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CONFIDENCE INTERVALS FOR DIFFUSION INDEX FORECASTS
AND INFERENCE FOR FACTOR-AUGMENTED REGRESSIONS

BY JUSHAN BAI AND SERENA NG1

We consider the situation when there is a large number of series, N , each with T ob-
servations, and each series has some predictive ability for some variable of interest.
A methodology of growing interest is first to estimate common factors from the panel
of data by the method of principal components and then to augment an otherwise stan-
dard regression with the estimated factors. In this paper, we show that the least squares
estimates obtained from these factor-augmented regressions are

√
T consistent and as-

ymptotically normal if
√
T/N → 0. The conditional mean predicted by the estimated

factors is min[√T�
√
N ] consistent and asymptotically normal. Except when T/N goes

to zero, inference should take into account the effect of “estimated regressors” on the
estimated conditional mean. We present analytical formulas for prediction intervals
that are valid regardless of the magnitude of N/T and that can also be used when the
factors are nonstationary.

KEYWORDS: Panel data, common factors, generated regressors, cross-section depen-
dence, robust covariance matrix.

1. INTRODUCTION

THE USE OF FACTORS to achieve dimension reduction has been found to be
empirically useful in analyzing macroeconomic time series, and adding factors
to an otherwise standard regression or forecasting model is being used by an
increasing number of researchers.2 Several institutions, including the Treasury
and the European Central Bank, are studying the empirical properties of these
factor forecasts.3 In macroeconomics, Bernanke, Boivin, and Eliasz (2005)
found that the information exploited in factor-augmented vector autoregres-
sions (FAVAR) is important to identify the monetary transmission mechanism
properly. In spite of its increasing popularity with practitioners, how to con-
duct inference in factor-augmented regressions is not well understood. This is a
nontrivial problem because the regression model involves “estimated factors.”
In this paper, we derive the rate of convergence and the limiting distribution
of the parameter estimates to enable construction of confidence intervals for
the parameters and the conditional mean, as well as the forecast.

1The authors acknowledge financial support from NSF Grants SES-0137084 and SES-0136923.
We thank three anonymous referees, an editor, and seminar participants at Yale, Columbia, and
Princeton for useful comments. This paper was also presented at the Conference on Common
Features in London, 2004.
2See, for example, Stock and Watson (2001, 2002b), Cristadoro, Forni, Reichlin, and Giovanni
(2001), Forni, Hallin, Lippi, and Reichlin (2001), Artis, Banerjee, and Marcellino (2001),
Banerjee, Marcellino, and Masten (2004), and Shintani (2002).
3See, for example, Angelini, Henry, and Mestre (2001).
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Suppose information is available on a large number of predictors xit

(i = 1�2� � � � �N ; t = 1�2� � � � �T ) and a smaller set of other observable vari-
ables Wt , such as lags of yt . Consider

yt+h = α′Ft +β′Wt + εt+h�(1)

where h ≥ 0 is the lead time between information available and the dependent
variable. The vector Ft is unobservable. Instead of Ft , we observe a panel of
data xit that contain information about Ft . We refer to

xit = λ′
iFt + eit(2)

as the factor representation of the data, where Ft is a r × 1 vector of common
factors, λi is the corresponding vector of factor loadings, and eit is an idiosyn-
cratic error. If yt is a scalar, (1) and (2) constitute the diffusion index forecasting
model of Stock and Watson (2002a). If h = 1 and yt+1 = (F ′

t+1�W
′
t+1)

′, (1) is the
FAVAR of Bernanke, Boivin, and Eliasz (2005). Both types of analyses exploit
the possibility that information in xit can be summarized in a low-dimensional
vector, Ft . In economic analysis, Ft can be interpreted as the common shocks
that generate comovements in the data.

If Ft is observable and assuming the mean of εt conditional on past infor-
mation is zero, the (mean-squared) optimal prediction of yt is the conditional
mean and is given by

yT+h|T =E(yT+h|zT � zT−1� � � �) = α′FT +β′WT ≡ δ′zT �

where zt = (F ′
t �W

′
t )

′. However, such a prediction is not feasible because α�β,
and Ft are all unobserved. The feasible prediction that replaces the unknown
objects by their estimates is

ŷT+h|T = α̂′F̃T + β̂′WT = δ̂′ ẑT �

where ẑt = (F̃ ′
t �W

′
t )

′. We use a tilde for estimates of the factor model (2),
while hatted variables are estimated from (1). To be precise, α̂ and β̂ are
the least squares estimates obtained from a regression of yt+h on F̃t and Wt ,
t = 1� � � � � T −h. The factors, Ft , are estimated from xit by the method of prin-
cipal components using data up to period T and will be discussed further be-
low.

It is clear that α̂ and β̂ are functions of estimated regressors F̃1� F̃2� � � � � F̃T−h,
and that ŷT+h|T itself also depends on F̃T . Thus, to study the behavior of ŷT+h|T
and of the forecast error ε̂T+h, we must examine the statistical properties of
the estimated parameters as well as those of the estimated factors. Stock and
Watson (2002a) showed that ŷT+h|T is consistent for yT+h|T . However, for hy-
pothesis testing, such as to construct standard errors for the impulse response
of a FAVAR, to provide a confidence interval for the latent conditional mean,
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and to evaluate the uncertainty of a diffusion index forecast, we need the limit-
ing distributions of (̂α� β̂), ŷT+h|T , and ε̂T+h. Our main contribution is to provide
these results and clarify the role of N and T in each step. As we will see, it is
only when N is large relative to T that the effect of estimated regressors can be
completely ignored, and the precise condition on N and T depends on whether
interest is in inference of the regression coefficients, the conditional mean, or
the forecast. We also provide a covariance matrix estimator that is robust to
weak cross-section correlation and heteroskedasticity of unknown form. Sup-
plementary lemmas and simulation results are available in our working paper
(Bai and Ng (2004)).

2. INFERENCE WITH ESTIMATED FACTORS

In matrix notation, the factor model is X = FΛ′ + e, where X is a T × N
matrix of stationary data, F = (F1� � � � �FT )

′ is T ×r, r is the number of common
factors, Λ = (λ1� � � � � λN)

′ is N × r, and e is a T ×N error matrix.

ASSUMPTION A—Common Factors: The factor process satisfies E‖Ft‖4 ≤ M

and 1
T

∑T

t=1 FtF
′
t

p−→ ΣF > 0, an r × r nonrandom matrix.

ASSUMPTION B—Heterogeneous Factor Loadings: The loading λi is either
deterministic such that ‖λi‖ ≤ M or it is stochastic such that E‖λi‖4 ≤ M . In
either case, N−1Λ′Λ

p−→ ΣΛ > 0, an r × r nonrandom matrix, as N → ∞.

ASSUMPTION C—Time and Cross-Section Weak Dependence and Het-
eroskedasticity:

1. For all (i� t), E(eit) = 0, E|eit |8 ≤ M .
2. There exist E(eitejs)= σij�ts and |σij�ts| ≤ σ̄ij for all (t� s), and |σij�ts| ≤ τts for

all (i� j) such that 1
N

∑N

i�j=1 σ̄ij ≤ M , 1
T

∑T

t�s=1 τts ≤ M , and 1
NT

∑
i�j�t�s=1 |σij�ts| ≤

M .
3. For every (t� s), E|N−1/2

∑N

i=1[eiseit −E(eiseit)]|4 ≤M .

4. For each t, 1√
N

∑N

i=1 λieit
d−→ N(0� Γt), where Γt = limN→∞ 1

N
×∑N

i=1

∑N

j=1 E(λiλj
′eitejt).

ASSUMPTION D: The variables {λi}, {Ft}, and {eit} are three mutually indepen-
dent groups. Dependence within each group is allowed.

ASSUMPTION E: Let zt = (F ′
t �W

′
t )

′, E‖zt‖4 ≤ M . Then E(εt+h|yt� zt� yt−1�
zt−1� � � � ) = 0 for any h > 0, and zt and εt are independent of the idiosyncratic
errors eis for all i and s. Furthermore:

1. 1
T

∑T

t=1 ztz
′
t

p−→ Σzz > 0;

2. 1√
T

∑T

t=1 ztεt+h
d−→ N(0�Σzz�ε), where Σzz�ε = plim 1

T

∑T

t=1(ε
2
t+hztz

′
t) > 0.
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Assumptions A and B together imply r common factors. Assumption C al-
lows for heteroskedasticity, weak time series, and cross-section dependence
in the idiosyncratic component, leading to the approximate factor structure of
Chamberlain and Rothschild (1983). These assumptions are more general than
a strict factor model. Assumption D is standard in factor analysis and Assump-
tion E is standard for regression analysis. These assumptions are similar to
those of Stock and Watson (2002a), except that they allow time-varying factor
loadings. We only consider time-invariant factor loadings.

2.1. Estimation

We first consider the properties of the least squares estimates when prin-
cipal component estimates of the factors, F̃ , are used as regressors. Let F̃ =
(F̃1� � � � � F̃T ) be the matrix consisting of r eigenvectors (multiplied by

√
T ) as-

sociated with the r largest eigenvalues of the matrix XX ′/(TN) in decreasing
order. Then Λ̃ = (̃λ1� � � � � λ̃N)

′ = X ′F̃/T and ẽ = X − F̃Λ̃′. Also let Ṽ be the
r × r diagonal matrix consisting of the r largest eigenvalues of XX ′/(TN) and
let H = Ṽ −1(F̃ ′F/T)(Λ′Λ/N). Let α̂ and β̂ be the least squares estimates from
regressing yt+h on ẑt = (F̃ ′

t �W
′
t )

′. Define δ̂ = (̂α′� β̂′)′ and δ = (α′H−1�β′)′.

THEOREM 1—Estimation: Suppose Assumptions A–E hold. If
√
T/N → 0,

then
√
T(δ̂− δ)

d−→ N(0�Σδ)�

where Σδ = Φ′−1
0 Σ−1

zz Σzz�εΣ
−1
zz Φ

−1
0 with Φ0 = diag(V −1QΣΛ� I) being block diago-

nal, V = plim Ṽ , Q = plim F̃ ′F/T , and ΣΛ defined in Assumption B. A consistent

estimator for Σδ, denoted by ̂Avar(δ̂), is

̂Avar(δ̂)=
(

1
T

T−h∑
t=1

ẑt ẑ
′
t

)−1(
1
T

T−h∑
t=1

ε̂2
t+ĥzt ẑ

′
t

)(
1
T

T−h∑
t=1

ẑt ẑ
′
t

)−1

�(3)

As is well known, the factor model is unidentified because α′LL−1Ft = α′Ft

for any invertible matrix L. Theorem 1 is a result that pertains to the difference
between α̂ and the space spanned by α. Having estimated factors as regres-
sors does not affect consistency of the parameter estimates. Stock and Watson
(2002a) showed consistency of δ̂ for δ. Here we establish the rate of conver-
gence and the limiting distribution.

Formula (3) is robust to heteroskedasticity. Under homoskedasticity such
that E(ε2

t+h|zt) = σ2
ε ∀ t and letting σ̂2

ε = 1
T

∑T−h

t=1 ε̂2
t+h, a consistent estimate of

Avar(δ̂) is

̂Avar(δ̂)= σ̂2
ε

[
1
T

T−h∑
t=1

ẑt ẑ
′
t

]−1

�(4)
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Theorem 1 is useful in rather broader contexts, because having to conduct in-
ference when the latent common factors are replaced by estimates is not un-
common, an example being the Phillips curve, where the estimated common
factors serve as proxies for the unobserved state of the economy.

A new tool in empirical work is the FAVAR, which essentially augments the
principal component estimates of the factors to an otherwise standard vector
autoregression (VAR).4 More specifically, if yt is a vector of q series and Ft is
a vector of r factors, a FAVAR(p) is defined as

yt+1 =
p∑

k=0

a11(k)yt−k +
p∑

k=0

a12(k)Ft−k + ε1t+1�

Ft+1 =
p∑

k=0

a21(k)yt−k +
p∑

k=0

a22(k)Ft−k + ε2t+1�

where a11(k) and a21(k) are coefficients on yt−k, while a12(k) and a22(k) are
coefficients on Ft−k. Consider estimation of the FAVAR with Ft replaced by F̃t .

THEOREM 2—FAVAR: Consider a pth order vector autoregression in q ob-
servable variables yt and r factors, F̃t , estimated by the method of principal com-
ponents. Let ẑt = (y ′

t � � � � � y
′
t−p, F̃ ′

t � � � � � F̃
′
t−p)

′ and Ŷt = (y ′
t � F̃

′
t )

′. Also let Ŷjt be
the jth element of Ŷt . For j = 1� � � � � q+ r, let δj be the coefficient vector in the Ŷtj

equation and let δ̂j be obtained by least squares from regressing Ŷjt+1 on ẑt . Let
ε̂jt+1 = Ŷjt+1 − δ̂′

j ẑt . Under Assumptions A–E and if
√
T/N → 0 as N�T → ∞,

√
T(δ̂j − δj)

d−→ N

(
0�plim

(
1
T

T∑
t=1

ẑt ẑ
′
t

)−1(
1
T

T∑
t=1

(̂εjt)
2ẑt ẑ

′
t

)(
1
T

T∑
t=1

ẑt ẑ
′
t

)−1)
�

Theorem 2 states that the parameter estimates for those equations with F̃t+1

as regressors are also
√
T consistent, just as when yt+1 is the dependent variable

considered in Theorem 1. Since impulse response functions are based on es-
timates of the FAVAR, Theorem 2 enables calculation of the standard errors.
Although the condition

√
T/N → 0 (or equivalently

√
T/min[N�T ] → 0) is

not stringent, it puts discipline on when estimated factors can be used in re-
gression analysis.

Pagan (1984) considered the model yt = α′xe
t + εt and xt = γ′zt + ut with

xe
t = γ′zt . Let γ̂ be the least squares of xt on zt . Write yt = α′x̂t + εt + α′(xe

t −

4See, for example, Bernanke and Boivin (2003), Bernanke, Boivin, and Eliasz (2005), Giannone,
Reichlin, and Sala (2002), and Favero, Marcellino, and Neglia (2005).
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x̂t) = α′x̂t + εt + ût , where x̂t = γ̂′zt and ût = −(γ̂ − γ)′zt . The least squares
regression of yt on x̂t yields α̂− α= (x̂′x̂)−1x̂′(ε+ û). However,

1√
T

T∑
t=1

x̂t ût = 1√
T

T∑
t=1

x̂tz
′
t(γ − γ̂)

= γ̂′ 1
T

T∑
t=1

ztz
′
t

√
T(γ − γ̂)=Op(1)�

which is nonnegligible, so estimated regressors have an effect on parameter es-
timation. In our case, the corresponding term is Op(

√
T

min[N�T ]).
5 Because N and T

are large by assumption, our term becomes negligible. The limiting distribu-
tions in Theorems 1 and 2 are thus the same as if ẑt was the true regressor.

2.2. Prediction Intervals

Suppose the object of interest is the (latent) conditional mean of (1). If yt is
inflation, the estimated conditional mean can be interpreted as an estimate of
the expected rate of inflation. We now suggest how to construct a confidence
interval for the conditional mean. Note that the equation

(̂yT+h|T − yT+h|T ) = (δ̂− δ)′ ẑT + α′H−1(F̃T −HFT)

has two components, which arise from estimating δ and Ft . Under Assump-
tions A–D, Bai (2003) showed that if

√
N/T → 0, then for each t,

√
N(F̃t −HFt)

d−→ N(0� V −1QΓtQ
′V −1)≡ N(0�Avar(F̃t))�

where Q = plim F̃ ′F/T , V = plim Ṽ , and Γt = limN→∞ 1
N

∑N

i=1

∑N

j=1 E(λiλ
′
j ×

eitejt).

THEOREM 3: Let ŷT+h|T = δ̂′ ẑT . Under the assumptions of Theorem 1 and√
N/T → 0,

(̂yT+h|T − yT+h|T )√
var(̂yT+h|T )

d−→ N(0�1)�

where var(̂yT+h|T )= 1
T
ẑ′
T Avar(δ̂)̂zT + 1

N
α̂′ Avar(F̃T )̂α.

5If N = 1, this term would be Op(
√
T ), much larger than Pagan’s Op(1). This is because in

Pagan’s model, only a finite number of parameters γ are estimated in the first stage and we need
to estimate T unknown quantities F1� � � � �FT .
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Because the two terms in var(̂yT+h|T ) vanish at different rates, the overall
convergence rate for ŷT+h|T is min[√N�

√
T ]. In a standard setting, var(̂yT+h|T )

falls at rate T and, for a given T , it increases with the number of observed
predictors through a loss in degrees of freedom. In contrast, the error variance
here decreases at rate min[N�T ] and, for a given T , efficiency improves with
the number of predictors used to estimate Ft . This is because in the present
setting, a large N enables better estimation of the common factors and thus re-
sults in more efficient predictions. This property of the factor estimates is also
in sharp contrast to that of standard factor analysis, which assumes a fixed N .
With a fixed N , consistent estimation of the factor space is not possible how-
ever large T becomes.

When the objective is to forecast yT+h, one would be more interested in the
distribution of the forecast error. Since yT+h = yT+h|T + εT+h, it follows that the
forecasting error

ε̂T+h = ŷT+h|T − yT+h = (̂yT+h|T − yT+h|T )+ εT+h�

So if εt is normally distributed, ε̂T+h is also approximately normal with

var(̂εT+h) = var(̂yT+h|T − yT+h)= σ2
ε + var(̂yT+h|T )�

COROLLARY 1: Under the assumptions of Theorem 3 and assuming εt is
N(0�σ2

ε), then the forecasting error ε̂T+h is

ε̂T+h ∼N
(
0�σ2

ε + var(̂yT+h|T )
)
�

A confidence interval can be obtained upon replacing σ2
ε by its consistent es-

timate, 1
T

∑T

t=1 ε̂
2
t . The above formula extends the textbook definition of fore-

cast uncertainty, which allows only for estimation error in δ̂ (e.g., Greene
(2003, Chapter 6)), to also permit using F̃t as regressors. Therefore, var(̂yT+h|T )
reflects both parameter uncertainty and regressor uncertainty. However, it
vanishes at rate min[T�N], rather than the usual rate of T . In large samples,
var(̂εT+h) is dominated by σ2

ε , just as when all predictors are observed, but if
we ignore var(̂yT+h|T ), σ2

ε alone will underestimate the true forecast uncertainty
for a given T and N .

It is clear from Theorem 3 and Corollary 1 that a consistent estimate of
var(̂yT+h|T ) is required to proceed with inference. In view of (5), an estimate of
Avar(F̃t) is6

̂Avar(F̃t)= Ṽ −1Γ̃t Ṽ
−1�

6 This formula is obtained by first substituting F̃ for F and noting that Q̃ = F̃ ′F̃/T is an
r-dimensional identity matrix by construction (Q̃ is an estimate for QH ′ whose limit is an iden-
tity).



1140 J. BAI AND S. NG

where the r × r matrix Γ̃t can be one of

Γ̃t = 1
N

N∑
i=1

ẽ2
it λ̃ĩλ

′
i�(5a)

Γ̃t = σ̃2
e

1
N

N∑
i=1

λ̃ĩλ
′
i�(5b)

Γ̃ = 1
n

n∑
i=1

n∑
j=1

λ̃ĩλ
′
j

1
T

T∑
t=1

ẽit ẽjt(5c)

with n/min[N�T ] → 0 in (5c), where ẽit = xit − λ̃′
iF̃t . The various speci-

fications of Γ̃t accommodate flexible error structures in the factor model.
Both (5a) and (5b) assume that eit is cross sectionally uncorrelated with ejt .
Consistency of both estimators was shown in our earlier work. The estima-
tor (5b) further assumes E(e2

it) = σ2
e for all i and t, which is estimated by

σ̃2
e = 1

NT

∑N

i=1

∑T

t=1 ẽ
2
it . Although (5a) and (5b) both assume the idiosyncratic

errors are cross sectionally uncorrelated, it is not especially restrictive because
much of the cross-correlation in the data is presumably captured by the com-
mon factors. For small cross-section correlation in the errors, constraining
them to be zero could sometimes be desirable because sampling variability
from estimating them could generate nontrivial efficiency loss. The estimators
(5a) and (5b) are useful even if residual cross-correlation is genuinely present.

When it is deemed inappropriate to assume zero cross-section correlation in
the errors, the asymptotic variance of F̃t can be estimated by (5c). Consistency
of Γ̃t will be established below and it requires nontrivial arguments. Suffice it
to note for now that the estimator, which we will refer to as CS-HAC (cross-
section and heteroskedastic autocorrelation consistent), is robust to cross-
section correlation and heteroskedasticity in eit of unknown form, but requires
covariance stationarity with E(eitejt)= σij for all t, and that n= n(N�T) satis-
fies the conditions of Theorem 4 to be discussed below.

Once estimators for Avar(δ̂) and Avar(F̃T ) are given, prediction intervals
can be easily constructed. For example, the 95% confidence interval for the
conditional mean yT+h|T is(̂

yT+h|T − 1�96
√

v̂ar(̂yT+h|T )� ŷT+h|T + 1�96
√

v̂ar(̂yT+h|T )
)

and the 95% confidence interval for the forecasting variable yT+h is(̂
yT+h|T − 1�96

√
σ̂2

ε + v̂ar(̂yT+h|T )� ŷT+h|T + 1�96
√
σ̂2

ε + v̂ar(̂yT+h|T )
)
�

Theorem 3 fills an important void in the diffusion index forecasting liter-
ature, because it goes beyond the consistency result to establish asymptotic
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normality. The result provides the basis of testing economic hypothesis that
involves fundamental factors. Observed variables are often used in place of
the latent factors when testing various theories of asset returns. In Bai and
Ng (2006), we developed tests to determine whether the observed variables
are good proxies for the latent factors. Part of that analysis, which amounts to
assessing the in-sample predictability of the latent factors, makes use of the
results presented here, with h set to zero.

3. COVARIANCE MATRIX ESTIMATOR: THE CS-HAC

The CS-HAC estimator defined in (5c) is robust to cross-section correla-
tion and cross-section heteroskedasticity, but requires the assumption of co-
variance stationarity, which is not necessary for (5a) and (5b) because they
assume cross sectionally uncorrelated idiosyncratic errors. To understand the
problem, it helps to consider first the cross-section regression yi = β′λi + ei,
where λi is a r × 1 vector of observed regressors. The covariance of β̂ involves
Γ = limN→∞ 1

N
Λ′ΩΛ, where Ω = E(ee′) with e = (e1� � � � � eN)

′, and Λ is the
N × r regressor matrix. Here, the “natural” estimator,

1
N

N∑
i=1

N∑
j=1

λiλ
′
j êîej =

(
1√
N

N∑
i=1

λîei

)(
1√
N

N∑
i=1

λîei

)′

�

is inconsistent because 1√
N

∑N

i=1 λîei converges to a random vector. The prob-
lem is analogous to inconsistency of the unweighted sum of T sample autoco-
variances as a long run variance estimator in a time series context. Whereas
time series data have a natural ordering, it is possible to construct het-
eroskedastic and autocorrelation consistent (HAC) estimators as in Newey and
West (1987) and Andrews (1991).

Cross-section data have no natural ordering. It is only in special cases such
as the one considered in Conley (1999) that a truncated sum can be justified.
Neither economic theory nor intuition is usually of much help in obtaining
a “mixing condition” type ordering of the data. More generally, any cross-
section permutation of the data is an equally valid representation of informa-
tion available. The common practice in cross-section regressions is to assume
E(eiej)= 0, i �= j, so that Ω= plimN→∞

1
N

∑N

i=1 λiλ
′
ie

2
i .

A third alternative is available if we have observations on the cross-section
units over time. The basic intuition is as follows. If covariance stationarity
holds, the time series observations will allow us to consistently estimate the
cross-section correlations provided T is large. Furthermore, the covariance
matrix of interest is of dimension (r × r) and can be estimated with n < N
observations. An estimator along these lines was considered in Driscoll and
Kraay (1998). In their setup, the regressors are observable.
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We also seek to estimate the covariance matrix from panel data, but λi in
our analysis is not observed. To estimate Γt consistently, we require Γt not to
depend on t (see Assumption C.4) so that we can also use observations outside
period t to estimate Γ .

THEOREM 4: Suppose Assumptions A–D hold. In addition, E(eitejt) = σij

for all t, so Γt = Γ not depending on t. Let Γ̃ be defined as in (5c). Then
‖Γ̃ −H−1′ΓH−1‖ p−→ 0 if n

min[N�T ] → 0.

The conditions that n/N → 0 and n/T → 0 are not restrictive. The simple
rule we use in the simulations below is n = min[√N�

√
T ].

4. FINITE SAMPLE PROPERTIES

To assess the finite sample properties of the procedures, simulated data are
generated as

xit = λ′
iFt + eit (i = 1� � � � �N� t = 1� � � � �T )�

Fjt = ρjFjt−1 + (1 − ρ2
j )

1/2ujt (j = 1� � � � � r�ρj = (0�8)j)�

et = vtΩ̄(b)1/2�

where et = (e1t � � � � � eNt)
′, vt = (v1t � � � � � vNt)

′, ujt and vit are mutually uncorre-
lated N(0�σ2

v ) random variables, and Ω̄1/2(b) is the Choleski decomposition
of Ω̄(b), which is an N × N Toeplitz matrix whose jth main diagonal is bj

if j ≤ 10 and is zero otherwise.7 By design, the cross-section correlation “dies
out” if the units are spatially far apart, much like an AR(1) process. We draw λi

(once) from the uniform distribution with support on [0�1]. Four variations of
the data generating program (DGP) are considered. In DGP 1 (homoskedas-
ticity and cross sectionally uncorrelated errors), we set b = 0 and σ2

v = 1. In
DGP 2 (heteroskedasticity and cross sectionally uncorrelated errors), we set
b= 0, but σ2

v (i) is uniformly distributed on (0�5�1�5). In DGP 3 (homoskedas-
ticity and cross sectionally correlated errors), we let b = 0�5 and σ2

v (i) = 1.
In DGP 4 (heteroskedasticity and cross sectionally correlated errors), we set
b= 0�5 and σ2

v is again uniformly distributed on (0�5�1�5).
In the simulations, r = 2 and is assumed known. The series to be forecasted is

yt+4 = 1 + F1t + F2t + εt+4�

That is, h = 4, Wt = 1, α= (1�1)′, and β= 1. The simulation design is similar to
Stock and Watson (2002a), but allows stronger cross-section correlations in eit .

7The results are similar if the innovation variance of ut is not scaled by 1−ρ2
j . The scaling enables

us to control the size of the common to the idiosyncratic component.
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Three types of confidence intervals will be presented:

A: (5b) + (4); B: (5a) + (3); C: (5c) + (3)�

When constructing (5c), we use the first n= min[√N�
√
T ] series to construct

the CS-HAC. For the sake of comparison, we also consider the coverage rates
that would obtain when Ft is known (and thus the standard errors omit terms
involving Avar(F̃t)). This is labelled D.

The coverage rates are reported in Table I for (i) the estimated conditional
mean ŷT+h|T and (ii) the diffusion index forecast ŷT+h. The coverage rates are
generally close to the nominal rate of 0.95, although three results are notewor-
thy. First, when N is small, the coverage of C is too low for DGPs 1 and 2. This
can be attributed to the use of CS-HAC when in fact there is no cross-section
correlation. Second, for DGPs 3 and 4, the coverage of A and B is always too
low since these types ignore the correlation in the errors. Coverage is improved
using the CS-HAC; see C. Third, the coverage rates for yT+h|T are more sen-
sitive to the relationship between N and T than for yT+h. This is in accord
with theory, because the error in yT+h is dominated by εt+h, whereas the error
in yT+h|T is induced by the error in estimating Ft and the parameters.

5. SUMMARY

We first establish the rate of convergence and the limiting distribution for the
estimated parameters of the forecasting model and of the factor-augmented re-
gressions when the factors are unobserved but estimated. We then derive simi-
lar results for the predicted conditional mean and for the forecasting error. For
predictive inference, we suggest how the covariance matrix of cross-correlated
and heteroskedastic errors can be consistently estimated.
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APPENDIX: PROOFS

LEMMA A.1: Let z′
t = (F ′

t �W
′
t )

′ and ẑt = (F̃ ′
t �W

′
t )

′. Let δ2
NT = min[N�T ] and

H = Ṽ −1(F̃ ′F/T)(Λ′Λ/N). Under Assumptions A–E:
(i) 1

T

∑T

t=1 ‖F̃t −HFt‖2 = Op(δ
−2
NT );

(ii) 1
T

∑T

t=1(F̃t −HFt)z
′
t =Op(δ

−2
NT );

(iii) 1
T

∑T

t=1(F̃t −HFt)̂z
′
t =Op(δ

−2
NT );
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TABLE I

COVERAGE RATES, h = 4, r = 2

Method A: (5b) + (4) B: (5a) + (3) C: (5c) + (3) D: F Known

N T ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h

DGP 1: b = 0, σ2
v (i)= 1 ∀ i

50 50 0.95 0.94 0.93 0.94 0.93 0.94 0.91 0.93
100 50 0.93 0.94 0.91 0.94 0.91 0.93 0.91 0.94
200 50 0.93 0.93 0.91 0.93 0.91 0.93 0.89 0.93
50 100 0.95 0.95 0.95 0.95 0.93 0.95 0.93 0.94
50 200 0.94 0.96 0.92 0.96 0.88 0.95 0.95 0.95

200 100 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.93
100 200 0.96 0.95 0.94 0.95 0.93 0.95 0.94 0.95
200 200 0.96 0.95 0.95 0.95 0.94 0.95 0.94 0.95
100 400 0.97 0.95 0.96 0.95 0.94 0.95 0.94 0.95

DGP 2: b = 0, σ2
v (i)∼ U(0�5�1�5) ∀ i

50 50 0.95 0.94 0.93 0.94 0.93 0.94 0.91 0.93
100 50 0.94 0.94 0.92 0.94 0.92 0.94 0.91 0.94
200 50 0.93 0.93 0.91 0.93 0.91 0.93 0.89 0.93
50 100 0.95 0.95 0.94 0.95 0.92 0.95 0.93 0.94
50 200 0.93 0.95 0.91 0.95 0.87 0.95 0.95 0.95

200 100 0.94 0.94 0.93 0.94 0.93 0.94 0.94 0.93
100 200 0.96 0.95 0.94 0.95 0.94 0.95 0.94 0.95
200 200 0.95 0.95 0.94 0.95 0.94 0.95 0.94 0.95
100 400 0.98 0.96 0.96 0.96 0.93 0.96 0.94 0.95

DGP 3: b = 0�5, σ2
e (i)= 1 ∀ i

50 50 0.82 0.94 0.81 0.94 0.86 0.94 0.91 0.93
100 50 0.84 0.94 0.83 0.93 0.88 0.94 0.91 0.94
200 50 0.87 0.93 0.85 0.93 0.90 0.93 0.89 0.93
50 100 0.85 0.95 0.84 0.95 0.89 0.95 0.93 0.94
50 200 0.73 0.95 0.69 0.95 0.78 0.95 0.95 0.95

200 100 0.89 0.94 0.87 0.94 0.93 0.94 0.94 0.93
100 200 0.83 0.95 0.80 0.95 0.92 0.96 0.94 0.95
200 200 0.86 0.95 0.83 0.95 0.93 0.95 0.94 0.95
100 400 0.80 0.95 0.76 0.95 0.94 0.95 0.94 0.95

DGP 4: b = 0�5, σ2
e (i)∼ U(0�5�1�5) ∀ i

50 50 0.82 0.94 0.80 0.93 0.85 0.94 0.91 0.93
100 50 0.85 0.93 0.83 0.93 0.89 0.94 0.91 0.94
200 50 0.86 0.93 0.85 0.93 0.91 0.93 0.89 0.93
50 100 0.83 0.95 0.81 0.95 0.90 0.95 0.93 0.94
50 200 0.65 0.94 0.63 0.94 0.69 0.94 0.95 0.95

200 100 0.89 0.94 0.87 0.94 0.92 0.94 0.94 0.93
100 200 0.83 0.95 0.80 0.95 0.90 0.96 0.94 0.95
200 200 0.85 0.95 0.83 0.95 0.93 0.95 0.94 0.95
100 400 0.80 0.95 0.77 0.95 0.93 0.96 0.94 0.95
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(vi) 1
T

∑T

t=1(F̃t −HFt)εt+h =Op(δ
−2
NT ).

PROOF: See the working version of this paper. Q.E.D.

PROOF OF THEOREM 1: Adding and subtracting terms, the model can be
written as

yt+h = α′Ft +β′Wt + εt+h

= α′H−1F̃t +β′Wt + εt+h + α′H−1(HFt − F̃t)

= ẑ′
tδ+ εt+h + α′H−1(HFt − F̃t)�

In matrix notation, Y = ẑδ+ ε + (FH ′ − F̃)H−1′α, where Y = (yh+1� � � � � yT )
′,

ε = (εh+1� � � � � εT )
′, and ẑ = (̂z1� � � � � ẑT−h)

′. The ordinary least squares estima-
tor is δ̂ = (̂z′ ẑ)−1̂z′Y . Thus,

δ̂− δ = (̂z ′̂z)−1ẑ′ε+ (̂z ′̂z)−1ẑ′(FH ′ − F̃)H−1α

or
√
T(δ̂− δ)

= (T−1ẑ ′̂z)−1T−1/2ẑ′ε+ (T−1ẑ ′̂z)−1[T−1/2ẑ′(FH ′ − F̃)]H−1α�

The second term on the right is op(1) because T−1/2̂z′(FH ′ − F̃) = Op(T
1/2/

min(N�T)) = op(1) when
√
T/N → 0, by Lemma A.1. For the first term,

T−1/2̂z′ε = T−1/2(ε′F̃� ε′W )′. Now T−1/2F̃ ′ε = T−1/2HF ′ε + T−1/2(F̃ − FH ′)′ε,
where the second term is op(1) when

√
T/N → 0 by Lemma A.1. Thus,

T−1/2̂z′ε = T−1/2(ε′FH ′� ε′W )′ + op(1) = T−1/2Φz′ε + op(1), where Φ =
diag(H� I) is a block diagonal matrix. Thus,

√
T(δ̂− δ) = (T−1ẑ ′̂z)−1T−1/2ẑ′ε+ op(1)(A.1)

= (T−1ẑ ′̂z)−1ΦT−1/2z′ε+ op(1)�

Since z′ε/
√
T

d−→ N(0�Σzz�ε) by Assumption E.2, the above is asymptotically
normal. The asymptotic variance matrix is the probability limit of

(
ẑ′ ẑ
T

)−1

Φ

(
1
T

T∑
t=1

ε2
t+hztz

′
t

)
Φ′

(
ẑ′ ẑ
T

)−1

� where Φ =
[
H 0
0 I

]
�(A.2)

Define H0 = plimH = V −1QΣΛ and Φ0 = plimΦ = diag(H0� I). Now T−1̂z′ ẑ =
Φ(T−1z′z)Φ′ + op(1)

p−→ Φ0ΣzzΦ
′
0. The limiting variance or the limit of (A.2)
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is

Σδ = (Φ0ΣzzΦ
′
0)

−1(Φ0Σzz�εΦ
′
0)(Φ0ΣzzΦ

′
0)

−1

= Φ′−1
0 Σ−1

zz Σzz�εΣ
−1
zz Φ

−1
0 �

Since HFt = F̃t + op(1) and zt = (F ′
t �W

′
t )

′, we have Φ( 1
T

∑T

t=1 ε
2
t+hztz

′
t)Φ

′ =
( 1
T

∑T

t=1 ε̂
2
t+ĥzt ẑ

′
t) + op(1). Therefore, ̂Avar(δ̂) = (T−1̂z′ ẑ)−1(T−1

∑T

t=1 ε̂
2
t+h ×

ẑt ẑ
′
t)(T

−1̂z′ ẑ)−1 is a consistent estimator for Σδ. This completes the proof of
Theorem 1. Q.E.D.

PROOF OF THEOREM 2: Without loss of generality, consider a FAVAR(1).
For FAVAR(1), Yt and zt coincide, i.e., Yt = zt = (y ′

t � F
′
t )

′. The infeasible
FAVAR is zt+1 =Azt + εt+1 or(

yt+1

Ft+1

)
=

(
a11 a12

a21 a22

)(
yt
Ft

)
+

(
ε1t+1

ε2t+1

)
�

Left multiplying the second block equations by H, and then adding and sub-
tracting terms, the FAVAR expressed in terms of F̃t is(

yt+1

F̃t+1

)
=

(
b11 b12

b21 b22

)(
yt
F̃t

)
+

(
ε1t+1

Hε2t+1

)
+

(−b12(HFt − F̃t)
b21(HFt − F̃t)

)
+

(
0q×1

−(HFt+1 − F̃t+1)

)
=

(
b11 b12

b21 b22

)(
yt
F̃t

)
+ u1

t+1 + u2
t+1 + u3

t+1�

where b11 = a11, b12 = a12H
−1, b21 =Ha21, and b22 =Ha22H

−1. Let ẑt = (y ′
t � F̃

′
t )

′

and ẑ = (̂z′
1� � � � � ẑ

′
T )

′. The jth equation is ẑjt+1 = δ′
j ẑt + u1

jt+1 + u2
jt+1 + u3

jt+1.
Thus,

√
T(δ̂j − δj) = (T−1ẑ ′̂z)−1T−1/2ẑ′(u1

j + u2
j + u3

j )

= (T−1ẑ ′̂z)−1T−1/2ẑ′u1
j + op(1)�

where the second equality follows, by Lemma A.1, from T−1/2̂z′u2
j = Op(

√
T/

min[N�T ]) and T−1/2̂z′u3
j = Op(

√
T/min[N�T ]). Now T−1/2̂z′u1

j = T−1/2 ×∑T

t=1 ẑtu
1
jt+1. For j ≤ q, u1

j�t+1 is the jth component of ε1t+1. This case is treated
in (A.1) and the limiting variance is, compare with (3) and (A.2),

plim

(
1
T

T∑
t=1

ẑt ẑ
′
t

)−1(
1
T

T∑
t=1

(u1
jt+1)

2ẑt ẑ
′
t

)(
1
T

T∑
t=1

ẑt ẑ
′
t

)−1

�(A.3)
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which can be consistently estimated upon replacing u1
jt+1 by û1

jt+1 = Yjt+1 − δ̂′
j ẑt .

For j = q + 1� � � � � q + r, u1
jt+1 is the kth component (k = j − q) of Hε2t+1,

which can be written as ι′
kHε2t+1, where ιk is a vector of 0’s with the kth el-

ement being 1. Note that ι′
kHε2t+1 is a linear combination of the components

of ε2ε. The analysis of (A.1) in the previous proof implies that the limiting vari-
ance is given by (A.3) with u1

jt+1 = ι′
kHε2t+1. Again, replacing u1

jt+1 by û1
jt+1 gives

the same limiting variance. Q.E.D.

PROOF OF THEOREM 3: Begin by rewriting

ŷT+h|T − yT+h|T

= α̂′F̃T + β̂′WT − α′FT −β′WT

= (̂α−H−1′α)′F̃T + α′H−1(F̃T −HFT)+ (β̂−β)′WT

= ẑ′
T (δ̂− δ)+ α′H−1(F̃T −HFT)

= T−1/2ẑ′
T [√T(δ̂− δ)] +N−1/2α′H−1[√N(F̃T −HFT)]�

Both
√
T(δ̂ − δ) and

√
N(F̃T − HFT) are asymptotically normal. They are

also asymptotically independent because the limit of
√
T(δ̂ − δ) is deter-

mined by (ε1� � � � � εT ) and that of
√
N(F̃T − HFT) is determined by eiT for

i = 1�2� � � � �N . Noting that T−1/2(̂zT − zT ) = op(1), an estimate for the vari-
ance of T−1/2z′

T

√
T(δ̂ − δ) is 1

T
z′
T Avar(δ̂)zT , which in turn is estimated by

1
T
ẑT Avar(δ̂)̂zT . Similarly, an estimate for the variance of the second term

is 1
N
α′H−1 Avar(F̃T )H

−1′α, which is in turn estimated by 1
N
α̂′ Avar(F̃T )̂α.

Due to asymptotic independence, an estimate for the forecasting error
variance is var(̂yT+h|T ) = 1

T
ẑ′
T Avar(δ̂)̂zT + 1

N
α̂′ Avar(F̃T )̂α; thus, (̂yT+h|T −

yT+h|T )/ var(̂yT+h|T )1/2 d−→ N(0�1). Q.E.D.

The proof of the following lemma is in the working version of this paper.

LEMMA A.2: There exists (i) 1
n

∑n

j=1(H
−1′λi − λ̃i)λ

′
i = Op((nT)

−1/2) +
Op(min[N�T ]−1). (ii) The r × r matrix 1

T

∑T

t=1[(HFt − F̃t)(
∑n

i=1 λ
′
ieit)] =

Op(
n

min[N�T ]).

PROOF OF THEOREM 4: Let σij = E(eitejt) and σ̃ij = 1
T

∑T

t=1 ẽit ẽjt . Let Γn =
1
n

∑n

i=1

∑n

j=1 σijλiλ
′
j . The limit of Γn exists by Assumption C. By definition,

Γ = lim
n→∞

Γn�

The proposed estimator is Γ̃ = 1
n

∑n

i=1

∑n

j=1 σ̃ijλ̃ĩλj . Also let Γ̄n = 1
n

×
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i=1

∑n

j=1 σ̃ijλiλ
′
j . It follows that

Γ̃ −H−1′ΓH−1(A.4)

= Γ̃ −H−1′Γ̄nH
−1 +H−1′(Γ̄n − Γn)H

−1 +H−1′(Γn − Γ )H−1�

The last term converges to zero since Γn − Γ → 0. We will show (i) that Γ̄n −
Γn

p−→ 0 if n
N

→ 0 and n
T

→ 0, and (ii) that Γ̃ − H−1′Γ̄nH
−1 = Op(T

−1/2) +
Op(min[N�T ]−1).

(i) Γ̄n − Γn

p−→ 0: From ẽit = xit − c̃it and eit = xit − cit , where cit = λ′
iFt and

c̃it = λ̃′
iF̃t , we have ẽit = eit − (cit − c̃it). Thus, ẽit ẽjt = eitejt − eit(cjt − c̃jt) −

ejt(cit − c̃it)+ (cit − c̃it)(cjt − c̃jt) and

Γ̄n − Γn = 1
n

n∑
i=1

n∑
j=1

1
T

T∑
t=1

(eitejt − σij)λiλ
′
j

− 1
n

n∑
i=1

n∑
j=1

1
T

T∑
t=1

eit(cjt − c̃jt)λiλ
′
j

− 1
n

n∑
i=1

n∑
j=1

1
T

T∑
t=1

ejt(cit − c̃it)λiλ
′
j

+ 1
n

n∑
i=1

n∑
j=1

1
T

T∑
t=1

(cit − c̃it)(cjt − c̃jt)λiλ
′
j

= I + II + III + IV �

As shown in the working version of this paper, the first term is Op(T
−1/2), and

the second and third terms are zero if
√
n/T → 0. These three terms are dom-

inated by IV , whose norm can be rewritten as∥∥∥∥∥1
n

n∑
i=1

n∑
j=1

1
T

T∑
t=1

(cit − c̃it)(cjt − c̃jt)λiλ
′
j

∥∥∥∥∥
= 1

T

T∑
t=1

∥∥∥∥∥ 1√
n

n∑
i=1

(cit − c̃it)λi

∥∥∥∥∥
2

�

Using cit − c̃it = (H−1′λi − λ̃i)
′F̃t + λ′

iH
−1(HFt − F̃t), we have

1√
n

n∑
i=1

(cit − c̃it)λi

= 1√
n

n∑
i=1

(H−1′λi − λ̃i)
′F̃tλi + 1√

n

n∑
i=1

λ′
iH

−1(HFt − F̃t)λi
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and ∥∥∥∥∥ 1√
n

n∑
i=1

(cit − c̃it)λi

∥∥∥∥2

≤ 2

∥∥∥∥∥ 1√
n

n∑
i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥∥∥

2

‖F̃t‖2

+ 2‖H−1‖2

(
1
n

n∑
i=1

‖λi‖2

)2

· n · ‖Ft −HFt‖2�

where the inequality follows from (a + b)2 ≤ 2a2 + 2b2. Summing over t and
dividing by T ,

IV ≤ 2

(
1
T

T∑
t=1

‖F̃t‖2

)∥∥∥∥∥ 1√
n

n∑
i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥∥∥

2

+ 2‖H−1‖2

(
1
n

n∑
i=1

‖λi‖2

)2

· n · 1
T

T∑
t=1

‖HFt − F̃t‖2

= a+ b�

By Lemma A.2(i), a→ 0 if
√
n/T → 0, and b= Op(n)Op(min[N�T ]−1)→ 0 if

n
T

→ 0 and n
N

→ 0.
The proof of part (ii) is similar and can be found in the working version of

this paper. Q.E.D.
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