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Abstract

This paper considers properties of an optimization based sampler for targeting the poste-
rior distribution when the likelihood is intractable. It uses auxiliary statistics to summarize
information in the data and does not directly evaluate the likelihood associated with the
specified parametric model. Our reverse sampler approximates the desired posterior distri-
bution by first solving a sequence of simulated minimum distance problems. The solutions
are then re-weighted by an importance ratio that depends on the prior and the volume of the
Jacobian matrix. By a change of variable argument, the output are draws from the desired
posterior distribution. Optimization always results in acceptable draws. Hence when the
minimum distance problem is not too difficult to solve, combining importance sampling with
optimization can be much faster than the method of Approximate Bayesian Computation
that by-passes optimization.
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1 Introduction

Maximum likelihood estimation rests on the ability of a researcher to express the joint den-

sity of the data, or the likelihood, as a function of K unknown parameters θ. Inference can

be conducted using classical distributional theory once the mode of the likelihood function is

determined by numerical optimization. Bayesian estimation combines the likelihood with a

prior to form the posterior distribution from which the mean and other quantities of interest

can be computed. Though the posterior distribution may not always be tractable, it can be

approximated by Monte Carlo methods provided that the likelihood is available. When the

likelihood is intractable but there exists L ≥ K auxiliary statistics ψ̂ with model analog ψ(θ)

that is analytically tractable, one can still estimate θ by minimizing the difference between ψ̂

and ψ(θ).

Increasingly, parametric models are so complex that neither the likelihood nor ψ(θ) is

tractable. But if the model is easy to simulate, the mapping ψ(θ) can be approximated by

simulations. Estimators that exploit this idea can broadly be classified into two types. One

is simulated minimum distance estimator (SMD), a frequentist approach that is quite widely

used in economic analysis. The other is the method of Approximate Bayesian Computation

that is popular in other disciplines. This method, ABC for short, approximates the posterior

distribution using auxiliary statistics ψ̂ instead of the full dataset y. It takes draws of θ from

a prior distribution and keeps the draws that, when used to simulate the model, produces

auxiliary statistics that are close to the sample estimates ψ̂. Both the ABC and SMD can be

regarded as likelihood free estimators in the sense that the likelihood that corresponds to the

structural model of interest is not directly evaluated.

While both the SMD and ABC exploit auxiliary statistics to perform likelihood free esti-

mation, there are important differences between them. The SMD solves for the θ that makes

ψ̂ close to the average of ψ(θ) over many simulated paths of the data. In contrast, the ABC

evaluates ψ(θ) for each draw from the prior and accepts the draw only if ψ(θ) is close to ψ̂. The

ABC estimate is the average over the accepted draws, which is the posterior mean. In Forneron

and Ng (2014), we focused on the case of exact identification and used a reverse sampler (RS)

to better understand the difference between the two approaches. The RS approximates the pos-

terior distribution by solving a sequence of SMD problems, each using only one simulated path

of data. Using stochastic expansions as in Rilstone et al. (1996) and Bao and Ullah (2007), we

reported that in the special case when ψ(θ) = θ (i.e the auxiliary model is the assumed model),

the SMD has an unambiguous bias advantage over the ABC. But in more general settings, the

ABC can, by clever choice of prior, eliminate biases that are inherent in the SMD.

In this paper, we extend the analysis to over-identified models and provide a deeper un-

derstanding of the reverse sampler. The RS is shown to be an optimization-based importance
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sampler that transforms the density from draws of ψ to draws of θ so that when multiplied by

the prior and properly weighted, the draws follow the desired posterior distribution. Section 2

considers the exactly identified case and shows that the importance ratio is the determinant of

the Jacobian matrix. Section 3 considers the over-identified case when the dimension of ψ(θ)

exceeds that of θ. Because of the need to transform densities of different dimensions, the deter-

minant of the Jacobian matrix is replaced by its volume. Using analytically tractable models,

we show that the RS exactly reproduces the desired posterior distribution.

The RS was initially developed as a framework to better understand the different approaches

to likelihood free estimation. While not intended to compete with existing implementations of

ABC, the use of optimization in RS turns out to have a property that is of independent interest.

Creating a long sequence of ABC draws such that the simulated statistic ψ̂b and the data ψ̂

deviate by no more than δ can take infinite time if δ is set to exactly zero as theory suggests.

This has generated interests within the ABC community to control for δ. The RS by-passes this

problem because SMD estimation makes ψ̂b as close to ψ̂b as machine precision permits. We

elaborate on this feature in Section 4. Of course, the RS is useful only when the SMD objective

function is well behaved and easy to optimize, which may not always be the case. But allowing

optimization to play a role in ABC can be useful, as independent work by Meeds and Welling

(2015) also found.

1.1 Preliminaries

In what follows, we use a ‘hat’ to denote estimators that correspond to the mode (or extremum

estimators) and a ‘bar’ for estimators that correspond to the posterior mean. We use (s, S) and

(b, B) to denote the (specific, total number of) draws in frequentist and Bayesian type analyses

respectively. A superscript s denotes a specific draw and a subscript S denotes the average

over S draws. These parameters S and B have different roles. The SMD uses S simulations to

approximate the mapping ψ(θ), while the ABC uses B simulations to approximate the posterior

distribution of the infeasible likelihood.

We assume that the data y = (y1, . . . , yT )′ have finite fourth moments and can be represented

by a parametric model with probability measure Pθ where θ ∈ Θ ⊂ R
K , θ0 is the true value.

The likelihood L(θ|y) is intractable. Estimation of θ is based on L ≥ K auxiliary statistics

ψ̂(y(θ0)) which we simply denote by ψ̂ when the context is clear. The model implies statistics

ψ(θ). The classical minimum distance estimator is

θ̂CMD = argminθJ(ψ̂,ψ(θ)) = g(θ)′Wg(θ), g(θ) = ψ̂ −ψ(θ).
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Assumption A :

i There exists a unique interior point θ0 ∈ Θ (compact) that minimizes the popula-

tion objective function (ψ(θ0) − ψ(θ))′W(ψ(θ0) − ψ(θ)). The mapping θ → ψ(θ) =

limT→∞ E[ψ̂(θ)] is continuously differentiable and injective. The L×K Jacobian matrix

ψθ(θ) = ∂ψ(θ)
∂θ has full column rank, and the rank is constant in the neighborhood of θ0.

ii There is an estimator ψ̂ such that
√
T (ψ̂ −ψ(θ0))

d−→N (0,Σ).

iii W is a L× L positive definite matrix and Wψθ(θ0) has rank K.

Assumption A ensures global identification and consistent estimation of θ, see Newey and

McFadden (1994). In Gourieroux et al. (1993), the mapping ψ : θ → ψ(θ) is referred to as the

binding function while in Jiang and Turnbull (2004), ψ(θ) is referred to as a bridge function.

When ψ(θ) is analytically intractable, the simulated minimum distance estimator (SMD) is

θ̂SMD = argminθJS(ψ̂, ψ̂S(θ)) = argminθgS(θ)′WgS(θ). (1)

where S ≥ 1 is the number of simulations,

gS(θ) = ψ̂ − 1

S

S∑
s=1

ψ̂s(ys(θ)).

Notably, the term E[ψ̂(θ)] in CMD estimation is approximated by 1
S

∑S
s=1 ψ̂

s(ys(θ)). The SMD

was first used in Smith (1993). Different SMD estimators can be obtained by suitable choice

of the moments g(θ), including the indirect inference estimator of Gourieroux et al. (1993),

the simulated method of moments of Duffie and Singleton (1993), and the efficient method of

moments of Gallant and Tauchen (1996).

The first ABC algorithm was implemented by Tavare et al. (1997) and Pritchard et al.

(1996) to study population genetics. They draw θb from the prior distribution π(θ), simulate

the model under θb to obtain data yb, and accept θb if the vector of auxiliary statistics ψ(θb)

deviates from ψ̂ by no more than a tuning parameter δ. If ψ̂ are sufficient statistics and δ = 0,

the procedure produces samples from the true posterior distribution if B →∞.

The Accept-Reject ABC: For b = 1, . . . , B

i Draw ϑ from π(θ) and εb from an assumed distribution Fε

ii Generate yb(εb,ϑ) and ψ̂b = ψ(yb).

iii Accept θb = ϑ if Jb1 =
(
ψ̂b − ψ̂

)′
W
(
ψ̂b − ψ̂

)
≤ δ.
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The accept-reject method (hereafter, AR-ABC) simply keeps those draws from the prior distri-

bution π(θ) that produce auxiliary statistics which are close to the observed ψ̂. As it is not easy

to choose δ a priori, it is common in AR-ABC to fix a desired quantile q, repeat the steps [B/q]

times. Setting δ to the q-th quantile of the sequence of Jb1 that will produce exactly B draws is

analogous to the idea of keeping k−nearest neighbors considered in Gao and Hong (2014).

Since simulating from a non-informative prior distribution is inefficient, the accept-reject

sampler can be replaced by one that targets at features of the posterior distribution. There

are many ways to target the posterior distribution. We consider the MCMC implementation of

ABC proposed in Marjoram et al. (2003) (hereafter, MCMC-ABC).

The MCMC-ABC: For b = 1, . . . , B with θ0 given and proposal density q(·|θb),

i Generate ϑ ∼ q(ϑ|θb)

ii Draw errors εb+1 from Fε and simulate data yb+1(εb+1,ϑ). Compute ψ̂b+1 = ψ(yb+1).

iii Set θb+1 to ϑ with probability ρABC(θb,ϑ) and to θb+1 with probability 1− ρABC(θb,ϑ)

where

ρABC(θb,ϑ) = min
(
I‖ψ̂,ψ̂b+1‖≤δ

π(ϑ)q(θb|ϑ)

π(θb)q(ϑ|θb)
, 1
)

(2)

The AR and MCMC both produce an approximation to the posterior distribution of θ. It is

common to use the posterior mean of the draws θ = 1
B

∑B
b=1 θ

b as the ABC estimate. The

MCMC-ABC uses a proposal distribution to account for features of the data so that it is

less likely to have proposed values with low posterior probability. The tuning parameter δ

affects the bias of the estimates. Too small a δ may require making many draws which can be

computationally costly.

The ABC samples from the joint distribution of (θb,ψb(εb,θb)) and then integrates out εb.

The posterior distribution is thus

p(θb|ψ̂) ∝
∫
p(θb, ψ̂b(θb, εb)|ψ̂)I‖ψ̂−ψb)‖<δdε

b.

The indicator function (also the rectangular kernel) equals one if ‖ψ̂ − ψb‖ does not exceed δ.

The ABC draws are dependent due to the Markov nature of the MCMC-ABC sampler.

Both the SMD and ABC assume that simulations provide an accurate approximation of

ψ(θ) and that auxiliary statistics are chosen to permit identification of θ. Creel and Kristensen

(2015) suggests a cross-validation method for selecting the auxiliary statistics. For the same

choice of ψ̂, the SMD finds the θ that makes the average of the simulated auxiliary statistics

close to ψ̂. The ABC takes the average of θb, drawn from the prior, with the property that each

ψb is close to ψ̂. In an attempt to understand this difference, Forneron and Ng (2014), takes

as starting point that each θb in the above ABC algorithm can be reformulated as an SMD
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problem with S = 1. We consider an algorithm that solves the SMD problem many times to

obtain a distribution for θb, each time using one simulated path. The sampler terminates with

an evaluation of the prior probability, in contrast to the ABC which starts with a draw from

the prior distribution. Hence we call our algorithm a reverse sampler (hereafter, RS). The RS

produces a sequence of θb that are independent optimizers and do not have a Markov structure.

In the next two sections, we explore additional features of the RS. As an overview, the

distribution of draws that emerge from SMD estimation with S = 1 may not be from the

desired posterior distribution. Hence the draws are re-weighted to target the posterior. In the

exactly identified case, ψ̂b can be made exactly equal to ψ̂ by choosing the SMD estimate as

θb. Thus the RS is simply an optimization based importance sampler using the determinant of

Jacobian matrix as importance ratio. In the over-identified case, the volume of the (rectangular)

Jacobian matrix is used in place of the determinant. Additional weighting is given to those θ̂b

that yields ψ̂b sufficiently close to ψ̂.

2 The Reverse Sampler: Case K = L

The algorithm for the case of exact identification is as follows. For b = 1, . . . , B

i Generate εb from Fε.

ii Find θb = argminθJ
b
1(ψ̂b(θ, εb), ψ̂) and let ψ̂b = ψ̂b(θb, εb).

iii Set w(θb, εb) = π(θb)|ψ̂bθ(θb, εb)|−1.

iv Re-weigh the θb by w(θb)∑B
b=1 w(θ

b)
.

Like the ABC, the draws θb provides an estimate of the posterior distribution of θ from which

an estimate of the posterior mean:

θRS =
B∑
b=1

w(θb)∑B
b=1w(θb)

θb

can be used as an estimate of θ. Each θb is a function of the data ψ̂ and the draws εb that

minimizes Jb1(ψ(θ, εb), ψ̂). The K first-order conditions are given by

F(θb, εb, ψ̂) =
∂g1(θ

b, εb, ψ̂)

∂θ

′

Wg1(θ
b, εb, ψ̂) = 0 (3)

where ∂g1(θ
b,εb,ψ̂)
∂θ is the L×K matrix of derivatives with respect to θ evaluated at the arguments.

It is assumed that, for all b, this derivative matrix has full column rank K. For SMD estimation,
∂g1(θ

b,εb,ψ̂)
∂θ = ψ̂bθ(θb, εb, ψ̂). This Jacobian matrix plays an important role in the RS.

The importance density denoted h(θb, εb|ψ̂) is obtained by drawing εb from the assumed

distribution Fε and finding θb such that J(ψ̂b(θ, εb), ψ̂) is smaller than a pre-specified tolerance.
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When K = L, this tolerance can be made arbitrarily small so that up to numerical precision,

ψ̂b(θb, εb) = ψ̂. This density h(θb, εb|ψ̂) is related to p
ψ̂b,εb

(ψ̂b(θb, εb)) ≡ p(ψ̂b, εb) by a change

of variable:

h(θb, εb|ψ̂) = p(ψ̂b, εb|ψ̂) · |ψ̂bθ(θb, εb)|.

Now p(θb, ψ̂b|ψ̂) ∝ p(ψ̂|θb, ψ̂b)p(ψ̂b, εb|θb)π(θb) and p(ψ̂|θb, ψ̂b) is constant since ψ̂b = ψ̂.

Hence

p(θb|ψ̂) ∝
∫
π(θb)p(ψ̂b, εb|ψ̂)I‖ψ̂−ψ̂b‖=0

dεb

=

∫
π(θb)|ψ̂bθ(θb, εb, ψ̂)|−1h(θb, εb|ψ̂)I‖ψ̂−ψ̂b‖=0

dεb

=

∫
w(θb, εb)h(θb, εb|ψ̂)dεb

where the weights are, assuming invertibility of the determinant:

w(θb, εb) = π(θb)|ψ̂bθ(θb, εb, ψ̂)|−1. (4)

Note that in general, w(θb)∑B
b=1 w(θ

b)
6= 1

B .

In the above, we have used the fact that I‖ψ̂−ψ̂b‖=0
is 1 with probability one when K = L.

The Jacobian of the transformation appears in the weights because the draws θb are related to

the likelihood via a change of variable. Hence a crucial aspect of the RS is that it re-weighs the

draws of θb from h(θb, ε). Put differently, the unweighted draws will not, in general, follow the

target posterior distribution.

Consider a weighted sample (θb, w(θb, ε)) with w(θb, εb) defined in (4). The following propo-

sition shows that as B →∞, RS produces the posterior distribution associated with the infea-

sible likelihood, which is also the ABC posterior distribution with δ = 0.

Proposition 1 Suppose that ψ̂b : θ → ψ̂b(θ, εb) is one-to-one and the determinant |∂ψ
b(θ,εb,ψ̂)
∂θ | =

|ψ̂bθ(θ, εb, ψ̂)| is bounded away from zero around θb. For any measurable function ϕ(θ) such

that E
p(θ|ψ̂)

(ϕ (θ)) =
∫
ϕ (θ) p(θ|ψ̂)dθ exists, then∑B

b w(θb, εb)ϕ(θb)∑B
b w(θb, εb)

a.s.−→ E
p(θ|ψ̂)

(ϕ (θ)) .

Convergence to the target distribution follows from a strong law of large numbers. Fixing
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the event ψ̂b = ψ̂ is crucial to this convergence result. To see why, consider first the numerator:

1

B

∑
b

w(θb, εb)ϕ(θb)
a.s.−→

∫∫
ϕ (θ)w (θ, ε) p(ψ̂b, εb|θ)|ψ̂θ(θ, ε, ψ̂)|dεbdθ

=

∫∫
ϕ (θ)

∣∣∣ψ̂bθ(θ, ε, ψ̂)
∣∣∣−1 π(θ)p(ψ̂b, εb|θ)

∣∣∣ψ̂bθ(θ, ε, ψ̂)
∣∣∣ dεbdθ

=

∫∫
ϕ (θ)π(θ)p(ψ̂b, ε|θ)dεdθ

=

∫∫
ϕ (θ)π(θ)p(ψ̂, ε|θ)dεdθ

=

∫
ϕ (θ)π(θ)L(ψ̂|θ)dθ.

Furthermore, the denominator converges to the integrating constant since 1
B

∑
bw(θb, ε)

a.s.−→∫
π(θ)L(ψ̂|θ)dθ. Proposition 1 implies that the weighted average of θb converges to the pos-

terior mean. Furthermore, the posterior quantiles produced by the reverse sampler tends to

those of the infeasible posterior distribution p(θ|ψ̂) as B → ∞. As discussed in Forneron and

Ng (2014), the ABC can be presented as an importance sampler. Hence the accept-reject algo-

rithm in Tavare et al. (1997) and Pritchard et al. (1996), as well as the Sequential Monte-Carlo

approach to ABC in Sisson et al. (2007); Toni et al. (2009) and Beaumont et al. (2009) are

all important samplers. The RS differs in that it is optimization based. It is also developed

independently in Meeds and Welling (2015).

We now use examples to illustrate how the RS works in the exactly identified case.

Example 1: Suppose we have one observation y ∼ N (θ, 1) or y = θ + ε, ε ∼ N (0, 1). The

prior for θ is θ ∼ N (0, 1). By drawing, θb, εb ∼ N (0, 1), we obtain yb = θb + εb ∼ N (0, 2). The

ABC keeps θb|yb = y. Since (θb, yb) are jointly normal with covariance of 1, we deduce that

θb|yb = y ∼ N (y/2, 1/2). The exact posterior distribution for θ is N (y/2, 1/2).

The RS draws εb ∼ N (0, 1) and computes θb = y − εb which is N (y, 1) conditional on y.

The Jacobian of the transformation is 1. Re-weighting according to the prior, we have:

pRS(θ|y) ∝ φ(θ)φ(θ − y) ∝ exp
(
−1

2

(
θ2 + (θ − y)2

))
∝ exp

(
−1

2

(
2θ2 − 2θy

))
∝ exp

(
−2

2
(θ − y/2)2

)
.

This is the exact posterior distribution as derived above.

Example 2 Suppose y = Q(u, θ), ε ∼ U[0,1] and Q is a quantile function that is invertible and

differentiable in both arguments.1 For a single draw, y is a sufficient statistic. The likelihood-

1We thank Neil Shephard for suggesting the example.
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based posterior is:

p(θ|y) ∝ π(θ)f(y|θ).

The RS simulates yb(θ) = Q(εb|θ) and sets Q(εb|θb) = y. Or, in terms of the CDF:

εb = F (y|θb)

Consider a small perturbation to y holding ub fixed:

0 = dy
dF (y|θb)

dy
+ dθb

dF (y|θb)
dθb

= dyF ′y(y|θb) + dθbF ′θb(y|θ
b).

In the above, f ≡ F ′y(·) is the density of y given θ. The Jacobian is:∣∣∣∣dθbdy
∣∣∣∣ =

∣∣∣∣ F ′y(y|θb)F ′
θb

(y|θb)

∣∣∣∣ =

∣∣∣∣ f(y|θb)
F ′
θb

(y|θb)

∣∣∣∣.
To find the distribution of θb conditional on y, assume F (y, .) is increasing in θ:

P
(
θb ≤ t|y

)
= P

(
F (y|θb) ≤ F (y|t)|y

)
= P

(
εb ≤ F (y|t)|y

)
= F (y|t).

By construction, f(θ|y) = F ′θ(y|θ).2 Putting things together,3

pRS(θ|y) ∝ π(θ)|F ′θ(y|θ)|
∣∣∣∣ f(y|θ)
F ′θ(y|θ)

∣∣∣∣ = π(θ)f(y|θ) ∝ p(θ|y).

Example 3: Normal Mean and Variance We now consider an example in which the

estimators can be derived analytically, and given in Forneron and Ng (2014). We assume

yt = εt ∼ N(m,σ2). The parameters of the model are θ = (m,σ2)′. We consider the auxiliary

statistics: ψ̂(y)′ =
(
y σ̂2

)
. The parameters are exactly identified.

The MLE of θ is

m̂ =
1

T

T∑
t=1

yt, σ̂2 =
1

T

T∑
t=1

(yt − y)2.

We consider the prior π(m,σ2) = (σ2)−αIσ2>0, α > 0 so that the log posterior distribution is

log p(θ|m̂, σ̂2) ∝ −T
2

log(2π)σ2 − α log σ2 − 1

2σ2

T∑
t=1

(yt −m)2.

2If F (y, ·) is decreasing in θ, we have P(θb ≤ t|y) = 1− F (y, t).
3An alternative derivation is to note that t = P (u ≤ t|y) = P

(
u = F (y, θb) ≤ t|y

)
= P

(
θb ≤ F−1(y, t) = t′|y

)
.

Hence f(θb|y) = dt
dt′ = 1

(F−1)′
θ
(y,t)

= F ′2(y, t) as above.
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Since ψ̂(y) are sufficient statistics, the RS coincides with the likelihood-based Bayesian esti-

mator, denoted B below. This is also the infeasible ABC estimator. We focus discussion on

estimators for σ2 which have more interesting properties. Under a uniform prior, we obtain

σ2B = σ̂2
T

T − 5

σ̂2SMD =
σ̂2

1
ST

∑S
s=1

∑T
t=1(ε

s
t − εs)2

σ̂2RS =
B∑
b=1

σ̂2

[
∑T
t=1(ε

b
t−εb)2/T ]2∑B

k=1
1∑T

t=1(ε
k
t−εk)2/T

In this example, the RS is also the ABC estimator with δ = 0. It is straightforward to show that

the bias reducing prior is α = 1 and coincides with the SMD. Table 2 shows that the estimators

are asymptotically equivalent but can differ for fixed T .

Table 1: Properties of the Estimators

Estimator Prior E[θ̂] Bias Variance MSE

θ̂ML - σ2 T−1T −σ2

T 2σ4 T−1
T 2 2σ4 2T−1

2T 2

θB 1 σ2 T−1T−5
2σ2

T−5 2σ4 T−1
(T−5)2 2σ4 T+1

(T−5)2

θRS 1 σ2 T−1T−5
2σ2

T−5 2σ4 T−1
(T−5)2 2σ4 T+1

(T−5)2

θ̂SMD - σ2 S(T−1)
S(T−1)−2

2σ2

S(T−1)−2 2σ4κ1
1

T−1 2σ4 κ1
T−1 + 4σ4

(S(T−1)−2))2

where κ1(S, T ) = (S(T−1))2(T−1+S(T−1)−2)
(S(T−1)−2)2(S(T−1)−4) > 1, κ1 tends to one as S tend to infinity.

To highlight the role of the Jacobian matrix in the RS, the top panel of Figure 2 plots

the exact posterior distribution and the one obtained from the reverse sampler. They are

indistinguishable. The bottom panel shows an incorrectly constructed reverse sampler that

does not apply the Jacobian transformation. Notably, the two distributions are not the same.

Re-weighting by the Jacobian matrix is crucial to targeting the desired posterior distribution.

Figure 1 presents the likelihood based posterior distribution, along with the likelihood free

ones produced by ABC and the RS-JI (just identified) for one draw of the data. The ABC results

are based on the accept-reject algorithm. The numerical results corroborate with the analytical

ones: all the posterior distributions are very similar. The RS-JI posterior distribution is very

close to the exact posterior distribution. Figure 1 also presents results for the over-identified

case (denoted RS-OI) using two additional auxiliary statistics: ψ̂ = (y, σ̂2y , µ̂3/σ̂
2
y , µ̂4/σ̂

4
y) where

µk = E(yk). The weight matrix is diag(1, 1, 1/2, 1/2). The posterior distribution is very close

to RS-JI obtained for exact identification. We now explain how the posterior distribution for

the over-identified case is obtained.
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3 The RS: Case L ≥ K:

The idea behind the RS is the same when we go from the case of exact to overidentification. The

precise implementation is as follows. Let Kδ(ψ̂, ψ̂
b) be a kernel function and δ be a tolerance

level such that K0(ψ̂,ψ
b) = I‖ψ̂−ψ̂b‖=0

.

For b = 1, . . . , B

i Generate εb from Fε.

ii Find θb = argminθJ
b
1(ψ̂b, ψ̂) where ψ̂b = ψ̂(θ, εb);

iii Set w(θb, εb) = π(θb)vol
(
ψ̂bθ(θb, εb, ψ̂)

)−1
Kδ(J

b
1(ψ̂b, ψ̂)) where: vol(ψ̂bθ) =

√∣∣∣ψ̂b′θ ψ̂bθ∣∣∣.
iv Re-weigh θb by w(θb)∑B

b=1 w(θ
b)

.

We now proceed to explain the two changes:- the use of volume in place of determinant in the

importance ratio, and the need for L−K dimensional kernel smoothing.

The usual change of variable formula evaluates the absolute value of the determinant of

the Jacobian matrix when the matrix is square. The determinant then gives the infinitesimal

dilatation of the volume element in passing from one set of variables to another. The main issue

in the case of overidentification is that the determinant of a rectangular Jacobian matrix is not

well defined. However, as shown in Ben-Israel (1999), the determinant can be replaced by the

volume when transforming from sets of a higher dimension to a lower one.4 For a L×K matrix

A, its volume, denoted vol(A), is the product of the (non-zero) singular values of A:

vol(A) =

{√
|A′A| L ≥ K, rank(A) = K√
|AA′| L ≤ K, rank(A) = L.

Furthermore, if A = BC, vol(A) = vol(B)vol(C).

To verify that our target distribution is unaffected by whether we calculate the volume or

the determinant of the Jacobian matrix when K = L, observe that

ψ̂bθ(θb(ψ̂), εb) =
∂ψ̂b(θb, εb, ψ̂)

∂ψ̂

∂ψ̂

∂θb
. (5)

The K first order conditions defined by (3) become:

F(θb, εb, ψ̂) = ψ̂bθ(θb, εb, ψ̂)′W

(
ψ̂ − ψ̂b(θb, εb)

)
= 0. (6)

4From Ben-Israel (2001),
∫
V
f(v)dv =

∫
U
f(φ(u))vol

(
φu(u)

)
du for a real valued function f integrable on V .

See also http://www.encyclopediaofmath.org/index.php/Jacobian.
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Since L = K, W can be set to an identity matrix IK . Furthermore, ψ(θb, ε) = ψ̂ since

Jb1(θb) = 0 under exact identification. As ∂θ

∂ψ̂
is a square matrix when K = L, we can directly

use the fact that Fθ(θb, εb, ψ̂)dθ + Fψ(θb, εb, ψ̂)dψ̂ = 0 to obtain the required determinant:

|ψ̂bθ(θb, εb, ψ̂)|−1 = IK · |
∂θ

∂ψ̂
| = | − Fθ(θb, εb, ψ̂)−1F

ψ̂
(θb, εb, ψ̂)|. (7)

Now to use the volume result, put A = IK , B = ∂θ

∂ψ̂
and C = ∂ψ̂

∂θ . But A is just a K-dimensional

identity matrix. Hence vol(IK) = vol

(
∂θ

∂ψ̂

)
vol

(
∂ψ̂

∂θ̂

)
which evaluates to

vol

(
∂ψ̂

∂θ

)−1
= vol

(
∂θ

∂ψ̂

)
, or

∣∣∣∣∂ψ̂∂θ
∣∣∣∣−1 =

∣∣∣∣ ∂θ
∂ψ̂

∣∣∣∣
which is precisely |ψ̂bθ(θ, ε)|−1 as given in (7)5. Hence in the exactly identified case, there is no

difference whether one evaluates the determinant or the volume of the Jacobian matrix.

Next, we turn to the role of the kernel function Kδ(ψ̂, ψ̂
b). The joint density h(θb, εb) is

related to p
ψ̂b,εb

(ψ̂(θb, εb)) = p(ψ̂b, εb) through a change a variable now expressed in terms of

volume:

h(θ, εb|ψ̂) = p(ψ̂b, εb|ψ̂) · vol
(
ψ̂bθ(θb, εb, ψ̂)

)
When L ≥ K, the objective function ‖ψ̂−ψ̂b‖W = Jb1 ≥ 0 measures the extent to which ψ̂ devi-

ates from ψ̂b when the objective function at its minimum. Consider the thought experiment that

Jb1 = 0 with probability 1, such as enabled by a particular draw of εb. Then the arguments above

forK = L would have applied. We would still have p(θb|ψ̂) =
∫
π(θb)p(ψ̂b, εb|ψ̂)I‖ψ̂−ψ̂b‖=0

dεb =∫
w(θb, εb)h(θb, εb|ψ̂)dεb, except that the weights are now defined in terms of volume. Propo-

sition 1 would then extend to the case with L ≥ K.

But in general Jb1 6= 0 almost surely. Nonetheless, we can use only those draws that yield

Jb1(θb) that are sufficiently close to zero. The more draws we make, the tighter this criterion

can be. Suppose there is a symmetric kernel Kδ(·) satisfying conditions in Pagan and Ullah

(1999, p.96) for consistent estimation of conditional moments non-parametrically. Analogous to

Proposition 1, the volume vol
(
ψ̂bθ(θb, εb, ψ̂)

)
is assumed to be bounded away from zero. Then

as the number of draws B →∞, the bandwidth δ(B)→ 0 and Bδ(B)→∞ with

wδ(B)(θ
b, ε̂b) = π(θb)vol

(
ψ̂bθ(θb, εb, ψ̂)

)−1
Kδ(B)(ψ̂, ψ̂

b), (8)

5Using the implicit function theorem to compute the gradient gives the same
result. Since ψ̂b = ψ̂ we have: Fθ = −ψ̂bθ(θb, εb, ψ̂)′Wψ̂bθ(θb, εb, ψ̂) +∑
j ψ̂

b
θ,θj

(θb, εb)W
(
ψ̂ − ψ̂b(θb, εb, ψ̂)

)
= −ψ̂bθ(θb, εb, ψ̂)′W ψ̂bθ(θb, εb, ψ̂). Then vol(F−1

θ Fψ̂) =

vol(F−1
θ )vol(Fψ̂) = vol(ψ̂bθ(θb, εb, ψ̂))−1|W |−1vol(ψ̂bθ(θb, εb, ψ̂))−1vol(ψ̂bθ(θb, εb, ψ̂))−1|W | =

vol(ψ̂bθ(θb, εb, ψ̂))−1. Hence the weights are the same when we only consider the draws where Jb1 = 0
which are the draws we are interested in.
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a result analogous to Proposition 1 can be obtained:

1

B

∑
b

wδ(B)(θ
b, εb)ϕ(θb)

p−→
∫∫

ϕ(θ)w0(θ, ε)vol

(
ψ̂bθ(θ, εb; ψ̂)

)
p(ψ̂, εb|θ)dθdεb

=

∫∫
ϕ(θ)π(θ)1‖ψ̂−ψ̂b‖=0

vol

(
ψ̂bθ(θ, εb; ψ̂)

)−1
p(ψ̂b, εb|θ)vol

(
ψ̂bθ(θ, εb; ψ̂)

)
dθdεb

=

∫∫
ϕ(θ)π(θ)1‖ψ̂−ψ̂b‖=0

p(ψ̂, εb|θ)dθdεb

=

∫
ϕ(θ)π(θ)L(ψ̂|θ)dθ.

Similarly, the integrating constant is consistent as 1
B

∑
bwδ(B)(θ

b, εb)
p−→
∫
π(θ)L(ψ̂|θ)dθ.Hence,

the RS sampler still recovers the posterior distribution with the infeasible likelihood. Note that

the kernel function was introduced for developing a result analogous to Proposition 1, but no

kernel smoothing is required in practical implementation. What is needed for the RS in the over-

identified case is B draws with sufficiently small J1(θ
b). Hence, we can borrow the idea used in

the AR-ABC. Specifically, we fix a quantile q, repeat [B/q] times until the desired number of

draws is obtained. Discarding some draws seems necessary in many ABC implementations.

In summary, there are two changes in implementation of the RS in the over-identified case:

the volume and the kernel function. Kernel smoothing has no role in the RS when K = L. It is

interesting to note that while the ABC and RS both rely on the kernel Kδ to keep draws close

to ψ̂b in the over-identified case, the non-parametric rate at which the sum converges to the

integral are different. The RS uses the first order conditions ψ̂bθ(θb, εb)′W
(
ψ̂b(θb, εb)− ψ̂

)
= 0

to indicate which K combinations of ψ̂b(θb, εb)− ψ̂ are set to zero, rendering the dimension of

the smoothing problem L−K. To see this, note first that each draw θb from the RS is consistent

for θ0 and asymptotically normal as shown in Forneron and Ng (2014). In consequence, the first

order condition (FOC) can be re-written as:
(
dψ(θ)
dθ

∣∣
θ=θ0

+Op(
1√
T

)
)′

W
(
ψ̂b(θb, εb)− ψ̂

)
= 0,

or
dψ(θ)

dθ

∣∣′
θ=θ0

W
(
ψ̂b(θb, εb)− ψ̂

)
= op(

1√
T

).

Since dψ(θ)
dθ

∣∣′
θ=θ0

W is full rank, there exists a subspace of dimension K such that ψ̂b(θb, εb)− ψ̂
is zero asymptotically. Hence the kernel smoothing problem is effectively L −K dimensional.

The ABC does not use the FOC. Even in the exactly identified case, the kernel smoothing is

a L = K dimensional problem. In general, the convergence rate of the ABC is L ≥ K, the

dimension of ψ̂.

The following two examples illustrate the properties of the ABC and RS posterior distri-

butions. The first example uses sufficient statistics and the second example does not. Both

the ABC and RS achieve the desired number of draws by setting the quantile, as discussed in

Section 2.
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Example 4: Exponential Distribution Let y1, . . . , yT ∼ E(θ), T = 5, θ0 = 1/2. Now ψ̂ = y

is a sufficient statistic for y1, . . . , yT . For a flat prior π(θ) ∝ 1θ≥0 we have:

p(θ|y) ∝ p(θ|y1, . . . , yT ) = θT exp(−θT y) ∼ Γ(T + 1, T y)

In the just identified case, we let ubt ∼ U[0,1] and ybt = − log(1− ubt)/θb. This gives:

ψ̂b =
1

T

T∑
t=1

ybt = − 1

T

T∑
t=1

log(1− ubt)
θb

.

Since yb = y, the Jacobian matrix is:

ψ̂b(θ
b) =

dψ̂b(θ)

dθ

∣∣∣∣
θb

=
1

T

T∑
t=1

log(1− ubt)
[θb]2

= − y
θb
.

Hence for a given T , the weights are: w(θb, ub) ∝ Iθb≥0
θb

yb
= θb

y . We verified that the numerical

results agree with this analytical result.

In the over identified case, we consider two moments:

ψ̂b =

 yb

σ̂b,2y

 =

 1
T

∑T
t=1 y

b
t

1
T

∑T
t=1(y

b
t )

2 − ( 1
T

∑T
t=1 y

b
t )

2

 .

Since
dybt
dθ =

log(1−ubt)
(θb)2

= −ybt
θb

. If δ = 0, the Jacobian matrix is

ψ̂bθ = −

 1
T

∑T
t=1

ybt
θ

2
θb

1
T

∑T
t=1(y

b
t )

2 − 2
θb

[
1
T

∑T
t=1 y

b
t

]2
 = −

 y
θb

2(σ̂y)2

θb

 .

The volume to be computed is vol(ψ̂bθ) =
√
|ψ̂b′θ ψ̂bθ|, as stated in the algorithm. Even if W = I,

the volume is the determinant of ψ̂bθ in the exactly identified case, plus a term relating to the

variance of yb. We computed ψ̂bθ for draws with Jb1 ≈ 0 using numerical differentiation6 and

verified that the values are very close to the ones computed analytically for this example.

Figure 3 depicts a particular draw of the ABC posterior distribution (which coincides with

the likelihood-based posterior since the statistics are sufficient), along with two generated by

the RS sampler. The first one uses the sample mean as auxiliary statistic and hence is exactly

identified. The second uses two auxiliary statistics: the sample mean and the sample variance.

For the AR-ABC, we draw from the prior ten million times and keep the ten thousand nearest

draws. This corresponds to a value of δ = 0.0135. For the RS, we draw one million times7 and

6In practice, since the mapping θ → ψ̂b(θ) is not known analytically, the derivatives are approximated using

finite differences: ∂θj ψ̂
b(θ) ' ψ̂b(θ+ejε)−ψ̂b(θ−ejε)

2ε
for ε ' 0.

7This means that we solve the optimization problem one million times. Given that the optimization problem
is one dimensional, the one dimensional R optimization routine optimize is used. It performs a combination of
the golden section with parabolic interpolations. The optimum is found, up to a given tolerance level (the default
is 10−4), over the interval [0, 10].
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keep the ten thousand nearest draws which corresponds to a δ = 0.0001. As for the weight matrix

W , if we put W11 > 0 and zero elsewhere, we will recover the exactly identified distribution.

Here, we intentionally put a positive weight on the variance (which is not a sufficient statistic)

to check the effect on the posterior mean. With W11 = 1/5 and W22 = 4/5, the RS posterior

means are 0.7452 and 0.7456 for the just and overidentifed cases. The corresponding values are

are 0.7456 and .7474 for the exact posterior and the ABC-AR. They are very similar.

Example 5: ARMA(1,1): For t = 1, . . . , T = 200 and θ0 = (α0, θ0, σ0) = (0.5, 0.5, 1.0), the

data are generated as

yt = αyt−1 + εt + θεt−1, εt ∼ N (0, σ2).

Least squares estimation of the auxiliary model

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + ut

yields L = 5 > K = 3 auxiliary parameters

ψ̂ = (φ̂1, φ̂2, φ̂3, φ̂4, σ̂
2
u).

We let π(α, θ, σ) = Iα,θ∈[−1,1],σ≥0 and W = I5 which is inefficient. In this example, ψ̂ are not

sufficient statistics since yt has an infinite order autoregressive representation.

We draw σ from a uniform distribution on [0, 3] since U[0,∞] is not a proper density. The

weights of the RS are obtained by numerical differentiation. The likelihood based posterior

is computed by MCMC using the Kalman Filter with initial condition ε0 = 0. As mentioned

above, the desired number of draws is obtained by setting the quantile instead of setting the

tolerance δ. For the RS, we keep the 1/10=10% closest draws corresponding to a δ = 0.0007.

The Sequential Monte-Carlo implementation of ABC (SMC-ABC) is more efficient at targeting

the posterior than the ABC-AR. Hence we also compare the RS with SMC-ABC as implemented

in the Easy-ABC package of Lenormand et al. (2013).8 The requirement for 10,000 posterior

draws are as follows:

AR-ABC SMC-ABC RS Likelihood

Computation Time (hours) 63 25 5 0.1

Effective number of draws 100,000,000 36,805,000 10,153,108

δ 0.0132 0.0283 0.0007

8We implemented the SMC-ABC in two ways. First, we use the procedure inVo et al. (2015) using code
generously provided by Christopher Drovandi. We also use the Easy-ABC package in R of Lenormand et al.
(2013). We thank an anonymous referee for this suggestion.
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The difference, both in terms of computation time and number of model simulations, is notable.

As shown in figure 4 the quality of the approximation is also different, especially for α and σ.

The difference can be traced to δ. The δ used for the SMC-ABC is effectively much larger than

for the RS. A better approximation requires a smaller δ which implies longer computational

time. Alternatively stated, the acceptance rate at a low value of δ is very low. The caveat is

that the speed gain is possible only if the optimization problem can be solved in a few iterations

and reasonably fast. In practice, there will be a trade-off between the number of draws and the

number of iterations in the optimization step as we further explore below.

4 Acceptance Rate

The RS was initially developed in Forneron and Ng (2014) as a framework to help understand

frequentist (SMD) and the Bayesian (ABC) way of likelihood-free estimation. But it turns out

that the RS has one computation advantage that is worth highlighting. The issue pertains to

the low acceptance rate of the ABC.

As noted above, the ABC exactly recovers the posterior distribution associated with the

infeasible likelihood if ψ̂ are sufficient statistics and δ = 0 as noted in Blum (2010). Of course,

δ = 0 is an event of measure zero, and the ABC has an approximation bias that depends on δ. In

theory, a small δ is desired. The ABC needs a large number of draws to accurately approximate

the posterior and can be computationally costly.

To illustrate this point, consider estimating the mean m in Example 3 with σ2 = 1 assumed

to be known, and π(m) ∝ 1. All computations are based on the software package R. From a

previous draw mb, a random walk step gives m? = mb + ε, ε ∼ N (0, 1). For small δ, we can

assume m?|m̂ ∼ N (m̂, 1/T ). From a simulated sample of T observations, we get an estimated

mean m̂? ∼ N (m?, 1/T ). As is typical of MCMC chains, these draws are serially correlated. To

see that the algorithm can be stuck for a long time if m∗ is far from m̂, observe that the event

m̂? ∈ [m̂− δ, m̂+ δ] occurs with probability

P(m̂? ∈ [m̂−δ, m̂+δ]) = Φ
(√

T (m̂+ δ −m?)
)
−Φ

(√
T (m̂− δ −m?)

)
≈ 2
√
Tδφ

(√
T (m̂−m?)

)
.

The acceptance probability
∫
m∗ P(m̂? ∈ [m̂ − δ, m̂ + δ])dm∗ is thus approximately linear in δ.

To keep the number of accepted draws constant, we need to increase the number of draws as

we decrease δ.

This result that the acceptance rate is linear in δ also applies in the general case. Assume

that ψ̂?(θ?) ∼ N (ψ(θ?),Σ/T ). We keep the draw if ‖ψ̂− ψ̂?(θ?)‖ ≤ δ. The probability of this

event can be bounded above by
∑K

j=1 P
(
|ψ̂j − ψ̂?j (θ?)| ≤ δ

)
i.e.:

K∑
j=1

Φ

(√
T

σj

(
ψ̂j + δ −ψj(θ?)

))
− Φ

(√
T

σj

(
ψ̂j − δ −ψj(θ?)

))
≈ 2
√
Tδ

K∑
j=1

φ

σj

(√
T

σj

(
ψ̂j −ψj(θ?)

))
.
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The acceptance probability is still at best linear in δ. In general we need to increase the number

of draws at least as much as δ declines to keep the number of accepted draws fixed.

Table 2: Acceptance Probability as a function of δ

δ 10 1 0.1 0.01 0.001

P(‖ψ̂ − ψ̂b‖W ≤ δ) 0.72171 0.16876 0.00182 0.00002 <0.00001

Table 2 shows the acceptance rate for Example 3 for θ0 = (m0, σ
2
0) = (0, 2), T = 20, and

weighting matrix W = diag(σ̂2, 2σ̂4)/T, π(m,σ2) ∝ Iσ2≥0. The results confirm that for small

values of δ, the acceptance rate is approximately linear in δ. Even though in theory, the targeted

ABC posterior should be closer to the true posterior when δ is small, this may not be true in

practice because of the poor properties of the MCMC chain. At least for this example, the

MCMC chain with moderate value of δ provides a better approximation to the true posterior

density.

To overcome the low acceptance rate issue, Beaumont et al. (2002) suggests to use local re-

gression techniques to approximate δ = 0 without setting it equal to zero. The convergence rate

is then non-parametric. Gao and Hong (2014) analyzes the estimator of Creel and Kristensen

(2013) and finds that to compensate for the large variance associated with the kernel smoothing,

the number of simulations need to be larger than TK/2 to achieve
√
T convergence, where K

is the number of regressors. Other methods that aim to increase the acceptance rate include

the ABC-SMC algorithm of Sisson et al. (2007); Sisson and Fan (2011), as well as the adaptive

weighting variant due to Bonassi and West (2015), referred to below as SMC-AW. These meth-

ods build a sequence of proposals to more efficiently target the posterior. The acceptance rate

still declines rapidly with δ, however.

The RS circumvents this problem because each θb is accepted by virtue of being the solution

of an optimization problem, and hence ψ̂−ψ̂b(θb) is the smallest possible. In fact, in the exactly

identified case, δ = Jb1 = 0. Furthermore, the sequence of optimizers are independent, and the

sampler cannot be stuck. We use two more examples to highlight this feature.

Example 6: Mixture Distribution Consider the example in Sisson et al. (2007), also

considered in Bonassi and West (2015). Let π(θ) ∝ 1θ∈[−10,10] and

x|θ ∼ 1/2N (θ, 1) + 1/2N (θ, 1/100)

Suppose we observe one draw x = 0. Then the true posterior is θ|x ∼ 1/2N (0, 1)+1/2N (0, 1/100)

truncated to [−10, 10]. As in Sisson et al. (2007) and Bonassi and West (2015), we choose three

tolerance levels: (2, 0.5, 0.025) for AR-ABC. Figure 5 shows that the ABC posterior distribu-

tions computed using accept-reject sampling with δ = 0.025 are similar to the ones using SMC
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with and without adaptive weighting. The RS posterior distribution is close to both ABC-SMC

and ABC-SMC-AW, and all similar to Figure 3 reported in Bonassi and West (2015). However,

they are quite different from the AR-ABC with δ = 2 and 0.5 are 2, showing that the choice of

δ is important in ABC.

While the SMC, RS, and ABC-AR sampling schemes can produce similar posterior dis-

tributions, Table 3 shows that their computational time differ dramatically. The two SMC

algorithms need to sample from a multinomial distribution which are evidently more time con-

suming. When δ = 0.25, the AR-ABC posterior distribution is close to the ones produced

by the SMC samplers and the RS, but the computational cost is still high. The AR-ABC is

computationally efficient when δ is large, but as seen from Figure 5, the posterior distribution

is quite poorly approximated. The RS takes 0.0017 seconds to solve, which is amazingly fast

because for this example, the solution is available analytically. No optimization is involved, and

there is no need to evaluate the Jacobian because the model is linear. Of course, in cases when

the SMD problem is numerically challenging, numerical optimization can be time consuming

as well. Our results nonetheless suggest a role for optimization in Bayesian computation; they

need not be mutually exclusive. Combining the ideas is an interesting topic for future research.

Table 3: Computation Time (in seconds)

RS ABC-AR ABC-SMC

δ=2 δ=.5 δ=.025 Sisson et-al Bonassi-West

.0017 0.4973 1.6353 33.8136 190.1510 199.1510

Example 7: Precautionary Savings The foregoing examples are simple and are serve

illustrative purposes. We now consider an example that indeed has an infeasible likelihood. In

Deaton (1991), agents maximize expected utility E0

(∑∞
t=0 β

tu(ct)
)

subject to the constraint

that assets at+1 = (1 + r)(at + yt − ct) are bounded below by zero, where r is interest rate,

y is income and c consumption. The desire for precautionary saving interacts with borrowing

constraints to generate a policy function that is not everywhere concave, but is a piecewise linear

when cash-on-hand is below an endogenous threshold. The policy function can only be solved

numerically at assumed parameter values. SMD estimation thus consists of solving the model

and simulating S auxiliary statistics at each guess θ. Michaelides and Ng (2000) evaluate the

finite sample properties of several SMD estimators using a model with similar features. Since the

likelihood for this model is not available analytically. Hence Bayesian estimation of this model

has not been implemented. Here, we use the RS to approximate the posterior distribution.

We generate T = 400 observations assuming that U(c) = c1−γ−1
1−γ , yt ∼ iid N (µ, σ2) with

r = 0.05, β = 10/11, µ = 100, σ = 10, γ = 2 as true values. We estimate θ = (γ, µ, σ) and
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assume (β, r) are known. We use 10 auxiliary statistics:

ψ̂ =
(
y Γ̂yy(0) Γ̂aa(0) Γ̂cc(0) Γ̂cc(1) Γ̂aa(1) Γ̂cc(2) Γ̂aa(2) Γ̂cy(0) Γ̂ay(0)

)′
where Γ̂ab(j) = 1

T

∑T
t=1(at − a)(bt−j − b). We generate B = 13, 423 draws and keep the 3, 356

(25%) nearest draws to ψ̂. After weighting using the volume of the Jacobian matrix we have

an effective sample size of 1, 421 draws.9 We use an identity weighting matrix so JRS(θ) =

g(θ)′g(θ). The Jacobian is computed using finite differences for the RS. As benchmark, we also

compute an SMD with S = 100, JS = gS(θ)′gS(θ). In this exercise, the SMD only needs to

solve for the policy function once at each step of the optimization. Hence the binding function

can be approximated using simulated data at a low cost. For this example, the programs are

coded in python. The Nelder-Mead method is used for optimization.

Table 4: Deaton Model: RS, SMD with W = I

Posterior Mean/Estimate Posterior SD/SE

γ µ σ γ µ σ

RS 1.86 99.92 10.48 0.19 0.84 0.37

SMD 1.76 99.38 10.31 0.12 0.60 0.34

Figure 6 shows the posterior distribution of the RS (blue) along with the SMD distribution

(purple) as approximated by N (θ̂SMD, V̂SMD/T ) according to asymptotic theory. Table 4 shows

that the two sets of point estimates are similar. As explained in Forneron and Ng (2014), the

SMD uses simulations to approximate the binding function while the RS (and by implication

the ABC) uses simulations to approximate the infeasible posterior distribution. In this example,

the difference in bias is quite small. We should note that the RS took well over a day to solve

while the SMD took less than three hours to compute. Whether we use our own code for the

ABC-MCMC or from packages available, the acceptance rate is too low for the exercise to be

feasible.

5 Conclusion

This paper studies properties of the reverse sampler considered in Forneron and Ng (2014) for

likelihood-free estimation. The sampler produce draws from the infeasible posterior distribution

by solving a sequence of frequentist SMD problems. We showed that the reverse sampler uses

the Jacobian matrix as importance ratio. In the over-identified case, the importance ratio can

be computed using the volume of the Jacobian matrix. The reverse sampler does not suffer

from the problem of low acceptance rate that makes the ABC computationally demanding.

9The effective sample size is computed as 1/
∑B
b=1 w

2
b where the weights satisfy

∑B
b=1 w

b = 1.
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Figure 1: Normally Distributed data
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Figure 2: The Importance Weights in RS
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Figure 3: Exponential Distribution
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Figure 4: ARMA Model
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Figure 5: Mixture Distribution
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Figure 6: Deaton Model: RS and SMD
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Note: Blue density: RS posterior, Black line: large sample approximation for the SMD estimator
(identity weighting matrix).


