constraints above only require

the weaker assumption that the events be driven at least in part by one or more of the shocks;

they do not require the remaining shocks to play smaller roles. For example, our restrictions

require that there be a large financial uncertainty shock or a large macro uncertainty shock

or both in 2008:09, but they do not rule out a large role for the real activity shock during

this episode. Other differences are that Antolín-Díaz and Rubio-Ramírez (2018) do not use

external variables at all, and their focus is on methodology in a Bayesian context at a general

level. While our focus here is to use event and external variable constraints to help understand

the role of macro or financial uncertainty in the aggregate economy, the use of shock-based

restrictions is not limited to this particular application.

A number of studies have now followed our work to consider macro and financial uncertainty

as possibly distinct drivers of fluctuations in real activity. We comment briefly on two here:

Carriero, Clark, and Marcellino (2018) and Angelini, Bacchiocchi, Caggiano, and Fanelli (2018).

Before doing so, we emphasize that neither of these papers show the shocks implied by their

identification schemes. A premise of this paper is that the shocks themselves are important

objects of interest, and provide a crucial information for assessing the credibility of any given

identification scheme. For example, a scheme that did not imply a fairly large financial uncer-

tainty shock during the 1987 stock market crash is unlikely to be credible, given how isolated

this episode was to the stock market.

Carriero, Clark, and Marcellino (2018) specify VARs with uncertainty variables and identify

shocks by imposing a parametric specification for their time-varying heteroskedasticity. They

include either the JLN macro uncertainty measure UMt or the VIX in a VAR along with several

macro variables and conclude that the VIX can arise at least partly as an endogenous response

to some macroeconomic events, while macro uncertainty “can be considered exogenous.”Nu-

merous differences in modeling assumptions, identification restrictions, and data may contribute

to our contrasting results, but in our experience at least two are likely to be important. First,

we do not impose a potentially restrictive econometric model of the conditional moment behav-

ior of the shocks. Instead, all such implications flow organically from our constraints, which are

straightforward to interpret. For example, our identified shocks are both heteroskedasitic and

non-Gaussian, being more volatile in some episodes than others. But the precise form of het-
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eroskedasticity and non-normality we uncover is unlikely to be well captured by any parametric

econometric specification of heteroskedasticity. Second, Carriero et. al., place the different

uncertainty variables in separate VARs one at a time rather than including them both in a

single system, which forces their effects to be orthogonal. This is important given that the two

types of uncertainty are strongly correlated. We find that if we do not explicitly control for UF
in the same empirical system that includes UM , macro uncertainty tends to take on the causal

role found here for financial uncertainty.

Angelini, Bacchiocchi, Caggiano, and Fanelli (2018) use the very same system of variables

used here but identify shocks based on zero restrictions in the B matrix. These restrictions

amount to timing restrictions on the dynamics of the variables, which are allowed to vary

across subsamples. In particular, they assume that, in subsamples prior to 2008:01 (a break

date that is exogenously chosen), UFt shocks could neither contemporaneously affect, nor have

been affected by, real activity, i.e., the elements BFY and BY F of B must be jointly zero. They

justify these zero restrictions by arguing that financial regulation slowed down the response of

financial markets to nonfinancial shocks up to 2008:01. This is an interesting restriction, given

that financial markets are typically presumed to respond quickly to news (even in samples

prior to 2008), whereas macro variables are comparatively slower moving (e.g., Gertler and

Karadi (2015) and Lettau, Ludvigson, and Steindel (2002)). When we apply our procedure on

data up to 2008:01, there is no solution in the identified set that satisfies the joint restriction

BFY = BY F = 0.

An additional point about the procedure is worth mentioning. Because the SVAR “shocks”

are simply mutually uncorrelated forecast errors of the variables in our system, they do not

necessarily correspond to primitive shocks of any particular model, as this is not our goal.

Our real activity shocks are movements in a ‘first moment’variable that could originate from

technology, monetary policy, preferences, or government expenditure innovations. Financial

uncertainty, a type of ‘second moment’variable, could arise because of expected volatility in

financial markets such as fear of a bank run or fear of bankruptcy. Another type of second

moment variable, macro uncertainty, could arise because of expected volatility in the macro

economy, such as an expectation of greater diffi culty in predicting future productivity, future

monetary policy or future fiscal policy. But the approach is silent on what drives variation in

these forecast errors. In particular, our application is not designed to address the question of

whether the dynamic relationships among the variables in Xt that we estimate are ultimately

driven by “shocks”to stock returns and/or gold, which we use as external variables. Addressing

this question is challenging, since it would require estimating a larger system, which the reduced-

form covariance restrictions would render even more under-identified than the current system.

The objective of this study is the narrower question of whether it is shifts to first or second

moment variables in our system (or both) that drive economic fluctuations. Disentangling
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the two types of uncertainty is a worthy exercise because the theoretical macro literature on

uncertainty has focused on exogenous changes in real activity induced (macro) uncertainty,

while the empirical literature has used proxies for macro uncertainty that are highly correlated

with volatility in financial markets.

To have confidence in this implementation, we use a simulation to take into account sam-

pling error and study the properties of the estimator. In the Online Appendix, we describe a

numerically intensive Monte Carlo simulation that bootstraps from the et (B) shocks for the

Xt system to create confidence bands for impulse responses.

To summarize, set identification is predicated on three core economic assumptions. First,

the identified shocks must be consistent with a priori economic reasoning in a small number

of events whose interpretation is relatively incontrovertible. Second, information about uncer-

tainty shocks must be encoded in stock market returns and the real gold price, as specified by

the external variable constraints. Third, a maintained assumption of the analysis is that the

dynamic responses of interest can be captured without explicitly modeling the random processes

behind the external variables.

4 Data and Implementation

We study VAR systems for three systems of data. Our main system is Xt = (UMt, ipt, UFt)
′,

where UMt and UFt are statistical uncertainty indices constructed using the methodology of

JLN. Financial uncertainty UFt is new to this paper. In all cases, we use the log of real

industrial production, denoted ipt, to measure Yt. Industrial production is a widely watched

economic indicator of business cycles. Subsequent sections consider additional systems that use

either policy uncertainty indices in place of UMt, or a real activity sub-index of UMt in place of

UMt. For S1t we use the Center for Research in Securities Prices (CRSP) value-weighted stock

market index return.14 For S2t we use the log difference in the gold price level, deflated using

the Consumer Price Index (CPI) with Jan. 2018 as the base month.15

Our statistical measures of uncertainty are constructed following the framework of JLN,

which aggregates over a large number of estimated uncertainties constructed from a panel

of data. Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period ahead

uncertainty, denoted by UCjt(h), is defined to be the volatility of the purely unforecastable

component of the future value of the series, conditional on all information available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
(1)

14The CRSP index is a value-weighted return of all stocks in NYSE, AMEX, and NASDAQ.
15The data source for the CPI-delfated gold price is https://www.macrotrends.net/1333/historical-gold-prices-

100-year-chart, derived from the London Bullion Market Association (LBMA) measure of daily auction prices
of gold, and the Bureau of Labor Statistics.

17



where It denotes the information available. Uncertainty in category C is an aggregate of

individual uncertainty series in the category:

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)]. (2)

If the expectation today of the squared error in forecasting yjt+h rises, uncertainty in the

variable increases. As in JLN, the conditional expectation of squared forecast errors in (1)

is computed from a stochastic volatility model, while the conditional expectation E[yCjt+h|It]
is replaced by a diffusion index forecast, augmented to allow for nonlinearities. These are

predictions of an autoregression augmented with a small number of common factors estimated

from a large number of economic time series xit assumed to have factor structure. Nonlinearities

are accommodated by including polynomial terms in the factors, and factors estimated from

squares of the raw data. The use of large datasets reduces the possibility of biases that arise

when relevant predictive information is ignored.

In this paper, we consider two categories of uncertainty, macro M and financial F . Hence

there are two datasets, both covering the sample 1960:07-2015:04. For macro uncertainty UMt,

we use a monthlymacro dataset, XM
t , consisting of 134 mostly macroeconomic time series taken

from McCracken and Ng (2016). For financial uncertainty UFt, we use a financial dataset X F
t

consisting of 148 measures of monthly financial indicators.16 We also use two measures of policy

uncertainty taken from Baker, Bloom, and Davis (2016) in lieu of the statistical measure of

macro uncertainty UMt.

The 134 macro series in Xm are selected to represent broad categories of macroeconomic

time series. The majority of these are real activity measures: real output and income, employ-

ment and hours, real retail, manufacturing and trade sales, consumer spending, housing starts,

inventories and inventory sales ratios, orders and unfilled orders, compensation and labor costs,

and capacity utilization measures. The dataset also includes commodity and price indexes and

a handful of bond and stock market indexes, and foreign exchange measures. The financial

dataset X f is an updated monthly version of the of 148 variables comprised solely of financial

market time series used in Ludvigson and Ng (2007). These data include valuation ratios such

as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields

on Treasuries and yield spreads, and a broad cross-section of industry, size, book-market, and

momentum portfolio equity returns.17 The indexes UMt and UFt lend themselves to different

interpretations because they are constructed from different variables. In a subsequent section,

16Both datasets were previously used in Ludvigson and Ng (2007) and JLN, but they are updated to the
longer sample.
17A detailed description of the series is given in the Data Appendix of the online supplementary file at

www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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we investigate the sub-index of UMt that is constructed only from the real activity variables.

The top panel of Figure 1 plots the estimated h = 1 month-ahead macro uncertainty, de-

noted simply UMt, in standardized units along with the NBER recession dates. The horizontal

bar corresponds to 1.65 standard deviation above unconditional mean of each series (which is

standardized to zero). As is known from JLN, the macro uncertainty index is strongly counter-

cyclical, and exhibits large spikes in the deepest recessions. The updated data UMt series shows

much the same. Though UMt exceeds 1.65 standard deviations 48 times, they are clustered

around the 1973-75 and 1981-82 recessions, as well as the GR of 2007-09. Macroeconomic un-

certainty has a correlation of -0.65 with the 12-month moving-average of the growth in industrial

production.

The middle panel of Figure 1 plots the estimated h = 1 month-ahead financial uncertainty

series, denoted UFt, over time, which is new to this paper. UFt is a broad-based measure of time

varying financial uncertainty using data from the bond market, stock market portfolio returns,

and commodity markets. As seen from Figure 1, UFt is also countercyclical, though less so than

UMt. Its correlation with industrial production is -0.39. The series often exhibits spikes around

the times when UMt is high. However, UFt is more volatile and spikes more frequently outside

of recessions, the most notable being the 1987 stock market crash. Though observations on UFt
exceed the 1.65 standard deviation line 33 times, they are spread out in seven episodes, with

the 2008 and 1987 episodes being the most pronounced.

As is clear from Figure 1, both indicators of macro and financial uncertainty are serially

correlated and hence predictable. They have comovements but also have independent variations

as the correlation between them is only 0.58. However, this unconditional correlation cannot be

given a structural interpretation. To the extent that our uncertainty variables measure expec-

tations about future volatility, the heightened uncertainty measures can respond endogenously

to events that are expected to happen, but they can also be exogenous changes to expected

volatility. We use a VAR to capture the predictable variations, and then identify uncertainty

shocks from the VAR residuals using the restrictions described above. We now turn to the

implementation issues.

4.1 Implementation

Estimates of B that satisfy the reduced form covariance restrictions, the event constraints, and

the external variable constraints together give the identified solution set denoted

B̄(B; k̄, τ̄ ,S) = {B = P̂Q : Q ∈ On, diag(B) > 0;

ḡZ(B) = 0, ḡE(B; τ̄ , k̄) ≥ 0, ḡC(B; S) ≥ 0}.

To simplify notation, we simply write B̄(B; k̄, τ̄ ,S) as B̄. The unconstrained set B̂ is constructed
using random rotations, as discussed above. A particular solution can be in both B̂ and B̄ only
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if all the event and external variable constraints are satisfied.

Construction of the identified solution set B̄ necessitates choice of the big shock constraint
parameters k =

(
k̄1, k̄2, k̄3, k̄4

)′
. It should be clear that if the values for these parameters are

overly restrictive, the identified solution set will be empty. If they are too unrestrictive, the

constraints will have no identifying power. Shock-based restrictions are also not invariant to

the system being analyzed because the data may have different variability, as well as different

skewness, kurtosis, and cross-moments. Thus the parameters for one system of data could be

too restrictive for another. We therefore set values for k using a data dependent procedure

described below, so they are consistent with the economic reasoning behind the constraints.

5 Results for Systems with Macro Uncertainty

This section presents results for what we call our base case empirical system, with Xt =

(UMt, ipt, UFt)
′ and one-month-ahead uncertainty (h = 1). Subsequent sections consider VARs

with policy uncertainty or real activity uncertainty used in place of the macro uncertainty in-

dex UMt. Throughout the analysis we use p = 6 lags in the VARs, noting that using 12 lags

makes no difference to the results. The Online Appendix presents results for longer horizon

uncertainty.

We begin with an investigation of “identification uncertainty,”namely the variation in the

output produced by alternative combinations of the event and external variable constraints, as

well as alternative specifications of the big shock events through the parameters k.18 To do so,

we study the dynamic causal effects and propagating mechanisms of the shocks under different

constraints and parameterizations using impulse response functions (IRFs). All figures below

show identified sets of IRFs of each variable in the SVAR to a one standard deviation increase

in each of structural shocks.

As a start, Figure 2 shows the identified sets under several cases when only minimal restric-

tions are imposed. The blue shaded areas report IRFs for all values in the unconstrained set B̂,
that is the set obtained by imposing only the reduced-form covariance restrictions ḡZ(B) = 0.

In the absence of additional identifying assumptions it is diffi cult to assign an interpretation to

the shocks, but the case is useful as a benchmark. The figure shows that the covariance restric-

tions alone produce inconclusive results due to the wide range of solutions retained, illustrating

the problem of under-identification mentioned above.

Next we add additional restrictions to shrink the unconstrained set B̂. The IRFs for an
identified set obtained by imposing the covariance restrictions ḡZ(B) = 0 and the external

variable constraints ḡC(e(B); S) ≥ 0 but none of the six event constraints ḡE1,..., ḡE6, are

18We are grateful to Giorgio Primiceri for suggesting the term “identification uncertainty”for this investiga-
tion.
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shown in black dotted lines of Figure 2. The IRFs for an identified set obtained by imposing

these restrictions plus the non-negative event constraints ḡE4, ḡE5, ḡE6 but not the big shock

event constraints ḡE1, ḡE2, ḡE3, are shown in red dotted lines. The bounds of the identified sets

in these two cases are still uninformative for most IRFs plotted, but there is at least one clear

and noteworthy result: the red dotted lines show that it is not necessary to impose the big shock

event constraints to find that macro uncertainty falls sharply in response to positive ip shocks

(subplot 2,1). Alternatively stated, negative ip shocks cause macro uncertainty to increase

sharply. These endogenous movements in macro uncertainty persist for about five years after

the real activity shock. Thus, even with this more minimal set of restrictions there is evidence

that macro uncertainty rises endogenously in response to adverse first-moment shocks to real

activity.

In order to obtain more conclusive evidence on the other dynamic responses, additional

restrictions are needed. We now add to the previous constraints the big shock event constraints

ḡE1, ḡE2, and ḡE3 that require financial and/or macro uncertainty shocks to be large in the

month October of the 1987 crash, in the month September of the 2008 Lehman collapse, and in

the month December of high real uncertainty shocks in 1970, respectively. But what constitutes

a large shock in this system? To address this question, we re-examine the 1.5 million values

of B in the unconstrained set, B̂. In our sample, the largest shocks to UFt in B̂ using h = 1

month uncertainty are typically above four standard deviations, and similarly for UMt. The

775th-percentile value of eFt in 1987:10 is 4.16, and is 4.57 in 2008:09. The 75th-percentile value
of eMt in 1970:12 is 4.05 and is 4.73 in 2008:09. If shocks were Gaussian, the probability of

a shock of these magnitudes would be less than 1.3e-4. But as we show below, the identified

shocks are non-Gaussian and exhibit substantial excess skewness and leptokurtosis.

The parameters k =
(
k̄1, k̄2, k̄3, k̄4

)′
stipulate how big a “big shock”must be during the

events named in constraints ḡE1, ḡE2, and ḡE3. Figure 3 shows the IRFs under different values

for these parameters, obtained when these restrictions are added to ḡZ(B) = 0, ḡC(e(B); S) ≥ 0,

and ḡE1, ḡE2, and ḡE3. That is, we now include the full set of event constraints ḡE(et(B); τ , k̄) ≥
0. One case sets these parameters equal to the 75th-percentile values of eFt and/or eMt in B̂ for
the event dates τ 1, τ 2, and τ 3, thereby requiring a “big”shock to ejt, j = M,F to be in the top

25% of all observed ejt in B̂ for that date. A second case sets them so that a large shock in these
episodes needs to merely exceed their respective median values. Under this parameterization

a “large”financial uncertainty shock need be only be 2.8 rather than 4.2 standard deviations

above the mean in 1987:10, and only 1.9 standard deviations above the mean rather than 4.6

in 2008:09. Likewise a “large”macro uncertainty shock need be only be 2.3 rather than 4

standard deviations above the mean in 1970:12, and only 1.9 standard deviations above the

mean rather than 4.7 in 2008:09.19 A third case sets k so that a large shock needs to exceed

19The constraint ḡE2 requires either a large eFt or a large eMt (or both) in τ2 = 2008:09. An examination
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their respective 85th percentile values. The left panel of Figure 3 shows the IRFs when k̄1

and k̄4, the parameters governing the size of big shock events in 1987:10 (stock market crash)

and 1970:12 (run-up to Bretton Woods collapse), are simultaneously altered between these

parameterizations while k̄2 and k̄3 held fixed at their respective 75th percentile values. The

right panel of Figure 3 shows the IRF when k̄2 and k̄3, the parameters governing the size of the

big shock event for UFt and/or UMt in 2008:09 (Lehman collapse) are simultaneously altered,

while k̄1 and k̄4 are held fixed at their respective 75th percentile values. Several results stand

out.

First, under all of these different parameterizations, positive shocks to financial uncertainty

eF lead to a sharp decline in production that persists for many months. All solutions that

satisfy the identification restrictions have this pattern and the identified set of responses is

bounded well away from zero as the horizon increases. Positive perturbations to eFt also cause

UMt to increase sharply. These results lend support to the hypothesis that heightened financial

uncertainty is an exogenous impulse that causes declines in real activity. However, there is little

evidence that heightened financial uncertainty is a result of lower economic activity. Instead,

positive shocks to production increase financial uncertainty.

Second, while we find no evidence that high financial uncertainty is a consequence of lower

economic activity, the results for macro uncertainty are quite different. As in the previous

figure, we see that macro uncertainty falls sharply in response to positive ip shocks, or that

negative ip shocks cause macro uncertainty to increase. These endogenous movements in macro

uncertainty are persistent and strongly apparent in all the solutions of the identified set under

each of these different parameterizations.

Third, there is little evidence that the observed negative correlation between macro un-

certainty and real activity is the result of positive macro uncertainty shocks that drive down

production. The top middle panel shows that all solutions in these identified sets imply that

positive macro uncertainty shocks increase real activity in the short run, consistent with growth

options theories discussed above. On the other hand, all solutions in the identified sets imply

that positive macro uncertainty shocks reduce production in the long-run. The horizon over

which this is estimated to occur is sensitive to the tightness of the big shock event constraints,

with tighter constraints implying that these effects are pushed out farther into the future. This

finding suggests that higher macro uncertainty in recessions is better characterized as a re-

sponse to lower economic activity rather than an immediate causal factor in recessions. These

results do not rule out the possibility that the endogenous response of macro uncertainty to

of the unconstrained set shows that there are no solutions that have large values for both eFτ2 and eMτ2 in
2008:09, if large is defined as being in the top 25% of their respective marginal distributions in 2008:09. The
estimation procedure must therefore choose which uncertainty shock was large. Among all solutions in the
base case identified set, 100% of them place the big uncertainty shock in UFt, rather than UMt in 2008:09. By
contrast, tere are solutions that have values for both shocks in 2008:09 that exceed their 50th percentile values.
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other adverse shocks might be important for the amplification of these shocks, even if they

don’t cause recessions. In summary, Figure 3 shows that, while the bounds of the identified set

are inevitably wider under weaker constraints, they remain nonetheless informative, implying

that the findings are not highly sensitive to the definition of what constitutes “big”in the big

shock constraints.

One salient finding from Figure 3 is that macro and financial uncertainty exhibit opposite-

signed effects on production upon impact. A positive financial uncertainty shock drives down

production on impact, while a positive macro uncertainty shock drives it up. These impact

responses may be read off of the off-diagonal elements of the estimated B matrices, where BYM

denotes the impact response of Y to an eM shock, and BY F denotes the impact response of Y

to an eF shock. For all of the solutions presented in Figure 3, BYM > 0 and BY F < 0. We now

investigate further which of our identifying restrictions are crucial for these results.

To do so, Figure 4 displays the distribution of values forBYM andBY F found in the identified

sets under a variety of different identifying restrictions. The first row of the figure shows the

histogram of values for three cases: (i) for all values in the unconstrained set B̂, obtained by
imposing only the covariance restrictions ḡZ(B) = 0 (blue histogram), (ii) for all values in an

identified set obtained by imposing the covariance restrictions and event constraints, but not

the external variable constraints ḡZ(B) = 0, ḡE(et(B); τ , k̄) ≥ 0 (red histogram), and (iii) for

all values an identified set obtained by imposing the full set of covariance, event, and external

variable constraints ḡZ(B) = 0, ḡC(e(B); S) ≥ 0, ḡE(et(B); τ , k̄) ≥ 0 (black histogram). For

each of these cases, the event constraint parameters k =
(
k̄1, k̄2, k̄3, k̄4

)′
are set to their respective

75th percentile values in B̂. Notably, the covariance/event-only constrained solutions for BY F

are all negative while those for BYM are all positive. By contrast, in the unconstrained set

the distributions of BY F and BYM contain both positive and negative values. This shows that

the event constraints alone are enough to pin down the differing signs of these parameters.

Once we add the external variable constraints to the event and covariance restrictions, the

distribution of BYM , with all positive values, is shifted more toward zero, while the distribution

of BY F , with all negative values, is shifted more away from zero. Thus, the external variables

constraints prevent the response of production to a positive macro uncertainty shock from being

too positive, and prevent the response of production to a positive financial uncertainty shock

from being too small in absolute value. In short, the event constraints restrict the signs of BY F

and BYM , while the external variable constraints restrict their magnitudes.

The second row of Figure 4 shows the analogous histograms under another alternative set

of restrictions: (i) that for the unconstrained set ḡZ(B) = 0 (blue histogram), (ii) that for

an identified set if we impose all constraints except the Lehman event constraint ḡZ(B) = 0,

ḡC(e(B); S) ≥ 0, ḡEj, ∀j 6= 2 (red histogram), and (iii) that for the identified set under the full

set of constraints ḡZ(B) = 0, ḡC(e(B); S) ≥ 0, ḡE(et(B); τ , k̄) ≥ 0 (black histogram). What is
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clear from this plot is that the Lehman event is crucial for obtaining informative bounds about

the impact response of production to a financial uncertainty shock. Without the Lehman event

constraint, the distribution of values for BY F contains both positive and negative values. The

distribution of values for BYM , however, continues to contain only positive values even without

the Lehman event constraint, though the range of positive values is much wider than for the

base case. A premise of this paper is that the 2007-09 financial crisis and Lehman collapse

was an important rare event that can help distinguish the transmission of financial versus real

uncertainty shocks. This maintained assumption is supported by these results, which shows

that if the Lehman collapse is not accompanied by at least a modestly sized uncertainty shock

of one type or another, the estimation has a harder time distinguishing their separate roles.

The third row of Figure 4 shows the analogous histograms under another a third set of

restrictions: (i) that for the unconstrained set ḡZ(B) = 0 (blue histogram), (ii) that for an

identified set if we impose the full set of constraints except the stock market external variable

constraint ḡZ(B) = 0, ḡCj, ∀j 6= 1, ḡE(et(B); τ , k̄) ≥ 0 (red histogram), and (iii) that for the

identified set under the full set of constraints ḡZ(B) = 0, ḡC(e(B); S) ≥ 0, ḡE(et(B); τ , k̄) ≥
0 (black histogram). Compared to the case with both sets of external variable constraints,

eliminating the stock market external variable constraint has two main effects. First, it shifts

the distribution of BYM , which gives the impact response of ip to a UM shock to the right. Since

these values are all positive, this says that the restriction that macro uncertainty shocks should

be negatively correlated with stock market returns is important for limiting the magnitude of

the positive response of production to a UM shock. Second, it shifts the distribution of BY F ,

which gives the impact response of ip to a UF shock, closer to zero. Since these values are all

negative, this says that the restriction that uncertainty shocks should be negatively correlated

with stock market returns is important for obtaining a sizable magnitude in the estimated

adverse affects of financial uncertainty shocks for output.

We may summarize the results so far as follows. After investigating a number of different

combinations of the event and external variable constraints, and under a range of different pa-

rameterizations of the big shock event constraints, we find that results take one of three general

forms: either the constraints are too few or too weak to come to any conclusion without addi-

tional assumptions (the identified set is wide), or the constraints are tightened to a point where

they are incompatible with the data (the identified set is empty), or the qualitative results are

clear-cut and take the form presented in Figure 3. These results imply that financial uncer-

tainty shocks cause declines in production. But no matter which of the above configurations we

consider, there is no basis for concluding that positive macro uncertainty shocks cause declines

in production, at least initially. By contrast, evidence that macro uncertainty rises in recessions

in response to other adverse shocks holds under a wide range of restrictions.
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5.1 Results Under the Full Set of Constraints: A Closer Look

We now present a number of additional results, including statistical uncertainty, for an identified

set obtained by imposing the full set of constraints ḡZ(B) = 0, ḡE(B; τ̄ , k̄) ≥ 0, ḡC(B; S) ≥ 0.

For this purpose we set k =
(
k̄1, k̄2, k̄3, k̄4

)′
equal to their respective 75th percentile values,

thereby requiring a “big”shock to be in the top 25% of all shocks in B̂ during those episodes.
To get a sense of the behavior of the shocks in this specification, it is instructive to examine

the time series of shocks implied by a single solution from the identified set B̄. For this purpose
we use what will be referred to as the ‘maxG’solution:

BmaxG≡arg max
B∈B̄

ḡC(B)′ḡC(B). (3)

This is the single solution in the identified set for which the inequalities pertaining to the

external variable constraints are collectively maximized, as measured by an equally-weighted

quadratic norm. Though no one solution in B̄ is any more likely than another, this one serves
as a useful reference point, in so far as it captures features shared by most solutions in the

identified set.

The left panel of Figure 5 presents the time series of the standardized shocks (eMt, eipt, eFt)′

for the maxG solution. Importantly, our identified shocks are both heteroskedasitic and non-

Gaussian, being more volatile in some episodes than others. All three types of shocks display

strong departures from normality with excess skewness and/or excess kurtosis. The largest

of the positive eipt shocks is recorded in 1971:01 followed by 2005:10, while the largest of the

negative eipt shocks is recorded in 2008:09, followed by 1980:04. There also appears to be

a moderation in the volatility of the ipt shocks in the post-1983 period. For this particular

solution, the largest positive eMt shock is in 1970:12 (run-up to Bretton Woods collapse),

followed by the shock in 2008:10 (the month after the Lehman collapse). The largest positive

eFt shock is recorded in 2008:09 (month of the Lehman collapse) followed by 1987:10 (Black

Monday). For eFt, the extreme but transitory nature of the 1987 stock market crash leads

to a very large spike upward in eFt in the month of the crash, followed by a very large spike

downward in the month following the crash as the market recovered strongly and quickly.

While this episode magnifies the spike in eFt in 1987, it is largely orthogonal to real activity

and macro uncertainty. Observe that the large ipt shock in 2005:10 is not associated with a

contemporaneous spike in uncertainty, while there are several spikes in both types of uncertainty

that do not coincide with spikes in eipt.

It is worth noting that, under this specification, both the 1970 and 1987 event constraints

alone eliminate 75% of the solutions, while the Lehman event constraint alone eliminates 90%.

These event constraints together with the constraint that the cumulative sum of real activity

shocks in the GR should not be above average eliminate 99% of the solutions in B̂. Of course
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one percent of 1.5 million draws is still a non-trivial number. But when all event constraints

are combined with the external variable constraints, we are left with 169 accepted draws, which

is 25% of the sample size.

We now focus on large “adverse”shocks, namely large positive uncertainty shocks and large

negative real activity shocks recovered by the econometric methodology. The right panel of

Figure 5 displays the date and size of all eMt and eFt shocks in the identified set that are

at least two standard deviations above the mean and all negative eipt shocks exceeding two

standard deviations. In view of the non-normality of the shocks, the figure also plots horizontal

lines corresponding to three standard deviation of the unit shocks.

The right panel of Figure 5 shows that the solutions identify big financial uncertainty shocks

in October 1987 and in one or more months of 2008. The right panel of Figure 5 shows many

large adverse values of eMt and eipt in the GFC/GR episode. Indeed, all of the solutions in

the identified set have an eMt greater than three standard deviations above the mean and an

an eipt less than -3 standard deviations below the mean in at least one month of the 2007-09

GFC/GR. It is a result of the analysis rather than an imposition of constraints that there were

big shocks everywhere in this episode. These big shock episodes are partly responsible for the

non-Gaussian aspects of the shocks. It would be desirable for dynamic equilibrium models that

wish to study the effects of uncertainty to incorporate shocks with such non-Gaussian features.

The right panel of Figure 5 shows that the dates of large increases in eM are less clustered.

They generally coincide with, or occur shortly after, the big real activity shocks and the financial

uncertainty shocks. Large macro uncertainty shocks occurred more frequently in the pre-1983

than the post 1983 sample, consistent with a Great Moderation occurring over the period ending

in the GR.

The middle panel of Figure 5 shows that large negative real activity shocks are in alignment

with all post-war recessions with one exception: the negative real activity shock in 2005 is not

immediately associated with a recession, but it could be the seed of the GR that followed. It’s

clear that parts of the real economy were showing signs of deterioration prior to the onset of

the recession as dated by the NBER. For example, it is known that the housing market led

the 2007-2009 recession (e.g., see Favilukis, Ludvigson, and Van Nieuwerburgh (2017) for a

discussion). Indeed, all 10 housing series in XM (most pertaining to housing starts and permits

series) exhibit sharp declines starting in September 2005 and continuing through 2006, thereby

leading the GR.

Figure 6 shows the identified set of dynamic responses under this specification in solid lines,

along with 95% confidence bands for the identified set in dotted lines. (The confidence bands

are constructed using a repeated sampling algorithm described in detail in the Appendix.) The

sampling uncertainty widens the range of likely dynamic responses but does not change the

basic tenor of the findings. In particular, the results continue to show that positive financial
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uncertainty shocks have a persistent depressing effect on production, while macro uncertainty

responds endogenously to adverse production and financial uncertainty shocks. In considering

these results, it is important to bear in mind that they show the effects of one standard deviation

shocks. But many eFt in the episodes that correspond to our event constraints are four or more

standard deviations above zero. Thus the effects of a shock of this magnitude would be many

times larger than that shown in in Figure 6. A one standard deviation increase in eFt reduces

ip by 1% after 60 months, according to the median response at that horizon. This decline

represents about a 1.3 standard deviation change in monthly ip growth. So a four standard

deviation shock would reduce ip by 4%, which represents a 5.2 standard deviation change in

monthly ip growth. Infrequent big shocks, when they hit, can have large effects.

5.1.1 Decomposition of Variance

To give a sense of the quantitative importance of these shocks, we perform a decomposition of

variance for each solution in the identified set. We report the fraction of s-step-ahead forecast

error variance attributable to each structural shock eMt, eipt, and eFt for s = 1, s = 12, s =∞,
and smax, where smax is the horizon at which the fraction of forecast error variance is maximized.

Because we have a set of solutions, we have a range of forecast error variances for each s. The

left panel of Table 1 reports the range of values for the Xt system. The right panel of Table 1

are results for an alternative measure of uncertainty and will be discussed below.

According to the top row, real activity shocks eipt have sizable effects on macroeconomic

uncertainty UM , with the fraction of forecast error variance ranging from 0.52 to 0.72 at the smax
horizon. But according to the bottom row, these same shocks have small effects on financial

uncertainty UFt, with a range of forecast error variance from 0.02 to 0.10 at horizon smax.

The middle row shows that positive macro uncertainty shocks eMt, which increase rather than

decrease real activity, explain a surprisingly large fraction of production, with effects at smax
horizon ranging from 0.37 to 0.62.

Though financial uncertainty shocks eFt have a small contribution to the one-step-ahead

forecast error variance of ipt, their relative importance increases over time so that they account

for 0.38 to 0.54 of the forecast error variance in ipt at the smax horizon. Financial uncertainty is

unlike macro uncertainty or real activity in that its variation is far more dominated by its own

shocks. As seen from Table 1, eFt shocks explain between 0.84 and 0.94 of the s = 1 step-ahead

forecast error variance in UFt, and between 0.70 and 0.86 at the s = ∞ horizon. At the smax
horizon, the range of forecast error variance is 0.84 to 0.94.

To summarize, the variance decomposition shows that positive real activity shocks eipt have

quantitatively large persistent and negative effects on macro uncertainty UMt. In turn, positive

macro uncertainty shocks eMt have positive effects on production, especially in the short-run.

By contrast, positive financial uncertainty shocks eFt have large negative effects on production,
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especially in the long run. Across all VAR forecast horizons, the forecast error variance of

financial uncertainty is the least affected by shocks other than its own, implying that UFt is

quantitatively the most important exogenous impulse in the system.

5.1.2 Recursive Identification

The assumptions in our event and external variable constraints do not rule out the possibility of

a recursive structure. If such a structure is consistent with the data, our identifying restrictions

are free to recover it. With three variables in the SVAR, there are six possible recursive

orderings corresponding to six different 3×1 vectors of elements of B that must be jointly zero.

It is straightforward to assess whether our identified solutions are consistent with a recursive

structure by examining the distribution of solutions in the identified set for four elements of

the B matrix: B̂Y F , B̂YM , B̂MY , and B̂FM . None of the distributions contain any values near

zero. The minimum absolute values in the identified for each are 0.002, 0.004, 0.007, and 0.005,

respectively. These correspond to the smallest (in absolute terms) impact responses in the

identified set reported in Figure 6, subplots (3,2), (1,2), (2,1) and (1,3), respectively. For each

case, the 95% confidence interval for the identified set of impact responses also dose not include

zero, showing that, although small in absolute terms, the responses differ significantly from zero

once we take into account sampling variability in the data. The implication is that the recursive

structure is inconsistent with any recursive ordering across all solutions in the identified set.

The dynamic responses reported in Figure 6 are similar to an SVAR that imposes BFY and

BMF to be zero, or close to zero, while restricting BY F to be in the range (-0.02, 0). If, in

addition, either BYM (giving the impact response of Y to a change in eM) or BY F (giving the

impact response of Y to a change in eF ) were estimated to be zero, our estimates would recover

a recursive structure. But our event and external variable restrictions rule this out. The left

panel of Figure 4 above showed why: the event constraints restrict BY F to be negative and

BYM to be positive. The external variable constraints restrict their magnitudes. The finding

underscores the challenges of relying on convenient timing assumptions to sort out cause and

effect in the relationship between uncertainty and real activity.

6 Other Measures of Uncertainty

The results above suggest that the dynamic relationship between macro uncertainty and real

activity may be quite different from the relation between financial uncertainty and real activ-

ity. However, given the composition of our macro data, macroeconomic uncertainty itself can

be due to uncertainty in real activity variables such as output and unemployment, to price

variables, and to financial market variables. The theoretical uncertainty literature has focused

on modeling exogenous uncertainty shocks that arise specifically in measures of real economic
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fundamentals, rather than in prices or financial markets. To better evaluate the implications

of these theoretical models and to examine robustness to alternative measures of macro or real

economic uncertainty, we repeat our analysis replacing UMt with either the economic policy

uncertainty (EPU) indices of Baker, Bloom, and Davis (2016) (BBD), or the sub-index of the

macro uncertainty index UMt that fluctuates only as a result of the uncertainty in the real

activity variables of the macro dataset XM .

6.1 Policy Uncertainty

BBD find that firms with greater exposure to government expenditures reduce investment and

employment growth when policy uncertainty rises, suggesting that the EPU indices are well

characterized as measures of real economic uncertainty. BBD compute two EPU indices, a

“baseline”EPU index that has three components, and a news-only index that is a subindex

and one component of the baseline EPU index. We denote these the EPU and EPN index,

respectively. These indices are available from 1987:01 to 2017:06. We then repeat the analysis

for two systems: XEPU
t = (EPUt, ipt, UFt)

′, and XEPN
t (EPNt, ipt, UFt)

′.

The left panel of Figure 7 plots the EPU and EPN indices over time. We observe that

the two largest spikes upward in the baseline EPU index are in and just after the debt ceiling

crisis resolution, which correspond to the dates 2011:07 and 2011:08. For news index, there is

an additional spike upward that rivals these in size: that for September 11, 2001. An inspection

of the unconstrained set for these systems reveals that both episodes, but especially the debt

ceiling crisis of 2011, were far bigger uncertainty events for policy uncertainty shocks than for

either macro or financial uncertainty shocks. In other words, the debt ceiling crisis is the big

shock event for policy uncertainty, akin to the 1987 crash and the Lehman collapse for financial

uncertainty. We use these events to help with identification in the policy uncertainty systems.

To facilitate comparability with the base case system, we normalize EPUt and EPNt to have

the same mean and standard deviation as UMt. The constraints ḡE1, ḡE2, ḡE3, used above on

eFt (B) and eipt (B) are maintained in these systems, while the external variable constraints ḡC1

and ḡC2 are now maintained for eFt (B) as well as for the policy shocks eEPUt (B) and eEPNt (B).

The parameters for these constraints are set as described above for the base case. The previous

event constraints ḡE4 (Volcker policy announcement) is not contained in the sample for this

system, so it is dropped and replaced by an inequality constraint for September 11th, 2001.

The new event constraints for this system are parameterized as follows:

Constraint XEPU
t XEPN

t τ
ḡE4: — eEPNτ4 (B) ≥ 0 for τ 4 = 2001:09
ḡE5: eEPUτ5 (B)− 2 ≥ 0 eEPNτ5 (B)− 2 ≥ 0 for τ 5 = [2011:08, 2011:09]

Constraint ḡE4 requires the news uncertainty shock to merely be above average in the month

of 2001 terrorist attacks. Constraint ḡE5 requires both types of policy shocks to be large, i.e.,
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bounded away from zero, in the months of the debt ceiling crisis. An inspection of the uncon-

strained set for these systems shows that a two standard deviation policy uncertainty shock in

the XEPU
t and XEPN

t systems is roughly comparable to a non-negative macro uncertainty shock

in the base case system. That is, two standard deviations corresponds to the 65th percentile

value in the unconstrained set of the minimum eEPNτ4 (B) over the two months in the debt

ceiling crisis, while zero standard deviations corresponds to same percentile value for eMt (B)

in the debt ceiling crisis in the base case system.

The right panel of Figure 7 shows the dynamic responses for the XEPU
t and XEPN

t systems.

The character of the responses is similar to those for the systems based on the JLN uncer-

tainty measures. Policy uncertainty falls sharply in response to positive production shock.

Alternatively stated, negative shocks to production increase policy uncertainty sharply. These

endogenous movements in policy uncertainty are more transient than those to macro uncer-

tainty, however, and are eliminated in about two years. Financial uncertainty shocks in this

system continue to be a driving force for real activity, with positive shocks driving down ipt
sharply and persistently. But there is no evidence that positive shocks to ipt drive down finan-

cial uncertainty; in fact such shocks drive financial uncertainty persistently upward. There is

no evidence based on the either system that positive policy uncertainty shocks drive down real

activity; the opposite is found, with positive shocks to policy uncertainty driving up production

even more persistently than in the Xt system. These findings reinforce the previous results that

countercyclical increases in real economic uncertainty are often well characterized as endoge-

nous responses to declines in real activity, rather than exogenous impulses driving real activity

downward, while the opposite is true for financial uncertainty. Interestingly, positive shocks to

policy uncertainty drive financial uncertainty down, suggesting that markets may view times

of high policy uncertainty as upside rather than downside risk.

To complete the analysis, we present variance decompositions for the XEPU
t system (the

results for the system XEPN
t are similar). These results, presented in the right panel of Table

1, share some similarities with the Xt system shown in the left panel, but there are at least

two distinctions. First, financial uncertainty shocks that decrease real activity in both systems

explain a smaller fraction of the forecast error variance in production in the XEPU
t system at

all but the s = 1 forecast horizon. The ranges for these numbers at the s = smax horizon across

all solutions in the identified set are [0.27, 0.39] in the XEPU
t system compared to [0.38, 0.54]

in the Xt system. Second, compared to the Xt system, greater fractions of the forecast error

variance in UFt are explained by ip shocks. That is likely because positive shocks to production

have more persistent effects on financial uncertainty in the XEPU
t system.20

20It is worth noting that the results for the EPU systems are very similar even if no correlation constraints
with St are imposed. For these systems, the event constraints alone appear to be suffi cient for identifying the
dynamic relationships in the system.
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6.2 Real Activity Uncertainty

As noted, UMt can fluctuate due to uncertainty in real activity variables such as output and

unemployment, or due to price variables or financial market variables. In this sub-section we

replace UMt with the sub-index of macro uncertainty that fluctuates only as a result of the

uncertainty in the 73 real activity variables of the macro dataset XM . The h = 1 month-ahead

uncertainty in real activity variables is denoted URt. We study the system XR
t = (URt, ipt, UFt)

′

using the same identifying restrictions applied above to the system with UMt.

This system is interesting because it puts the spotlight on real activity uncertainty as the

source of the large macro uncertainty shock found in the unconstrained set in 1970:12. We

search (now for the XR
t system) across all observations in the unconstrained set B̂ for the

month in which the shock to URt, denoted eR(B), is largest. Doing so for each of the 1.5 million

rotations, we find that the date with the greatest number of maxima across all 1.5 million

rotations (27% of them) is 1970:12, while the date with the second greatest is the month of the

Lehman collapse, 2008:09.

The left panel of Figure 8 displays the time series plot of URt, which unlike UMt, exhibits a

big spike upward in 1970:12. The right panel shows the identified set of IRFs for this system

when the 75th-percentile value of eRt(B) in B̂ is again used to parameterize a large shock.
The 75th-percentile value is equal to 4.7 in 1970:12 and 4.9 in 2008:09. Although this value

is smaller in 1970:12 than in 2008:08, the former episode has more extreme large shocks than

latter, which explains why it is the episode with more maxima in the unconstrained set. (The

99th-percentile value for eRt(B) is 6.6 in 1970:12 compared to 6.3 in 2008:09.) The IRFs are

qualitatively similar to the base case system that uses UMt, with positive financial uncertainty

shocks driving down production sharply and persistently, real (but not financial) uncertainty

rising sharply in response to a negative first moment shock to production, and positive real

uncertainty shocks driving up production, rather than down. The main difference from the

system with UMt is that production now rises more sharply and more persistently in response

to a positive real uncertainty shock than it did to a macro uncertainty shock.

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves

open two key questions: is uncertainty primarily a source of business cycle fluctuations or an

endogenous response to them? And does the type of uncertainty matter? The objective of this

paper is to address both questions econometrically using small-scale structural VARs capable

of nesting a range of theoretical possibilities.

The macro literature on uncertainty has primarily focused on real activity induced macro

uncertainty as a driver of economic fluctuations. Using a novel identification approach that
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imposes economic assumptions on the behavior of the shocks, we find from a variety of para-

meterizations and specifications that macro uncertainty rises endogenously in response to real

activity shocks, contributing to strongly its countercyclical behavior. It is shocks to financial

uncertainty, rather than macro uncertainty, that are found to be a driver of economic fluctu-

ations. An implication of these findings is that dynamic equilibrium models should allow for

broad-based macro uncertainty to respond endogenously to a variety of shocks, while entertain-

ing the notion that occasional large shocks to uncertainty originating in financial markets may

be a source of deep recessions.

Our findings call for a need to better understand how uncertainty in financial markets is

transmitted to the macroeconomy, and why the two types of uncertainty have a distinct rela-

tionship with economic activity. A burgeoning business cycle literature has begun to postulate

theoretical linkages between financial market uncertainty, real/macro uncertainty, and real ac-

tivity.21 Although these models are currently too stylized to be confronted with actual data,

they appear capable of generating implications that are consistent at least qualitatively with our

finding that positive shocks to financial uncertainty are a driving force of declines in productive

activity, while real uncertainty responds endogenously to first moment shocks to productive

activity.
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Figure 1: Macro and Financial Uncertainty Over Time
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The panels plot the time series of macro uncertainty UM and financial uncertainty UF expressed in standardized
units. Shaded areas correspond to NBER recession dates. The horizontal line corresponds to 1.65 standard
deviations above the unconditional mean of each series (which has been normalized to zero); the black dots are
months when uncertainty is at least 1.65 standard deviations above the mean. Correlations with the 12-month
moving average of IP growth are reported. The data span the period 1960:07 to 2015:04.



Figure 2: IRFs under Minimal Constraints
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The figure reports identified set of impulse responses to positive, one standard deviation shocks for system
X = (UM , ip, UF )

′ under different restrictions. ḡZ(B) = 0 denotes covariance restrictions; ḡC(e(B); S) ≥ 0
denotes external variable restrictions; ḡE4 - ḡE6 denotes all non-negative event constraints ḡE4, ḡE5, and ḡE6.
The sample spans the period 1960:07 to 2015:04.



Figure 3: IRFs under Different Parameterizations of Big Shocks
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The figure reports identified set of impulse response to positive, one standard deviation shocks for system X = (UM , ip, UF )
′
. The left panel reports

sets of solutions obtained when k̄1 and k̄4 are set to the median value of the unconstrained set while k̄2 and k̄3 are set to the 75h percentile of the
unconstrained set. The right panel reports sets of solutions obtained when the k̄2 and k̄3 are set to the median while k̄1 and k̄4 are set to be 75h percentile
of the unconstrained set. Results in both panel impose external variable constraints ḡC and nonnegative event constraints ḡE4 to ḡE6. The sample spans
the period 1960:07 to 2015:04.



Figure 4: Distribution of BY F and BYM
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The figure displays histograms for all values of BYM and BY F in an identified set under different restric-
tions. ḡZ(B) = 0 denotes covariance restrictions; ḡC(e(B); S) ≥ 0 denotes external variable restrictions;
ḡE(et(B); τ , k̄) ≥ 0 denotes the event restrictions; ḡEj ≥ 0, ∀j 6= 2 denotes all event restrictions except the
Lehman event, ḡCj ≥ 0, ∀j 6= 1 denotes all external variable restrictions except the stock market restriction.
The sample spans the period 1960:07 to 2015:04.



Figure 5: Structural Shocks e
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The figure shows results from the identified set for system Xt = (UMt, ipt, UFt)
′ using the full set of constraints with each argument of k̄ set to their

75th-percentile values of the unconstrained set. The left panel reports the time series of the structural shocks e = B−1ηt for one particular solution from
this set, referred to in the text as the maxG solution. The horizontal line corresponds to 3 standard deviations above/below the unconditional mean of
each series. The right panel exhibits all shocks in the identified set that are at least 2 standard deviations above the unconditional mean for eM and eF
and at least 2 standard deviations below the mean for eip. The sample spans the period 1960:07 to 2015:04.



Figure 6: IRFs with Confidence Bands

The figure shows results from the identified set for system Xt = (UMt, ipt, UFt)
′ using the full set of constraints

with each argument of k̄ set to their 75th-percentile values of the unconstrained set. The solid lines report the
identified set of impulse response to positive, one standard deviation shocks in units of percentage points. The
dashed lines report 95 percent confidence intervals (CI) for the identified set. The sample spans the period
1960:07 to 2015:04.



Figure 7: Economic Policy Uncertainty
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The left panel plots the time series of baseline policy uncertainty EPU and news-based EPN , expressed in standardized units. Shaded areas correspond
to NBER recession dates. The horizontal line corresponds to 1.65 standard deviations above the unconditional mean. The right panel displays impulse
responses to one standard deviation shocks. Response units are reported in percentage points. Each argument of k̄ are set to their 75th-percentile values
of the unconstrained set. Additional identifying restriction: for EPU, eEPU , t3 ≥ 2 for for all t3 ∈ {2011:07, 2011:08}. The sample spans the period
1987:01 to 2015:04.



Figure 8: Real Activity Uncertainty
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The figure shows results from the identified set for system XR
t = (URt, ipt, UFt)

′ using the full set of constraints with each argument of k̄ set to their
75th-percentile values of the unconstrained set. The left panel plots the time series of real uncertainty, expressed in standardized units. Shaded areas
correspond to NBER recession dates. The horizontal line corresponds to 1.65 standard deviations above the unconditional mean. The right panel displays
impulse responses to one standard deviation shocks. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.



Table 1: d

Table 1: Variance Decomposition
SVAR (UM , ip, UF )′ SVAR (EPU, ip, UF )′

Fraction variation in UM Fraction variation in EPU
s UM Shock ip Shock UF Shock EPU Shock ip Shock UF Shock
1 [0.19, 0.41] [0.52, 0.72] [0.05, 0.22] [0.15, 0.76] [0.03, 0.61] [0.20, 0.44]
12 [0.22, 0.46] [0.39, 0.57] [0.13, 0.36] [0.10, 0.46] [0.02, 0.34] [0.52, 0.70]
∞ [0.25, 0.49] [0.39, 0.59] [0.10, 0.30] [0.09, 0.38] [0.02, 0.28] [0.60, 0.75]
smax [0.25, 0.49] [0.52, 0.72] [0.13, 0.36] [0.18, 0.81] [0.03, 0.64] [0.60, 0.75]

Fraction variation in ip Fraction variation in ip
s UM Shock ip Shock UF Shock EPU Shock ip Shock UF Shock
1 [0.36, 0.60] [0.31, 0.53] [0.06, 0.12] [0.04, 0.72] [0.16, 0.82] [0.09, 0.17]
12 [0.07, 0.21] [0.40, 0.60] [0.31, 0.40] [0.03, 0.58] [0.12, 0.64] [0.26, 0.37]
∞ [0.02, 0.07] [0.47, 0.64] [0.32, 0.51] [0.13, 0.74] [0.04, 0.60] [0.19, 0.29]
smax [0.37, 0.62] [0.47, 0.64] [0.38, 0.54] [0.13, 0.74] [0.22, 0.83] [0.27, 0.39]

Fraction variation in UF Fraction variation in UF
s UM Shock ip Shock UF Shock EPU Shock ip Shock UF Shock
1 [0.03, 0.14] [0.01, 0.07] [0.84, 0.94] [0.01, 0.11] [0.07, 0.35] [0.62, 0.84]
12 [0.08, 0.23] [0.00, 0.05] [0.76, 0.89] [0.02, 0.30] [0.06, 0.48] [0.41, 0.66]
∞ [0.11, 0.28] [0.02, 0.05] [0.70, 0.86] [0.04, 0.38] [0.06, 0.51] [0.35, 0.59]
smax [0.11, 0.28] [0.02, 0.10] [0.84, 0.94] [0.04, 0.38] [0.11, 0.51] [0.64, 0.84]

This table shows results from the identified set for system Xt = (UMt, ipt, UFt)
′ using the full set of constraints with each argument of k̄ set to their

75th-percentile values of the unconstrained set. Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel
title that is explained by the shock named in the column heading. The row denoted “s = smax”reports the maximum fraction of forecast error variance
explained across all VAR forecast horizons s. The numbers in brackets represent the ranges for these numbers across all solutions in the identified set.
The data are monthly and span the period 1960:07 to 2015:04.



Online Appendix

Sampling Simulation

In point-identified models, sampling uncertainty can be evaluated using frequentist confidence

intervals or Bayesian credible regions, and they coincide asymptotically. Inference for set-

identified SVARs is, however, more challenging because no consistent point estimate is available.

As pointed out in Moon and Schorfheide (2012), the credible regions of Bayesian identified

impulses responses will be distinctly different from the frequentist confidence sets, with the

implication that Bayesian error bands cannot be interpreted as approximate frequentist error

bands. Our analysis is frequentist, and while the two applications presented above illustrate

how the dynamic responses vary across estimated models, where each model is evaluated at a

solution in B̄(B; k̄, τ̄ ,S), we still need a way to assess the robustness of our procedure, especially

since it is new to the literature.

Unfortunately, few methods are available to evaluate the sampling uncertainty of set iden-

tified SVARs from a frequentist perspective, and these tend to be specific to the imposition of

particular identifying restrictions. Moon, Schorfheide, and Granziera (2013) suggest a projec-

tions based method within a moment-inequality setup, but it is designed to study SVARs that

only impose restrictions on one set of impulse response functions. Furthermore, the method

is computationally intense, requiring a simulation of critical value for each rotation matrix.

Gafarov, Meier, and Olea (2015) suggest to collect parameters of the reduced form model in a

1−αWald ellipsoid but the approach is conservative. For the method to get an exact coverage
of 1 − α, the radius of the Wald-ellipsoid needs to be carefully calibrated. As discussed in

Kilian and Lutkepohl (2016), even with these adjustments, existing frequentist confidence sets

for set-identified models still tend to be too wide to be informative. It is fair to say that there

exists no generally agreed upon method for conducting inference in set-identified SVARs.

We use a bootstrap/Monte Carlo procedure to assess the sampling error of our inequality

restrictions when St and Gt are variables external to the three variable SVAR.

Let R be the number of replications in a repeated sampling experiment. Let “hats”denote

estimated values from historical data, e.g., êt denotes estimated structural shocks and B̂ esti-

mated structural covariance matrix. To denote simulated data, we use a “*”, while to denote

estimated values from simulated data, a “hat”is combined with a “*”. To generate samples of

the structural shocks from this solution in a way that ensures the events that appear in histor-

ical data also occur in our simulated samples, we draw randomly with replacement from the

sample estimates of the shocks, êt, with the exception that we fix the values for these shocks in

each replication in the periods τ 1 τ 2, τ 3, τ 4 and τ 5, where τ 1 is the period 1987:10 of the stock

market crash, τ̄ 2 is 1970:12, τ 3 ∈ [2007:12, 2009:06], τ̄ 4 is 1979:10 and τ̄ 5 ∈ [2011:07, 2011:08].

Since we identify a set of estimated parameters B̂ and therefore a set of estimated shocks êt,
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we generate R samples of data from each êt in the set. This is then repeated for every solu-

tion/shock sequence in the identified set to obtain a confidence region for the identified set of

impulse responses.

Let M be the number of solutions in the identified set B̄(B; k̄, τ̄ ,S) and let m index an

arbitrary solution in the set. Index each draw from the estimated shocks with r and denote the

rth draw from the mth solution as emrt . Each emrt is combined with the B parameters of the

mth solution, B̂mto generate R samples of size T of ηmr∗t = B̂memrt . Next, R new samples of Xt

are recursively generated for each replication r = 1, ..., R using Xt =
∑p

j=1 ÂjXt−j +ηmr∗t , with

initial conditions fixed at their sample values, [X−p+1, ...,X0]. Using each of these new samples

of Xt, we fit a VAR(p) model to obtain new least squares estimates
[
η̂mr∗t , Âmr∗

1 , ..., Âmr∗
p

]
and

Ω̂mr∗ =cov(η̂mr∗t , η̂mr∗t ) , and B̂mr∗ = {B̂mr∗ = P̂mr∗Q : Q ∈ On, diag
(
B̂mr∗

)
≥ 0, ḡZ(B) = 0},

where where On is the set of n×n orthonormal matrices and P̂mr∗ is the unique lower triangular

Cholesky factor of Ω̂mr∗.

To generate samples of the external variables S1t and S2t from mth solution in a way that

ensures that the correlations with the uncertainty shocks that appear in our historical data also

appear in our simulated samples, we first generate historical idiosyncratic stock market shocks

emS1t and gold price shocks e
m
S2t
as the fitted residuals from regressions of S1t and S2t on a single

autoregressive lag and on êt, respectively. Next, we draw randomly with replacement from emS1t
and emS2t with the exception that, as above, we fix the values for these shocks in each replication

in the periods τ 1 τ 2, τ 3, τ 4 and τ 5, to obtain r = 1, ..., R new values emrS1t and e
mr
S2t
and R new

values of S1t and S2t by recursively iterating on

Smr1t = dm01 + ρ̂1S
mr
1t−1 + dm′1 emrt + emrS1t (A1)

Smr2t = dm02 + ρ̂2S
mr
2t−1 + dm′2 emrt + emrS2t (A2)

with initial conditions fixed at their initial sample values, [S11, S21] . The parameters ρ̂1 and ρ̂2

are the sample estimate slope coeffi cients from a first order autoregression of each variable in

historical data. The parameters dm′1 and dm′2 in (A1) and (A2) are calibrated to target the ob-

served correlations corr(S1t, ê
m
t ) and corr(S2t, ê

m
t ) for the mth solution in historical data so that

corr(Smr1t , e
mr
t ) and corr(Smr2t , e

mr
t ) equal the observed historical corr(S1t, ê

m
t ) and corr(S2t, ê

m
t )

on average across all replications R.

We construct confidence sets for the set of IRFs in repeated samples as follows. The number

of replications is set to R = 1, 000. In each replication of each solution, K = 1.5 million rotation

matrices Q are entertained, but only Kmr ≤ K rotations will generate solutions that are admit-

ted into the identified set for that replication, B̄mr∗(·). Let Θm,r,k
i,j,s be the s-period ahead response

of the ith variable to a standard deviation change in shock j at the k-th rotation of Kmr, for
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replication r and solution m.22 Let Θm,r
i,j,s = mink∈[1,Kmr] Θm,r,k

i,j,s and Θ
m,r

i,j,s = maxk∈[1,Kmr] Θm,r,k
i,j,s .

Each (Θm,r
i,j,s,Θ

m,r

i,j,s) pair represents the extreme (highest and lowest) dynamic responses in repli-

cation r of solutionm. From the quantiles of the set
{

Θm,r
i,j,s

}M,R

m=1,r=1
that includes all replications

for all solutions we can obtain the α/2 critical point Θi,j,s(α/2). Similarly, from the quantiles

of
{

Θ
m,r

i,j,s

}M,R

m=1,r=1
, we have the 1 − α/2 critical point Θi,j,s(1 − α/2). Eliminating the lowest

and highest α/2 percent of the samples gives a (1 − α)% percentile-based confidence interval

defined by

CIα,g =
[
Θi,j,s(α/2), Θi,j,s(1− α/2)

]
.

CIα,g denotes the confidence intervals for sets of solutions that satisfy all constraints, including

the event and external variable constraints: ḡZ(B) = 0, ḡE(B; τ̄ , k̄) ≥ 0, ḡC(B; S) ≥ 0. We use

CIα,gZ to denote the confidence intervals for sets of solutions that satisfy only the reduced form

covariance restrictions ḡZ(B) = 0.

Longer Horizon Uncertainty

We examine longer horizon uncertainty. Figure A1 presents the IRFs when we use a system

with h = 12 month-ahead macro and financial uncertainty, along with ipt. This system is

denoted X
(12)
t = (UMt (12) , ipt, UFt (12))′ , where UMt (12) denotes twelve-month-ahead macro

uncertainty, and likewise for UFt (12). The same identifying restrictions are used as for the

h = 1 month-ahead base case system. These results are similar to those for the cases that use

h = 1 month ahead uncertainty.

22The s-period ahead dynamic responses to one-standard deviation shocks in the /jth variable are defined as

∂Xt+s

∂ejt
= Ψ̂mr∗

s b̂mrkj∗,

where b̂mrkj∗ is the jth column of B̂mrk∗ and the coeffi cient matrixes Ψ̂mr∗
s are given by Ψ̂mr∗(L) = Ψ̂mr∗

0 +

Ψ̂mr∗
1 L+ Ψ̂mr∗

2 L2 + . . . = Âmr∗ (L)
−1.
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Figure A1: 12 Month-Ahead Uncertainty

The figure shows results from the identified set for system Xt = (UMt (12) , ipt, UFt (12))
′ using 12 month-ahead

uncertainty and the full set of constraints with each argument of k̄ set to their 75th-percentile values of the
unconstrained set. It reports the identified set of impulse response to positive, one standard deviation shocks
in units of percentage points. The sample spans the period 1960:07 to 2015:04.
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