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Abstract

This paper explores the effectiveness of boosting, often regarded as the state of the art
classification tool, in giving warning signals of recessions three, six and twelve months ahead.
Boosting is used to screen as many as 1500 potentially relevant predictors consisting of 132 real
and financial time series and their lags. Estimation over the full sample 1961:1-2011:12 finds that
there are fewer than ten important predictors and the identity of these variables change with
the forecast horizon. There is a distinct difference in the size and composition of the relevant
predictor set before and after mid-1980. Rolling window estimation reveals that the importance
of the term and default spreads are recession specific. The Aaa spread is the most robust
predictor of recessions three and six months ahead, while the risky bond and 5yr spreads are
important for twelve months ahead predictions. Certain employment variables have predictive
power for the two most recent recessions when the interest rate spreads were uninformative.
Warning signals for the post 1990 recessions have been sporadic and easy to miss. The results
underscore the challenge that changing characteristics of business cycles pose for predicting
recessions.
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1 Introduction

The central theme of business cycle analysis is to study the reasons why the economy goes through

periods of contractions and expansions. In order to do so, we need to document features in the

historical data during these two phases of economic activity. This involves determining the dates

when recessions began and ended, or in other words, establishing the business cycle chronology.

In the United States, this task falls in the hands of the NBER Business Cycle Dating Committee

(NBER 2008), while the Center for Economic Policy Research (CEPR) has taken up this respon-

sibility for the Euro area since 2002. In Canada, the Business Cycle Council of the C.D. Howe

Institute not only dates but also grades the severity of each recession. Cross and Bergevin (2012)

find that at least for Canada, the 1929 recession was the only one in a century of data deemed to

be a category five.

Recessions are understood at a general level to be periods of significant, persistent, and per-

vasive declines of economic activity, while expansions are periods of prosperity. However, there

is no objective measure of economic activity, nor are the notions of pervasiveness and persistence

universally defined. Wikipedia cites two consecutive quarters of negative GDP growth, or a 1.5%

rise in unemployment within 12 months, as possible definitions of a recession. The U.K. Treasury

simply calls a recession when there are two or more consecutive quarters of contraction in GDP. A

U.S. recession is officially defined to be the period between a peak and a trough, and an expansion

is the period between a trough and a peak. The turning points are then determined by considering

monthly industrial production, employment, real income, as well as manufacturing and wholesale-

retail sales. The rationale for not focusing on GDP data is that the monthly estimates tend to be

noisy, and the quarterly data can be subject to large revisions. Indeed, when the NBER announced

that the U.S. was in a recession at the start of 2008, quarterly GDP growth was still positive.

These recession announcements are important signals about state of the economy and tend

to receive a good deal of public attention. However, the committees do not have explicit models

or formulas for how they arrived at the dates, and furthermore, the announcements were made

retroactively. For example, the NBER announced that economic activity peaked in December 2008

and bottomed in September 2010, more than a full year after activity actually peaked (ie. in July

2007) and bottomed (ie. in June 2009.) This has spawned a good deal of interest in providing

a formal analysis of the business cycle chronology with the hope that a better understanding of

the past would enable better predictions of future recessions, even though such events cannot be

totally avoided. But three features make the exercise challenging. First, the true duration and

turning points of business cycles remain unknown even after the fact. A model could be seen

to give a wrong classification relative to the announced dates, but such false positives could be
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valuable signals of what lie ahead. As such, there is no unique criterion to validate the model

predictions. This issue is especially relevant for the U.S. since its reference cycle is not based on

any observed variable per se. Second, recessions are time dependent and not single period events,

and there are far fewer recessions than non-recession periods. In the U.S., only 15% percent of the

observations between 1961 and 2012 are deemed to be recession months which can affect our ability

to identify the recessions from the data. Third, while the committees officially look at a small

number of variables, it is almost surely the case that many other series are unofficially monitored.

A researcher typically pre-selects a few predictors for analysis. Omitting relevant information is a

distinct possibility.

But what does an econometrician with lots of data at his disposal has to offer to policy makers

on the issue of which variables to monitor? The question is useful even if the answer is ‘not much’,

because we would then know that information has been used exhaustively. With this in mind,

this paper considers the usefulness of a methodology known as boosting in giving warning signals

of recessions, and in so doing, identify the predictors of recessions in the U.S. over the sample

1961:1 to 2011:12. Boosting is an ensemble scheme that combines models that do not perform

particularly well individually into one with much improved properties. It was originally developed

as a classification rule to determine if a message is a spam, or if a tumor is cancerous given

gene expression data, for example. Subsequent analysis shows that boosting algorithms are useful

beyond precise classification. The two features of boosting algorithms that drew my attention are

their abilities to perform estimation and variable selection simultaneously, and to entertain a large

number of predictors. If N is the number of potential predictors and T is the number of time series

observations, boosting allows N to be larger than T .

Boosting is applied in this paper to the problem of predicting recessions. In line with the

ensemble nature of boosting, the recession probability estimates are based on a collection of logit

models. In my application, each model has only one predictor. This is unlike standard logit models

that put all predictors into a single model. The application to recession dates creates two interesting

problems, both relating to the dependent nature of the data. The first arises from the fact that

some variables lead, some lag, while others move concurrently with the reference cycle. A predictor

may be useful at one lag and not at another. The second problem is that parameter instability is

a generic feature of economic time series, and the relevant predictor set may well evolve over time.

I adapt existing boosting algorithms to accommodate these problems.

The analysis aims to shed light on three problems. The first is to identify which variables and at

which lags are informative about recessions. The second is to understand if predictors are recession

and horizon specific. The third is to learn more about the characteristics of recent recessions. I

find that a handful of variables are systematically important predictors over the fifty year period,
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but their relative importance has changed over time. While the model provides warning signals for

the post 1990 recessions, the signals especially of the 2008 recession are sporadic and easy to miss.

The rest of the paper proceeds as follows. Section 2 begins with a review of existing work on

business cycle dating. Section 3 then turns to Adaboost – the algorithm that initiated a huge

literature in machine learning – before turning to recent boosting algorithms that can be justified

on statistical grounds. The empirical analysis is presented in Section 4. Boosting is far from perfect

for analyzing recessions. The paper concludes with suggestions for future work.

2 Related Work

Academic research on business cycle chronology takes one of two routes:- fit existing models using

better predictors, or find better models taking a small number of predictors as given. This section

gives a brief overview of this work. A more complete survey can be found in Marcellino (2006),

Hamilton (2011) and Stock and Watson (2010b).

Let Y ∗t be the latent state of the economy. We only observe Yt = 1 (as determined by the

NBER, for example) if period t is in a recession and zero otherwise. That is,

Yt = 1 if Y ∗t > c∗

where c∗ is an unknown threshold. As Y ∗t is not observed, it seems natural to replace it by observed

indicators xt, allowing for the relation between Y ∗ and x to be phase shifted by h periods. A model

for recession occurence would then be

Yt = 1 if xt−h > cx.

Once x is chosen, a binomial likelihood can be maximized, the estimated probability for Yt = 1

can be used for classification, given some user-specified threshold cx. The simplest approach is to

take xt to be scalar. Popular choices of xt are GDP and labor market data such as unemployment.

These variables are also officially monitored by various dating committees. Lahiri and Yang (2013)

provide a review of the literature on forecasting binary outcomes.

An increase in the short rate is indicative of economic slowdown due to monetary policy tight-

ening. Because some recessions in the past are of monetary policy origin, interest rate spreads have

been a popular recession predictor. Indeed, recessions tend to be preceded by an inverted yield

curve, with short term rates higher than long term rates.1 The difference between the ten year and

a short term rate on treasury bills was used in work by Estrella and Mishkin (1998); Chauvet and

Hamilton (2006); Wright (2006); Rudebusch and Williams (2009), among others. Also popular are

1The importance of the term spread in recession analysis is documented in www.newyorkfed.org/research/

capital_markets/ycfaq.html.
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spreads between corporate bonds of different grades (such as Baa and Aaa bonds) and a risk free

rate. These are considered to be measures of liquidity risk (of selling in thin markets) and credit

risk (of default). They are countercyclical as defaults and bankruptcies are more prevalent during

economic downturns. A shortcoming of credit spreads is that the definition of the credit ratings

vary over time. On the other hand, credit spreads could better reflect the changing developments

in financial markets.

Data provided by the Institute for Supply Management (ISM) are also widely watched indicators

of business activity, as documented in Klein and Moore (1991); Dasgupta and Lahiri (1993). The

ISM surveys purchasing managers of 250 companies in 21 industries about new orders, production,

employment, deliveries, and inventory. A weighted average of the five components (in decreasing

order of importance) is used to construct a purchasing manager index (PMI), which is interpreted

as a measure of excess demand. The ISM also produces a NAPM price index measuring the fraction

of respondents reporting higher material prices. The index is seen as an inflation indicator. The

NAPM data have two distinct advantages:- the data are released on the first business day after the

end of the month for which they are indicating, and they are not subject to revisions.

The exercise of predicting recessions would be easy if we have perfect indicators of economic

activity, but this of course is not the case. As noted earlier, GDP growth was positive when the

2008 financial crisis was in full swing. The NAPM data are limited to manufacturing business

activity which is narrow in scope, especially when manufacturing has been a declining fraction of

overall economic activity. The risky spread between commercial paper and treasury bills worked

well prior to 1990 but failed to predict the 1990-91 recession. The yield curve was inverted in

August of 2006, but as Hamilton (2011) pointed out, this recession signal is at odds with the fact

that the level of the three month rate was at a historical low. Stock and Watson (2001) reviewed

evidence of various asset prices and found their predictive power not to be robust. Gilchrist and

Zakrajsek (2012) documented that spreads between yields of bonds traded in secondary market and

a risk-free rate are better predictors than standard default spreads especially in the 2008 recession.

The finding is consistent with the view that business cycles are not alike.

An increasing number of studies have gone beyond using a single proxy to incorporate more

information by way of diffusion indexes. These are scalar variables constructed as weighted averages

of many indicators of economic activity. Examples include CFNAI (Chicago Fed National Activity

Index) comprising of 85 monthly indicators; the ADS index of Aruoba et al. (2009) which tracks

movements of stocks and flows data at high frequencies. These diffusion indexes are typically based

on a dynamic factor model in which N data series collected into a vector xt driven by a common

cyclical variable Ft and idiosyncratic shocks. The estimation exercise consists of extracting Ft from

xt. Stock and Watson (1989) used data for N = 4 series to estimate parameters of the model by
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maximum likelihood. A recession is declared if Ft follows a pattern, such as if (Ft−1, Ft−2, . . . , Ft−8)

is in a set designed to mimic the NBER recession dates. This work was re-examined in Stock and

Watson (2010a) using different ways to estimate the coincident indexes.

A popular parametric framework for analyzing the two phases of business cycles is the Markov

switching model of Hamilton (1989). Chauvet (1998) extends the four-variable dynamic factor

model of Stock and Watson (1989) to allow for Markov switching properties. Monthly updates of

the smoothed recession probabilities are published on the author’s website and in FRED database

maintained by the Federal Reserve Bank at St. Louis. Chauvet and Hamilton (2006) takes as

starting point that the mean growth rate of GDP is state dependent, being lower during recession

than non-recession months. The sole source of serial dependence in GDP growth is attributed to

the persistence in the recession indicator, but the regime-specific parameters constant over time.

Like a dynamic factor model, inference about the latent state can be obtained without directly

using the NBER recession dates. Chauvet and Hamilton (2006) suggest to declare a recession when

the smoothed probability exceeds .65, and that the recession ends when the probability falls below

0.35. Turning points are then the dates when the probabilities cross a threshold.

Of the non-parametric methods, the algorithm by Bry and Boschan (1971) developed some

forty years ago remains to be widely used. The algorithm first identifies peaks as observations

in the twelve month moving-average of a series that are lower over a two-sided window of five

months. Analogously, troughs are points associated with observations in the five month window

that are higher. The algorithm then applies censoring rules to narrow the turning points of the

reference cycle. In particular, the duration must be no less than 15 months, while the phase (peak

to trough or trough to peak) must be no less than 5 months. The Bry-Boschan algorithm treats

expansions and recessions symmetrically. Moench and Uhlig (2005) modified the algorithm to allow

for asymmetries in recessions and expansions. They find that the identified number of recessions is

sensitive to the censoring rules on phase length. It is noteworthy that the censoring rules have not

changed since 1971, even though the economy has changed in many dimensions.

Various papers have compared the accuracy of different methods proposed. Chauvet and Piger

(2008) used a real time dataset with xt consisting of employment, industrial production, manu-

facturing and trade sales, and real personal income as in Stock and Watson (1989). They find

that both parametric and non-parametric methods produce a few false positives and can identify

NBER troughs almost six to eight months before the NBER announcements, but these methods

cannot improve upon the NBER timing in terms of calling the peaks of expansions. Berge and

Jorda (2011) compared the adequacy of the components of diffusion indices vis-á-vis the indices

themselves. They find that the turning points implied by the diffusion indices are well aligned with

the NBER dates. However, the diffusion indices do not predict future turning points well. Within a
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year, their predictions are no better than a coin toss. However, some components of the Conference

Board’s leading indicator, notably term spreads and new orders for consumer goods, seem to have

some information about future recessions.

Most studies in this literature make use of a small number of highly aggregated predictors. But

calling recessions using aggregate data is different from calling recessions by aggregating information

from disaggregate series, as originally suggested by Burns and Mitchell (1946). This is likely due to

the computational difficulty in parametrically modeling a large number of series, and also that the

Bry-Boschan algorithm is designed for univariate analysis. Harding and Pagan (2006) suggest to

remedy the second problem by identifying the turning points of the reference cycle from individual

turning points, but their analysis remains confined to four variables. As for the first problem,

Stock and Watson (2010a,b) assumed knowledge that a recession has occurred in an interval to

focus on the task of dating the peaks and troughs. They considered a ’date and aggregate’ method

that estimates the mode (or mean/median) from the individual turning point dates. From an

analysis of 270 monthly series, they find that with the exception of four episodes (defined to be

the NBER turning point plus or minus twelve months), the results are similar to an ’aggregate and

date’ approach that looks at turning points from an aggregate time series constructed from the

sub-aggregates.

The present analysis centers on identifying the relevant predictor set. In practice, this means

screening lots of potential predictors and selecting only those that are actually relevant. My ‘lots

of data’ focus is close in spirit to Stock and Watson (2010b), but their task is dating the peaks

and troughs conditional on knowing that a recession has occurred in an interval. My interest is

in narrowing down the predictors to only those that are relevant. Since I do not estimate the

turning points, determining when economic activity peaked and bottomed is outside the scope of

my analysis. I consider out of sample predictions without modeling the latent state. In this regard,

my analysis is close in spirit to Berge and Jorda (2011). However, I screen a much larger set of

potential predictors and allow the predictor set to change over time.

Business cycles have changing characteristics. Compared to the features documented in Zarnowitz

(1985), Ng and Wright (2013) find that the business cycle facts in the last two decades have changed

again. An important consideration in my boosting analysis is that predictors useful in one recession

may not be useful in other recessions. Before turning to the main analysis, the next section presents

boosting first as a machine learning algorithm, and then as a non-parametric model fitting device.
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3 Boosting

For t = 1, . . . , T , let Yt = {1, 0} be a binary variable. In the application to follow, ’1’ indicates

month t was in a recession according to the NBER dating committee. It will also be useful to define

yt = 2Yt − 1 = {1,−1}. The objective of the exercise is to fit Yt with a model given N potentially

relevant economic variables and eventually use the model for prediction. For now, I simply denote

the predictor set at time t by xt = (x1,t, . . . , xN,t)
′, dropping subscripts that indicate the predictors

are lagged values.

Consider the population problem of classifying Y given predictors x using a rule F (x) = {−1, 1}
to minimize a loss function, say, J (y, F (x)). If y was continuous, the squared loss function J =

E[y − F (x)]2 would be the obvious choice. But since both y and F are binary indicators, a more

appropriate criterion is the classification margin, yF (x) which is negative when a wrong prediction

is made. It plays the role of residuals in regressions with continuous data. An algorithm that makes

important use of the classification margin is AdaBoost due to Freund (1995) and Schapire (1990).

3.1 Discrete AdaBoost

1. Let w
(1)
t = 1

T for t = 1, . . . , T and F0(x) = 0;

2. For m = 1, . . .M :

a. Find fm(x) from the set of candidate models to minimize the weighted error

εm =
T∑
t=1

w
(m)
t 1(yt 6= fm(xt)).

b. If εm < 0.5, update Fm(xt) = Fm−1(xt) + αmfm(xt; θ) and

w
(m+1)
t =

w
(m)
t

Zm
exp

(
− αmytfm(xt; θ)

)

where Zm = 2
√
εm(1− εm), αm = 1

2 log

(
1−εm
εm

)
.

3 Return classifier sign(Fm(x)).

An example that uses three predictors to classify twelve recession dates is provided in the Appendix.

Adaboost is an algorithm that has its roots in PAC (probably approximately correct) learning

theory. Given covariates x and outcome y, a problem is said to be strongly PAC learnable if there

exists a classifier (or learner) f(x) such that the error rate error=E[1(f(x) 6= y] is arbitrarily

small. That is, P (error < ε) ≥ 1 − δ for all δ > 0 and all ε > 0. Now a random guess has a
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classification error of ε = 1/2. An algorithm is weakly learnable if there exists γ > 0 such that

P (error ≤ 1
2 − γ) ≥ 1 − δ. Weak learnability thus only requires f(x) to perform slightly better

than random guessing. Obviously, strong learnability implies weak learnability. The question

is whether weak learnability implies strong learnability. Schapire (1990) showed that the strong

and weak learnable class are identical. This fundamentally important result implies that a weak

classifier f(x) that performs only slightly better than random guessing can be boosted to be a

strong learner. Adaboost is the first of such algorithms.

In the boosting algorithm, the classifier chosen at stage m is the weak learner while a strong

learner is the one that emerges at the final stepM . These are denoted fm(x) and FM (x) respectively.

A weak learner is a function parameterized by θ that maps the features of x into class labels {−1, 1}.
The weak learner could be a linear regression fm(x) = sign (xθ) or a decision stump that assigns

the label of 1 if the condition (x ≥ θ) holds.. While each fm(x) provides a classification, the final

class label FM (x) is determined by the sign of a weighted sum of fm(x). Hence it is a weighted

majority vote. The classification margin yFM (x) is a measure of the confidence of the model. The

closer it is to 1, the more confidence there is that the final FM (x) is correct, and the closer it is

to -1, the more confidence that FM (x) is incorrect. A margin that is close to zero indicates little

confidence. The parameter M is a stopping rule to prevent overfitting. By suitable choice of M ,

we can identify which n of the N predictors are useful.

Dettling (2004), Breiman (1996, 1998) noted that Adaboost is the best off-the-shelf classifier in

the world. The crucial aspect of Adaboost is that it adjusts the weight on each observation so that

the misclassified observations are weighted more heavily in the next iteration. This can be seen by

noting that

w
(m+1)
t =

w
(m)
t

Zm

{
exp(−αm) yt = fm(xt; θ)

exp(αm) yt 6= fm(xt; θ)
.

Thus the weight on yt is scaled by exp(αm) in iteration m+ 1 if it is mis-classified in iteration m.

Correspondingly, observations that are correctly classified previously receive smaller weights. The

algorithm effectively forces the classifier to focus on training the misclassified observations. One

can interpret εm (when divided by T ) as the sample analog of the expected misclassification rate

εm = Ew[1(y 6= f (m)(x))] with wt as weights. The normalizing factor Zm is optimally chosen so

that w
(m+1)
t sums (over t) to one.

Adaboost is presented above as a classification algorithm, but is it associated with a loss function

and what are its optimality properties? Freund and Schapire (1996) showed that boosting can be

interpreted as a two-player game in which a learner has to form a random choice of models to make a

prediction in each of a sequence of trials, and the goal is minimize mistakes. The Adaboost solution

emerges upon applying the weighted majority algorithm of Littlestone and Warmuth (1994) to the

8



dual of the game. For our purpose, the interesting angle is that Adaboost turns out to minimize a

monotone transformation of the zero-one loss function J0−1, defined as

J0−1 = E[1(yF (x) < 0] = P (yF (x) < 0).

As yF (x) is negative only when the sign of y does not agree with the classifier F (x), minimizing

J0−1 is the same as minimizing the misclassification rate. The 0-1 loss function is neither smooth

nor convex:2 Consider the exponential transformation

JEXP = E[exp(−yF (x)|x)]

= P (y = 1|x) exp(−F (x)) + P (y = −1|x) exp(F (x)).

Notably, if JEXP is zero, the zero-one loss will also be zero. Because JEXP ≥ J0−1, JEXP is an

upper bound for J0−1. Minimizing JEXP with respect to F (x) gives

F ∗(x) =
1

2
log

P (y = 1|x)

P (y = −1|x)
(1)

The classifier defined by

sign (F ∗(x; θ)) = argmax yP (y|x)

coincides with Bayes classification based on the highest posterior probability. Equivalently, y is

labeled 1 if the posterior probability exceeds 1
2 .

3.2 The Statistical View

This subsection first presents the statistical underpinnings of Adaboost and then considers generic

features of boosting. The key link to statistical analysis is an additive logistic model. Recall

that a parametric logit model maps the log-odds ratio to the predictors x via a finite dimensional

parameter vector β. With Y = {0, 1} and class probability defined as

Pt = P (Yt = 1|xt) =
exp(f(xt;β))

1 + exp(f(xt;β))
, (2)

the log-odds ratio is modeled as

log
P (Yt = 1|xt)
P (Yt = 0|xt)

= f(xt;β) = xtβ. (3)

Given T observations, the sample binomial likelihood is

logL(x;β) =

T∑
t=1

Yt logPt + (1− Yt) log(1− Pt)

=
∑
t

Ytx
′
tβ − log(1 + exp(x′tβ)).

2A different approximation to the zero-one loss is given in Buhlmann and Yu (2003).
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As is well known, β can estimated by a gradient descent (Newton-Ralphson) procedure that it-

eratively updates β(1) = β(0) − (L′′(β))−1L′(β) till convergence, where L′(β) and L′′(β) are the

first and second derivatives of L(β) with respect to β. For the logit model, L′(β) = X ′(Y − P )

and L′′(β) = −X ′WX. Let W be a T × T diagonal matrix with the t-th entry being the weight

Pt(1− Pt). The updating rule can be written as

β(1) = β(0) + (X ′WX)−1X ′(Y − P ).

Upon defining Z = W−1(Y − p) to be the adjusted response variable, we also have

β(1) = β(0) + (X ′WX)−1X ′WZ.

The parameters can be conveniently updated by running a weighted regression of Z on X.

With the parametric model as the backdrop, consider now a non-parametric analysis that

replaces x′tβ by F (x). Define

pt = P (Yt = 1|xt) =
1

1 + exp(−2F (xt))
=

exp(F (xt))

exp(F (xt)) + exp(−F (xt))
. (4)

With yt = {1,−1}, the sample binomial likelihood

logL(y, p) = −
T∑
t=1

log(1 + exp(−2ytF (xt)))

is maximized at the true value of pt = P (yt = 1|xt), or equivalently at

F (x) =
1

2
log

P (y = 1|x)

P (y = −1|x)
.

This solution evidently differs from the standard logit one given in (3) by a factor of a two. But

observe that this is precisely the Adaboost solution given in (1). This interesting result is not

immediately obvious because JEXP is itself not a proper likelihood, but merely an approximation

to the zero-one loss. Nonetheless, the two objective functions are second order equivalent, as

ln(1 + exp(−2z)) + 1− ln 2 ≈ 1− z +
z2

2
+ . . .

while

exp(−z) ≈ 1− z +
z2

2
+ . . . .

In general, log(1 + exp(−2z)) ≤ exp(−z). Adaboost imposes a larger penalty for mistakes because

log(1 + exp(−2z)) grows linearly as z → −∞, while exp(−z) grows exponentially.

Having seen that the Adaboost solution also maximizes the binomial likelihood with pt defined

as in (4), we will now use the insight of Breiman (1999) and Friedman (2001) to see Adaboost from
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the perspective of fitting an additive model. To maximize the expected binomial log likelihood

defined for Yt = {1, 0} with pt defined as in (4), the method of gradient descent suggests to update

from the current fit Fm(x) to Fm+1(x) according to

Fm+1(x) = Fm(x)− L′(Fm + f)

L′′(Fm + f)
|f=0 ≡ Fm(x) + fm(x)

where L′(·) and L′′(·) are the first and second derivatives of the expected log likelihood with

respect to f , evaluated at f = 0. But under the assumptions of analysis, L′(x) = 2E[Y − p|x] and

L′′(x) = −4E[(1− p)|x]. The update

fm(x) =
1

2

E[Y − p|x]

E[p(1− p)|x]
=

1

2
Ew

[
Y − p
p(1− p)

∣∣∣x]
is designed to use the weighted expectation of the residual Y − p to improve the fit. In practice,

this amounts to taking fm(x) to be the fit from a weighted regression of the adjusted response

zt = Yt−pt
pt(1−pt) on xt with pt(1−pt) as weights. The important difference compared to the parametric

logit analysis is that now the function fm(xt) at each t is being estimated, not the parameters. For

this reason, the procedure is known as functional gradient descent. After M updates, the log odds

ratio is represented by

FM (x) =
M∑
m=1

fm(xm)

which is an ensemble of M component functions fm(·). The functional gradient descent algorithm

essentially fits a stagewise regression, meaning that variables are included sequentially in a stepwise

regression, and no change is made to the coefficients of the variables already included. The size of

the ensemble is determined by M . This parameter also controls which predictors are dropped as

variables not chosen in steps one to M will automatically have a weight of zero.

The ensemble feature of boosting is preserved even when the functional gradient algorithm is

applied to other objective functions. The generic boosting algorithm is as follows:

Gradient boosting for minimizing J (x) = EJ(x):

1. For t = 1, . . . , T , initialize wt and F0(xt).

2. For m = 1, . . .M :

a. Compute the negative gradient J ′(xt) = −∂J(yt,Ft)
∂f |Fm−1(xt).

b. Let fm(xt; θm) be the best fit of J ′(xt) using predictor xt.

c. Update Fm(xt) = Fm−1(xt) + c(fm(xt; θ)).
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3 Return the fit FM (x) or the classifier C(FM (x)).

Step (2a) computes the adjusted response and step (2b) obtains the best model at stage m. Step

(2c) uses the negative gradient update the fit. For quadratic loss J(x) = (yt − F (xt))
2, J ′(xt) is

the residual yt−Fm−1(xt). Then gradient boosting amounts to repeatedly finding a predictor to fit

the residuals not explained in the previous step. By introducing a parameter ν to slow the effect of

fm(·) on F (·), step (2c) can be modified to control the rate at which gradient descent takes place:

Fm(xt) = Fm−1(xt) + ν c(fm(xt; θ)).

The regularization parameter ν ∈ [0, 1] is also known as the learning rate. Obviously, the parameters

M and ν are related, as a low learning rate would necessitate a larger M .

Seen from the perspective of gradient boosting, Adaboost uses J(x) = exp(−yF (x)) while the

Logitboost of Friedman et al. (2000) specifies J(x) = ln(1 + exp(−2yF (x))). The two are second

order equivalent as discussed earlier.3 Some software packages use the terms interchangeably. There

are however important differences between a boosting based logit model and the classical logit model

even though both minimize the negative binomial likelihood. The predictors in a logit model are

selected prior to estimation, and the fit is based on a model that considers multiple predictors

jointly. In contrast, gradient boosting performs variable selection and estimation simultaneously,

and the final model is built up from an ensemble of models.

We have thus seen that Adaboost is gradient boosting applied to a specific loss function. Many

variations to this basic theme have been developed. Instead of fitting a base learner to the observed

data, a variation known as stochastic boosting randomly samples a fraction of the observations at

each step m, Friedman (2002). If all observations are randomly sampled, the bagging algorithm

of Breiman (1996) obtains. Bagging tends to yield estimates with lower variances. By letting

the subsampling rate to be between zero and one, stochastic boosting becomes a hybrid between

bagging and boosting. There is a loss of information from returning a discrete weak classifier

fm(x; θ) at each step. To circumvent this problem, Friedman et al. (2000) proposed a Gentleboost

algorithm which updates the probabilities instead of the classifier. Multiclass problems have also

been studied by treating boosting as an algorithm that fits an additive multinomial model.

Associated with each loss function J are model implied probabilities, but additional assumptions

are necessary to turn the probabilities into classification. These are determined by the functions

c(·) and C(·). Logitboost and Adaboost both label the weak and strong learners using the sign

function, ie. c(z) = sign (z) and C(z) = sign (z). As a consequence, these are Bayes classifiers that

threshold the final posterior probability at one-half. It might a be desirable to choose a different

3Logitboost uses initialization wt = 1
T

, F0(xt) = 0, p(yt|xt, θ) = 1
2
.
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threshold especially when the two classes have uneven occurrence in the data. Let τ be the cost

of mis-classifying Y to 1 and 1 − τ be the cost of mis-classifying Y to zero. Minimizing the mis-

classification risk of (1 − P )τ + P (1 − τ) leads to a cost-weighted Bayes rule that labels y to one

when (1− P )τ < P (1− τ). In this case, Step (3) would return

C(P (FM )) = 1 if P > τ

which is a form of quantile classification, Mease et al. (2007).

In summary, boosting can be motivated from the perspective of minimizing an exponential loss

function, or fitting an additive logit model using the method of functional gradient descent that

implicitly reweights the data at each step. Regularization, subsampling, and cross-validation are

incorporated into R packages (such as mboost, ada, gbm). The analysis to follow uses the beroulli

loss function as implemented in the gmb package of Ridgeway (2007). The package returns the

class probability instead of classifier. For recession analysis, the probability estimate is interesting

in its own right, and the flexibility to choose a threshold other than one-half is convenient.

4 Application to Macroeconomic Data

My analysis uses the same 132 monthly predictors as in Ludvigson and Ng (2011), updated to

include observations in 2011, as explained in Jurado et al. (2013). The data cover broad categories:

real output and income, employment and hours, real retail, manufacturing and trade sales, con-

sumer spending, housing starts, inventories and inventory sales ratios, orders and unfilled orders,

compensation and labor costs, capacity utilization measures, price indexes, bond and stock mar-

ket indexes, and foreign exchange measures. Denote the data available for prediction of yt by a

(t− h)× 132 matrix

xt−h = (x1,t−h, . . . , x132,t−h)′

where each xj,t−h is a t− h× 1 vector.

In the recession studies reviewed in Section 2, dynamic specification of the model is an impor-

tant part of the analysis. For example, factor models estimate the reference cycle and its dynamics

jointly, while a Markov switching model estimates the transition probability between the recession

and non-recession states. The standard logit model is designed for independent data and is basi-

cally static. Allowing for dynamics complicates the estimation problem even when the number of

predictors is small, Kauppi and Saikkonen (2008) To allow for a dynamic relation between yt and

possibly many predictors, I let d lags of every variable be a candidate predictor. The potential

predictor set is then a t− h by N data matrix Xt−h where N = (133× d):

Xt−h = (xt−h−1, . . . , xt−h−d, yt−h−1, . . . , yt−h−d)
′.
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When d = 4, a forecast for yt uses data at lags t− h− 1, t− h− 2, t− h− 3, and t− h− 4.4

So far, the setup applies for h step ahead prediction of any variable yt. If yt was a continuous

variable such as inflation or output growth, and the identity of the relevant variables in Xt−h were

known, a linear regression model would produce what is known as a direct h-period forecast. Even

if the relevant predictors were not known, and even with N > T , it is still possible to use the

variable selection feature of boosting as in Bai and Ng (2009a) to identify the useful predictors.

The current problem differs in that the dependent variable is a binary indicator. The log-odds

model implies that p is non-linear in x. The next issue is then to decide on the specifics of this

non-linear function. A common choice of the base learner is a regression tree defined by:

fm(x) =

M0∑
m=1

φ(xm) +
∑
j,k

φjk(xj , xk) +
∑
i,j,k

φijk(xi, xj , xk) + . . . .

Given that the number of potential predictors is large, I do not allow for interaction amongst

variables. As a consequence, each learner only takes on one regressor at a time, leading to what

Buhlmann and Yu (2003) referred to as component-wise boosting. I further restrict the regression

tree to have two-nodes, reducing the tree to a stump. Effectively, variable m at each t belongs to

one of two partitions depending on the value of a data dependent threshold τm:

fm(xmt ) = cLm1(xmt ≤ τm) + cRm1(xmt > τm)

where cLm and cRm are parameters, possibly the mean of observations in the partition. At each

stage m, the identity of xm is determined by considering the N candidate variables one by one,

and choosing the one that gives the best fit. It is important to remark that a variable chosen by

boosting at stage m can be chosen again at subsequent stages. Because the same variable can be

chosen multiple times, the final additive model is spanned by n ≤M variables.

The relative importance of predictor j can be assessed by how it affects variation in FM (x). Let

id(xm) is a function that returns the identity of the predictor chosen at stage m. Friedman (2001)

suggests to consider

I2j =
1

M

M∑
m=1

i2m1(id(xm) = j). (5)

The statistic is based on the number of times a variable is selected over the M steps, weighted

by its improvement in squared error as given by i2m. The sum of I2j over j is 100. Higher values

thus signifies that the associated variable is important. Naturally, variables not selected have zero

importance.

4An alternative set of potential predictors defined by averaging each predictor over t − h − 1 to t − h − d is also
considered. The predictor set is constructed as X̄t−h = (x̄1,t−h, . . . , x̄132,t−h, ȳt−h) with x̄j,t−h = 1

d

∑d
s=1 xj,t−h−s,

this t− h× 133. The results are qualitatively similar and hence not reported.
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4.1 Full Sample Estimation

I consider h = 3, 6 and 12 months ahead forecasts. Considering the h = 12 case may seem ambitious

given that many studies consider h = 0, and economic data appear to have limited predictiability

beyond one year, Berge and Jorda (2011). But the present analysis uses more data than previous

studies and the boosting methodology is new. It is thus worth pushing the analysis to the limit.

After adjusting for lags, the full sample estimation has T = 610 observations from 1961:3 to 2011:12.

The size of the potential predictor set is varied by increasing d from (3,3,4) to (9,9,12) for the three

forecast horizons considered respectively. The largest predictor set (for the h = 12 model) has a

total of 1596 predictors: 12× 132 = 1584 variables in Xt−h as well as 12 lags of yt. Boosting then

selects the relevant predictors from this set.

As an exploratory analysis, a model is estimated using the default parameters in the gbm

package which sets the learning rate ν to .001, the subsampling rate (bagfrac) for stochastic

boosting to .5, with train=.5 so that half the sample serves as training data. The other half is

used for cross validation to determine the optimal stopping parameter M . The purpose of stopping

the algorithm at step M is to avoid overfitting. While overfitting is generally less of an issue for

classification analysis, a saturated model that includes all variables will emerge if M is allowed to

tend to infinity. By early termination of the algorithm, FM (·) is shrunk towards zero. Ridgeway

(2007) argues in favor of setting ν small, and then determine M by cross-validation, or a criterion

such as the AIC.

The default values give an Mopt that is slightly over 2000. While a large number of variables

are being selected, many have low values of I2j . I find that by increasing the learning rate ν to

0.01, Mopt can be significantly reduced to around 300, and the number of variables being selected

(ie. n) is even smaller. As an example, the h = 12 model has n = 80 predictors when d = 4, much

smaller than Mopt because as noted earlier, boosting can select the same variable multiple times.

Furthermore, as N increases from 532 to 1596 when d increases from 4 to 12, n only increases from

80 to =107. This suggests that the longer lags add little information. In view of this finding, I

focus on results for d = (3, 3, 4).

Listed in Table 1 are the variables chosen and such that Friedman’s importance indicator I2j

exceeds two. The table says, for example, that the h = 3 model selects lags 6,5,and 4 (ordered by

the value of I2j ) of 6mo-FF (the spread between the 6 months treasury bill and the federal funds

rate). Also selected is lag 6 of 1 yr-FF spread, which is the difference between the one year treasury

bond and the federal funds rate. There are fewer than 10 variables that pass the threshold of

two. Thresholding I2j at a value bigger than zero allows me to focus on the ‘reasonably’ important

predictors and ignore the ‘barely’ important ones. It is reassuring that the important variables
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identified by boosting listed in Table 1 largely coincide with those used in studies of business cycle

chronology. As noted earlier, term and credit/default spreads are generally thought to be useful

predictors of recessions. However, previous work tends to consider one spread variable at a time.

Here, all spreads in the database are potentially relevant and it is up to boosting to pick out the

most important ones. The CP-FF spread lagged up to 16 months is important, while the 10yr-FF

and AAA- FF spreads lagged 13 months have predictive power. It can be argued that the CP-

FF spread has an information lead advantage over the other spreads. As seen from Table 1, the

information in the different spreads are not mutually exclusive. This is true for all three values of

h considered. Take the h = 12 case as an example. Conditional on 10yr-FF spread, the spreads

CP-FF and Aaa-FF have additional predictive power.

The characteristics of the relevant predictor set are evidently horizon specific. While there are

more variables exceeding the I2j threshold of 2 when h = 12 than when h = 3 and 6, I2j tends to

be lower when h = 12. As lags of yt have no predictive power at either h = 6 or 12, only the

h = 3 model has an autoregressive structure. The 6mo-FF and 1yr-FF spreads are important when

h=3 and 6, but none of these variable seem to be important when h = 12. The NAPM inventories

and vendor delivery time are systematically selected when h = 12, but none of these variables are

selected for h = 6 or h = 3. Notably, only nominal variables are selected for h = 3 and 6 months

ahead forecasts. The only variables common to all three forecast horizons is the Aaa-FF spread.

Perhaps the surprise variable in Table 1 is employment in mining. Though not frequently used in

business cycles analysis, this variable is robustly countercyclical, as will be seen in results to follow.

Figure 1 plots the (in-sample) posterior probability of recessions denoted P̂ (yt = 1|XT−h) along

with the NBER recession dates. The estimated probabilities for the pre-1990 recessions clearly

display spikes around the NBER recession dates. However, the fitted probabilities for the post-

1990 recessions are poor especially when h = 12. The three recessions since 1983 came and went

and the estimated probabilities barely spiked. The fitted probabilities based on the h = 3 and 6

models fare better but the spikes after 1990 are still not as pronounced as one had expected.

Parameter instability is a generic feature of economic data and can be attributed to changing

sources of economic fluctuations over time. The weak learners used in the analysis are stumps,

and hence the model for the log-odds ratio is non-parametric. While parameter instability is

not a meaningful notion in a non-parametric setup, the possibility of model instability cannot be

overlooked. To see if the composition of the predictor set has changed over time. I construct

two sets of recession probabilities as follows. The first is based on estimation over the sample

(t11, t
1
2)=(1962:3,1986:8), and the second is for the sample (t21, t

2
2)=(1986:9,2011:12). The in-sample

fitted probabilities spliced together from the estimation over the two samples are plotted as the

solid blue line in Figure 2. Compared to the full sample estimates in Figure 1, the post 1990
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recessions are much better aligned with the NBER dates without compromising the fit of the pre

1990 recessions. This suggests that it is possible to fit the data in the two-subsamples reasonably

well, but different models are needed over the subsamples.

To gain further evidence for model instability, I use the model estimated over the first subsample

to compute out-of-sample fitted probabilities for s ∈ [t21, t
2
2]. Similarly, the model estimated for the

second subsample is used to compute out-of-sample fitted probabilities for s ∈ [t11, t
1
2]. If the model

structure is stable, the out- of-sample fitted probabilities, represented by the dashed red lines,

should be similar to the in-sample fit, represented by the solid blue lines. Figure 2 shows that the

fitted probabilities based on the model estimated up to 1986:8 do not line up with the recession

dates after 1990 recessions. The discrepancy is particularly obvious for h = 12. The probabilities

based on the model estimated after 1986:8 also do not line up well with the actual recession dates

in the first sub-sample. This confirms that the same model cannot fit the data of both subsamples.

The instability in the predictor set can be summarized by examining which variables are chosen

in the two subsamples. This is reported in Table 2. The first impression is that while interest rate

spreads are the important predictors in the first subsample for h = 3 and 6, many real activity

variables become important in the second subsample. For h = 12, the real activity variables found

to be important in the first sample are no longer important in the second sample. The 5yr-FF

spread is important in the second sample but not in the first. Few variables are important in both

samples. Even of those that are, the lags chosen and the degree of importance are different, as seen

from the 1yr-spread. In general, many of the important predictors identified in the second sample

have lower I2j .

4.2 Rolling Estimation

The full sample results suggest a change in the dynamic relation between yt and the predictors, as

well as the identity of the predictors themselves. However, the in-sample fit (or lack thereof) does

not reflect the out-of-sample predictive ability of the model. Furthermore, the foregoing results

are based on the default parameters of the GBM package that randomizes half the sample for

stochastic boosting, with M determined by cross-validation as though the data were independent.

Arguably, these settings are not appropriate for serially correlated data.

Several changes are made to tailor boosting to out-of-sample predictions that also take into

account the time series nature of the data. First, stochastic boosting is disallowed by changing

the randomization rate from the default of one-half to zero. Second, rolling regressions are used to

generate out-of-sample predictions. These are constructed as follows:

Rolling Forecast Initialize t1 and t2:
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i For m = 1, . . .M , fit fm(xmt−h) using predictors in Xt−h.

ii For j = 1, . . . N , record relative importance Imt2,j at each t2

iii Construct predicted probability p̂t2 = P̂ (yt2 = 1|Xt2−h). Increase t1 and t2 by one.

There are 407 of such rolling regressions, each with 180 observations ending in period t2 − h. The

first estimation is based on 180 observations from t1 − h=1962:3 to t2 − h=1977:2. When h = 12,

the first forecast is made for t2=1978:2. The next forecast is based on estimation over the sample

defined by (t1 − h, t2 − h) =(1962:4,1977:3) and so on.

The final change is that in place of cross-validation, two new indicators are used to determine

the set of relevant predictors. The first is the average of relative importance of each variable over

the 407 rolling sub-samples, constructed for j = 1, . . . , N as

I
2
j =

1

407

∑
t2

Ij,t2 .

The second indicator is the frequency that variable j is being selected in the rolling estimation:

freqj =
1

407

∑
t2

1(I2j,t2 > 0).

Both statistics are dated according to the period that the forecast is made for, being t2.

Figure 3 plots the number of variables with positive importance in forecasting yt2 defined as

nt2(d) =
N∑
j=1

(I2j,t2 > 0).

The black solid line indicates the total number of variables selected when lags of the same variable

are treated as distinct. The dotted red line indicates the unique number of variables, meaning

that variables at different lags are treated as the same variable. On average, the total number of

variables selected for h = 12 months ahead forecast is between 13 and 16, while the unique number

of variables is around 9. These numbers are much smaller than those found in the full sample

analysis. The number of relevant predictors nt2(d) has drifted down since the 1980 recessions and

bottomed out in t2=1999:2, which roughly coincides with the Great Moderation. However, the

downward trend is reversed in 2001. The number of relevant predictors for h = 3 and 6 generally

follow the same pattern as h = 12 with the notable difference that since the 2008 recession, the

number of important predictors at h = 3 has been on an upward trend, when that for h = 12 is

slightly below the pre-recession level.

Table 3 reports the variables with average importance I
2
j exceeding 2. While the term and

default spreads are also found to be valuable predictors, there are qualitative differences between
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between the full sample estimates reported in Table 1 and then rolling estimates reported in Table

3. The Aaa-spread is the dominant predictor for h = 3 and 6 in rolling estimation, but the 6mo-FF

spread is better for full-sample predictions. For h = 12, the 10yr-FF spread is the most important

in-sample predictor, but the 5yr-FF spread performs better in rolling estimation. Berge and Jorda

(2011) find that the 10 year spread with 18 month lag has predictive power. Here, spreads lagged

13-16 months are found to be important.

Table 4 reports the variables whose frequency of being selected (summed over lags) is at least

0.2. The Aaa-FF spread is the most frequently selected amongst variables in Xt−h when h = 3 and

6, while the CP-spread is most frequently selected when h = 12. These variables have high values

of freqj because multiple lags are selected while other variables are only selected at one lag. In this

regard, the model chosen by boosting has a rather weak dynamics. Tables 3 and 4 together suggest

that Aaa spread is the most robust predictor for h = 3 and 6, while the CP and 5yr spreads are

most important for h = 12. Of the real activity variables, government employment and employment

in mining are valuable predictors.

The out-of-sample fitted probabilities are plotted as the blue lines in Figure 4. These probabil-

ities are generally high around recession times but there are also false positives especially around

1985 during which the key predictor is found to be the Baa-FF spread. Notably, all out-of-sample

fitted probabilities are more choppy than the full sample estimates. One explanation is that each

rolling window only has T = 180 observations, while the full sample estimates use T = 610 obser-

vations. The more likely reason is that except for h = 3, the other two prediction models have no

autoregressive dynamics.

Additional assumptions are necessary to use the estimated probabilities to generate warning

signals for recessions. As mentioned earlier, only 15% of the sample are recession months and the

Bayes threshold of 0.5 may not be appropriate. Chauvet and Hamilton (2006) suggest to declare

a recession when the smoothed probability estimate of the latent state P̂ (st|xt) exceeds .65 and

to declare the recession ends when the probability falls below 0.35. Chauvet and Piger (2008)

require the smoothed probability to move above 0.8 and stay above that level for three consecutive

months. Berge and Jorda (2011) searched between 0.3 and 0.6 for the optimal threshold such that

the Chauvet and Piger (2008) probabilities would best fit the NBER dates. In contrast to these

studies, I analyze P̂ (yt|Xt−h) and probabilities estimates are lower the higher is h. Applying the

threshold of .65 would lead to the forgone conclusion of no recession. Yet, it is clear that the

predicted probabilities have distinguishable spikes.

I proceed with the assumption that it is the relative probability over time that matters and use

as threshold the mean plus 1.65 times the standard deviation of the fitted probabilities over the

sample. This yields thresholds of .435 for h = 3, .444 for h = 6 .304 for h = 12 respectively. This
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line is marked in each of the three panels in Figure 4. I then locate those dates t2 for which the

estimated probability exceeds the thresholds to get some idea of whether the threshold-crossing

dates are near the NBER recession dates. The most important variable used in the prediction at t2

is recorded for reference, even though it should be reminded that boosting is an ensemble scheme

and prediction is not based on a particular regressor per se.

It is well documented that the risky spreads were successful in predicting recessions prior to

1990 but completely missed the 1990 recession. The h = 12 model produces probability estimates

above .2 for three of the five months between 1990:3 to 1990:8, but not on a consecutive basis as the

probabilities are as low as 0.06 in between. The h = 6 model also produces heightened probability

estimates but they fall short of crossing the threshold. That the two models did not strongly signal

a recession is perhaps not surprising as the top predictor is found to be the (Baa-FF) risky spread.

The h = 3 model predicts a recession probability of .414 for t2=1989:11 with the 3m-FF spread

being the most important predictor. The estimate is still short of the threshold of .436. The

probability of recession reaches .534, only in t2=1991:6 well after the recession started.

Turning to the 2001 recession, Figure 4 shows that the probability of recession based on the

h = 3 model reaches .568 in t2 = 2002:2. This is largely due to the lagged recession indicator since

2001:03 to 2001:10 were identified by the NBER to be recession months. The estimated probability

based on the h = 12 model jumps from .002 in t2=1999:11 to 0.739 in 2000:1, with the 5yr-FF

spread identified to be most important. The h = 6 model also gives a recession probability of .449

at t2 =2001:8 with the most important predictor being the Aaa-FF spread, but both signals of

recession are short lived.

There has been much discussion of whether signs of the 2008 recession were missed. The h = 3

model gives a probability of .650 in t2=2008:7. The probability remains high for several months

with the most important predictor being the PMI. The probability based on the h = 6 model

exceeds .6 around t2 = 2007:5 for several months with the most important predictor being the

5yr-FF spread. For the h = 12 model, the recession probability is estimated to be .65 for t2 =

2007:2 but returned to lower values before climbing to .54 at t2 =2007:12, with the top predictors

being the 10yr-FF and the Aaa-FF spreads. Thus from the data in mid-2006, the models for h =6

and 12 see signs of the 2008 recession a whole year before it occurred, but the signals are sporadic

and easy to miss.

Overall, the models seem to give elevated probability estimates around but not always ahead

of the actual recessions dates. Instead of eyeballing the probability estimates, I also attempt

to automate the start date of the recessions as determined by the model. From the peak of

economic activity identified by the NBER, I look within a window of τ -months to see if the predicted

probabilities exceed the thresholds and record the variables with the highest Īj . I set τ to 12 for
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the recessions before 1990 and to 18 for the ones after to accommodate the observation in hindsight

that the signals in the post 1990 recessions appear in the data earlier than the recessions before

1990.5 These dates are reported in column 3 of Table 5. As a point of reference, Table 5 also lists

the recession months identified by the NBER. In parenthesis are the dates that the recessions were

announced. A noteworthy feature of Table 5 is the changing nature of the predictors in the five

recessions. The risky spreads have been important in predicting the two pre-1990 recessions but

not the ones after, and employment data have been helpful in predicting the post-1990 recessions

but not the pre-1990 ones.

Table 5 shows that all models failed to call the 1990 recession, in agreement with the informal

analysis. For the 2008 recession, the h = 3 model does not produce any probability estimate in

the 18 months prior to 2007:12 that exceeds the threshold. However, the h = 12 month model

reports a recession probability of .416 in for t2=2007:01, and the h = 6 model reports a recession

probability of .606 for t2=2007:05. That the h = 12 model gives earlier warning than the h = 3

ones is interesting. The bottom line conclusion is that signals of the 2008 recession were in the

data as early as mid-2006, but there is a lack of consensus across models, making it difficult to

confidently make a recession call.

5 Conclusion

This analysis sets out to explore what boosting has to say about the predictors of recessions. Boost-

ing is a non-parametric method with little input from economic theory. It has two main features.

First, the fit of the model is based on an ensemble scheme. Second, by suitable choice of regular-

ization parameters, it enables joint variable selection and estimation in a data rich environment.

The empirical analysis finds that even though many predictors are available for analysis, the pre-

dictor set with systematic and important predictive power consists of only 10 or so variables. It is

reassuring that most variables in the list are already known to be useful, though some less obvious

variables are also identified. The main finding is that there is substantial time variation in the

size and composition of the relevant predictor set, and even the predictive power of term and risky

spreads are recession specific. The full sample estimates and rolling regressions give confidence to

the 5yr spread, the Aaa and CP spreads (relative to the Fed funds rate) as the best predictors of

recessions. The results echo the analysis of Ng and Wright (2013) that business cycles are not alike.

This, in essence, is why predicting recessions is challenging.

Few economic applications have used boosting thus far, probably for the reason that the termi-

nology and presentation are unfamiliar to economists. But binomial boosting is simply an algorithm

5If the probability estimates never exceed the threshold, I consider a model with more predictors (larger d) than
the base case. This often give higher probability estimates but not high enough to cross the thresholds.
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for constructing stagewise additive logistic models. It can potentially be used to analyze discrete

choice problems, such as whether to retire or which brand to use. In conjunction with other loss

functions, boosting can also be used as an alternative to information criterion as a variable selection

device. Bai and Ng (2009a,b) exploited these properties to choose instruments and predictors in a

data rich environment. This paper has used boosting in the less common context of serially corre-

lated data. The method is far from perfect as there were misses and false positives. A weakness

of boosting in recession analysis is that it produces fitted probabilities that are not sufficiently

persistent. This is likely a consequence of the fact that the model dynamics are now entirely driven

by the predictors. The autoregressive dynamics needed for the estimated probabilities to be slowly

evolving are weak or absent altogether. Furthermore, the predictors are often selected at isolated

but not consecutive lags. My conjecture is that improving the model dynamics will likely lead to

smoother predicted probabilities without changing the key predictors identified in this analysis.

How richer dynamics can be incorporated remains very much a topic for future research.
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Appendix: A Toy Example

This Appendix provides an example to help understand the Adaboost algorithm. Consider classi-

fying whether the twelve months in 2001 using three month lagged data of the help-wanted index

(HWI), new orders (NAPM), and the 10 year-Fed Funds spread (SPREAD). The data are listed

in columns 2-4 of Table A. The NBER dates are listed in column 5, with 1 indicating a recession

month. I use a stump (two node decision tree) as the weak learner. A stump uses an optimally

chosen threshold to split the data into two partitions. This requires setting up a finite number of

grid points for HWI, NAPM and SPREAD respectively and evaluating the goodness of fit in each

partition.

Table A: Toy Example
Data: Lagged 3 months F1(x) F2(x) F3(x) F4(x) F5(x)

date HWI NAPM SPREAD y HWI NAPM HWI SPREAD NAPM

-.066 48.550 0.244 < −.044 < 49.834 < −.100 > −.622 < 47.062

2001. 1 0.014 51.100 -0.770 -1 -1 -1 -1 -1 -1
2001. 2 -0.091 50.300 -0.790 -1 1 -1 -1 -1 -1
2001. 3 0.082 52.800 -1.160 -1 -1 -1 -1 -1 -1
2001. 4 -0.129 49.800 -0.820 1 1 1 1 1 1
2001. 5 -0.131 50.200 -0.390 1 1 -1 1 1 1
2001. 6 -0.111 47.700 -0.420 1 1 1 1 1 1
2001. 7 -0.056 47.200 0.340 1 1 1 1 1 1
2001. 8 -0.103 45.400 1.180 1 1 1 1 1 1
2001. 9 -0.093 47.100 1.310 1 1 1 1 1 1
2001. 10 -0.004 46.800 1.470 1 -1 1 -1 1 1
2001. 11 -0.174 46.700 1.320 1 1 1 1 1 1
2001. 12 -0.007 47.500 1.660 -1 -1 1 -1 1 -1

α .804 1.098 .710 .783 .575
Error rate .167 .100 .138 .155 0

The algorithm begins by assigning an equal weight of w
(1)
t = 1/T to each observation. For each

of the grid points chosen for HWI, the sample of Y values is partitioned into two parts depending

on whether HWIt exceeds the grid point or not. The grid point that minimizes classification error

is found to be -.044. The procedure is repeated with NAPM as splitting variable, and again for

SPREAD. A comparison of the three sets of residuals reveals that splitting on the basis of HWI

gives the smallest weighted error. The first weak learner thus labels Yt to 1 if HWIt < -.044. The

outcome of the decision is given in Column 6. Compared to the NBER dates in column 5, we

see that months 2 and 10 are mislabeled, giving a misclassification rate of 2/12=.167. This is ε1

of Step (2a). Direct calculations give α1 = .5 log(1−εε ) of .804. The weights w
(2)
t are updated to

complete step (2b). Months 2 and 10 now each have a weight of 0.25, while the remaining ten

observations each have a weight of 0.05. Three thresholds are again determined for each of the
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three variables and the weighted residuals are computed using weights w(2). Of the three, the

NAPM split gives the smallest weighted residuals. The weak learner for step 2 is identified. The

classification based on the sign of F2(x) = .804 · 1(HWI < −0.044) + 1.098 · 1(NAPM < 49.834)

is given in column 7. Compared with column 5, we see that months 5 and 12 are mislabeled. The

weighted misclassification rate is decreased to .100. The new weights w
(3)
t are .25 for months 5 and

12, .138 for months 2 and 10, and .027 for the remaining months. Three sets of weighted residuals

are again determined using new thresholds. The best predictor is again HWI with a threshold of

-.100. Classification based on the sign of F3(x) is given in column 8, where F3(x) = .804 · 1(HWI <

−.044) + 1.098 · 1(NAPM < 48.834) + .710 · 1(HWI < −.100). The error rate after three steps

actually increases to to .138. The weak learner in round four is 1(SPREAD>-.622). After using

NAPM for one more round, all recession dates are correctly classified. The strong learner is an

ensemble of five weak learners defined by sign (Ŷ ), where

Ŷ = .804 · 1(HWI < −.044) + 1.098 · 1(NAPM < 49.834) + .710 · 1(HWI < −.100)

+.783 · 1(SPREAD > −.622) + .575 · 1(NAPM < 47.062),

The key features of Adaboost are (i) the same variable can be chosen more than once, (ii) the

weights are adjusted at each step to focus on the misclassified observations, and (iii) final decision

is based on an ensemble of models. No single variable can yield correct classification which is the

premise of an ensemble decision rule.
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Table 1: Top Variables Chosen by Cross-Validation
(h, h+ d) Variable Variable Name I2j k

(3, 6) 97 6 mo-FF spread 25.641 6 5 4
96 3 mo-FF spread 18.830 4 5 6
133 lagy 18.651 4
98 1 yr-FF spread 15.024 6
101 Aaa-FF spread 8.099 6
105 Ex rate: Japan 2.189 5

(6, 9) 97 6 mo-FF spread 24.584 7 8
101 Aaa-FF spread 22.306 8 9 7
98 1 yr-FF spread 19.184 7 9
96 3 mo-FF spread 5.060 7
100 10 yr-FF spread 2.503 7
114 NAPM com price 2.043 8

(12,16) 100 10 yr-FF spread 14.326 13
95 CP-FF spread 12.021 15 13 16
101 Aaa-FF spread 10.242 13
63 NAPM vendor del 10.020 13
35 Emp: mining 6.235 16 15
99 5 yr-FF spread 5.644 13 16
64 NAPM Invent 3.494 14
114 NAPM com price 2.358 13

Notes to Table 1-4: forecasts for period t are based predictors at lag t−h−1, t−h−2, . . . , t−h−d.
The column I2j is an indicator of importance as defined in (5). The last column k ∈ [h + 1, h + d]
denotes that lag at which the corresponding predictor is chosen.
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Table 2: Top Variables Chosen by Cross-Validation: Split Sample Estimation
(h, h+ d) Variable Variable Name I2j k

Estimation Sample: 1960:3-1986:8

(3,6) 97 6 mo-FF spread 46.162 6 5
133 lagy 19.417 4
101 Aaa-FF spread 16.997 6
98 1 yr-FF spread 5.930 6
96 3 mo-FF spread 5.468 4

(6, 9) 97 6 mo-FF spread 44.165 7 8
101 Aaa-FF spread 28.528 8 7
98 1 yr-FF spread 16.023 7 9
114 NAPM com price 3.850 8

(12, 16) 100 10 yr-FF spread 25.842 13
101 Aaa-FF spread 23.854 13
95 CP-FF spread 18.857 16 15 13
63 NAPM vendor del 10.229 13
61 PMI 9.751 14
64 NAPM Invent 3.744 14
35 Emp: mining 2.028 16

Estimation Sample: 1986:9-2011:12

(3, 6) 133 lagy 64.898 4
98 1 yr-FF spread 10.252 4 5
22 Help wanted/unemp 5.452 5 4
15 IP: nondble matls 4.610 5
79 DC&I loans 4.267 5
62 NAPM new ordrs 3.109 4

(6, 9) 79 DC&I loans 22.487 7 8
99 5 yr-FF spread 20.318 9
15 IP: nondble matls 16.689 7 9 8
101 Aaa-FF spread 10.476 9
133 lagy 8.865 4
62 NAPM new ordrs 5.400 7
98 1 yr-FF spread 4.870 9
36 Emp: const 4.530 7
22 Help wanted/unemp 4.456 7

(12,16) 99 5 yr-FF spread 53.407 15 16 14
101 Aaa-FF spread 18.519 16
79 C&I loans 8.469 14 15
102 Baa-FF spread 6.700 16
98 1 yr-FF spread 2.857 13
44 Emp: FIRE 2.774 15
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Table 3: Variables Chosen in Rolling Window Estimation: By Average Importance

(h, h+ d) Variable Variable Name I
2
j k

(3, 6) 133 lagy 18.596 4
101 Aaa-FF spread 12.899 6
96 3 mo-FF spread 11.190 4 6
61 PMI 6.449 4
97 6 mo-FF spread 6.085 6
98 1 yr-FF spread 5.308 6
33 Emp: total 5.087 4
95 CP-FF spread 3.566 4
102 Baa-FF spread 3.049 6

(6, 9) 101 Aaa-FF spread 24.155 8 7 9
98 1 yr-FF spread 10.215 7 9
102 Baa-FF spread 9.910 7 9
99 5 yr-FF spread 7.157 9 8
100 10 yr-FF spread 6.404 9 8
97 6 mo-FF spread 5.866 7
45 Emp: Govt 4.567 9 7
96 3 mo-FF spread 4.122 7
37 Emp: mfg 2.221 7

(12,16) 99 5 yr-FF spread 13.993 15 16
100 10 yr-FF spread 8.958 13
102 Baa-FF spread 8.464 13
101 Aaa-FF spread 6.977 16 13
95 CP-FF spread 6.969 13 16
63 NAPM vendor del 6.518 13
97 6 mo-FF spread 4.600 16
64 NAPM Invent 3.106 14
61 PMI 2.524 15
35 Emp: mining 2.180 15
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Table 4: Variables Chosen in Rolling Window Estimation: By Frequency

(h, h+ d) Variable Variable Name Frequency k

(3,6) 101 Aaa-FF spread 1.330 6 5 4
97 6 mo-FF spread 1.014 6 4 5
96 3 mo-FF spread 0.944 4 6 5
45 Emp: Govt 0.893 5 4 6
133 lagy 0.812 4
94 Baa bond 0.472 5 4
98 1 yr-FF spread 0.409 6
22 Help wanted/unemp 0.398 4
105 Ex rate: Japan 0.386 5
33 Emp: total 0.360 4
65 Orders: cons gds 0.335 5
102 Baa-FF spread 0.333 6
93 Aaa bond 0.270 4
61 PMI 0.249 4

(6, 9) 101 Aaa-FF spread 1.761 8 7 9
45 Emp: Govt 1.248 9 8 7
98 1 yr-FF spread 0.735 7 9
102 Baa-FF spread 0.637 7 9
96 3 mo-FF spread 0.637 7 9
95 CP-FF spread 0.607 9 8
100 10 yr-FF spread 0.585 9 7
114 NAPM com price 0.548 8 7
99 5 yr-FF spread 0.539 9 7
97 6 mo-FF spread 0.370 7
63 NAPM vendor del 0.347 9
37 Emp: mfg 0.300 7
62 NAPM new ordrs 0.281 7
64 NAPM Invent 0.255 7
35 Emp: mining 0.246 9
66 Orders: dble gds 0.220 7
5 Retail sales 0.208 7

(12,16) 95 CP-FF spread 0.871 16 15 13
35 Emp: mining 0.859 16 13 15
81 Inst cred/PI 0.694 16 15
99 5 yr-FF spread 0.687 15 16
100 10 yr-FF spread 0.639 13 15
101 Aaa-FF spread 0.488 16 13
102 Baa-FF spread 0.438 13
63 NAPM vendor del 0.371 13
61 PMI 0.311 15
64 NAPM Invent 0.273 14
97 6 mo-FF spread 0.270 16
117 CPI-U: transp 0.246 13
44 Emp: FIRE 0.234 15
68 Unf orders: dble 0.218 1631



Table 5: Summary of Model Warnings

Recession NBER t2 (Model) P̂t2 Top Predictor Exceed Threshold

1: 1980:1-1980:7 1981:7

h = 3 1979:12 0.545 Baa bond Y
h = 6 1979:8 0.718 CP-FF spread Y
h = 12 1979:6 0.313 CP-FF spread N

2: 1981:7-1981:11 (1983:7)

h = 3 1980:7 0.899 Baa bond Y
h = 6 1980:7 0.794 CP-FF spread Y
h = 12 1980:7 0.339 CP-FF spread Y

3: 1990:7-1990:3 1992:12

h = 3 1989:11 .414 3M-FF spread N
h = 6 1989:12 .317 Govt. Emp N
h = 12 1990:03 .238 Emp. Mining N

4: 2001:3-2001:11 2003:7

h = 3 2000:09 .224 Govt. Emp N
h = 6 2001:02 .104 Govt. Emp N
h = 12 2000:01 .739 5yr-FF spread Y

5: 2007:12-2009:6 2010:9

h = 3 2006:06 .003 HWI N
h = 6 2007:05 .606 Govt. Emp Y
h = 12 2007:01 .416 Emp. Mining Y

The business cycle dates are taken from the web site www.nber.org/cycles/cyclesmain.html.
The NBER column denotes the date that the trough was announced by the NBER. The t2 column
is the date within a window since the last peak of economic activity that the probability of recession
estimated by the model exceeds the threshold of mean+1.65 standard deviations. If the thresholds
of (.435, .444, .304) are not crossed, a model with more lagged predictors is considered. For the first
two recessions, the window is 12 months. For the last three recessions, the window is 18 months.
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Figure 1: Recession Probabilities: In-Sample
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Figure 2: Recession Probabilities: Split-Sample
Solid Line: Spliced in sample fit, Dashed line: Spliced Out-of Sample Fit
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Figure 4: Recession Probabilities: Rolling Estimates
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