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A PANIC ATTACK ON UNIT ROOTS AND COINTEGRATION

BY JUSHAN BAI AND SERENA NG1

This paper develops a new methodology that makes use of the factor structure of
large dimensional panels to understand the nature of nonstationarity in the data. We
refer to it as PANIC—Panel Analysis of Nonstationarity in Idiosyncratic and Common
components. PANIC can detect whether the nonstationarity in a series is pervasive,
or variable-specific, or both. It can determine the number of independent stochastic
trends driving the common factors. PANIC also permits valid pooling of individual sta-
tistics and thus panel tests can be constructed. A distinctive feature of PANIC is that it
tests the unobserved components of the data instead of the observed series. The key to
PANIC is consistent estimation of the space spanned by the unobserved common fac-
tors and the idiosyncratic errors without knowing a priori whether these are stationary
or integrated processes. We provide a rigorous theory for estimation and inference and
show that the tests have good finite sample properties.

KEYWORDS: Panel data, common factors, common trends, principal components.

1. INTRODUCTION

KNOWLEDGE OF WHETHER a series is stationary or nonstationary is important
for a wide range of economic analysis. As such, unit root testing is extensively
conducted in empirical work. But in spite of the development of many elegant
theories, the power of univariate unit root tests is severely constrained in prac-
tice by the short span of macroeconomic time series. Panel unit root tests have
since been developed with the goal of increasing power through pooling in-
formation across units. But pooling is valid only if the units are independent,
an assumption that is perhaps unreasonable given that many economic models
imply, and the data support, the comovement of economic variables.

In this paper, we propose a new approach to understanding nonstationar-
ity in the data, both on a series by series basis, and from the viewpoint of a
panel. Rather than treating the cross-section correlation as a nuisance, we ex-
ploit these comovements to develop new univariate statistics and valid pooled
tests for the null hypothesis of nonstationarity. Our tests are applied to two un-
observed components of the data, one with the characteristic that it is strongly
correlated with many series, and one with the characteristic that it is largely
unit specific. More precisely, we consider a factor analytic model:

Xit =Dit + λ′
iFt + eit�

where Dit is a polynomial trend function, Ft is an r × 1 vector of common
factors, and λi is a vector of factor loadings. The series Xit is the sum of a

1This paper was presented at the NSF 2001 Summer Symposium on Econometrics and Statis-
tics in Berkeley, California, the CEPR/Banca d’Italia Conference in Rome, and at NYU, Prince-
ton, Toronto, Maryland, Virginia, Michigan, and LSE. We thank three anonymous referees, the
editor, and the seminar participants for many helpful comments. The authors acknowledge finan-
cial support from the NSF (Grants SBR 9896329, SES-0136923, and SES-0137084).
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deterministic component Dit , a common component λ′
iFt , and an error eit that

is largely idiosyncratic. A factor model with N variables has N idiosyncratic
components but a small number of common factors.2

A series with a factor structure is nonstationary if one or more of the com-
mon factors are nonstationary, or the idiosyncratic error is nonstationary, or
both. Except by assumption, there is nothing that restricts Ft to be all I(1) or
all I(0). There is also nothing that rules out the possibility that Ft and eit are
integrated of different orders. These are not merely cases of theoretical in-
terest, but also of empirical relevance. As an example, let Xit be real output
of country i. It may consist of a global trend component F1t , a global cyclical
component F2t , and an idiosyncratic component eit that may or may not be sta-
tionary. As another example, the inflation rate of durable goods may consist of
a component that is common to all prices, and a component that is specific to
durable goods. Whether these components are stationary or nonstationary is
an empirical matter.

It is well known that the sum of two time series can have dynamic prop-
erties very different from the individual series themselves. If one component
is I(1) and one is I(0), it could be difficult to establish that a unit root exists
from observations on Xit alone, especially if the stationary component is large.
Unit root tests on Xit can be expected to be oversized while stationarity tests
will have no power. The issue is documented in Schwert (1989), and formally
analyzed in Pantula (1991), Ng and Perron (2001), and among others, in the
context of a negative moving-average component in the first-differenced data.

Instead of testing for the presence of a unit root in Xit , the approach pro-
posed in this paper is to test the common factors and the idiosyncratic compo-
nents separately. We refer to such a Panel Analysis of Nonstationarity in the
Idiosyncratic and Common components as PANIC. PANIC has two objectives.
The first is to determine if nonstationarity comes from a pervasive or an idio-
syncratic source. The second is to construct valid pooled tests for panel data
when the units are correlated. PANIC can also potentially resolve three econo-
metric problems. The first is the problem of size distortion just mentioned,
namely, existing tests in the literature tend to over-reject the nonstationarity
hypothesis when the series being tested is the sum of a weak I(1) component
and a strong stationary component. The second is a consequence of the fact
that the idiosyncratic components in a factor model can only be weakly cor-
related across i by design. In contrast, Xit will be strongly correlated across
units if the data obey a factor structure. Thus, pooled tests based upon eit are
more likely to satisfy the cross-section independence assumption required for
pooling. The third relates to power, and follows from the fact that pooled tests
exploit cross-section information and are more powerful than univariate unit
root tests.

2This is a static factor model, and is to be distinguished from the dynamic factor model being
analyzed in Forni, Hallin, Lippi, and Reichlin (2000).
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Since the factors and the idiosyncratic components are both unobserved, and
our objective is to test if they have unit roots, the key to our analysis is consis-
tent estimation of these components when it is not known a priori whether they
are I(1) or I(0). To this end, we propose a robust common-idiosyncratic (I-C)
decomposition of the data using large dimensional panels, that is, datasets in
which the number of observations in the time (T ) and the cross-section (N)
dimensions are both large. Loosely speaking, the large N permits consistent
estimation of the common variation whether or not it is stationary, while a
large T enables application of the relevant central limit theorems so that lim-
iting distributions of the tests can be obtained. Robustness is achieved by a
“differencing and recumulating” estimation procedure so that I(1) and I(0)
errors can be accommodated. We provide a rigorous development of the the-
ory for this estimation procedure. Our results add to the growing literature
on large dimensional factor analysis by showing how consistent estimates of
the factors can be obtained using the method of principal components even
without imposing stationarity on the errors. These results can be used to study
other dynamic properties of the common factors, such as long memory, ARCH
effects, and structural change, under very general conditions.

Several authors have also developed panel unit roots to resolve the prob-
lem of correlated errors. In Chang (2002), Moon and Perron (2003), Chang
and Song (2002), and Phillips and Sul (2003), for example, cross-section de-
pendence is treated as a nuisance. In contrast, the nature of the cross-section
dependence is itself an object of interest in our analysis. We allow for the pos-
sibility of multiple factors, and the framework is thus more general than the
one-way error component model of Choi (2002). Furthermore, these papers
are ultimately interested in testing for unit roots in the observed data. We go
beyond this to analyze the source of nonstationarity. In doing so, we provide
a coherent framework for studying unit roots, common trends, and common
cycles in large dimensional panels.

Our framework differs from conventional multivariate time-series models in
which N is small. In small N analysis of cointegration, common trends, and cy-
cles, the estimation methodology being employed typically depends on whether
the variables considered are all I(1) or all I(0).3 Pretesting for unit roots is thus
necessary. Because N is small, what is extracted is the trend or the cycle com-
mon to just a small number of variables. Not only is the information in many
potentially relevant series left unexploited, consistent estimation of the com-
mon factors is in fact not possible when the number of variables is small. In our
analysis with N and T large, the common variation can be extracted without
appealing to stationarity assumptions and/or cointegration restrictions. This
makes it possible to decouple the extraction of common trends and cycles from
the issue of testing stationarity.

3For example, King, Plosser, Stock, and Watson (1991), Engle and Kozicki (1993), and Gonzalo
and Granger (1995).
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The rest of the paper is organized as follows. In Section 2, we describe the
PANIC procedures and present asymptotic results for testing single and multi-
ple unit roots. We devote Section 3 to the large sample properties of the factor
estimates. As an intermediate result, we establish uniform consistency of the
factor estimates without assuming the errors are stationary. This result is of
interest in much broader contexts than unit root testing. Section 4 uses simu-
lations to illustrate the properties of the factor estimates and the tests in finite
samples.

2. PANIC

The data Xit (i = 1� � � � �N; t = 1� � � � � T ) are assumed to be generated by

Xit = ci +βit + λ′
iFt + eit�(1)

(I −L)Ft =C(L)ut�(2)

(1 − ρiL)eit =Di(L)εit�(3)

where C(L) = ∑∞
j=0 CjL

j and Di(L) = ∑∞
j=0 DijL

j . The idiosyncratic error eit
is I(1) if ρi = 1, and is stationary if |ρi| < 1. We allow r0 stationary factors and
r1 common trends, with r = r0 + r1. Stated differently, the rank of C(1) is r1.
The objective is to determine r1 and test if ρi = 1 when neither Ft nor eit is
observed and will be estimated by the method of principal components.

2.1. Assumptions and Overview

Let M < ∞ be a generic positive number, not depending on T or N . Let
‖A‖ = trace(A′A)1/2. Our analysis is based on the following assumptions:

ASSUMPTION A: (i) For nonrandom λi, ‖λi‖ ≤M ; for random λi, E‖λi‖4≤ M;
(ii) N−1

∑N

i=1 λiλ
′
i

p−→ ΣΛ, an r × r positive definite matrix.

ASSUMPTION B: (i) ut ∼ iid(0�Σu), E‖ut‖4 ≤ M ; (ii) var(	Ft) =∑∞
j=0 CjΣuC

′
j > 0; (iii)

∑∞
j=0 j‖Cj‖<M ; and (iv) C(1) has rank r1, 0 ≤ r1 ≤ r.

ASSUMPTION C: (i) For each i, εit ∼ iid(0�σ 2
εi), E|εit|8 ≤ M ,

∑∞
j=0 j|Dij|<M ,

ω2
εi = Di(1)2σ 2

εi > 0; (ii) E(εitεjt) = τij with
∑N

i=1 |τij| ≤ M for all j;
(iii) E|N−1/2

∑N

i=1[εisεit −E(εisεit)]|4 ≤ M , for every (t� s).

ASSUMPTION D: The errors εit , ut , and the loadings λi are three mutually in-
dependent groups.

ASSUMPTION E: E‖F0‖ ≤ M , and for every i = 1� � � � �N , E|ei0| ≤ M .
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Assumption A is made on the factor loadings to ensure that the factor struc-
ture is identifiable. It is a common assumption in factor analysis. A set of
factors Ft is deemed to be pervasive if and only if the corresponding loading
coefficients are such that N−1

∑N

i=1 λiλ
′
i converges to a positive definite matrix

as N → ∞. A variable that has only a finite number of nonzero loadings does
not satisfy this condition and is not a factor in our large N framework. Instead,
its variation will be considered idiosyncratic, and thus included in εit .

Under Assumption B, the short run variance of 	Ft is required to be positive
definite, but the long-run covariance of 	Ft can be reduced rank to permit
linear combinations of I(1) factors to be stationary. When r1 = 0 and there
are no stochastic trends, C(1) is null because 	Ft is overdifferenced. On the
other hand, when r1 �= 0, one can consider a rotation of Ft by a matrix G such
that the first r1 elements of GFt are integrated, while the final r0 elements
are stationary. One such rotation is given by G = [β′

⊥β
′]′, where β⊥ is r × r1

satisfying β′
⊥β⊥ = Ir1 , and β′

⊥β= 0. We define Yt = β′
⊥Ft to be the r1 common

stochastic trends resulting from such a rotation.
Assumption C(i) allows some weak serial correlation in (1 − ρiL)eit with

ρi possibly different across i, while C(ii) and C(iii) allow weak cross-section
correlation. Clearly, C(ii) holds if εit are cross-sectionally uncorrelated. The
assumption obviously holds if there exists an ordering of the cross sections such
that the ordered εit (i = 1�2� � � � �N) is a mixing process.4 But the assumption is
more general. It allows weak cross-correlation in the errors, weak in the sense
that even as N increases, the column sum of the error covariance matrix re-
mains bounded. Chamberlain and Rothschild (1983) defined an approximate
factor model as one in which the largest eigenvalue of Ω is bounded. But if
et is stationary with E(eitejt) = τij , then from matrix theory, the largest eigen-
value of Ω is bounded by maxj

∑N

i=1 |τij|. Since C(ii) requires that
∑N

i=1 |τij| ≤ M
for all j and all N , we have an “approximate factor model” in the sense of
Chamberlain and Rothschild (1983). Under Assumption D, εit , ut , and λi are
mutually independent across i and t. The assumption is stronger than the one
used in Bai and Ng (2002), which permits ut and εit to be weakly correlated.
Assumption E is an initial condition assumption made commonly in unit root
analysis.

Our factor estimates are based on the method of principal components.
When eit is I(0), the principal components estimators for Ft and λi have been
shown to be consistent when all the factors are I(0) and when some or all of
them are I(1). But consistent estimation of the factors when eit is I(1) has not
been considered in the literature. Indeed, when eit has a unit root, a regression
of Xit on Ft is spurious even if Ft was observed, and the estimates of λi and
thus of eit will not be consistent. The validity of PANIC thus hinges on the abil-
ity to obtain estimates of Ft and eit that preserve their orders of integration,

4Such an assumption was made in Connor and Korajzcyk (1986).
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both when eit is I(1) and when it is I(0). A contribution of this paper is to show
how this can be accomplished. Essentially, the trick is to apply the method of
principal components to the first-differenced data.

To be precise, suppose we observe X , a data matrix with T time-series
observations and N cross-section units. Suitably transform X to yield x, a
set of (T − 1) × N stationary variables. Let f = (f2� f3� � � � � fT )

′ and Λ =
(λ1� � � � � λN)

′. The principal component estimator of f , denoted f̂ , is
√
T − 1

times the r eigenvectors corresponding to the first r largest eigenvalues of the
(T − 1)× (T − 1) matrix xx′. Under the normalization f̂ ′f̂ /(T − 1) = Ir , the
estimated loading matrix is Λ̂ = x′f̂ /(T − 1).

Before turning to the details, an overview of the inference procedures gives
an idea of what is to follow. If there is one factor, PANIC will test if it is a
unit root process. If there are multiple factors, PANIC will determine r1, the
number of independent stochastic trends underlying the r common factors. In
addition, PANIC will test if there is a unit root in each of the idiosyncratic
errors. An important aspect of PANIC is that the idiosyncratic errors can be
tested for the presence of a unit root without knowing if the factors are sta-
tionary, and vice versa. In fact, the tests on the factors are asymptotically in-
dependent of the tests on the idiosyncratic errors. In each case, we allow for
the possibility that the differenced stationary series are serially correlated with
(possibly infinite) autoregressive representations. The two univariate tests will
be denoted by ADFê(i) and ADFF̂ respectively, as they are based on the t test
of Said and Dickey (1984) using an augmented autoregression with suitably
chosen lag lengths. In the case when r > 1, we consider two tests. The first
filters the factors under the assumption that they have finite order VAR repre-
sentations. The second corrects for serial correlation of arbitrary form by non-
parametrically estimating the relevant nuisance parameters. Accordingly, the
“filtered” test is denoted by MQf , and the “corrected” test is denoted by MQc .
These are modified versions of the Qf and Qc tests developed in Stock and
Watson (1988).

The definition of x depends on the deterministic trend function. We consider
two specifications, leading to what we will call the intercept only model and the
linear trend model. The superscripts c and τ will be used to distinguish these
two cases. The focus of this section is unit root inference. The properties of the
factor estimates will be deferred to Section 3. The theory proceeds assuming
r is known. We will return to the determination of r in practice in Section 4.

2.2. The Intercept Only Case

The factor model in the intercept only case is

Xit = ci + λ′
iFt + eit �(4)
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Denote

xit = 	Xit� ft = 	Ft� and zit = 	eit�(5)

Then the model in first-differenced form is

xit = λ′
ift + zit �(6)

Applying the method of principal components to x yields r estimated factors f̂t ,
the associated loadings λ̂i, and the estimated residuals, ẑit = xit − λ̂′

if̂t . Define
for t = 2� � � � � T :

êit =
t∑

s=2

ẑit (i = 1� � � � �N)�

F̂t =
t∑

s=2

f̂s� an r × 1 vector.

1. Let ADFc
ê (i) be the t statistic for testing di0 = 0 in the univariate aug-

mented autoregression (with no deterministic terms)

	êit = di0êit−1 + di1	êit−1 + · · · + dip	êit−p + error�

2. If r = 1, let ADFc

F̂
be the t statistic for testing δ0 = 0 in the univariate

augmented autoregression (with an intercept):

	F̂t = c + δ0F̂t−1 + δ1	F̂t−1 + · · · + δp	F̂t−p + error�

3. If r > 1, demean F̂t and define F̂ c
t = F̂t − 
̂

F , where 
̂
F = (T − 1)−1

∑T

t=2 F̂t .
Start with m = r:

A: Let β̂⊥ be the m eigenvectors associated with the m largest eigenvalues
of T−2

∑T

t=2 F̂
c
t F̂

c′
t . Let Ŷ c

t = β̂′
⊥F̂

c
t . Two statistics can be considered:

B.I: Let K(j)= 1 − j/(J + 1), j = 0�1� � � � � J:
(i) Let ξ̂c

t be the residuals from estimating a first-order VAR in Ŷ c
t ,

and let

Σ̂c
1 =

J∑
j=1

K(j)

(
T−1

T∑
t=2

ξ̂c
t−j ξ̂

c′
t

)
�

(ii) Let νcc(m) be the smallest eigenvalue of

Φ̂c
c(m)= �5

[
T∑
t=2

(Ŷ c
t Ŷ

c′
t−1 + Ŷ c

t−1Ŷ
c′
t )− T(Σ̂c

1 + Σ̂c′
1 )

](
T∑
t=2

Ŷ c
t−1Ŷ

c′
t−1

)−1

�
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(iii) Define MQc
c(m)= T [ν̂cc(m)− 1].

B.II: For p fixed that does not depend on N or T :
(i) Estimate a VAR of order p in 	Ŷ c

t to obtain Π̂(L) = Im − Π̂1L −
· · · − Π̂pL

p. Filter Ŷ c
t by Π̂(L) to get ŷc

t = Π̂(L)Ŷ c
t .

(ii) Let ν̂cf (m) be the smallest eigenvalue of

Φ̂c
f (m)= �5

[
T∑
t=2

(ŷc
t ŷ

c′
t−1 + ŷc

t−1ŷ
c′
t )

](
T∑
t=2

ŷc
t−1ŷ

c′
t−1

)−1

�

(iii) Define the statistic MQc
f (m)= T [ν̂cf (m)− 1].

C: If H0 : r1 =m is rejected, set m=m−1 and return to step A. Otherwise,
r̂1 = m and stop.

THEOREM 1 (The Intercept Only Case): Suppose the data are generated
by (2), (3), and (4) and Assumptions A–E hold. Let Wu and Wεi (i = 1� � � � �N)
be standard Brownian motions. The following results hold as N�T → ∞.

1. Let p be the order of autoregression chosen such that p → ∞ and
p3/min[N�T ] → 0. Under the null hypothesis that ρi = 1,

ADFc
ê (i)⇒

∫ 1
0 Wεi(s)dWεi(s)

(
∫ 1

0 Wεi(s)2 ds)1/2
(i = 1� � � � �N)�

2. (r = 1). Let p be the order of autoregression chosen such that p → ∞ and
p3/min[N�T ] → 0. Let W c

u (s)=Wu(s)− ∫ 1
0 Wu(s)ds. Under the null hypothesis

that Ft has a unit root,

ADFc

F̂
⇒

∫ 1
0 W c

u (s)dWu(s)

(
∫ r

0 W
c
u (s)

2 ds)1/2
�

3. (r > 1). Let Wm be an m-vector standard Brownian motion, W c
m = Wm −∫ 1

0 Wm. Let νc∗(m) be the smallest eigenvalue of

Φc
∗ = 1

2
[W c

m(1)W
c
m(1)

′ − Im]
[∫ 1

0
W c

m(s)W
c
m(s)

′ ds
]−1

�

(i) Let J be the truncation lag of the Bartlett kernel, chosen such that J → ∞
and J/min[√N�

√
T ] → 0. Then under the null hypothesis that Ft has m

stochastic trends, T [ν̂cc(m)− 1] d−→ νc∗(m).
(ii) Under the null hypothesis that Ft has m stochastic trends with a fi-

nite VAR(p̄) representation and a VAR(p) is estimated with p ≥ p̄,
T [ν̂cf (m)− 1] d−→ νc∗(m).
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Separately testing Ft and eit allows us to disentangle the source of nonsta-
tionarity. If Ft is nonstationary but eit is stationary, we say the nonstationarity
of Xit is due to a pervasive source. On the other hand, if Ft is stationary but
eit is nonstationary, then the nonstationarity of Xit is due to a series-specific
source. Evidently, if both Ft and eit are nonstationary, both common and idio-
syncratic variations contribute to the integratedness of Xit . Although direct
testing of Ft and eit is not feasible, Theorem 1 shows that testing êit and F̂t are
the same as if eit and Ft were observable.

As shown in the Appendix, T−1/2êit = T−1/2eit +op(1), where the op(1) term
is uniform in t. The asymptotic distribution of ADFc

ê (i) coincides with the DF
test developed by Dickey and Fuller (1979) for the case of no constant. The
critical value of the test at the 5% significance level is −1�95.

When the first-differenced data 	Xit contain no deterministic terms,
T−1/2F̂t = T−1/2HFt + op(1), where H is a full rank matrix and the op(1) term
is uniform in t. This means that the difference between the space spanned by
estimated factors and the true factors is small. Testing for a unit root in de-
meaned F̂t is asymptotically the same as testing for a unit root in demeaned Ft .
When r = 1, this is a simple univariate test. The ADFc

F̂
has the same limit-

ing distribution as the DF test for the constant only case. The 5% asymptotic
critical value is −2�86.

Assuming that the series to be tested is observed, Said and Dickey (1984)
showed that the ADF based upon an augmented autoregression has the same
limiting distribution as the DF if the number of lags is chosen such that
p3/T → 0 as p�T → ∞. In our analysis, the series to be tested are êit and F̂t .
Since these are estimates of eit and Ft , the allowed rate of increase in p
depends on the rate at which the estimation errors vanish, giving the result
p3/min[N�T ] → 0 as stated.

If all factors are I(1), linear combination of the factors will be I(1). If all
factors are I(0), their linear combinations will still be I(0). However, linear
combinations of I(1) and I(0) factors can remain I(1). Since we can only es-
timate the space spanned by the factors, individually testing each of the fac-
tors for the presence of a unit root will, in general, overstate the number of
common trends. Accordingly, we need to determine the number of basis func-
tions spanning the nonstationary space of Ft . Stock and Watson (1988) pro-
posed two statistics, denoted Qf and Qc , designed to test if the real part of
the smallest eigenvalue of an autoregressive coefficient matrix is unity. While
the Qc

f assumes the nonstationary components of Ft to be finite order vector-
autoregressive processes, the Qc

c allows the unit root process to have more
general dynamics, including moving-average errors.

Our proposed MQc
c and MQc

f tests are modified variants of Stock and
Watson’s Qc

c and Qc
f . The basic difference is in the numerator of the tests.

Instead of
∑T

t=1 ŷ
c
t ŷ

c′
t−1 in Qc

f , we use as numerator �5[∑T

t=1(ŷ
c
t ŷ

c′
t−1 + ŷc

t−1ŷ
c′
t )],

which can be thought of as an average of the autocovariance of ŷc
t at lead
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and lag one. Such a numerator was also considered by Phillips and Durlauf
(1986) for testing unit roots in vector time series. In the present context, the
modification serves two purposes. First, the modified numerator is symmet-
ric, and thus the eigenvalues are always real. Second, when r = 1, the identity∑T

t=2 ŷ
c
t−1	ŷ

c
t = �5[(ŷc

T )
2 −∑T

t=2(	ŷ
c
t )

2] holds under the null hypothesis of a unit
root, leading in the limit to Ito’s Lemma,

∫ 1
0 Wc(s)dW (s) = �5[Wc(1)2 − 1]. As

is well known, the numerator of the ADF test can be represented either way.
In the multivariate case, the analogous identity is

∑T

t=2(ŷ
c
t−1	ŷ

c′
t + 	ŷc

t ŷ
c′
t−1) =

ŷc
T ŷ

c′
T − ∑T

t=2 	ŷ
c
t 	ŷ

c′
t , and so, in the limit, the numerators of our MQc tests still

have two equivalent representations. At a more technical level, the modifica-
tions allow us to exploit use of the identity, which substantially simplifies the
proofs.

The limiting distributions of T [Φ̂c
f (m) − Im] and T [Φ̂c

c(m) − Im] are of the
form AΦc

∗A
−1, which has the same eigenvalues as Φc

∗.5 The critical values of
both tests can thus be obtained by simulating Φc

∗, which is based upon a vector
of standard Brownian motions. These are reported in Table I.

Strictly speaking, the MQc
f (m) test is valid only when the common trends

can be represented as finite order AR(p) processes. From a theoretical point
of view, the MQc

c(m) is more general, as it only requires the weakly dependent
errors to satisfy the moment conditions of Assumption B. We can then per-
form kernel estimation of the long-run minus the short-run residual variance
of a VAR(1). Theorem 1, based upon the Bartlett kernel as in Newey and West
(1987), shows that so long as the number of autocovariances, J, does not in-
crease too fast, serial correlation of arbitrary form can be effectively removed
nonparametrically. One can expect the results to generalize to other kernels,
with appropriate restrictions to the truncation point.

TABLE I

CRITICAL VALUES FOR MQc AND MQf FOR TESTING H0 : r1 = m
AT SIGNIFICANCE LEVEL ϕ

MQc
c�f

MQτ
c�f

m \ϕ �01 �05 �10 �01 �05 �10

1 −20�151 −13�730 −11�022 −29�246 −21�313 −17�829
2 −31�621 −23�535 −19�923 −38�619 −31�356 −27�435
3 −41�064 −32�296 −28�399 −50�019 −40�180 −35�685
4 −48�501 −40�442 −36�592 −58�140 −48�421 −44�079
5 −58�383 −48�617 −44�111 −64�729 −55�818 −55�286
6 −66�978 −57�040 −52�312 −74�251 −64�393 −59�555

5Stock and Watson (1988) suggest normalizing the Π(L) estimates so that 	ŷt has unit vari-
ance. This is in fact not necessary.
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In our analysis, r1 is estimated by successive application of the MQ tests.
If the chosen significance level at each stage is ϕ, then P(r̂1 = r1) → 1 − ϕ,
and the overall asymptotic type I error is also ϕ. This property is generic of
successive testing procedures, including Johansen’s trace and eigenvalue tests
for the number of cointegrating vectors.6 The result is a consequence of the
fact that the tests are applied to the same F̂t and thus not independent across
stages.

When an observed series is tested for a unit root using the ADF , it is known
that the statistic diverges at rate

√
T under the alternative of stationarity when

p is chosen to increase with T such that p3/T → 0 as T → ∞.

THEOREM 2: Suppose êit is tested for a unit root using the ADF, the assump-
tions of Theorem 1 hold, and p is chosen such that p → ∞ and p4/min[N�
T ] → 0 as N and T → ∞. Under the alternative of stationarity, the statistic di-
verges at rate min[√N�

√
T ].

Although êit yields asymptotically valid inference about nonstationarity
of eit , the fact that eit is unobserved is not innocuous. As indicated in The-
orem 1, the usual Dickey–Fuller limiting distribution obtains only when
p3/min[N�T ] → 0 as p�N�T → ∞. Theorem 2 shows that for the test to
be consistent, we need p4/min[N�T ] → 0. As shown in the Appendix, the di-
vergence rate is

√
N if T/N → ∞, and is

√
T if T/N is bounded. The overall

rate is thus min[√N�
√
T ]. Essentially, the power of the test is determined by

how fast the error in estimating the factors vanishes, and thus depends on both
N and T . The above rate of divergence also applies to testing F̂t when r = 1.7

2.3. The Linear Trend Case

Consider now the factor model in the case of a linear trend:

Xit = ci +βit + λ′
iFt + eit(7)

and thus 	Xit = βi + λ′
i	Ft + 	eit� Let 	F = (T − 1)−1

∑T

t=2 	Ft , 	ei =
(T − 1)−1

∑T

t=2 	eit , and 	Xi = (T − 1)−1
∑T

t=2 	Xit . PANIC proceeds as fol-
lows for the case of a linear trend. Define

	Xit −	Xi = λ′
i(	Ft −	F)+ (	eit −	ei)�

which can be rewritten as

xit = λ′
ift + zit�(8)

6For a detailed discussion, see Johansen (1995, pp. 169 and 170).
7Stock and Watson showed (in an unpublished appendix) consistency of the Q tests. Even for

observed data, the proof is quite involved. We conjecture a similar result to hold for the MQ tests.
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where

xit = 	Xit −	Xi� ft = 	Ft −	F� zit = 	eit −	ei�(9)

Note that the differenced and demeaned data xit are invariant to ci and βi.
As a consequence, there is no loss of generality to assume E(	Ft)= 0. For ex-
ample, if Ft = a+bt +ηt such that E(	ηt)= 0, then we can rewrite model (7)
with Ft replaced by ηt and ci +βit replaced by ci + λ′

ia+ (βi + λ′
ib)t.

Let f̂t and λ̂i be the estimates obtained by applying the method of principal
components to the differenced and demeaned data, x, with ẑit = xit − λ̂′

if̂t , and
êit = ∑t

s=2 ẑit . Also let F̂t = ∑t

s=2 f̂s, an r × 1 vector.
1. Let ADFτ

ê (i) be the t statistic for testing di0 = 0 in the univariate aug-
mented autoregression (with no deterministic terms)

	êit = di0êit−1 + di1	êit−1 + · · · + dip	êit−p + error�

2. If r = 1, let ADFτ

F̂
be the t statistic for testing δ0 = 0 in the univariate

augmented autoregression (with an intercept and a time trend)

	F̂t = c0 + c1t + δ0F̂t−1 + δ1	F̂t−1 + · · · + δp	F̂t−p + error�

3. If r > 1, let F̂ τ
t be the residuals from a regression of F̂t on a constant and

a time trend. Repeat step (3) for the intercept only case with F̂ τ
t replacing F̂ c

t

to yield Ŷ τ
t and ŷτ

t . Denote the tests by MQτ
f (m), and MQτ

c(m).

THEOREM 3 (The Linear Trend Case): Suppose the data are generated by (2),
(3), and (7), and the assumptions of Theorem 1 hold. Let Wu and Wεi, i =
1� � � � �N be standard Brownian motions. The following hold as N�T → ∞:

1. Let p be the order of autoregression chosen such that p → ∞ and
p3/min[N�T ] → 0. Let Vεi(s) = Wεi(s) − sWεi(1) be a Brownian bridge. Under
the null hypothesis that ρi = 1,

ADFτ
ê (i)⇒ −1

2

(∫ 1

0
Vεi(s)

2 ds

)−1/2

(i = 1� � � � �N)�

2. (r = 1). Let p be the order of autoregression chosen such that p → ∞
and p3/min[N�T ] → 0. Let W τ

u (t) = Wu(t) − ∫ 1
0 (4 − 7s)Wu(s)ds − t

∫ 1
0 (12 −

6s)Wu(s)ds. When r = 1 and under the null hypothesis that Ft has a unit root,

ADFτ

F̂
⇒

∫ 1
0 W τ

u (s)dWu(s)

(
∫ 1

0 W τ
u (s)

2 ds)1/2
�
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3. (r > 1). Let W τ
m be a vector of m-dimensional detrended Brownian motions.

Let ντ∗(m) be the smallest eigenvalue of

Φτ
∗ = 1

2
[W τ

m(1)W
τ
m(1)

′ − Im]
[∫ 1

0
W τ

m(s)W
τ
m(s)

′ ds
]−1

�

(i) Let J be the truncation point of the Bartlett kernel, chosen such that
J/min[√N�

√
T ] → 0 as J�N�T → ∞. Then under the null hypothesis

that Ft has m stochastic trends, MQτ
c(m)

d−→ ντ∗(m).
(ii) Under the null hypothesis that Ft has m stochastic trends with a finite

VAR(p̄) representation, and a VAR(p) is estimated with p ≥ p̄, then

MQτ
f (m)

d−→ ντ∗(m).

The limiting distribution of ADFτ

F̂
coincides with the DF for the case with

a constant and a linear trend. However, as shown in the Appendix, the con-
sequence of having to demean 	Xit is that T−1/2êit converges to a Brownian
bridge instead of a Brownian motion. The limiting distribution of the ADFτ

ê is
not a DF type distribution, but is proportional to the reciprocal of a Brownian
bridge.

There are three important features of PANIC that are worthy of highlight-
ing. First, the tests on the factors can be performed without knowing if the
idiosyncratic errors are stationary or nonstationary. Second, the unit root test
for eit is valid whether ejt� j �= i, is I(1) or I(0), and in any event, such knowl-
edge is not necessary. Third, the test on the idiosyncratic errors do not depend
on whether Ft is I(1) or I(0). In fact, the limiting distributions of ADFc

ê (i) and
ADFτ

ê (i) do not depend on the common factors. This property is useful for
constructing pooled tests.

2.4. Pooled Tests

A common criticism of univariate unit root tests is low power, especially
when T is small. This has generated substantial interest in improving power.
A popular method is to pool information across units, leading to panel unit
root tests. Recent surveys of panel unit root tests can be found in Maddala
and Wu (1999) and Baltagi and Kao (2001). The early test developed in Quah
(1994) imposed substantial homogeneity in the cross-section dimension. Sub-
sequent tests such as that of Levin, Lin, and Chu (2002) and Im, Pesaran, and
Shin (2003) allow for heterogeneous intercepts and slopes, while maintaining
the assumption of independence across units. This assumption is restrictive,
and if violated, can lead to over-rejections of the null hypothesis. Banerjee,
Marcellino, and Osbat (2001) argued against use of panel unit root tests be-
cause of this potential problem. O’Connell (1998) provides a GLS solution
to this problem, but the approach is theoretically valid only when N is fixed.
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When N also tends to infinity, as is the case under consideration, consistent es-
timation of the GLS transformation matrix is not a well defined concept since
the sample cross-section covariance matrix will have rank T when N >T even
when the population covariance matrix is rank N .

If cross-section correlation can be represented by common factors, then The-
orems 1 and 2 show that univariate tests for êit do not depend on Brown-
ian motions driven by the common innovations ut asymptotically. Thus, if
eit is independent across i, tests based upon êit are asymptotically independent
across i. Consider the following:

THEOREM 4: Suppose eit is independent across i and consider testing
H0 :ρi = 1 ∀ i against H1 :ρi < 1 for some i. Let pc

ê(i) and pτ
ê(i) be the p-values

associated with ADFc
ê (i) and ADFτ

ê (i), respectively. Then

Pc
ê = −2

∑N

i=1 logpc
ê(i)− 2N√

4N
d−→ N(0�1)�

Pτ
ê = −2

∑N

i=1 logpτ
ê(i)− 2N√

4N
d−→ N(0�1)�

Under the assumption that eit is independent across i, tests for êit are inde-
pendent across i asymptotically. The p-values are thus independent U[0,1] ran-
dom variables. This implies that minus two times the logarithm of the p-value
is a χ2 random variable with two degrees of freedom. The test −2

∑N

i=1 lnpX(i)
was first proposed in Maddala and Wu (1999) for testing a fixed number of ob-
served series. Choi (2001) extended the analysis to allow N → ∞ by standard-
ization. Pooling on the basis of p-values is widely used in meta analysis. It has
the advantage of allowing for as much heterogeneity across units as possible.
For example, it can be used even when the panel is nonbalanced. Alternatively,
one can also test if the pooled coefficient estimated by regressing êit on êit−1

is statistically different from unity. Such a pooled test would be in the spirit of
Levin, Lin, and Chu (2002).

A pooled test of the idiosyncratic errors can be seen as a panel test of no
cointegration, as the null hypothesis that ρi = 1 for every i holds only if no
stationary combination of Xit can be formed. It differs from other panel coin-
tegration tests in the literature, such as developed in Pedroni (1995), in that our
framework is based on a large N , and the test is applied to êit instead of Xit .
While panel unit root tests for Xit are inappropriate if the data admit a factor
structure, pooling of tests for êit is asymptotically valid under the more plausi-
ble assumption that eit is independent across i. It should be made clear that the
univariate tests proposed in Theorems 1 and 3 permit weak cross-section corre-
lation of the idiosyncratic errors. It is only in developing pooled tests that inde-
pendence of the idiosyncratic errors is assumed. The independence assumption
can, in principle, be relaxed by allowing the number of cross-correlated errors
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to be finite so that as N increases, the p-values are averaged over infinitely
many units that are not cross-correlated.

3. CONSISTENCY OF F̂t

The asymptotic results stated in the previous section require consistent es-
timation of Ft and eit when some, none, or all of these components are I(1).
Bai and Ng (2002) considered estimation of r and showed that the squared de-
viations between the estimated factors and the true factors vanish, while Bai
(2003) derived the asymptotic distributions for the estimated Ft and λi. Both
studies assume the errors are all I(0). However, we need consistent estimates
not just when eit is I(0), but also when it is I(1).

The insight of the present analysis is that, by applying the method of princi-
pal components to the first-differenced data, it is possible to obtain consistent
estimates of Ft and eit , regardless of the dynamic properties of Ft and eit . To
sketch the idea why this is the case, assume βi = 0. The factor model in dif-
ferenced form is 	Xit = λ′

i	Ft + 	eit . Clearly, differencing removes the fixed
effect ci. This is desirable because a consistent estimate of it cannot be ob-
tained when eit is I(1). Now if eit is I(1), 	eit = zit will be I(0). Under Assump-
tion C, zit has weak cross-section and serial correlation. Consistent estimates
of 	Ft can thus be obtained. If eit is I(0), 	eit , although over-differenced, is
still stationary and weakly correlated. Thus, consistent estimation of 	Ft can
once again be shown. We summarize these arguments in the following lemma.

LEMMA 1: Let ft be defined by (5). Consider estimation of (6) by the method
of principal components and suppose Assumptions A–E hold. Then there exists
an H with rank r such that as N�T → ∞,

(a) min{N�T }T−1
∑T

t=2 ‖f̂t −Hft‖2 = Op(1)�
(b) min{√N�T }(f̂t −Hft)=Op(1)� for each given t,
(c) min{√T�N}(λ̂i −H ′−1λi)= Op(1), for each given i.

The results also hold when ft is defined by (9) and (8) is estimated.

As is well known in factor analysis, λi and ft are not directly identifiable.
Therefore, when assessing the properties of the estimates, we can only consider
the difference in the space spanned by f̂t and ft , and likewise between λ̂i and λi.
The matrix H is defined (in the Appendix) such that Hft is the projection of
f̂t on the space spanned by the factors, ft . Result (a) is proved in Bai and Ng
(2002), while (b) and (c) are proved in Bai (2003). It should be remarked that
when eit is I(0), estimation using the data in level form will give a direct and
consistent estimate on Ft . Although these estimates could be more efficient
than the ones based upon first differencing, they are not consistent when eit
is I(1).

In Pesaran and Smith (1995), it was shown that spurious correlations be-
tween two I(1) variables do not arise in cross-section regressions estimated
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with time averaged data under the assumption of strictly exogenous regres-
sors, i.i.d. errors, and T fixed. Phillips and Moon (1999) showed that an average
long-run relation, defined from long-run covariance matrices of a panel of I(1)
variables, can be identified when N and T are both large. Lemma 1 shows that
the individual relations (not just the average) can be consistently estimated un-
der a much wider range of conditions: the regressors are unobserved, they can
be I(1) or I(0), and the individual regressions may or may not be spurious.

Although λi and ft can be consistently estimated, the series we are interested
in testing are F̂t = ∑t

s=2 f̂s and êit = ∑t

s=2 ẑit . Thus, we need to show that given
estimates of ft and zit , F̂t and êit are consistent for Ft and eit , respectively.

LEMMA 2: Under the assumptions of Lemma 1,

max
1≤t≤T

1√
T

∥∥∥∥∥
t∑

s=2

(f̂s −Hfs)

∥∥∥∥∥ =Op(N
−1/2)+Op(T

−3/4)�

The lemma says that the cumulative sum of f̂t is uniformly close to the cumu-
lative sum of ft provided N�T → ∞.8 Because F̂t = ∑t

s=2 f̂s and H
∑t

s=2 ft =
H

∑t

s=2 	Fs =HFt −HF1, Lemma 2 can be stated as

max
1≤t≤T

1√
T

‖F̂t −HFt +HF1‖ =Op(N
−1/2)+Op(T

−3/4)�(10)

Since a location shift does not change the nonstationarity property of a se-

ries, testing the demeaned process F̂t − F̂ is asymptotically the same as testing
H(Ft −F). This result is instrumental in obtaining the limiting distributions of
unit root tests for Ft . It would seem that for testing êit , this result may not be
sufficient since êit also depends on λ̂i. But as shown in the Appendix, we only
require (λ̂i − H ′−1λi) to be op(1) for unit root tests on êit to yield the same
inference as testing eit , and by Lemma 1(c), this holds provided N and T tend
to infinity. Thus, the conditions for valid testing of Ft and eit using F̂t and êit
are the same.

An implication of Lemma 2 is that T−2
∑T

t=2 F̂t F̂
′
t − T−2H(

∑T

t=2 FtF
′
t )H

′
p−→ 0. That is, the sample variation generated by F̂t is the same order as Ft .

If T−2
∑T

t=2 FtF
′
t has r1 nondegenerate eigenvalues, T−2

∑T

t=2 F̂t F̂
′
t also has r1

nondegenerate eigenvalues. Thus if Ft has r1 common trends, F̂t will also have
r1 common trends. This result is instrumental in the development of the MQc

and MQf tests.

8The Op(T
−3/4) can be replaced by Op(logT/T ) if the moment generating function of ft exists

(i.e., if Eeτ‖ft‖ ≤ M for all t and for some τ > 0).
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Uniform convergence of the factor estimates in large panels was proved in
Stock and Watson (2002) under the assumption that N � T 2 and that Ft and
eit are stationary. However, our analysis provides a more general uniform con-
sistency result as a by-product. Upon multiplying (A.2) by

√
T , we have

max
1≤t≤T

‖F̂t −HFt +HF1‖ =Op(T
1/2N−1/2)+Op(T

−1/4)�(11)

As stated in (11), F̂t is uniformly consistent for HFt (up to a shift factor HF1)
provided T/N → 0 as N�T → ∞. This result is quite remarkable in that the
common stochastic trends can be consistently estimated by the method of
principal components, up to a rotation and a shift in level, without knowing
whether Ft or eit is I(0) or I(1). This means that even if each cross-section
equation is a spurious regression, the common stochastic trends are well de-
fined and can be consistently estimated, if they exist. This is not possible within
the framework of traditional time-series analysis, in which N is fixed.

The result that when N and T are large, the space spanned by the com-
mon factors can be consistently estimated under very general conditions is not
merely a strong result of theoretical interest. It is also of practical interest be-
cause it opens the possibility of testing other properties of Ft using F̂t . For
example, ARCH and long memory effects can be assessed, parameter instabil-
ity tests can be devised, and the relative importance of the common and the
idiosyncratic components can be evaluated even when neither is observed. Be-
cause Lemma 2 is potentially useful in contexts other than unit root testing, we
stated it as a primary result. It should be made clear that uniform consistency
is not necessary for PANIC, and thus we do not require T/N → 0, though our
results will hold under these stronger conditions. For PANIC to be valid, only
Lemmas 1 and 2 are necessary.

4. MONTE CARLO SIMULATIONS

We begin by using a model with one factor to show that F̂t constructed as∑t

s=2 f̂t is robust to different stationarity assumptions about eit , where f̂t is es-
timated from first-differenced data. We generate Ft as an independent random
walk of N(0�1) errors with T = 100, and λi is i.i.d. N(1�1). Data are generated
according to Xit = λiFt + eit . We then construct F̂t as discussed in Section 2
for the intercept only model. In practice, a comparison of Ft with F̂t cannot
be made because the former is unobservable. But Ft is known in simulations.
Thus, for the sake of illustration, we compare the fitted values from the regres-
sion Ft = a+ bF̂t + error with Ft . An implication of Lemma 2 is that this fitted
value (which we will continue to call F̂t) should be increasingly close to Ft as N
increases. On the other hand, estimation using the data in levels will not have
this consistency property.
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For the case when eit is I(1), we simulate a random walk driven by i.i.d.
N(0�1) errors for N=20, 50, and 100, respectively. We then estimate the fac-
tors using (i) differenced data, and (ii) the data in level form. Figures 1(b),
(c), and (d) display the true factor process Ft along with F̂t . Evidently, F̂t gets
closer to Ft as N increases if the data are differenced. In fact F̂t is close to
the true process even when N = 20. On the other hand, when the method of
principal components is applied to levels of the same data, all the estimated
series are far from the true series, showing that estimation using the data in
levels is not consistent when eit is I(1). We next assume the idiosyncratic errors
are all I(0) by drawing eit from an i.i.d. N(0�1) distribution. Figure 2 illustrates
that even though the data are over-differenced, the estimates are very precise.
In this case, both the level and differenced methods give almost identical esti-
mates.

We now use simulations to illustrate the finite sample properties of the pro-
posed tests. Throughout, the number of replications is 5000. In theory, r is not
known. We showed in Bai and Ng (2002) that the number of factors in station-
ary data can be consistently determined by information criteria (PCp) if the
penalty on an additional factor is specified as a function of both N and T . In
the present context, we can consistently estimate r from the first-differenced

FIGURE 1.—True and estimated Ft when eit is I(1).
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FIGURE 2.—True and estimated Ft when eit is I(0).

data. In the simulations, the following is used:

r̂ = arg min
k=0�����kmax

IC1(k)� where

IC1(k) = log σ̂ 2(k)+k log
(

NT

N + T

)
N + T

NT
�

where σ̂ 2(k) =N−1T−1
∑N

i=1

∑T

t=1 ẑ
2
it , ẑit are the estimated residuals from prin-

cipal components estimation of the first-differenced data, and kmax = 6. In all
the configurations considered (up to 3 true factors), the criterion always se-
lects r̂ = r.9

4.1. The Case r = 1

We simulate data using Xit = λiFt + eit , with eit = ρeit−1 + εit , and Ft =
αFt−1 + ut , with λi ∼ N(0�1), εit ∼ N(0�1), and ut ∼ N(0�σ 2

F). We consider
three values of σ 2

F with the importance of the common component increasing
in the value of σ 2

F . In the simulations, ρi is the same across i. We also consider

9Using IC2 in Bai and Ng (2002), P(r̂ = r) is sometimes .98. The choice of a penalty that
satisfies the conditions of Bai and Ng (2002) is important.
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fourteen pairs of (ρi�α). When ρi = 1 but α < 1, the errors are nonstationary
but the factors are stationary. When α = 1 but ρi < 1, the factors are unit root
processes but the errors are stationary.

We report results for T = 100, and N = 40� 100 in Table II. The column la-
beled F̂ is the rejection rate of the ADF test applied to the estimated common
factor. The remaining three columns are the average rejection rates, where the
average is taken across N units over 5000 trials. Results for a particular i are

TABLE IIA

REJECTION RATES FOR THE NULL HYPOTHESIS OF A UNIT ROOT, INTERCEPT ONLY, r = 1

σF = √
10 σF = 1 σF = √

�5

ρi α X F̂ ê Pc
X Pc

ê
X F̂ ê Pc

X Pc
ê

X F̂ ê Pc
X Pc

ê

T = 100�N = 40

1�00 �00 .18 �96 .06 �90 �05 .07 .53 .06 �21 �06 .07 .33 .06 �16 �05
1�00 �50 .25 �92 .06 �97 �06 .09 .64 .06 �39 �06 .08 .47 .05 �25 �05
1�00 �80 .23 �57 .05 �91 �05 .10 .47 .06 �54 �06 .08 .40 .06 �36 �05
1�00 �90 .15 �27 .06 �72 �06 .09 .25 .05 �47 �06 .08 .23 .06 �34 �06
1�00 �95 .10 �13 .06 �51 �05 .08 .12 .05 �36 �05 .07 .12 .05 �27 �05
�00 1�00 .11 �07 .44 �42 1�00 .21 .07 .43 �68 1�00 .26 .06 .43 �81 1�00
�50 1�00 .13 �07 .58 �45 1�00 .25 .07 .58 �77 1�00 .32 .06 .58 �88 1�00
�80 1�00 .13 �07 .58 �46 1�00 .22 .07 .58 �75 1�00 .26 .07 .58 �87 1�00
�90 1�00 .09 �07 .43 �41 1�00 .14 .07 .43 �67 1�00 .16 .07 .43 �79 1�00
�95 1�00 .08 �06 .25 �37 1�00 .10 .07 .25 �55 1�00 .10 .06 .25 �63 1�00

1�00 1�00 .07 �07 .06 �32 �06 .07 .07 .06 �26 �06 .07 .07 .05 �23 �05
�50 �80 .68 �59 .67 1�00 1�00 .80 .60 .67 1�00 1�00 .84 .62 .67 1�00 1�00
�80 �50 .82 �96 .64 1�00 1�00 .69 .94 .64 1�00 1�00 .65 .93 .64 1�00 1�00
�00 �90 .35 �28 .57 �91 1�00 .49 .27 .57 �99 1�00 .57 .27 .57 1�00 1�00
�90 �00 .54 1�00 .46 1�00 1�00 .31 .94 .46 1�00 1�00 .28 .85 .46 1�00 1�00

T = 100�N = 100

1�00 �00 .18 �99 .06 �98 �06 .07 .78 .06 �35 �06 .07 .58 .05 �25 �06
1�00 �50 .25 �95 .06 �99 �06 .09 .82 .06 �62 �06 .08 .70 .06 �43 �06
1�00 �80 .23 �59 .06 �95 �06 .10 .53 .05 �75 �05 .08 .48 .06 �58 �05
1�00 �90 .15 �27 .06 �81 �06 .09 .25 .05 �66 �05 .08 .24 .05 �54 �05
1�00 �95 .10 �13 .05 �59 �05 .08 .13 .06 �51 �05 .07 .13 .05 �44 �05
�00 1�00 .11 �06 .44 �46 1�00 .21 .07 .44 �75 1�00 .27 .07 .43 �85 1�00
�50 1�00 .13 �07 .58 �50 1�00 .25 .07 .58 �81 1�00 .32 .07 .58 �92 1�00
�80 1�00 .12 �07 .58 �50 1�00 .22 .07 .58 �81 1�00 .27 .07 .58 �91 1�00
�90 1�00 .09 �06 .43 �47 1�00 .14 .06 .43 �74 1�00 .16 .07 .43 �86 1�00
�95 1�00 .08 �06 .25 �43 1�00 .10 .07 .25 �64 1�00 .10 .06 .25 �74 1�00

1�00 1�00 .07 �07 .06 �37 �05 .07 .07 .06 �35 �06 .07 .06 .06 �33 �06
�50 �80 .68 �59 .67 1�00 1�00 .80 .61 .68 1�00 1�00 .84 .60 .67 1�00 1�00
�80 �50 .82 �96 .64 1�00 1�00 .69 .96 .64 1�00 1�00 .65 .95 .64 1�00 1�00
�00 �90 .35 �27 .57 �93 1�00 .49 .28 .57 1�00 1�00 .57 .26 .57 1�00 1�00
�90 �00 .54 1�00 .46 1�00 1�00 .31 .98 .46 1�00 1�00 .29 .96 .46 1�00 1�00

Note: The data are generated as eit = ρieit−1 + εit and Ft = αFt−1 + ut . Columns under X and ê are reject rates
of the ADF. Pc and Pτ are rejection rates of the pooled tests.
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TABLE IIB

REJECTION RATES FOR THE NULL HYPOTHESIS OF A UNIT ROOT,
LINEAR TREND MODEL, r = 1

σF = √
10 σF = 1 σF = √

�5

ρi α X F̂ ê Pτ
X Pτ

ê
X F̂ ê Pτ

X Pτ
ê

X F̂ ê Pτ
X Pτ

ê

T = 100�N = 40

1�00 �00 .22 .95 .05 �94 �07 .08 .63 .05 �32 �07 .07 .45 �05 �24 �06
1�00 �50 .28 .81 .05 �95 �07 .10 .65 .05 �54 �06 .08 .51 �05 �37 �06
1�00 �80 .21 .38 .05 �82 �06 .11 .35 .05 �61 �06 .09 .32 �05 �47 �06
1�00 �90 .13 .17 .05 �59 �06 .09 .17 .05 �49 �06 .08 .16 �05 �42 �06
1�00 �95 .09 .10 .05 �43 �06 .08 .10 .05 �38 �06 .08 .10 �05 �33 �06
�00 1�00 .12 .07 .35 �45 1�00 .24 .07 .34 �76 1�00 .29 .07 �34 �87 1�00
�50 1�00 .14 .06 .48 �48 1�00 .27 .07 .48 �82 1�00 .33 .07 �48 �93 1�00
�80 1�00 .12 .07 .37 �48 1�00 .19 .07 .36 �79 1�00 .23 .08 �36 �89 1�00
�90 1�00 .09 .07 .20 �42 1�00 .12 .08 .20 �65 1�00 .13 .07 �20 �78 1�00
�95 1�00 .08 .07 .10 �37 �83 .09 .08 .10 �50 �83 .09 .08 �10 �55 �83

1�00 1�00 .07 .07 .05 �34 �06 .07 .08 .05 �31 �06 .07 .07 �05 �28 �07
�50 �80 .49 .39 .53 �97 1�00 .62 .40 .53 1�00 1�00 .67 .42 �53 1�00 1�00
�80 �50 .65 .85 .38 1�00 1�00 .48 .82 .38 1�00 1�00 .45 .79 �38 1�00 1�00
�00 �90 .25 .18 .41 �77 1�00 .39 .18 .41 �97 1�00 .46 .17 �41 �99 1�00
�90 �00 .42 .97 .20 1�00 1�00 .20 .85 .20 1�00 1�00 .19 .71 �20 1�00 1�00

T = 100�N = 100

1�00 �00 .22 .96 .05 �98 �07 .08 .84 .05 �51 �06 .07 .69 �05 �40 �07
1�00 �50 .28 .83 .05 �98 �06 .10 .76 .05 �75 �07 .08 .69 �05 �61 �06
1�00 �80 .21 .39 .05 �88 �06 .11 .37 .05 �79 �06 .09 .36 �05 �70 �07
1�00 �90 .13 .17 .05 �67 �06 .09 .16 .05 �65 �06 .08 .17 �05 �60 �06
1�00 �95 .09 .10 .05 �50 �06 .08 .10 .05 �49 �06 .08 .11 �05 �49 �06
�00 1�00 .13 .07 .35 �49 1�00 .24 .07 .35 �81 1�00 .30 .07 �34 �91 1�00
�50 1�00 .14 .07 .48 �52 1�00 .27 .07 .48 �87 1�00 .34 .07 �48 �96 1�00
�80 1�00 .12 .07 .36 �52 1�00 .19 .07 .36 �83 1�00 .23 .07 �37 �94 1�00
�90 1�00 .09 .08 .20 �47 1�00 .12 .07 .20 �74 1�00 .13 .07 �20 �86 1�00
�95 1�00 .08 .07 .10 �42 �99 .09 .07 .10 �60 �99 .09 .07 �10 �69 �99

1�00 1�00 .07 .07 .05 �40 �06 .07 .07 .05 �41 �06 .07 .07 �05 �41 �06
�50 �80 .49 .40 .53 �98 1�00 .62 .41 .53 1�00 1�00 .67 .41 �53 1�00 1�00
�80 �50 .64 .84 .38 1�00 1�00 .48 .84 .38 1�00 1�00 .45 .82 �38 1�00 1�00
�00 �90 .24 .17 .41 �81 1�00 .38 .18 .41 �99 1�00 .46 .17 �41 1�00 1�00
�90 �00 .42 .97 .20 1�00 1�00 .20 .93 .20 1�00 1�00 .19 .88 �20 1�00 1�00

Note: The data are generated as eit = ρieit−1 + εit and Ft = αFt−1 + ut . Columns under X and ê are reject rates
of the ADF. Pc and Pτ are rejection rates of the pooled tests.

similar. The augmented autoregressions have p = 4[min[N�T ]/100]1/4 lags.
Critical values at the 5% level were used.

The ADF test applied to Xit should have a rejection rate of .05 when α = 1
or ρ = 1. In finite samples, this is true only when ρ = 1 and σF is small. When
σF=10 and α=.5, for example, the ADF test rejects a unit root in Xit with
probability around .25 in the intercept model, and .28 in the linear trend model,
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even though ρ = 1. As noted earlier, testing for a unit root in Xit when it has
components with different degrees of integration is difficult because of the neg-
ative moving average component in 	Xit . Because our procedure separately
tests these components, our tests are also less sensitive to the choice of trunca-
tion lag compared to conventional testing of Xit .

Turning now to F̂t , the rejection rate is close to the nominal size of .05 when
α is 1. At other values of α, the rejection rates are comparable to the power of
other unit root tests that are based on least squares detrending. The ADFê(i)
has similar properties, with rejection rates around 5% when ρi = 1. These re-
sults suggest that the error in estimating Ft is small even when N=40. Indeed,
the results for N = 100 are similar except for small values of α.

Results for the pooled tests are also reported in Tables IIA, B.10 Both
Pc

ê and Pτ
ê correctly reject the null hypothesis when eit is in fact stationary.

When each of the eit is nonstationary, the rejection rates roughly equal the
nominal size of .05. Consider the standard pooled tests for Xit (see column un-
der Pc

X�P
τ
X). When ρ = �5 and α = 1, all N series are nonstationary in view of

the common stochastic trend. The standard pooled test should have a rejection
rate close to .05. However, the rejection rate ranges from .45 to .88 depending
on σF . Consider also (ρi�α) = (1�0). The common factor is i.i.d.; the pooled
test has a rejection rate of .16 when σF is small and deteriorates to .90 when
σF is large. These results are consistent with the findings of O’Connell (1998)
that cross section correlation leads the standard pooled test to over-reject the
null hypothesis.

4.2. r > 1

In cases of multiple factors, we generate the I(1) factors as simple random
walks and the stationary factors as AR(1) processes with coefficient α. We con-
tinue to assume that eit is AR(1) with parameter ρi. The factor loadings are
taken from an N × r matrix of N(0�1) variables. We consider three cases of
σF as in the previous section. As the results in Table III illustrate quite well
the consequence of increasing N from 40 to 100, we simply report results for
N = 40 to conserve space. Although we only present results for r = 3, many
additional configurations were considered and are available on request.

We begin with results for testing Xit and êit . With r = 3, we can vary r1 from 0
to 3 to assess the case of none, one, two, and three common trends. Regardless

10The p-values required to construct the pooled tests are obtained as follows. We first simulate
the asymptotic distributions reported in Theorems 1 and 2 by using partial sums of 500 N(0�1)
errors to approximate the standard Brownian motion in each of the 10,000 replications. A look-up
table is then constructed to map 300 points on the asymptotic distributions to the corresponding
p-values. In particular, 100 points are used to approximate the upper tail, 100 to approximate the
lower tail, and 100 points for the middle part of the asymptotic distributions. The p-values match
Table IV of MacKinnon (1994) very well , whenever they are available. These look-up tables are
available from the authors.
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TABLE IIIA

REJECTION RATES, UNIVARIATE AND POOLED UNIT ROOT TESTS, r = 3, T = 100�N = 40,
INTERCEPT MODEL

σF = √
10 σF = 1 σF = √

�5

r r1 ρi α X ê Pc
X Pc

ê
X ê Pc

X Pc
ê

X ê Pc
X Pc

ê

3 3 �00 – �07 .27 �30 �97 �07 .26 �32 �96 �08 .25 �35 �95
3 3 �50 – �07 .47 �30 1�00 �08 .46 �37 1�00 �10 .46 �47 1�00
3 3 �80 – �07 .54 �32 1�00 �09 .54 �44 1�00 �12 .53 �56 1�00
3 3 �90 – �07 .42 �31 1�00 �08 .42 �42 1�00 �10 .42 �53 1�00
3 3 1�00 – �06 .06 �29 �06 �07 .06 �26 �06 �07 .05 �24 �06
3 0 �00 .00 1�00 .59 1�00 1�00 1�00 .59 1�00 1�00 1�00 .59 1�00 1�00
3 0 �50 .50 �96 .73 1�00 1�00 �96 .72 1�00 1�00 �96 .73 1�00 1�00
3 0 �80 .50 �93 .72 1�00 1�00 �79 .72 1�00 1�00 �74 .73 1�00 1�00
3 0 �00 .50 �96 .59 1�00 1�00 �97 .60 1�00 1�00 �98 .60 1�00 1�00
3 0 �90 .00 �82 .52 1�00 1�00 �40 .52 1�00 1�00 �33 .52 1�00 1�00
3 0 1�00 .00 �39 .06 1�00 �06 �09 .05 �43 �05 �07 .06 �24 �06
3 1 �00 .00 �25 .44 �77 1�00 �29 .43 �85 1�00 �32 .43 �91 1�00
3 1 �50 .50 �30 .62 �83 1�00 �35 .61 �91 1�00 �40 .61 �95 1�00
3 1 �80 .50 �29 .65 �82 1�00 �31 .65 �90 1�00 �33 .65 �94 1�00
3 1 �00 .50 �29 .44 �83 1�00 �33 .44 �89 1�00 �36 .43 �92 1�00
3 1 �90 .00 �21 .48 �70 1�00 �18 .48 �75 1�00 �18 .48 �82 1�00
3 1 1�00 .00 �14 .06 �58 �06 �07 .06 �32 �06 �07 .06 �24 �05
3 2 �00 .00 �09 .34 �38 �99 �11 .33 �46 �99 �13 .32 �56 �98
3 2 �50 .50 �11 .53 �47 1�00 �15 .53 �59 1�00 �18 .53 �70 1�00
3 2 �80 .50 �11 .59 �47 1�00 �15 .59 �63 1�00 �18 .59 �74 1�00
3 2 �00 .50 �11 .34 �46 �99 �13 .34 �54 �99 �15 .33 �60 �98
3 2 �90 .00 �09 .45 �40 1�00 �11 .45 �52 1�00 �12 .44 �63 1�00
3 2 1�00 .00 �08 .05 �36 �06 �07 .05 �28 �05 �07 .06 �24 �06

of the number of common trends, testing Xit remains imprecise frequently.
For example, if r1 = 0 and ρi = 1, there is a unit root in Xit and the ADF test
should reject roughly with probability .05. Instead, the rejection rates are .39
for the intercept model, and .48 for the linear trend model. The rejection rates
for ê mirror the results for r = 1, showing that the behavior of ADFê(i) is
not sensitive to the true number of factors in the data. With one random walk
factor and two stationary AR(1) factors, the ADFê(i) has a rejection rate of .65
when (ρi�α)= (�8� �5). This is almost the same rejection rate as when there was
only one stationary factor.

The simulated critical values of the MQc�τ tests are extremely close to those
reported in Stock and Watson for Qc and Qf . We conjecture that their tests are
also valid in the present context. Indeed, because F̂t consistently estimates the
space spanned by Ft , we conjecture that other tests that assume Ft is observed
remain valid when Ft is estimated using our proposed methodology. To inves-
tigate this and for the sake of comparison, we also consider the trace test of
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TABLE IIIB

REJECTION RATES, UNIVARIATE AND POOLED UNIT ROOT TESTS, r = 3, T = 100�N = 40,
LINEAR TREND MODEL

σF = √
10 σF = 1 σF = √

�5

r r1 ρi α X ê Pτ
X Pτ

ê
X ê Pτ

X Pτ
ê

X ê Pτ
X Pτ

ê

3 3 �00 – .07 .23 �32 �97 .08 .22 �36 �96 .09 .21 �41 �95
3 3 �50 – .07 .40 �33 1�00 .09 .40 �44 1�00 .12 .40 �56 1�00
3 3 �80 – .08 .35 �36 1�00 .10 .35 �50 1�00 .12 .35 �62 1�00
3 3 �90 – .07 .20 �35 1�00 .09 .20 �46 1�00 .10 .20 �56 1�00
3 3 1�00 – .07 .05 �32 �07 .07 .05 �31 �06 .07 .05 �29 �06
3 0 �00 .00 .98 .45 1�00 1�00 .98 .45 1�00 1�00 .98 .45 1�00 1�00
3 0 �50 .50 .86 .56 1�00 1�00 .85 .56 1�00 1�00 .85 .56 1�00 1�00
3 0 �80 .50 .79 .41 1�00 1�00 .60 .41 1�00 1�00 .53 .41 1�00 1�00
3 0 �00 .50 .86 .45 1�00 1�00 .89 .45 1�00 1�00 .90 .45 1�00 1�00
3 0 �90 .00 .71 .21 1�00 1�00 . 28 .21 1�00 1�00 .22 .21 1�00 1�00
3 0 1�00 .00 .48 .05 1�00 �07 .11 .05 �63 �06 .08 .05 �37 �07
3 1 �00 .00 .28 .35 �82 1�00 .32 .35 �91 1�00 .37 .34 �95 1�00
3 1 �50 .50 .31 .50 �86 1�00 .37 .50 �94 1�00 .41 .50 �97 1�00
3 1 �80 .50 .30 .39 �86 1�00 .29 .39 �92 1�00 .30 .39 �96 1�00
3 1 �00 .50 .30 .35 �86 1�00 .35 .35 �93 1�00 .38 .35 �95 1�00
3 1 �90 .00 .21 .21 �74 1�00 .15 .21 �76 1�00 .15 .21 �82 1�00
3 1 1�00 .00 .16 .05 �65 �06 .08 .05 �39 �06 .07 .05 �31 �07
3 2 �00 .00 .10 .28 �43 �99 .13 .27 �52 �99 .16 .27 �64 �99
3 2 �50 .50 .12 .45 �53 1�00 .17 .45 �67 1�00 .21 .44 �79 1�00
3 2 �80 .50 .13 .37 �53 1�00 .16 .37 �71 1�00 .18 .37 �81 1�00
3 2 �00 .50 .12 .28 �51 �99 .15 .28 �59 �99 .18 .27 �69 �98
3 2 �90 .00 .09 .20 �44 1�00 .11 .20 �56 1�00 .12 .20 �65 1�00
3 2 1�00 .00 .09 .05 �40 �06 .07 .05 �33 �07 .07 .05 �30 0�07

Note: The idiosyncratic errors are generated as eit = ρiei�t−1 + εit , εit ∼ N(0�1), ρi identical across i. The r1 non-
stationary factors are generated as 	Ft = ut . The r0 stationary factors are generated as Ft = αFt−1 +ut , ut ∼N(0�1).
Columns under X and ê are reject rates of the ADF. Pc and Pτ are rejection rates of the pooled tests.

Johansen (1988),11 and the information criteria developed by Aznar and Sal-
vador (2002). The trace test uses the residuals from projections of Ŷt and Ŷt−1

on p lags of 	Ŷt . It thus uses a slightly different way of controlling for ser-
ial correlation than the MQf . The information criterion, which we denote by
ASIC, determines r and p simultaneously. Both statistics are designed to test
the number of cointegrating vectors assuming p is finite. In contrast, MQf(m)
is a test for the number of common trends.

In the simulations, we use the Bartlett kernel with J = 4 ceil[min[N�T ]/
100]1/4 for the MQc . For the data generating processes considered, the test
is not very sensitive to the choice of J. However, both Johansen’s trace and our
MQf tests are sensitive to the choice of the order of the VAR. To be precise,

11Results for his maxλ test are similar.



A PANIC ATTACK ON UNIT ROOTS 1151

they lose power when too many lags are selected. A data dependent method
for selecting the VAR order is thus important. Since a by-product of the ASIC
is an estimate of p, we use the same p̂ in both the MQf and the trace test. In
simulations, the results are somewhat better than when the BIC was used to
determine the lag length of the appropriate VARs, and both dominate fixing p
at, say, 4[T/100]1/4.

Table IV reports the probability of selecting the true number of common
stochastic trends. We used the 5% critical values in successive testing. The two
MQ tests have rather similar properties. When all factors are I(1), both tests
select r1 = 3 with probability around .95. When all factors are I(0), the tests
correctly select r1 = 0 with probability one. When some factors are I(1) and
some are I(0), the tests still maintain a very high accuracy rate (over .9).

As discussed earlier, the MQ statistics involve successive testing of a se-
quence of hypotheses, much like the trace and maximal eigenvalue tests for

TABLE IVA

PROBABILITY OF SELECTING THE CORRECT NUMBER OF COMMON
STOCHASTIC TRENDS, T = 100�N = 40, INTERCEPT MODEL

σF = √
10 σF = 1 σF = √

�5

r r1 ρi α MQc
c MQc

f
asic trace MQc

c MQc
f

asic trace MQc
c MQc

f
asic trace

3 3 �00 – �95 �95 �81 �82 �94 �93 �83 �83 �90 �90 �84 �81
3 3 �50 – �96 �96 �82 �83 �95 �95 �81 �83 �93 �94 �83 �82
3 3 �80 – �96 �97 �80 �83 �95 �95 �82 �83 �96 �95 �82 �83
3 3 �90 – �96 �96 �80 �82 �96 �95 �81 �84 �96 �95 �85 �85
3 3 1�00 – �96 �96 �80 �83 �96 �96 �81 �82 �96 �96 �81 �83
3 0 �00 .00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00
3 0 �50 .50 1�00 1�00 �89 1�00 1�00 1�00 �90 1�00 1�00 1�00 �90 1�00
3 0 �80 .50 1�00 1�00 �88 1�00 1�00 1�00 �88 1�00 1�00 1�00 �89 1�00
3 0 �00 .50 1�00 1�00 �89 1�00 1�00 1�00 �91 1�00 1�00 1�00 �93 1�00
3 0 �90 .00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00
3 0 1�00 .00 1�00 1�00 1�00 1�00 �99 �93 �93 �81 �92 �69 �70 �48
3 1 �00 .00 �92 �92 �91 �95 �91 �92 �91 �94 �90 �91 �90 �94
3 1 �50 .50 �92 �92 �79 �95 �91 �90 �79 �94 �91 �90 �79 �94
3 1 �80 .50 �92 �92 �78 �95 �92 �92 �78 �95 �91 �90 �77 �94
3 1 �00 .50 �92 �92 �79 �95 �92 �90 �81 �94 �90 �88 �83 �92
3 1 �90 .00 �92 �92 �91 �95 �92 �92 �92 �95 �91 �91 �91 �94
3 1 1�00 .00 �92 �92 �91 �95 �92 �87 �82 �87 �89 �75 �67 �74
3 2 �00 .00 �91 �90 �92 �91 �89 �89 �92 �90 �87 �87 �91 �89
3 2 �50 .50 �92 �92 �81 �91 �91 �91 �81 �91 �90 �89 �81 �90
3 2 �80 .50 �92 �92 �81 �91 �93 �92 �80 �91 �91 �91 �79 �90
3 2 �00 .50 �93 �93 �81 �91 �90 �89 �82 �90 �87 �85 �83 �87
3 2 �90 .00 �91 �91 �92 �91 �91 �90 �91 �91 �91 �90 �92 �91
3 2 1�00 .00 �92 �91 �92 �90 �92 �89 �88 �90 �91 �87 �83 �88



1152 J. BAI AND S. NG

TABLE IVB

PROBABILITY OF SELECTING THE CORRECT NUMBER OF COMMON
STOCHASTIC TRENDS, T = 100�N = 40, LINEAR TREND MODEL

σF = √
10 σF = 1 σF = √

�5

r r1 ρi α MQc
τ MQτ

f
asic trace MQτ

c MQτ
f

asic trace MQτ
c MQτ

f
asic trace

3 3 �00 – �96 �96 �96 �82 �94 �94 �96 �83 �91 �90 �95 �81
3 3 �50 – �97 �97 �96 �83 �96 �96 �96 �83 �95 �95 �96 �82
3 3 �80 – �97 �97 �97 �83 �97 �97 �97 �83 �97 �96 �96 �83
3 3 �90 – �97 �97 �97 �82 �97 �97 �97 �84 �96 �96 �97 �85
3 3 1�00 – �97 �97 �96 �83 �97 �97 �97 �82 �97 �97 �97 �83
3 0 �00 .00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00
3 0 �50 .50 1�00 1�00 �98 1�00 1�00 1�00 �98 1�00 1�00 1�00 �98 1�00
3 0 �80 .50 1�00 1�00 �97 1�00 1�00 1�00 �97 1�00 1�00 1�00 �97 1�00
3 0 �00 .50 1�00 1�00 �98 1�00 1�00 1�00 �98 1�00 1�00 1�00 �99 1�00
3 0 �90 .00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00
3 0 1�00 .00 1�00 1�00 1�00 1�00 1�00 �99 �99 �81 1�00 �92 �95 �48
3 1 �00 .00 �88 �89 �82 �95 �87 �89 �80 �94 �85 �86 �78 �94
3 1 �50 .50 �90 �90 �70 �95 �88 �88 �70 �94 �88 �88 �69 �94
3 1 �80 .50 �89 �90 �69 �95 �89 �89 �68 �95 �88 �88 �66 �94
3 1 �00 .50 �90 �90 �70 �95 �89 �89 �70 �94 �87 �85 �70 �92
3 1 �90 .00 �89 �90 �82 �95 �89 �89 �81 �95 �89 �89 �79 �94
3 1 1�00 .00 �89 �90 �82 �95 �90 �90 �78 �87 �89 �85 �73 �74
3 2 �00 .00 �88 �88 �94 �91 �85 �85 �93 �90 �82 �82 �91 �89
3 2 �50 .50 �88 �88 �75 �91 �88 �88 �75 �91 �86 �86 �76 �90
3 2 �80 .50 �88 �88 �77 �91 �87 �87 �74 �91 �85 �85 �71 �90
3 2 �00 .50 �89 �89 �77 �91 �86 �86 �78 �90 �83 �82 �78 �87
3 2 �90 .00 �89 �89 �94 �91 �88 �88 �94 �91 �88 �88 �93 �91
3 2 1�00 .00 �89 �89 �94 �90 �89 �88 �92 �90 �88 �86 �88 �88

The data are generated as in note to Table II. MQc and MQf are tests for the number of common trends, r1.
“Trace” is Johansen’s statistic for determining r0, and “asic” is the information criteria that jointly determine p and r0.

the number of cointegrating vectors developed by Johansen (1988). Whether
or not a hypothesis is entertained depends on the outcome of the preceed-
ing hypothesis being tested. As such, if the chosen level of significance is ϕ,
the probability of selecting the true number of common trends converges to
(1 − ϕ) < 1.12 In theory, the ASIC is immune to this problem. Although its
accuracy rate is also very high, in finite examples and at least for the configu-
rations considered, it does not appear to have an obvious advantage over the
MQ tests.

12Consistent rank selection using information criteria was also discussed in Chao and Phillips
(1999).
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5. CONCLUSION

This paper makes use of the observation that if a panel of data has a factor
structure, then testing for the presence of a unit root in the common and the
idiosyncratic terms separately should be more effective than unit root testing
of the observed data. Accordingly, we first consider how the common factors
can be consistently estimated irrespective of the stationarity property of the
idiosyncratic errors. We then show that inference about unit roots is not af-
fected by the fact that the true factors and errors are not observed. Our tests
for the number of common stochastic trends do not depend on whether the
idiosyncratic errors are stationary. Similarly, the test of whether the errors are
stationary does not depend on the presence or absence of common stochastic
trends. An appeal of PANIC is that r1 can be determined without pretesting for
the presence of a unit root in the data. While pooling is inappropriate when
the observed data are cross-correlated, pooling over tests based on the idio-
syncratic components are more likely to be valid. Simulations show that the
proposed tests have good finite sample properties even for panels with only 40
units. In view of the documented problems concerning unit root tests applied
to observed data, the results using PANIC are striking.

The present analysis can be extended in several ways. The common-
idiosyncratic decomposition enables inferential analysis in general. The de-
terministic terms in the factor model are estimated in the present paper by
the method of least squares. As such, the unit root tests are implicitly based on
least squares detrending. But as Elliott, Rothenberg, and Stock (1996) showed,
unit root tests based on GLS detrending are more powerful. The tests devel-
oped in this paper can potentially be improved along this direction. Using the
results in the Appendix, other unit root and cointegration tests of choice can be
developed. Asymptotic analysis can also be developed to analyze time-series
processes with roots local to unity. In theory, the machinery developed in this
paper can also be used to test long memory, ARCH effects, and other time-
series features in the data.
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APPENDIX

By definition, êit = ∑t
s=2 ẑit with êi1 = 0. It follows that 	êit = êit − êit−1 = ẑit � Now

xit = λ′
ift + zit = λ′

iH
−1Hft + zit

and

xit = λ̂′
if̂t + ẑit = λ̂′

if̂t +	êit �
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Subtracting the first equation from the second, we obtain

	êit = zit + λ′
iH

−1Hft − λ̂′
i f̂t(12)

= zit − λ′
iH

−1(f̂t −Hft)− (λ̂i −H−1′λi)
′f̂t

= zit − λ′
iH

−1vt − d′
if̂t �

where vt = f̂t −Hft and di = λ̂i − H−1′λi . These representations hold for both the intercept and
the linear trend case and will be used throughout.

For the intercept model, zit = 	eit . We can rewrite the above as

	êit = 	eit − λ′
iH

−1vt − d′
if̂t �(13)

êit = eit − ei1 − λ′
iH

−1
t∑

s=2

vs − d′
i

t∑
s=2

f̂s(14)

= eit − ei1 − λ′
iH

−1Vt − d′
iF̂t �(15)

with Vt = ∑t
s=2 vs and F̂t = ∑t

s=2 f̂s .
For the linear trend model,

zit = 	eit −	ei = 	eit − eiT − ei1
T − 1

�

We have by (12)

	êit = 	eit −	ei − λ′
iH

−1vt − d′
if̂t �(16)

êit = eit − ei1 − eiT − ei1

T − 1
(t − 1) − λ′

iH
−1

t∑
s=2

vs − di

t∑
s=2

f̂s(17)

= eit − ei1 − eiT − ei1

T − 1
(t − 1) − λ′

iH
−1Vt − diF̂t �(18)

Throughout, we denote CNT = min[√N�
√
T ]. In this notation, Lemma 1(a) gives

1
T

T∑
t=1

‖vt‖2 = Op(C
−2
NT )

and Lemma 1(c) gives

‖di‖2 = Op

(
1

min[T�N2]
)

≤ Op(C
−2
NT )�

A. Proof of Lemma 2

For notational simplicity, we assume there are T + 1 observations (t = 0�1� � � � � T ) for this
lemma. The differenced data have T observations so that x is T ×N . Let VNT be the r×r diagonal
matrix of the first r largest eigenvalues of (NT)−1xx′ in decreasing order. By the definition of
eigenvectors and eigenvalues, we have (NT)−1xx′f̂ = f̂ VNT or (NT)−1xx′f̂ V −1

NT = f̂ . We make
use of an r × r matrix H defined as follows: H = V −1

NT (f̂
′f/T )(Λ′Λ/N). Then the following is a

mathematical identity:

f̂t −Hft = V −1
NT

(
1
T

T∑
s=1

f̂sγN(s� t) + 1
T

T∑
s=1

f̂sζst + 1
T

T∑
s=1

f̂sηst + 1
T

T∑
s=1

f̂syst

)
�(A.1)
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where for zt = (z1t � z2t� � � � � zNt)
′,

ζst = z′
szt

N
− γN(s� t)� ηst = f ′

sΛ
′zt/N� yst = f ′

t Λ
′zs/N�(A.2)

Bai (2003) showed that ‖V −1
NT‖ = Op(1). Using f̂ ′f̂ /T = Ir , together with Assumptions A and B,

‖H‖ = Op(1). To prove Lemma 2, we need additional results:

LEMMA A.1: Under Assumptions A–D, we have:
1. E(zit )= 0, E|zit |8 ≤ M;
2. E(N−1 ∑N

i=1 ziszit)= γN(s� t),
∑T

s=1 |γN(s� t)| ≤ M for all t;
3. E(zitzjt) = φij with

∑N
i=1 |φij | ≤ M for all j;

4. E(max1≤k≤T
1√
NT

‖∑k
t=1

∑N
i=1 λizit‖) ≤ M;

5. E|N−1/2 ∑N
i=1[ziszit −E(ziszit)]|4 ≤ M , for every (t� s);

6. E(max1≤k≤T
1√
NT

|∑k
t=1

∑N
i=1(ziszit −E(ziszit))|)2 ≤ M , for every s.

The proof of this lemma is elementary and thus is omitted. Note that this lemma does not
involve estimated variables.

LEMMA A.2: Under Assumptions A–D, we have for CNT = min[√N�
√
T ]:

(a) T−3/2 sup1≤k≤T ‖∑k
t=1

∑T
s=1 f̂sγN(s� t)‖ = Op(1/(

√
TCNT))+Op(T

−3/4);
(b) T−3/2 sup1≤k≤T ‖∑k

t=1

∑T
s=1 f̂sζst‖ = Op(1/

√
N );

(c) T−3/2 sup1≤k≤T ‖∑k
t=1

∑T
s=1 f̂sηst‖ = Op(1/

√
N );

(d) T−3/2 sup1≤k≤T ‖∑k
t=1

∑T
s=1 f̂syst‖ = Op(1/(

√
NCNT)).

PROOF: Consider part (a). By adding and subtracting terms,

k∑
t=1

T∑
s=1

f̂sγN(s� t) =
T∑
s=1

(f̂s −Hfs)

k∑
t=1

γN(s� t)+H

T∑
s=1

fs

k∑
t=1

γN(s� t)�

Consider the first term:∥∥∥∥∥
T∑
s=1

(f̂s −Hfs)

k∑
t=1

γN(s� t)

∥∥∥∥∥ ≤
(

T∑
s=1

‖f̂s −Hfs‖2

)1/2( T∑
s=1

∣∣∣∣∣
k∑

t=1

γN(s� t)

∣∣∣∣∣
2)1/2

�

By Lemma 1(i), (
∑T

s=1 ‖f̂s − Hfs‖2)1/2 = T 1/2Op(C
−1
NT ). Because |∑k

t=1 γN(s� t)| ≤ M for all
k and s, (

∑T
s=1 |∑k

t=1 γN(s� t)|2)1/2 ≤ M
√
T . Thus T−3/2‖∑T

s=1(f̂s − Hfs)
∑k

t=1 γN(s� t)‖ =
Op((

√
TCNT)

−1). Consider the second term. We use the following fact: Let X1�X2� � � � �XT be an
arbitrary sequence of random variables. If max1≤k≤T E|Xk|α ≤ M (α > 0); then max1≤k≤T |Xk| =
Op(T

1/α). Let ask = ∑k
t=1 γN(s� t); then E‖T−1/2 ∑T

s=1 fsask‖4 ≤ M by Assumption B and
Lemma A.1(2). This implies that with α= 4 and Xk = T−1/2

∑T
s=1 fsask

T−3/2 sup
1≤k≤T

∥∥∥∥∥
T∑
s=1

fsask

∥∥∥∥∥ = Op(T
−3/4)�

proving (a). Consider part (b).

T−3/2
k∑

t=1

T∑
s=1

f̂sζst = T−1
T∑
s=1

(f̂s −Hfs)
1√
T

k∑
t=1

ζst +HT−1
T∑
s=1

fs
1√
T

k∑
t=1

ζst �
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For the first term,∥∥∥∥∥T−1
T∑
s=1

(f̂s −Hfs)
1√
T

k∑
t=1

ζst

∥∥∥∥∥
≤

(
1
T

T∑
s=1

‖f̂s −Hfs‖2

)1/2[
1
T

T∑
s=1

(
1√
T

k∑
t=1

ζst

)2]1/2

�

Furthermore,

1
T

T∑
s=1

(
1√
T

k∑
t=1

ζst

)2

= 1
T

T∑
s=1

[
1√
T

k∑
t=1

(
z′
szt
N

− γN(s� t)

)]2

= 1
T

T∑
s=1

[
1√
T

k∑
t=1

(
z′
szt
N

− E(z′
szt)

N

)]2

= 1
N

1
T

T∑
s=1

[
1√
NT

k∑
t=1

N∑
i=1

(ziszit −E(ziszit))

]2

= Op

(
1
N

)
�

uniformly in k by Lemma A.1(6). Thus the first term is Op((CNT )
−1)Op(N

−1/2). Next,

T−3/2
T∑
s=1

fs

k∑
t=1

ζst = 1

T
√
N

T∑
s=1

fs
1√
TN

k∑
t=1

N∑
i=1

(ziszit −E(ziszit)) = 1√
NT

T∑
s=1

fsφk�s�

where φk�s is implicitly defined in the above expression. Lemma A.1(6) implies that
E(max1≤k≤T |φk�s|) ≤ M . Thus

E

(
max

1≤k≤T
(
√
NT)−1

∥∥∥∥∥
T∑
s=1

fsφk�s

∥∥∥∥∥
)

≤ (
√
NT)−1

T∑
s=1

E
(
‖fs‖ max

1≤k≤T
|φk�s|

)
= O(N−1/2)�

because E(‖fs‖max1≤k≤T |φk�s|) = E‖fs‖ · E(max1≤k≤T |φk�s|) ≤ M1 (M1 < ∞) by the indepen-
dence of fs and the zit ’s. Thus, uniformly in k,

T−3/2
T∑
s=1

f̂s

k∑
t=1

ζst = Op

(
1

CNT

)
·Op

(
1√
N

)
+Op

(
1√
N

)
=Op

(
1√
N

)
�

Consider part (c):

T−3/2
T∑
s=1

k∑
t=1

f̂sηst = T−1
T∑
s=1

(f̂s −Hfs)
1√
T

k∑
t=1

ηst +HT−1
T∑
s=1

fs
1√
T

k∑
t=1

ηst�

But T−1 ∑T
s=1 fsT

−1/2 ∑k
t=1 ηst = (T−1 ∑T

s=1 fsfs
′)(N

√
T )−1 ∑k

t=1

∑N
i=1 λizit = Op(N

−1/2), uni-
formly in k by Lemma A.1(4). Next,∥∥∥∥∥T−1

T∑
s=1

(f̂s −Hfs)
1√
T

k∑
t=1

ηst

∥∥∥∥∥
≤

(
1
T

T∑
s=1

‖f̂s −Hfs‖2

)1/2

·
[

1
T

T∑
s=1

(
1√
T

k∑
t=1

ηst

)2]1/2

�
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The first expression is Op(1/CNT ) by Lemma 1. For the second expression,

T−1
T∑
s=1

(
1√
T

k∑
t=1

ηst

)2

= 1
N

1
T

T∑
s=1

(
f ′
s

1√
TN

k∑
t=1

N∑
i=1

λizit

)2

= Op

(
1
N

)
�

uniformly in k. Thus, (c) is Op(N
−1/2)+Op((

√
NCNT)

−1) =Op(N
−1/2)�

Finally for part (d),

T−3/2
k∑

t=1

T∑
s=1

f̂syst = T−3/2
k∑

t=1

T∑
s=1

f̂sf
′
t Λzs/N

= T−1
T∑
s=1

(f̂sz
′
sΛ/N)

1√
T

k∑
t=1

ft �

It is proved in Bai (2003) that T−1 ∑T
s=1(f̂sz

′
sΛ/N) = Op((

√
NCNT )

−1) (this can also be proved
directly). Assumption B implies that T−1/2

∑k
t=1 ft = Op(1) uniformly in k. Thus (d) is equal to

Op((
√
NCNT)

−1) uniformly in k. The proof of Lemma A.2 is complete. Q.E.D.

From (A.1) and Lemma A.2

max
1≤k≤T

1√
T

∥∥∥∥∥
k∑

t=1

(f̂t −Hft)

∥∥∥∥∥
= Op

(
1√

TCNT

)
+Op

(
1

T 3/4

)
+Op

(
1√
N

)
+Op

(
1√

NCNT

)

= Op

(
1√
N

)
+Op

(
1

T 3/4

)
�

By definition, Vt = ∑t
s=2 vs = ∑t

s=1(f̂s −HFs). Lemma 2 can be stated as

max
2≤t≤T

1√
T

‖Vt‖ = max
2≤t≤T

1√
T

∥∥∥∥∥
t∑

s=2

vs

∥∥∥∥∥ =Op(C
−1
NT )�(A.3)

From ‖Vt‖ = Op(T/N) uniformly in t, we also have

1
T

T∑
t=2

‖Vt‖2 = Op

(
T

N

)
�(A.4)

B. Preliminaries for Theorem 1

LEMMA B.1: For ρi = 1 or |ρi| < 1:
(i) (1/

√
T )êit = (1/

√
T )eit +Op(C

−1
NT ), uniformly in t ∈ [1� T ];

(ii) (1/T 2)
∑T

t=2 ê
2
it = (1/T 2)

∑T
t=2 e

2
it +Op(C

−1
NT );

(iii) (1/T )
∑T

t=2(	êit)
2 = (1/T )

∑T
t=2(	eit)

2 +Op(C
−1
NT );

(iv) (1/T )
∑T

t=2 êit−1	êit = (1/T )
∑T

t=2 eit−1	eit +Op(C
−1
NT ).
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PROOF: (i) From (14),

êit√
T

= eit√
T

− ei1√
T

− λ′
iH

−1

(
1√
T

t∑
s=2

vs

)
− d′

i

1√
T

t∑
s=2

f̂s �

Now ei1/
√
T = Op(T

−1/2) = Op(C
−1
NT ). The third term is Op(C

−1
NT ) by (A.3). By Lemma 1(c),

di = Op(max[T−1/2�N−1]) = Op(C
−1
NT ), and∥∥∥∥∥ 1√

T

t∑
s=2

f̂s

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

T

t∑
s=2

(f̂s −Hfs)

∥∥∥∥∥ +
∥∥∥∥∥ 1√

T

t∑
s=2

fs

∥∥∥∥∥ · ‖H‖

= Op(C
−1
NT )+Op(1) =Op(1)�

Thus the last term is also Op(C
−1
NT ), proving (i). Part (ii) is a direct consequence of (i).

Consider (iii). From (13), 	êit = 	eit − ait , where ait = λ′
iH

−1vt + d′
i	F̂t . Thus,

1
T

T∑
t=2

(	êit)
2 = 1

T

T∑
t=2

(	eit)
2 − 2

T

T∑
t=2

(	eit)ait + 1
T

T∑
t=2

a2
it �

The middle term is Op(C
−1
NT ) by the Cauchy–Schwartz inequality and

∑T
t=2 a

2
it/T =Op(C

−2
NT ). The

latter follows from a2
it ≤ 2‖λ′

iH
−1‖2‖vt‖2 + 2‖di‖2‖f̂t‖2 and

1
T

T∑
t=2

a2
it ≤ 2‖λ′

iH
−1‖2 · 1

T

T∑
t=2

‖vt‖2 + 2‖di‖2 1
T

T∑
t=2

‖f̂t‖2

= Op(1)Op(C
−2
NT )+Op(C

−2
NT )Op(1) =Op(C

−2
NT )

by Lemma 1(a) and
∑T

t=2 ‖f̂t‖2/T = Op(1). This proves (iii).
Consider (iv). From ê2

it = (êit−1 +	êit)
2 = ê2

it−1 + (	êit)
2 + 2êit−1	êit , we have the identity

1
T

T∑
t=2

êit−1	êit = ê2
iT

2T
− ê2

i1

2T
− 1

2T

T∑
t=2

(	êit)
2�

A similar identity holds for T−1 ∑T
t=2 eit−1	eit . Comparing the right-hand side of the two iden-

tities, we have ê2
iT /T − e2

iT /T = Op(C
−1
NT ) by part (i) with t = T , and T−1

∑T
t=2(	êit)

2 −
T−1 ∑T

t=2(	eit)
2 = Op(C

−1
NT ) by part (iii), proving (iv). Q.E.D.

Let F̂ = ∑T
t=2 F̂t/(T − 1) and F = ∑T

t=2 Ft/(T − 1) be the sample means. Let F̂ c
t = F̂t − F̂ be

the demeaned series and we define Fc
t similarly.

LEMMA B.2: Under Assumptions A–E:
(i) (1/

√
T )F̂t = H(1/

√
T )Ft +Op(C

−1
NT ) uniformly in t ∈ [2� T ];

(ii) (1/T 2)
∑T

t=2 F̂t F̂
′
t =H((1/T 2)

∑T
t=2 FtF

′
t )H

′ +Op(C
−1
NT );

(iii) (1/T )
∑T

t=2 	F̂t	F̂
′
t =H((1/T )

∑T
t=2 	Ft	F

′
t )H

′ +Op(C
−1
NT );

(iv) (1/T )
∑T

t=2(F̂t−1	F̂
′
t +	F̂t F̂

′
t−1) = (1/T )H

∑T
t=2(Ft−1	F

′
t +	FtF

′
t−1)H

′ +Op(C
−1
NT );

(v) (1/
√
T )F̂ = (1/

√
T )HF +Op(C

−1
NT );

(vi) (1/
√
T )F̂c = (1/

√
T )HFc +Op(C

−1
NT );

(vii) (1/T 2)
∑T

t=2 F̂
c
t F̂

c′
t = H((1/T 2)

∑T
t=2 F

c
t F

c′
t )H

′ +Op(C
−1
NT );

(viii) (1/T )
∑T

t=2(F̂
c
t−1	F̂

′
t +	F̂t F̂

c′
t−1)= H[(1/T )

∑T
t=2(F

c
t−1	F

′
t +	FtF

c′
t−1)]H ′ +Op(C

−1
NT ).
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PROOF: Because F̂t = ∑t
s=2 f̂s , we have 	F̂t = F̂t − F̂t−1 = f̂t . Thus vt = f̂t −Hft =	F̂t −H	Ft ,

or 	F̂t = H	Ft + vt . The cumulative sum implies

F̂t = HFt −HF1 +
t∑

s=2

vs(B.1)

for t = 2� � � � � T . Define F̂1 = 0. Thus T−1/2F̂t = HT−1/2Ft − HT−1/2F1 + T−1/2 ∑t
s=2 vs� The sec-

ond term on the right-hand side is Op(T
−1/2) and the third term is Op(C

−1
NT ) uniformly in t by

(A.3), proving (i). (ii) is an immediate consequence of (i).
Consider (iii). From 	F̂t = H	Ft + vt , we have

1
T

T∑
t=2

	F̂t	F̂
′
t = H

1
T

T∑
t=2

	Ft	F
′
tH

′ + 1
T
H

T∑
t=2

	Ftv
′
t +

1
T

T∑
t=2

vt	F
′
tH

′ + 1
T

T∑
t=2

vtv
′
t �(B.2)

The conclusion follows from ‖T−1 ∑T
t=2 vtv

′
t‖ ≤ T−1 ∑T

t=2 ‖vt‖2 =Op(C
−2
NT ) and

T−1

∥∥∥∥∥H
T∑
t=2

	Ftv
′
t

∥∥∥∥∥ ≤
(
T−1

T∑
t=2

‖	Ft‖2

)1/2(
T−1

T∑
t=2

‖vt‖2

)1/2

‖H‖

= Op(C
−1
N�T ) ·Op(1)�

For (iv), we use the identity

1
T

[
T∑
t=2

(	F̂t F̂
′
t−1 + F̂t−1	F̂

′
t )

]
= F̂T F̂

′
T

T
− F̂1F̂

′
1

T
− 1

T

T∑
t=2

	F̂t	F̂
′
t

and

1
T

[
T∑
t=2

	FtF
′
t−1 + Ft−1	F

′
t

]
= FTF

′
T

T
− F1F

′
1

T
− 1

T

T∑
t=2

	Ft	F
′
t �

Note that F̂1 = 0 and F1F
′
1/T = Op(T

−1). Part (i) of this lemma when t = T implies that
F̂T F̂

′
T /T =H(FTF

′
T /T )H ′ +Op(C

−1
NT ). These together with part (iii) imply (iv).

Consider (v). Averaging over (B.1), we obtain F̂ = HF −HF1 +∑T
t=2

∑t
s=2 vs/(T − 1). Hence,

1√
T
F̂ = H

1√
T
F −H

F1√
T

+ 1
(T − 1)

T∑
t=2

(
1√
T

t∑
s=2

vs

)
�

The second term on the right is Op(T
−1/2) and the last term is Op(C

−1
NT ) because it is the average

of (T−1/2
∑t

s=2 vs) and thus must be no larger than its maximum, which is Op(C
−1
NT ) by (A.3),

proving (v). The difference of (i) and (v) yields (vi). Result (vii) is an immediate consequence
of (vi).

For (viii), the sum of demeaned series can be expressed as the sum of nondemeaned series
plus extra terms

1
T

T∑
t=2

(F̂c
t 	F̂

′
t +	F̂t F̂

c′
t )(B.3)

= 1
T

T∑
t=2

(F̂t−1	F̂
′
t +	F̂t F̂

′
t )−

(
1√
T
F̂

)(
1√
T
F̂ ′
T

)
−

(
1√
T
F̂T

)(
1√
T
F̂ ′

)
�
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A similar identity holds for the true series Ft . Part (viii) is obtained by comparing the right-hand
sides of the two identities and by invoking parts (iv), (v), and (i). Q.E.D.

Before proving the general case of serially correlated disturbances, we first consider the case
of uncorrelated disturbances. That is, eit = ρieit−1 + εit , with εit being i.i.d. This simple setup still
provides substantial insight.

PROPOSITION 1: If Di(L)= 1, i.e., eit = ρieit−1 + εit , then under the null hypothesis that ρi = 1,

DFc
ê (i) =

∑T
t=2 êit−1	êit

(σ̂2
εi

∑T
t=2 ê

2
it−1)

1/2
⇒

1
2 (Wεi(1)2 − 1)

(
∫ 1

0 W 2
εi dr)

1/2
�(B.4)

where σ̂2
εi =

∑T
t=2(	êit − b̂iêit−1)

2/(T −1) and b̂i is the OLS estimator when regressing 	êit on êit−1.

Proposition 1 is an immediate consequence of the following:

LEMMA B.3: Under the assumptions of Proposition 1 with ρi = 1, then as N�T → ∞:
(i) (1/T 2)

∑T
t=2 ê

2
it ⇒ σ2

εi

∫ 1
0 Wεi(r)

2 dr;
(ii) (1/T )

∑T
t=2 êit−1	êit ⇒ (σ2

εi/2)(Wεi(1)2 − 1)�

These results are implied by Lemma B.1 parts (ii) and (iv) and the corresponding weak conver-
gence of

∑T
t=2 e

2
it/T

2 and
∑T

t=2 eit−1	eit/T . Note that σ̂2
εi → σ2

εi . To see this, σ̂2
εi =

∑T
t=2 	ê

2
it/(T −

1) − 2b̂i

∑T
t=2 	êit êit−1/(T − 1) + b̂2

i

∑T
t=2 ê

2
it/(T − 1). From T b̂i = Op(1), the last two terms are

each op(1), and the first term converges to σ2
εi by Lemma B.1(iii).

Next consider the Dickey–Fuller test based on F̂t with demeaning, when r = 1 (and hence H is
scalar).

PROPOSITION 2: If C(L) = 1, i.e., Ft = Ft−1 + ut , then

DFc

F̂
=

∑T
t=2(F̂t−1 − F̂)	F̂t

(σ̂2
u

∑T
t=2(F̂t−1 − F̂)2)1/2

⇒
∫ 1

0 W c
u (r)dWu(r)

(
∫ 1

0 W c
u (r)

2 dr)1/2
�(B.5)

where F̂ = ∑T
t=2 F̂t/(T − 1), σ̂2

u = ∑T
t=2(	F̂t − âF̂t−1)

2/(T − 1) with â being the OLS estimator
when regressing 	F̂t on F̂t−1, and W c

u (r) = Wu(r) − ∫ 1
0 Wu(r)dr is a demeaned Brownian motion.

The proposition is implied by the following:

LEMMA B.4: If C(L) = 1 , i.e., Ft = Ft−1 + ut , then as N�T → ∞:

(i) (1/T )
∑T

t=2(F̂t−1 − F̂)	F̂t ⇒ H2σ2
u

∫ 1
0 W c

u (r)dWu(r);

(ii) (1/T 2)
∑T

t=2(F̂t−1 − F̂)2 ⇒H2σ2
u

∫ 1
0 W c

u (r)
2 dr�

These results follow from Lemma B.2 parts (viii) and (vii), respectively, and from the known
weak convergence for the series Ft .

C. Testing êit Using the ADF Test, Intercept Only

Under H0 :ρi = 1, 	eit = Di(L)εit is a stationary process and Di(L) is invertible. We can write

	eit =
∞∑
j=1

δij	ei�t−j + εit �
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Let ω2
εi = Di(1)2σ2

εi be the long run variance of 	eit . The functional central limit theorem gives
T−1/2 ∑[Ts]

j=1 	eij ⇒ωεiWεi(s). The regression when eit is observed is

	eit = δi0eit−1 +
p∑

j=1

δij	ei�t−j + εi�tp�(C.1)

εi�tp = εit +
∞∑

j=p+1

δij	ei�t−j�(C.2)

Let Zit = (	ei�t−1� � � � �	ei�t−p)
′ , xit = (ei�t−1Z

′
it )

′, and DT = diag(T−1� T−1/2� � � � � T−1/2)� Let

M̃ip = DT

T∑
t=p

xitx
′
itDT = DT

[ ∑T
t=p e

2
i�t−1

∑T
t=p ei�t−1Z

′
it∑T

t=p ei�t−1Zit

∑T
t=p ZitZ

′
it

]
DT �

Mip =
[∫ 1

0 Wεi(r)
2 dr 0

0 Γiz(p)

]
�

where Γiz(p) = E(ZitZ
′
it ). Consider ADFe(i), the t test on δi0 = 0. Let δ̃i(p) = (δ̃i0� δ̃i1� � � � � δ̃ip)

be the least squares estimates from regressing 	eit on eit−1 and lags of 	eit . Let e = (1�0� � � � �0)
be a selection vector. Note

T(δ̃i0 − δi0) = e′D−1
T [δ̃i(p) − δi(p)]

= e′M−1
ip DT

T∑
t=p

xitεit + e′(M̃−1
ip −M−1

ip

)
DT

T∑
t=p

xtεi�tp

+ e′M−1
ip DT

T∑
t=p

xit (εi�tp − εit)�

Said and Dickey (1984) showed that ‖Mip‖ = Op(1), ‖M−1
ip ‖ = Op(1), DT

∑T
t=p xitεi�tp =

Op(
√
p), p1/2‖M̃−1

ip − M−1
ip ‖ → 0 if p3/T → 0 as p�T → ∞. Since σ̃2

εi = T−1
∑T

t=p ε̃
2
it

p−→ σ2
εi ,

where ε̃it = 	eit − δ̃i(p)
′xit , under the null that δi0 = 0,

ADFe(i) = T δ̃i0√
σ̃2
εi[M̃−1

ip ]11

⇒
∫ 1

0 Wεi(r)dWεi(r)

(
∫ 1

0 Wεi(r)2 dr)1/2
�

We use êit instead of eit for testing, where 	êit and êit are defined in (13) and (15). Define M̂ip ,
δ̂i(p) with êit in place of eit . Then δ̂i(p) are the least squares estimates from regressing 	êit
on êi�t−1 and lags of 	êit . Furthermore, ε̂it = 	êit − δ̂i(p)

′x̂it are the estimated residuals, and
σ̂2
εi = T−1

∑T
t=p ε̂

2
it . The test statistic is

ADFê(i) = T δ̂i0√
σ̂2
εi[M̂−1

ip ]11

�

We will prove ADFê(i) − ADFe(i) = op(1) by showing T(δ̃i0 − δ̂i0) = op(1) and σ̂2
εi[M̂−1

ip ]11 −
σ̃2
εi[M̃−1

ip ]11 = op(1) under the condition p3/min[N�T ] → 0.
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From T δ̂i0 = e′D−1
T δ̂i(p) = e′M̂−1

ip DT

∑T
t=p x̂it	êit and T δ̃i0 = e′M̃−1

ip DT

∑T
t=p xit	eit ,

T(δ̂i0 − δ̃i0) = e′(M̂−1
ip − M̃−1

ip

)
DT

T∑
t=p

x̂it	êit + e′M̃−1
ip DT

T∑
t=p

(x̂it	êit − xit	eit)�

For the first term, Lemma C.1 shows that ‖M̂−1
ip − M̃−1

ip ‖ = Op(p/min[√N�
√
T ]). Thus,∣∣∣∣∣e′(M̂−1

ip − M̃−1
ip

)
DT

T∑
t=p

x̂it	êi�t

∣∣∣∣∣ ≤ ∥∥M̂−1
ip − M̃−1

ip

∥∥ ·
∥∥∥∥∥DT

T∑
t=p

x̂it	êit

∥∥∥∥∥
= Op

(
p

min[√N�
√
T ]

)
·Op(1) · √p

= Op

(
p3/2

min[√N�
√
T ]

)
�

which vanishes if p3/min[N�T ] → 0 as p�N�T → ∞. Next we show the second term is op(1).

e′M̃−1
ip DT

T∑
t=p

(x̂it	êit − xit	eit) = e′(M̃−1
ip −M−1

ip

)
DT

T∑
t=p

(x̂it	êit − xit	eit)

+ e′M−1
ip DT

T∑
t=p

(x̂it	êit − xit	eit)�

The first term is op(1) because p1/2‖M̃−1
ip − M−1

ip ‖ = op(1) and ‖DT

∑T
t=p(x̂it	êit − xit	eit)‖ =

p1/2Op(1). Since

e′Mip =
(
ω2

εi

∫ 1

0
W 2

εi(s)ds�01×p

)
it follows that

e′M−1
ip DT

T∑
t=p

(x̂it	êit − xit	eit) = 1

ω2
εi

∫ 1
0 W 2

εi(s)ds

1
T

T∑
t=p

(êit−1	êit − eit−1	eit)�

But T−1 ∑T
t=p(êit−1	êit − eit−1	eit) = op(1) by Lemma B.1(iv). Thus, T(δ̂i0 − δ̃i0)= op(1)�

Next we show σ̂2
εi[M̂−1

ip ]11 − σ̃2
εi[M̃−1

ip ]11 = op(1). But this follows from σ̂2
εi − σ̃2

εi

p−→ 0, which
is easy to verify, and [M̂−1

ip ]11 − [M̃−1
ip ]11 = op(1) by Lemma C.1(ii). In summary, ADFê(i) −

ADFe(i) = op(1) if p3/2/min[√N�
√
T ] → 0.

LEMMA C.1:

‖M̂ip − M̃ip‖ = Op

(
p

min[√N�
√
T ]

)
;(i)

‖M̂−1
ip − M̃−1

ip ‖ = Op

(
p

min[√N�
√
T ]

)
�(ii)

PROOF OF LEMMA C.1(i): From the definition of M̂ip and M̃ip , we have

M̂ip − M̃ip =
[

T−2 ∑T
t=p(ê

2
i�t−1 − e2

i�t−1) T−3/2 ∑T
t=p(êi�t−1Ẑ

′
it − ei�t−1Z

′
it )

T−3/2 ∑T
t=p(êi�t−1Ẑit − ei�t−1Zit) T−1 ∑T

t=p(Ẑit Ẑ
′
it −ZitZ

′
it )

]
�
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(a) By Lemma B.1(ii), (1/T 2)
∑T

t=p(ê
2
it−1 − e2

it−1) = Op(C
−1
NT ), thus |(1/T 2)

∑T
t=p(ê

2
it−1 −

e2
it−1)|2 = Op(C

−2
NT )�

(b) Consider now the upper off-diagonal block of M̂ip − M̃ip:∥∥∥∥∥T−3/2
T∑

t=p

êit−1Ẑ
′
it − eit−1Z

′
it

∥∥∥∥∥
2

≤
p∑

j=1

∥∥∥∥∥T−3/2
T∑

t=p

êi�t−1	êi�t−j − ei�t−j	ei�t−j

∥∥∥∥∥
2

≤ 2
p∑

j=1

∥∥∥∥∥T−3/2
T∑

t=p

êi�t−1(	êi�t−j −	ei�t−j)

∥∥∥∥∥
2

+ 2
p∑

j=1

∥∥∥∥∥T−3/2
T∑

t=p

(êi�t−1 − ei�t−1)	ei�t−j

∥∥∥∥∥
2

≤ 2
p∑

j=1

1
T 2

T∑
t=p

ê2
i�t−1 · 1

T

T∑
t=p

(	êi�t−j −	ei�t−j)
2

+ 2
p∑

j=1

1
T 2

T∑
t=p

(êi�t−1 − ei�t−1)
2 1
T

T∑
t=p

(	et−j)
2�

Consider first 	̂ei�t−j −	ei�t−j = λ′
iH

−1vt−j − d′
if̂t−j :

1
T

T∑
t=p

(	̂ei�t−j −	ei�t−j)
2 ≤ ‖λiH

−1‖ 1
T

T∑
t=p

‖vt−j‖2 + ‖di‖2 1
T

T∑
t=p

‖f̂t−j‖2

= Op(C
−2
NT )+Op

(
1

min[T�N2]
)

·Op(1) = Op(C
−2
NT )�

Furthermore, from (15), êit = eit +Ait , where Ait = −ei1 − λiH
−1Vt − d′

iF̂t . Note that

1
T 2

T∑
t=1

A2
it ≤ 3e2

i1

T
+ 3

T 2

T∑
t=1

‖Vt‖2 · ‖λiH
−1‖2 + ‖di‖2 1

T 2

T∑
t=1

‖F̂2
t ‖2

= Op

(
1
T

)
+Op

(
1
T

)
Op

(
T

N

)
+Op

(
1

min[N2� T ]
)

·Op(1) =Op(C
−2
NT )�

Thus, (1/T 2)
∑T

t=p(êi�t−1 − ei�t−1)
2 = (1/T 2)

∑T
t=pA

2
it−j ≤ (1/T 2)

∑T
t=1 A

2
it = Op(C

−2
NT ). Putting

everything together,∥∥∥∥∥T−3/2
T∑

t=p

êit−1Ẑ
′
it − eit−1Zit

∥∥∥∥∥
2

= p ·Op(1)Op(C
−2
NT )+pOp(C

−2
NT ) ·Op(1)

= Op(C
−2
NT ) ·p�

(c) Consider the lower diagonal block M̂ip − M̃ip:

1
T

T∑
t=p

(Ẑit Ẑ
′
it −ZitZ

′
it ) = 1

T

T∑
t=p

(Ẑit −Zit)(Ẑit −Zit)
′

+ 1
T

T∑
t=p

(Ẑit −Zit)Z
′
it +

1
T

T∑
t=p

Zit(Ẑit −Zit)
′�
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which is dominated by the two cross-product terms. Now∥∥∥∥∥ 1
T

T∑
t=p

(Ẑit −Zit)Z
′
it

∥∥∥∥∥
2

≤ 1
T

T∑
t=p

‖Zit‖2 · 1
T

T∑
t=p

‖Ẑit −Zit‖2(C.3)

≤
(

p∑
j=1

1
T

T∑
t=p

(	ei�t−j)
2

)(
p∑

j=1

1
T

T∑
t=p

(	êi�t−j −	ei�t−j)
2

)

= p2Op(C
−2
NT )�

Combining parts (a)–(c), ‖M̂ip − M̃ip‖2 = p2Op(C
−2
NT ) or ‖M̂ip − M̃ip‖ = pOp(C

−1
NT )� Q.E.D.

PROOF OF LEMMA C.1(ii): Since

‖M̂−1
ip − M̃−1

ip ‖ = ∥∥M̂−1
ip

(
M̃ip − M̂ip

)
M̃−1

ip

∥∥
≤ [∥∥M̂−1

ip − M̃−1
ip

∥∥ + ∥∥M̃−1
ip

∥∥](∥∥M̃ip − M̂ip

∥∥∥∥M̃−1
ip

∥∥)
�

it follows that

‖M̂−1
ip − M̃−1

ip ‖ ≤ ‖M̃ip − M̂ip‖(‖M̃−1
ip ‖)2

1 − ‖M̃ip − M̂ip‖‖M̃−1
ip ‖ �

Now ‖M̃−1
ip ‖ ≤ ‖M̃−1

ip −M−1
ip ‖ + ‖M−1

ip ‖ = op(1) +Op(1) = Op(1). Using Lemma C.1(i),

‖M̂−1
ip − M̃−1

ip ‖ ≤ Op(1) · ∥∥M̂ip − M̃ip

∥∥ = Op

(
p

min[√N�
√
T ]

)
�

This completes the proof of Theorem 1 Part 1. Q.E.D.

The proof of Theorem 1 Part 2 uses the identical argument as Part 1 and thus is omitted. We
next consider the proof of Part 3.

D. The MQf (m) Test

If Ft has m common trends, then any rotation of Ft by a full rank r × r matrix, H, will also
have m common trends. Thus, there exist β and β⊥ , both r × m, such that β′HFt is stationary,
Yt = β′

⊥HFt is I(1), with β′
⊥β = 0. The test MQf assumes Yt has a finite VAR(p) representa-

tion as in Stock and Watson (1988). The data are filtered to remove serial correlation. Assume
Π(L)	Yt = ηt with ηt i.i.d. zero mean and E(ηtη

′
t ) =Σ0, where Π(L) is a pth order polynomial

in the lag operator. Then yt = Π(L)β′
⊥HFt is an m-vector random walks since 	yt = ηt . Define

Φf (m)= 1
2

T∑
t=1

(yty
′
t−1 + yt−1y

′
t )

(
T∑
t=1

yt−1y
′
t−1

)−1

�(D.1)

Since
∑T

t=1(	yty
′
t−1 + yt−1	y

′
t )= yT y

′
T − ∑T

t=1 	yt	y
′
t , it follows that

T
(
Φf (m)− Im

) ⇒ 1
2
[Σ1/2

0 Wm(1)Wm(1)′Σ1/2
0 −Σ0]

[
Σ

1/2
0

∫ 1

0
Wm(s)Wm(s)

′ dsΣ1/2
0

]−1

�
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The eigenvalues of the right-hand side are the same as those of (matrix A has the same eigenval-
ues as BAB−1)

Φ∗ = 1
2
[Wm(1)Wm(1)′ − Im]

[∫ 1

0
Wm(s)Wm(s)

′ ds
]−1

�(D.2)

Let ν∗ and νf be the eigenvalues of Φ∗ and Φf (m), respectively, with ν∗(j) and νf (j) being the jth

ordered (from largest to smallest) element. Then MQf (m) = T · (νf (m) − 1)
d−→ ν∗(m) under

the null of m unit roots and the statistic diverges to −∞ under the alternative of m−1 unit roots,
as in the Qf of Stock and Watson (1988).

Even if Ft was observed, the MQf (m) is still not feasible because β⊥ and Π(L) are not ob-
served. Suppose (i) β̃⊥ consistently estimates the space spanned by β⊥ , i.e., β̃⊥

p−→ β⊥C ′
1 for

some m ×m matrix C1; and (ii) Π̃(L) is an estimate of Π(L) satisfying Π̃(L)
p−→ C1Π(L)C−1

1 .
By the result of Stock and Watson (1988), if Ỹt = β̃′

⊥HFt and ỹt = Π̃(L)Ỹt , then with Ċ1 =
(C1Σ0C

′
1)

1/2 ,

T
(
Φ̃f (m)− Im

) ⇒ Ċ1Φ∗Ċ−1
1 �

where Φ̃f (m) is as defined in (D.1) with yt replaced by ỹt . Because Φ∗ and Ċ1Φ∗Ċ−1
1 have the

same eigenvalues, the limiting distribution of T [ν̃f (m) − 1] is equal to ν∗(m). The test is also
valid for an intercept and/or a linear trend, with the obvious replacement of the vector Brown-
ian motion by its demeaned and detrended counterpart. In Stock and Watson’s implementation,
β̃⊥ is the matrix of eigenvectors associated with the largest m eigenvalues of T−2H

∑T
t=1 FtF

′
tH

′.
Stock and Watson (1988) and Harris (1997) proved that the method of principal components con-
sistently estimates the space spanned by β⊥ , i.e., β̃⊥

p−→ β⊥C ′
1 for some C1. Furthermore, Π̃(L)

obtained by regressing 	Ỹt on lags of 	Ỹt consistently estimates Π(L) as proved by Stock and
Watson (1988).

Since Ft is not observed in our setting, our proposed test is based upon ŷt = Π̂(L)Ŷt , where
Ŷt = β̂′

⊥F̂t . We need to show that (a) β̂⊥ obtained by applying the method of principal compo-
nents to F̂t satisfies β̂⊥

p−→ β⊥C ′ for some matrix C ; (b) Π̂(L) obtained from regressing 	Ŷt on
its lags is such that Π̂(L)

p−→ CΠ(L)C−1 ; (c) ȳt = Π̂(L)β̂′
⊥HFt , and T(Φ̄f (m)−Im) →CΦ∗C−1;

and (d) T(Φ̂f (m)− Φ̄f (m)) = op(1) so that T(Φ̂f (m)− Im)→ ĊΦ∗Ċ−1, where Ċ = (CΣ0C
′)1/2 ,

and Φ̂f (m) and Φ̄f (m) are defined as in (D.1) but with yt replaced by ŷt and ȳt , respectively.
We begin with (a). Lemma B.2(ii) and continuity of the eigenvector space imply β̂⊥ −

β̃⊥C ′
2

p−→ 0 for some invertible C2. But β̃⊥
p−→β⊥C ′

1. Let C =C2C1; then

β̂⊥
p−→β⊥C ′

1C
′
2 = β⊥C ′�

To show (b), note first that by definition, Ŷt = β̂′
⊥F̂t , Yt = β′

⊥HFt , and F̂t = HFt − HF1 + Vt .
Thus,

Ŷt = β̂′
⊥HFt − β̂′

⊥HF1 + β̂′
⊥Vt = CYt + (β̂′

⊥ −Cβ′
⊥)HFt − β̂′

⊥HF1 + β̂′
⊥Vt�

	Ŷt = C	Yt + (β̂′
⊥ −Cβ′

⊥)H	Ft + β̂′
⊥vt �

From β̂⊥ − β⊥C ′ p−→ 0 and ‖vt‖ = op(1) by Lemma 1(b) we have 	Ỹt = C	Yt + op(1). If
Π(L)	Yt = error, then estimation of a VAR in 	Ŷt yields Π̂(L), with Π̂(L)	Ŷt = error. Since
	Ŷt = C	Yt + op(1), Π̂(L)

p−→CΠ(L)C−1.
For (c), let ȳt = Π̂(L)β̂′

⊥HFt , and Φ̄f (m) = (
∑T

t=2[ȳt ȳ ′
t−1 + ȳt−1ȳ

′
t])(

∑T
t=2 ȳt−1ȳ

′
t−1)

−1. Then by

the argument of Stock and Watson (1988), T(Φ̄f (m)−Im)⇒ ĊΦ∗Ċ−1 and thus T(ν̄f (m)−1)
p−→

ν∗(m).
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For (d), now ŷt = Π̂(L)β̂′
⊥F̂t , we will show T [Φ̂f (m)−Φ̄f (m)] = op(1). Lemma B.2(ii) implies

(1/T 2)
∑T

t=2 ŷt ŷ
′
t = (1/T 2)

∑T
t=2 ȳt ȳ

′
t + op(1). It is sufficient to consider the numerator of Φ̂f (m)

and Φ̄f (m). Since Π̂(L)= Π̂0 + Π̂1L+ · · · + Π̂pL
p, the numerator of T(Φ̂f (m)− I) is equal to

1
T

T∑
t=2

[	ŷt ŷ ′
t−1 + ŷt−1	ŷ

′
t ] =

p∑
j=0

p∑
k=0

Π̂jβ̂
′
⊥

[
1
T

T∑
t=2

	F̂t−j F̂
′
t−1−k + F̂t−1−j 	̂F

′
t−k

]
β̂⊥Π̂ ′

k�

and the numerator of T(Φ̄f (m)− I) is

1
T

T∑
t=2

[	ȳt ȳ ′
t−1 + ȳt−1	ȳ

′
t ]

=
p∑

j=0

p∑
k=0

Π̂jβ̂
′
⊥H

[
1
T

T∑
t=2

	Ft−jF
′
t−1−k + Ft−1−j	F

′
t−k

]
H ′β̂⊥Π̂ ′

k�

Lemma D.1 implies that the difference of the two numerators is op(1). Thus, T(Φ̂f (m) −
Φ̄f (m)) = op(1). Combining (a)–(d), we have T(ν̂f (m)− ν̄f (m)) = op(1), or T(ν̂f (m)− 1) d−→
ν∗(m).

LEMMA D.1: For all j� k≥ 0 and j� k≤ p, as N�T → ∞,

T−1
T∑
t=2

(	F̂t−j F̂
′
t−1−k + F̂t−1−j	F̂

′
t−k)

−T−1H

T∑
t=2

(	Ft−jF
′
t−1−k +Ft−1−j	F

′
t−k)H

′ p−→ 0�

PROOF: When j = k = 0, the lemma is implied by Lemma B.2(iv). For all fixed j� k, by
adding and subtracting terms, the above can be turned into the case of j = k = 0 plus terms
that are op(1). For example, when j = 1 and k = 0,

1
T

T∑
t=2

(	F̂t−1F̂
′
t−1 + F̂t−2	F̂

′
t )

= 1
T

T∑
t=2

(	F̂t−1F̂
′
t−2 + F̂t−1	F̂

′
t )+ 1

T

T∑
t=2

	F̂t−1	F̂
′
t−1 − 1

T

T∑
t=2

	F̂t−1	F̂
′
t

= 1
T

T∑
t=2

(	F̂t F̂
′
t−1 + F̂t−1	F̂

′
t )−

(
	F̂T F̂T−1

T

)

+ 1
T

T∑
t=2

	F̂t−1	F̂
′
t−1 − 1

T

T∑
t=2

	F̂t−1	F̂
′
t �

A similar identify holds for (1/T )
∑T

t=2(	Ft−1F
′
t−1 + Ft−2	F

′
t )� The first term on the right-hand

side above corresponds to the case of j = k = 0. The remaining terms, after subtracting the cor-
responding terms from H(1/T )

∑T
t=2[	Ft−1Ft−1 + Ft−2	Ft−1]H ′, are each op(1). Q.E.D.
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REMARK 1: The validity of the MQf test using F̂t relies on the closeness of F̂t to HFt .
Lemma B.2 shows that F̂ c

t is close to HFc
t (demeaned series), and Lemma G.3 shows that F̂τ

t is
close to HFτ

t (detrended series). Using analogous arguments, the MQf test is also valid for de-
meaned and detrended F̂t , with the obvious replacement of Wm by W c

m or W τ
m . Details are omitted.

E. The MQc(m) Test

By definition, Ŷt = β̂′
⊥F̂t , where β̂⊥ are eigenvectors corresponding to the m largest eigenvalue

of T−2 ∑T
t=2 F̂t F̂

′
t . Also recall

Ŷt = CYt + (β̂⊥ −β⊥C)′HFt − β̂′
⊥HF1 + β̂′

⊥Vt�

	Ŷt = C	Yt + (β̂⊥ −β⊥C)′Hft + β̂′
⊥vt�

Let ξt = 	Yt ; then ξt is a linear process of the i.i.d. sequence of ut . Let Ω denote the long-run
variance of ξt . It is given by Ω = Ω0 +Ω1 +Ω′

1, where Ω0 = Eξtξ
′
t and Ω1 = ∑∞

j=1 E(ξ0ξ
′
j). Then

under the null hypothesis that Yt has m unit roots,

T∑
t=2

Yt−1Y
′
t−1/T

2 d−→Ω1/2
∫ 1

0
Wm(r)Wm(r)

′ drΩ1/2�

denoted by Ξ. In addition,

1
2

T∑
t=2

(Yt−1	Y
′
t +	Y ′

t Yt−1)/T
d−→ 1

2
[Ω1/2Wm(1)Wm(1)′Ω1/2 −Ω0]�

denoted by Υ . Since Ω0 �=Ω for serially correlated ξt , the eigenvalues of ΥΞ−1 are not invariant
to the nuisance parameter Ω. However, if Ω1 +Ω′

1 is subtracted from the expression, so that

1
2
T−1

T∑
t=2

(Yt−1	Y
′
t +	Y ′

t Yt−1 −Ω1 −Ω′
1)⇒ 1

2
[Ω1/2Wm(1)Wm(1)′Ω1/2 −Ω] = Υ1�

say, then the eigenvalues of Υ1Ξ
−1 do not depend on Ω and are the same as those of Φ∗ defined

in (D.2).
Because we do not observe 	Yt , but 	Ŷt , which is an estimate of C	Yt = Cξt . The

long-run variance of Cξt is Σ = CΩC ′. Let Σ0 = CΩ0C
′ and Σ1 = CΩ1C

′. Lemma B.2 (ii)

implies
∑T

t=2 Ŷt Ŷ
′
t /T

2 d−→ Σ1/2
∫
Wm(r)Wm(r)

′ dr Σ1/2 = Ξ†, say, and Lemma B.2(iv) implies
1
2T

−1 ∑T
t=2(Ŷt−1	Ŷ

′
t + 	Ŷ ′

t Ŷt−1) ⇒ 1
2 [Σ1/2Wm(1)Wm(1)′Σ1/2 − Σ0] = Υ †, say. Again the eigen-

values of Υ †Ξ†−1 depend on nuisance parameters. Let Σ̂1 be a consistent estimator of Σ1. Then

1
2

1
T

T∑
t=2

(Ŷt−1	Ŷ
′
t +	Ŷ ′

t Ŷt−1 − Σ̂1 − Σ̂′
1)⇒ 1

2
[Σ1/2Wm(1)Wm(1)′Σ1/2 −Σ]�

Denote the limit by Υ †
1 ; then Υ †

1 Ξ
†−1 have the same eigenvalues as Φ∗.

The objective is to show that Σ1 is consistently estimable. Or equivalently, Σ = CΩC ′ is con-
sistently estimable. Consider the regression of Ŷt on Ŷt−1, and let B̂ be the estimated coefficient
matrix. Note that T(B̂− I) = Op(1). From ξ̂t = Ŷt − B̂Ŷt−1 = 	Ŷt + (I − B̂)Ŷt−1, we have

ξ̂t =Cξt + (β̂⊥ −β⊥C)′Hft + β̂′
⊥vt + (I − B̂)Ŷt−1�

where 	Yt = ξt . Letting wt = β̂′
⊥vt + (I − B̂)Ŷt−1, we have

ξ̂t =Cξt + (β̂⊥ −β⊥C)′Hft +wt�(E.1)
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For arbitrary time series at and bt , define Γ̃ab(j) = T−1
∑T−j

t=1 atb
′
t+j and let

M̃ab = Γ̃ab(0) +
J∑

j=1

K(j)[Γ̃ab(j)+ Γ̃ab(j)
′]�

We next show M̃ξ̂ ξ̂ is consistent for Σ =CΩC ′. By (E.1)

M̃ξ̂ξ̂ −CM̃ξξC
′ = CM̃ξfH

′(β̂⊥ −β⊥C)+ (β̂⊥ −β⊥C)′HM̃fξC
′

+ (β̂⊥ −β⊥C)′HM̃ffH
′(β̂⊥ −β⊥C)+CM̃ξw + M̃wξC

′

+ (β̂⊥ −β⊥C)′HM̃fw + M̃wfH
′(β̂⊥ −β⊥C)+ M̃ww�

From β̂⊥ − β⊥C
p−→ 0, M̃ξf = Op(1), and M̃ff = Op(1), the first three terms converge to zero.

We now show that M̃ξw

p−→ 0, M̃fw

p−→ 0, and M̃ww

p−→ 0 if J/min[√T�
√
N ] → 0. We have

‖M̃ξw‖ ≤
J∑

j=0

|K(j)|
[(

1
T

T−j∑
t=1

‖ξt‖2

)1/2(
1
T

T−j∑
t=1

‖w‖2
t+j

)1/2

+
(

1
T

T−j∑
t=1

‖ξt+j‖2

)1/2(
1
T

T−j∑
t=1

‖wt‖2

)1/2]
�

From wt = β̂′
⊥vt + (I −B)Ŷt−1, we have ‖wt‖2 ≤ 2‖β̂⊥‖2 · ‖vt‖2 + 2‖I − B̂‖2 · ‖Ŷt−1‖2, and

1
T

T∑
t=1

‖wt‖2 ≤ 2‖β̂⊥‖2 · 1
T

T∑
t=1

‖vt‖2 + 2Op(T
−2) · 1

T

T∑
t=1

‖Ŷt−1‖2

= Op(C
−2
NT )+Op

(
1
T

)
· 1
T 2

T∑
t=1

‖Ŷt−1‖2

= Op(C
−2
NT )+Op

(
1
T

)
= Op(C

−2
NT )�

Thus, using (1/T )
∑T

t=1 ‖ξt‖2 =Op(1),

‖M̃ξw‖ ≤ (J + 1) ·
[
Op(1)

(
1
T

T∑
t=1

‖ξt‖2

)1/2

+Op(1)

(
1
T

T∑
t=1

‖ξt‖2

)1/2]
·Op(C

−1
NT )

= (J + 1) ·Op(C
−1
NT )�

which converges to zero if J/min[√N�
√
T ] → 0. Similarly, ‖M̃fw‖ ≤ (J + 1)Op(C

−1
NT )

p−→ 0.
Next

‖M̃ww‖ ≤
J∑

j=0

|K(j)|
[

2

(
1
T

T−j∑
t=1

‖wt‖2

)1/2

·
(

1
T

T−j∑
t=1

‖wt+j‖2

)1/2]

≤ (J + 1) ·Op(C
−2
NT )

p−→ 0�

The above analysis shows M̃ξ̂ξ̂ − CM̃ξξC
′ = op(1). Since M̃ξξ

p−→ Ω by Newey and West (1987),

we have M̃ξ̂ ξ̂

p−→CΩC ′ = Σ.
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F. Proof of Theorem 2, Consistency

PROOF OF THEOREM 2: Consider the regression in (C.1): 	eit = δi0ei�t−1 + ∑p
j=1 δij	ei�t−j +

εi�tp. Under the alternative hypothesis, δi0 < 0. Let ei = (eip+1� � � � � eiT )
′, ei−1 = (eip� � � � � eiT−1)

′�
� � � � ei−p−1 = (ei0� ei1� � � � � eiT−p−1)

′. Let 	ei = ei − ei−1� � � � �	ei−p = ei−p − ei−p−1 . Finally let Zi =
(	ei−1 � � � � �	ei−p) and Mi�z = I −Zi(Z

′
iZ)−1Z′

i . Define M̂i�z� êi−1 , and 	êi analogously, with êit in
place of eit . The least squares estimator of δi0 is δ̃i0 = (ei−1Mi�zei−1)

−1(ei−1Mi�z	ei). Let δ̂i0 be the
counterpart using êit . Then

δ̂i0 = ê′
i−1
M̂i�z	êi

ê′
i−1
M̂i�zêi−1

= δ̃i0
1
T
[e′

i−1
Mi�zei−1 ] + 1

T
[ê′

i−1
M̂i�z	êi − e′

i−1
Mi�z	ei]

1
T
ê′
i−1

M̂i�zêi−1

(F.1)

= δ̃i0(
1
T
e′
i−1
Mi�zei−1)+ op(1)

1
T
ê′
i−1

M̂i�zêi−1

�(F.2)

where the first equality follows from (ei−1Mi�z	ei) = δ̃i0(e
′
i−1
Mi�zei−1) and the second equality fol-

lows from Lemma F.2. Now [e′
i−1
Mi�zei−1/T ] converges to a positive constant, and δ̃i0

p−→ δi0 < 0
under the alternative. So the numerator converges to a negative number. The objective here is to
show that the ADF diverges under the alternative. The ADF is

ADFê(i) = δ̂i0

(σ̂2
εi(ê

′
i−1
Mi�zêi−1)

−1)1/2
�

where σ̂εi is the sum of squared residuals divided by T − p. We simply note that σ̂2
εi is bounded

because σ̂2
εi ≤ (1/(T −p))

∑T
t=p+1 	e

2
it =Op(1). Now

T δ̂i0 = T(δ̃i0[ 1
T
ê′
i−1
Mi�zêi−1 ] + op(1))

1
T
ê′
i−1
M̂i�zêi−1

�

ADFê(i) =
√
T(δ̃i0[ 1

T
e′
i−1

Mi�zei−1 ] + op(1))

(σ̂2
εi(

1
T
ê′
i−1

Mi�zêi−1))
1/2

�

Consider two cases:
(a) If T/N is bounded, then ê′

i−1
Mi�zêi−1/T = Op(1) by Lemma F.1, so T δ̂i0 = Op(T ) → −∞

and ADFê(i) = Op(
√
T ) → −∞.

(b) If T/N → ∞, then by Lemma F.1

T δ̂i0 ≤ N(δ̃i0[ 1
T
e′
i−1
Mi�zei−1 ] + op(1))

Op(
N
T
)+Op(1)

=Nδ̃i0 ·Op(1) = Op(N) → −∞�

Similarly, ADFê(i) =Op(
√
N ) → −∞.

In summary, ADFê(i) =Op(min[√N�
√
T ]) under the alternative |ρi| < 1. Q.E.D.

LEMMA F.1: (1/T )ê′
i−1
Mi�zêi−1 ≤ Op(1)+Op(T/N).
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PROOF: Note ê′
i−1
M̂i�zêi−1 ≤ ê′

i−1
êi−1 . By (15), êi−1 = ei−1 − ιei1 − V H ′−1λi − F̂di, where ι =

(1�1� � � � �1)′, V = (Vp� Vp+1� � � � � VT−1)
′, and F̂ = (F̂p� � � � � F̂T−1)

′. Thus,

ê′
i−1
êi−1 ≤ 4

[
e′
i−1
ei−1 + Te2

i1 + λ′
iH

−1V ′V H−1′λi + d′
iF̂

′F̂di

]
�

1
T
ê′
i−1
êi−1 ≤ 4

1
T
e′
i−1

ei−1 + 4e2
i1 + 4‖λiH

−1‖2 1
T

T∑
t=1

‖Vt‖2 + 4‖di‖2 1
T

T∑
t=1

‖F̂t‖2�

Now e′
i−1
ei−1/T = Op(1) and

∑T
t=1 ‖Vt‖2/T = Op(T/N); see (A.4). Since ‖di‖2 = Op(1/min[T�

N2]) and
∑T

t=1 ‖Ft‖2/T ≤ Op(T ), ‖di‖2
∑T

t=1 ‖F̂t‖2/T ≤ Op(T/min[T�N2]) ≤ Op(1) +
Op(T/N

2). Q.E.D.

LEMMA F.2: (1/T )ê′
i−1

M̂i�z	êi − 1
T
e′
i−1
Mi�z	ei = Op(p

2/(min [√N�
√
T ])).

PROOF: (1/T )ê′
i−1
M̂i�z	êi = (1/T )ê′

i−1
	êi − (1/T )ê′

i−1
Ẑi(Ẑ

′
iẐi/T )−1Ẑ′

i	êi/T . Similarly,
(1/T )e′

i−1
Mi�z	ei = (1/T )e′

i−1
	ei − (1/T )e′

i−1
Zi(Z

′
iZi/T )−1Z′

i	ei/T . By Lemma B.1(iv)
(1/T )ê′

i−1
	êi − (1/T )e′

i−1
	ei = Op(C

−1
NT ). Thus, it suffices to show

1
T
ê′
i−1
Ẑi

(
1
T
Ẑ′

iẐi

)−1 1
T
Ẑ′

i	êi −
1
T
e′
i−1

Zi

(
1
T
Z′

iZi

)−1 1
T
Z′

i	ei = Op(p
2C−1

NT )�

The above can be written as

1
T
(ê′

i−1
Ẑi − e′

i−1
Zi)

(
1
T
Ẑ′

iẐi

)−1 1
T
Ẑ′

i	êi

+ 1
T
e′
i−1
Zi

[(
1
T
Ẑ′

iẐi

)−1

−
(

1
T
Z′

iZi

)−1] 1
T
Ẑ′

i	êi

+ 1
T
e′
i−1
Zi

(
1
T
Z′

iZi

)−1 1
T
(Ẑ′

i	êi −Z′
i	ei) = (a)+ (b)+ (c)�

Consider (a). Let ξi = (Ẑ′
iẐi/T )−1Ẑ′

i	êi/T . Then ξi is p× 1 and ‖ξi‖ =Op(p
1/2). Next,

1
T
(ê′

i−1
Ẑi − e′

i−1
Zi) =

(
1
T

T∑
t=p+1

(êit−1	êit−1 − eit−1	eit−1)�

� � � �
1
T

T∑
t=p+1

(êit−1	êit−p − eit−1	eit−p)

)
�

Thus ‖(ê′
i−1
Ẑi − e′

i−1
Zi)/T‖2 = ∑p

k=1(
∑T

t=p+1[êit−1	êit−k − eit−1	eit−k]/T )2� But for each k ≥ 1,
from êit−1 = êit−k−1 +	êit−k + · · · +	êit−1, it follows that

1
T

T∑
t=p+1

(êit−1	êit−k − eit−1	eit−k) = 1
T

T∑
t=p+1

(êit−k−1	êit−k − eit−k−1	eit−k)

+
k∑

h=1

1
T

T∑
t=p+1

(	êit−h	êit−k −	eit−h	eit−k)�
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The first term on the right-hand side is Op(C
−1
NT ) by Lemma B.1(iv). The second term is kOp(C

−1
NT )

following the argument in proving Lemma B.1(iii). Thus

1
T

T∑
t=p+1

(êit−1	êit−k − eit−1	eit−k)= (k+ 1)Op(C
−1
NT )�

and ‖T−1(ê′
i−1
Ẑi − e′

i−1
Zi)‖2 = ∑p

k=1(k + 1)2Op(C
−2
NT ) = p3Op(C

−2
NT ). So ‖a‖ ≤ ‖T−1(ê′

i−1
Ẑi −

e′
i−1
Zi)‖‖ξi‖ = p3/2Op(C

−1
NT )

√
p = p2Op(C

−1
NT ).

Consider (b), which we can write as η′
i(T

−1Z′
iZi − T−1Ẑ′

iẐi)ξi , where ηi = T−1e′
i−1
Zi(Z

′
iZi/

T )−1 and ξi is defined earlier. Note that ‖ηi‖ = Op(
√
p). It is proved in (C.3) that ‖T−1Z′

iZi −
T−1Ẑ′

iẐi‖ = pOp(C
−1
NT ). Thus ‖b‖ = p2Op(C

−1
NT ). Next consider (c), which is equal to

ηiT
−1(Ẑ′

i	êi − Z′
i	ei) = pOp(C

−1
NT ) because ‖T−1(Ẑ′

i	êi − Z′
i	ei)‖ ≤ {∑p

j=1[ 1
T

∑T
t=p+1(	êit−j

	êit −	eit−j	eit)]2}1/2 ≤ √
pOp(C

−1
NT ). Q.E.D.

G. Preliminaries for Theorem 3

Introduce ẽit = eit − ei1 − (eiT − ei1)(t − 1)/(T − 1); then by (17)

êit = ẽit − λ′
iH

−1
t∑

s=2

vs − di

t∑
s=2

f̂s�(G.1)

	êit = 	ẽit − λ′
iH

−1vt − d′
if̂t �(G.2)

LEMMA G.1: For ρi = 1 or |ρi| < 1:
(i) (1/

√
T )êit = (1/

√
T )ẽit +Op(C

−1
NT ), uniformly in t ∈ [1� T ];

(ii) (1/T 2)
∑T

t=2 ê
2
it = (1/T 2)

∑T
t=2 ẽ

2
it +Op(C

−1
NT );

(iii) (1/T )
∑T

t=2(	êit)
2 = (1/T )

∑T
t=2(	ẽit)

2 +Op(C
−1
NT ) = (1/T )

∑T
t=2(	eit)

2 +Op(C
−1
NT );

(iv) (1/T )
∑T

t=2 êit−1	êit = (1/T )
∑T

t=2 ẽit−1	ẽit +Op(C
−1
NT ).

PROOF: The proof is similar to that of Lemma B.1. Consider (i). This follows from (G.1),
T−1/2‖∑t

s=2 vs‖ = Op(C
−1
NT ), ‖di‖ = Op(1/min[N�

√
T ]) = Op(C

−1
NT ) and T−1/2‖∑t

s=2 f̂s‖ =
Op(1). Result (ii) is an immediate consequence of (i).

The first equality of (iii) follows from (G.2),
∑T

t=2 ‖vt‖2/T = Op(C
−2
NT ),

∑T
t=2 ‖f̂t‖2/T =Op(1),

and ‖di‖2 = Op(C
−2
NT ). To prove the second equality, note that 	ẽit = 	eit −	ei , but 	ei = (eiT −

ei1)/(T − 1) = Op(T
−1/2), implying the second equality of (iii).

For (iv), consider the two identities:

1
T

T∑
t=2

êit−1	êit = 1
2T

(êiT )
2 − 1

2T
ê2
i1 − 1

2T

T∑
t=2

(	êit)
2�(G.3)

1
T

T∑
t=2

ẽit−1	ẽit = 1
2T

(ẽiT )
2 − 1

2T
ẽ2
i1 − 1

2T

T∑
t=2

(	ẽit)
2�(G.4)

Applying (i) with t = T and t = 1, respectively, we get T−1[(êiT )2 − (ẽiT )
2] = Op(C

−2
NT ) and

T−1[(êi1)2 − (ẽi1)
2] = Op(C

−2
NT ). These results together with (iii) imply (iv). Q.E.D.

Next consider the properties of estimated common factors F̂t . From f̂t =Hft + vt ,

F̂t =
t∑

s=2

f̂s =H

t∑
s=2

fs +
t∑

s=2

vs = H

t∑
s=2

(	Fs −	F)+
t∑

s=2

vs(G.5)
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= H

[
Ft − F1 − FT −F1

T − 1
(t − 1)

]
+ Vt�

where Vt = ∑t
s=2 vs . For a sequence yt , let yτt denote the residual from regressing {yt} on [1� t]

(t = 2� � � � � T ). That is, yτt is the demeaned and detrended series. Then from (G.6),

F̂τ
t =HFτ

t + V τ
t(G.6)

(clearly, demeaning and detrending will remove F1 + (FT −F1)(t − 1)/(T − 1)).

LEMMA G.2: max2≤t≤T (1/
√
T )‖V τ

t ‖ =Op(C
−1
NT ).

PROOF: This simply follows from T−1/2‖Vt‖ = T−1/2‖∑t
s=2 vs‖ = Op(C

−1
NT ) uniformly in t. To

see this, let V = (V2� V3� � � � � VT )
′, V τ = (V τ

2 � V
τ

3 � � � � � V
τ
T )

′� and let Z = (Z2�Z3� � � � �ZT )
′, where

Zt = (1� t). Then V τ = MzV , where Mz = I − Z(Z′Z)−1Z′ . Then, it is easy to show that V τ
t can

be written as

V τ
t = Vt + aT

1
T

T∑
j=2

Vj + bT (t/T )
1
T 2

T∑
j=2

jVj�

where aT and bT are bounded numbers. It follows that

1√
T
V τ
t = 1√

T
Vt + aT

1
T 3/2

T∑
j=2

Vj + bT (t/T )
1

T 5/2

T∑
j=2

jVj�

However, ‖T−3/2 ∑T
j=2 Vj‖ ≤ maxt T−1/2‖Vt‖. Similarly, T−5/2‖∑T

j=2 jVj‖ ≤ C maxt T−1/2‖Vt‖.
Q.E.D.

LEMMA G.3: As N�T → ∞:
(i) (1/

√
T )F̂τ

t = H(1/
√
T )Fτ

t +Op(C
−1
NT ), uniformly in t ∈ [1� T ];

(ii) T−2 ∑T
t=2 F̂

τ
t−1F̂

τ′
t−1 = HT−2 ∑T

t=2 F
τ
t−1F

τ′
t−1H

′ +Op(C
−1
NT );

(iii) (1/T )
∑T

t=2 	F̂
τ
t 	F̂

τ′
t =H(1/T )

∑T
t=2 	Ft	F

′
tH

′ +Op(C
−1
NT );

(iv) (1/T )
∑T

t=2(F̂
τ
t−1	F̂

′
t +	F̂t F̂

τ′
t−1)= (1/T )H

∑T
t=2(F

τ
t−1	F

′
t +	FtF

τ′
t−1)H

′ +Op(C
−1
NT ).

PROOF: (i) follows from (G.6) and Lemma G.2. (ii) is an immediate consequence of (i).
For (iii) write F̂τ

t = F̂t − â − b̂t for some â and b̂. This is possible because F̂τ
t is the projection

residual of F̂t . Thus, 	F̂τ
t =	F̂t − b̂. Note that the slope coefficient satisfies ‖b‖ = Op(T

−1/2) be-
cause T−1/2F̂t = Op(1). Furthermore, 	F̂t = H(	Ft −	F)+vt = H	Ft +Op(T

−1/2)+vt because
	F = Op(T

−1/2) by assumption that 	Ft has zero mean. Thus 	F̂τ
t = H	Ft + Op(T

−1/2) + vt ,
from which (iii) follows easily. Next, consider (iv). First note that 	F̂t can be replaced by 	F̂τ

t .
This is because 	F̂t = 	F̂τ

t + b̂ and
∑T

t=2 F̂
τ
t−1 = 0 (normal equation). Then we have the identity

1
T

T∑
t=2

(F̂τ
t−1	F̂

τ′
t +	F̂τ

t F̂
τ′
t−1) = F̂τ

T F̂
τ′
T

T
− F̂τ

1 F̂
τ′
1

T
− 1

T

T∑
t=2

	F̂τ
t 	F̂

τ′
t(G.7)

and

H
1
T

[
T∑
t=2

	Fτ
t F

τ′
t−1 + Fτ

t−1	F
τ′
t

]
H ′

= H
Fτ
T F

τ′
T

T
H ′ −H

Fτ
1 F

τ′
1

T
H ′ −H

1
T

T∑
t=2

	Fτ
t 	F

τ′
t H

′�
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From part (i) with t = T , F̂τ
T F̂

τ′
T /T − H(Fτ

TF
τ′
T /T )H ′ = Op(C

−1
NT ), and with t = 1, F̂τ

1 F̂
τ′
1 /T −

H(Fτ
1 F

τ′
1 /T )H ′ = Op(C

−1
NT ). From 	Fτ = 	Ft +Op(T

−1/2), T−1 ∑T
t=2 	F

τ
t 	F

τ′
t −T−1 ∑T

t=2 	Ft ×
	F ′

t = Op(T
−1/2). This, together with part (iii), yields

1
T

T∑
t=2

	F̂τ
t 	F̂

τ′
t −H

1
T

T∑
t=2

	Fτ
t 	F

τ′
t H

′ = Op(C
−1
NT )�

Combining these results leads to (iv). Q.E.D.

Before proving the theorem for serially correlated disturbances, we first prove the theorem for
i.i.d. disturbances, which provides a substantial insight with a very simple proof.

The DF statistic is

DFτ
ê (i) = T−1 ∑T

t=2 êit−1	êit

(σ̂2
εiT

−2
∑T

t=2 ê
2
it−1)

1/2
�

where σ̂2
εi = T−1

∑T
t=2(	êit − âiêit−1)

2, which converges to σ2
εi .

PROPOSITION 3: Suppose the assumptions of Theorem 3 hold. If Di(L)= 1, i.e., eit = ρieit−1 +εit
with εit being i.i.d. (0�σ2

εi), then under ρi = 1, as N�T → ∞,

DFτ
ê (i) ⇒ −1

2

(∫ 1

0
Vεi(r)

)−1/2

�

Proposition 3 is implied by the lemma below.

LEMMA G.4: Under the assumptions of Proposition 3 with ρi = 1, for t = [Tr], as N�T → ∞:
(i) (1/

√
T )êit ⇒ [Wεi(r)− rWεi(1)]σεi ≡ Vεi(r)σεi ;

(ii) T−1 ∑T
t=2 ê

2
it−1 ⇒ σ2

εi

∫ 1
0 Vεi(r)

2 dr;

(iii) (1/T )
∑T

t=2(	êit)
2 p−→ σ2

εi;
(iv) (1/T )

∑T
t=2 êit−1	êit ⇒ −σ2

εi/2.

PROOF: (i): By Lemma G.1(i), it suffices to show T−1/2ẽit has the said limit. But T−1/2ẽit =
T−1/2eit −T−1/2eiT (t−1)/(T −1)−T−1/2ei1. By the invariance principle, T−1/2eit ⇒Wεi(r)σεi , and
T−1/2eiT (t − 1)/(T − 1) ⇒ rWεi(1)σεi . Furthermore, T−1/2ei1 → 0, proving (i). Result (ii) follows
from (i) and the continuous mapping theorem. Under ρi = 1, 	eit = εit , and so T−1 ∑T

t=2 	e
2
it

p−→
σ2
εi . This implies (iii) in view of Lemma G.1(iii). Finally, (iv) follows from (G.3), part (i) and (iii).

To see this, by (i), T−1ê2
iT ⇒ σ2

εiVεi(1)2 = 0. Furthermore, T−1ê2
i1 = 0. Thus the right-hand side of

(G.3) converges to −σ2
εi/2, proving (iv). Q.E.D.

Likewise, when Ft is I(1) and is driven by i.i.d. errors, the test is very simple. The DF statistic
for the series F̂t with demeaning and detrending is numerically equal to (see, e.g., Hayashi (2000,
p. 608))

DFτ

F̂
= T−1

∑T
t=2 F̂

τ
t−1	F̂t

(σ̂2
uT

−2
∑T

t=2(F̂
τ
t−1)

2)1/2
�(G.8)

where σ̂2
u = ∑T

t=2(	F̂t − â − b̂t − ĉF̂t−1)
2/(T − 2) with (â� b̂� ĉ) being the OLS estimate when

regressing 	F̂t on [1� t� F̂t−1]. It is easy to show that σ̂2
u

p−→ H2σ2
u .
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PROPOSITION 4: Suppose the assumptions of Theorem 3 hold. If C(L) = 1, i.e., Ft = Ft−1 + ut

with ut being i.i.d. (0�σ2
u), then

DFτ

F̂
⇒

∫ 1
0 W τ(s)dW (s)

(
∫ 1

0 W τ(s)2 ds)1/2
�

This proposition is implied by the following lemma.

LEMMA G.5: Under the assumptions of Proposition 4, as N�T → ∞:
(i) (1/

√
T )F̂τ

t ⇒ HσuW
τ(r);

(ii) T−2 ∑T
t=2 F̂

τ
t−1F̂

τ′
t−1 ⇒ H2σ2

u

∫ 1
0 W τ

u (r)
2 dr;

(iii) (1/T )
∑T

t=2 F̂
τ
t−1	F̂t ⇒H2σ2

u

∫ 1
0 W τ

u (r)dWu(r).

PROOF: The results follow from Lemma G.3 and the corresponding weak convergence for
the series Fτ

t . For example, T−1/2Fτ
t ⇒ σuW

τ(r). Result (ii) follows from (i) and the con-
tinuous mapping theorem. Result (iii) follows from Lemma G.3(iv) and T−1

∑T
t=2 F

τ
t−1	Ft ⇒

σ2
u

∫ 1
0 W τ

u (r)dWu(r). Q.E.D.

H. Testing êit Using the ADF, Linear Trend Case

Recall

êit = ẽit − λ′
iH

−1
t∑

s=2

vs − di

t∑
s=2

f̂s�(H.1)

	êit = 	ẽit − λ′
iH

−1vt − d′
if̂t �(H.2)

where ẽit = eit − ei1 − (eiT − ei1)(t − 1)/(T − 1), and 	ẽit =	eit −	ei. Also note ẽit = ∑t
s=2 	ẽit .

The proof consists of two steps. The first is to show the ADF test based on ẽit has the desired
limiting distribution, i.e., ADFẽ(i) ⇒ (−1/2)(

∫ 1
0 Vi�ε(r)

2 dr)−1� The second is to show the ADF
test based on êit is asymptotically the same as that based on ẽit , i.e., ADFê(i)−ADFẽ(i) = op(1),
as N�T → ∞.

The ADF test in this linear trend case has the same distribution as the test considered in
Schmidt and Lee (1991), a modified version of the LM test for the presence of a unit root around
a linear trend developed in Schmidt and Phillips (1992). Note that even when eit is observable, the
first step has not been explicitly stated in the literature. Schmidt and Phillips (1992) considered
nonparametric correction of serial correlation, but not via ADF regression.

LEMMA H.1: Assume 	eit = Di(L)εit satisfies Assumption C(i). Consider the regression 	ẽit =
δi0ẽi�t−1 + ∑p

j=1 δij	ẽi�t−j + error. Let ADFẽ(i) be the t statistic for testing δi0 = 0. If p is chosen

such that p → ∞ with p3/T → 0, then ADFẽ(i) ⇒ (−1/2)(
∫ 1

0 Vi�ε(r)
2 dr)−1�

The proof uses a similar argument to that used in Said and Dickey (1984) and Berk (1974).
Since the argument is tedious, the detail is omitted. Instead, we outline the proof for fixed p,
which is drastically simpler. For this, we assume 	eit = Di(L)εit has a finite AR(p) representa-
tion:

	eit =
p∑

j=1

δij	ei�t−j + εit�
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where εit are i.i.d. (0�σ2
ε�i). It can be shown that, when replacing 	eit by 	ẽit ,

	ẽit =
p∑

j=1

δij	ẽi�t−j + εit − ε̄i +Op(T
−1)�(H.3)

where ε̄i = ∑T
t=2 εit/(T − 1). Rewrite the regression equation stated in the lemma in matrix form:

	ẽi = δi0ẽi−1 +Zφ+ error�

where Z is a matrix consisting of lags in 	ẽi�t and φ= (δi1� � � � � δip)
′ . The least squares estimator

of δi0 satisfies

T δ̂i0 = T−1ẽ′
i−1

MZ	ẽi

T−2ẽ′
i−1
MZẽi−1

= T−1ẽ′
i−1

(εi − ε̄i)+ op(1)

T−2ẽ′
i−1
MZẽi−1

= T−1ẽ′
i−1
(εi − ε̄i)+ op(1)

T−2ẽ′
i−1
ẽi−1

�

The second equality follows from 	ẽi = Zφ+ εi − ε̄i +Op(T
−1) by (H.3) and MZZ = 0, and the

last equality follows from T−2ẽ′
i−1

MZẽi−1 = T−2ẽ′
i−1
ẽi−1 + op(1)�

We will show T δ̂i0 ⇒ −[2Di(1)
∫ 1

0 Vi(r)
2 dr]−1. Now T−2ẽ′

i−1
ẽi−1 = T−2 ∑T

t=p ẽ
2
it ⇒ Di(1)2σ2

εi ×∫ 1
0 Vi(r)

2 dr simply follows from the relationship between ẽit and eit and the weak conver-
gence of T−1/2eit to Di(1)σεiWi(r) for t = [Tr]. But the limit of the numerator requires an
extra argument. By the Beveridge–Nelson decomposition, 	eit = Di(1)εit + ηit−1 − ηit where
ηit = ∑∞

j=0(
∑∞

k=j+1 dik)εit−j . This leads to

	ẽit = 	eit −	ei =Di(1)(εit − ε̄i)+ηit−1 −ηit + T−1(ηiT −ηi1)�

Cumulating 	ẽit gives

ẽit =
t∑

s=2

	ẽit = Di(1)
t∑

s=2

(εis − ε̄i)+ηi1 −ηit + T−1(ηi1 −ηiT )(t − 1)�

Thus

T−1ẽ′
i−1
(εi − ε̄i) = T−1

T∑
t=p

ẽit−1(εit − ε̄i)

= Di(1)
1
T

T∑
t=p

t−1∑
s=2

(εis − ε̄i)(εit − ε̄i)+ 1
T

T∑
t=p

(ηi1 −ηit−1)(εit − ε̄i)

+ (ηi1 −ηiT )
1
T 2

T∑
t=p

(t − 2)(εit − ε̄i)�

The last two terms are each op(1) and the first term converges to −1/2Di(1)σ2
εi , which can be

proved as in Lemma G.4(iv) since the term can be rewritten as Di(1)T−1 ∑T
t=p gt−1	gt , with gt =∑t

s=2(εis − ε̄i). The limit of T δ̂i0 is thus obtained, which depends on nuisance parameter Di(1).
But the t-statistic eliminates Di(1), as is well known in the standard ADF test.

Given Lemma H.1 and Lemma G.1, the proof that ADFê(i) − ADFẽ(i) = op(1) is almost
identical to the proof in Theorem 2. Thus the detail is omitted. For insight, see the proof of
Proposition 3 when the disturbances are i.i.d.

The proof of part 2 and part 3 for serially correlated disturbances is also omitted as the proof
is almost the same as in Theorem 2, given Lemma G.2 and Lemma G.3. Also see Remark 1 in
Appendix D. For insight, see the proof of Proposition 4 when the disturbances are i.i.d.
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PROOF OF THEOREM 4: In this theorem, eit are assumed to be cross-sectionally independent.
Thus, the test statistics ADFc

e (i) (i = 1�2� � � � �N) based on the true series eit are independent
over i. Theorem 1 shows that ADFc

ê (i) − ADFc
e (i) = op(1), that is, ADFc

ê (i) not only has the
same asymptotic distribution as ADFc

e (i), but they are asymptotically equivalent. This implies as-
ymptotic independence of ADFc

ê (i). The same is true for the linear trend model ADF τ
ê (i) over i.

The analysis of the pooled test then proceeds following the arguments of Choi (2001). Q.E.D.
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